Check for
Updates

Near-Optimal Derandomization of Medium-Width Branching
Programs’

Aaron (Louie) Putterman
aputterman@g.harvard.edu
Harvard University
USA

ABSTRACT

We give a deterministic algorithm to estimate the expectation of a
read-once branching program of length n and width w in space

o (Iogn + v/logn - log w) . (1)

In particular, we obtain a nearly optimal space O(log n) derandom-

ization of programs up to width w = 2VI°8™_ Previously, the best
known space complexity for this problem was

@) (min {logn -logw, 10g3/2 n+ \/IOE . logw})

via the classic algorithm of Savitch (JCSS 1970) and Saks and Zhou
(JCSS 1999), which only achieve space O(log n) for w = polylog(n).

We prove this result by showing that a variant of the Saks-Zhou
algorithm developed by Cohen, Doron, and Sberlo (ECCC 2022)
still works without executing one of the steps in the algorithm,
the so-called “random shift step.” This allows us to extend their
algorithm from computing the nth power of a w X w stochastic
matrix to multiplying n distinct w X w stochastic matrices with no
degradation in space consumption. In the regime where w > n, we
also show that our approach can achieve parameters matching those
of the original Saks-Zhou algorithm (with no loglog factors). Finally,

we show that for w < 2VI°8" an algorithm even simpler than our
algorithm and that of Saks and Zhou achieves space O(log>/? n).

CCS CONCEPTS

« Theory of computation — Pseudorandomness and deran-
domization.

KEYWORDS

Pseudorandomness, Space-Bounded Computation, Branching Pro-
grams

ACM Reference Format:
Aaron (Louie) Putterman and Edward Pyne. 2023. Near-Optimal Deran-
domization of Medium-Width Branching Programs. In Proceedings of the

“A.P. was supported under the Simons Investigator Fellowship of Boaz Barak, NSF
grant DMS-2134157, DARPA grant W911NF2010021, and DOE grant DE-SC0022199.
E.P was supported by an Akamai Presidential Fellowship.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.

STOC °23, June 20-23, 2023, Orlando, FL, USA

© 2023 Copyright held by the owner/author(s). Publication rights licensed to ACM.
ACM ISBN 978-1-4503-9913-5/23/06...$15.00
https://doi.org/10.1145/3564246.3585108

23

Edward Pyne
epyne@mit.edu
Massachusetts Institute of Technology
USA

55th Annual ACM Symposium on Theory of Computing (STOC °23), June
20-23, 2023, Orlando, FL, USA. ACM, New York, NY, USA, 12 pages. https:
//doi.org/10.1145/3564246.3585108

1 INTRODUCTION

There have been over four decades of work towards derandomiz-
ing space-bounded computation, i.e. proving BPL = L. A central,
extensively studied problem that is “BPL-complete” is to estimate
the expectation of a read-once branching program of length n and
width w = n. A long line of research has attacked BPL = L via
pseudorandom generators and other black-box derandomization
techniques [2, 3, 14, 15, 19, 20].

Here, however, our focus is on the non-black-box setting, where
the problem is equivalent to computing an approximate product of
n stochastic matrices My, ..., M, € R¥*¥ where M; corresponds
to the transition probabilities of the branching program from layer
i — 1 to layer i. From the classical work of Savitch [25] it is easy to

derive a space O (log2 n) algorithm for this problem (where w = n)

via a divide and conquer approach.
In 1995, Saks and Zhou gave a breakthrough algorithm that

3/2

achieved space O(log”/“ n) for the same problem:

THEOREM 1.1 ([24]). There is a deterministic algorithm such that
given stochastic matrices My, ..., My € RWXWL ihe algorithm com-
putes a 1/n entrywise approximation to M - - - M. The algorithm

runs in space
o (logs/2 n++/logn - log w) .

In 2022, Cohen, Doron, and Sberlo gave an algorithm that im-
proved on Saks and Zhou in the case where w < n, and we add the
additional constraint that all the stochastic matrices are equal:

THEOREM 1.2 ([10]). There is a deterministic algorithm such that
given a stochastic matrix M € RY*Y, the algorithm computes a 1/n
entrywise approximation to M"™. The algorithm runs in space

5(logn+\/lo?~logw).

Unfortunately, Cohen et als result does not seem to improve
on Saks and Zhou for computing the product of n distinct w x
w stochastic matrices, and thus does not improve on the space
complexity of derandomizing branching programs. We remark that
for branching programs of width w = o(n), the restriction that
all transition functions are the same is severe: there are simple
functions computable by ordered branching programs of width 2
that cannot be computed by “single transition” ordered programs of
width n/2—1 (see Appendix B). Thus, for estimating the expectation

'We assume all input matrices have O (log n) bit entries for simplicity.

https://doi.org/10.1145/3564246.3585108
https://doi.org/10.1145/3564246.3585108
https://doi.org/10.1145/3564246.3585108
http://crossmark.crossref.org/dialog/?doi=10.1145%2F3564246.3585108&domain=pdf&date_stamp=2023-06-02

STOC ’23, June 20-23, 2023, Orlando, FL, USA

of a width w, length n read-once branching program, the best space
complexity remains

min {O(w logn), O(logn -logw) + 5(10g n),

0] (Iogl/z_o(l) (n)(logn + log w)) }

, where the first bound follows from a simple iterative algorithm,
the second from a modification of [25], and the third from the
algorithm of Saks Zhou [24] (as recently improved by Hoza [13]).

1.1 Main Result

We achieve near-optimal space complexity for derandomizing branch-
ing programs up to w = exp(logl/2
(1) exp(log®? n)].

n), and improve on known
results for all w € [log

THEOREM 1.3. There is a deterministic algorithm such that given
n,w € N and a read-once branching program B of length n and width
w, the algorithm approximates the acceptance probability of B up to
error 1/n?. The algorithm runs in space

5(Iogn+\/@'logw).

This result can be viewed as an attack on BPL vs L from a differ-
ent direction. While Saks and Zhou (with a further improvement
from Hoza) [13, 24] decrease the space required to derandomize a
width n, length n branching program, we increase the maximum
width w such that we can near-optimally derandomize a width w,
length n branching program. This can be thought of as a non-black-
box analogue of trying to “build up” better PRGs by starting with
the constant width regime [6, 12, 16].

We state our main result in terms of computing an approximate
product of stochastic matrices. For this theorem, we without loss
of generality assume w < n.

THEOREM 1.4. There is an algorithm A, that, given n,w € N
with w < n and arbitrary stochastic matrices My, ..., M, € RW*¥,
returns a matrix M satisfying

HM1 My — A’JH < 1/n%.
Furthermore, the space complexity of the algorithm is

) ((log n+ vlogn - logw) loglog n) .

We note that where we may assume additional structure on
M, ..., Mp, such as them being the random walk matrices of undi-
rected or Eulerian graphs, we have existing near-optimal algorithms
via a line of work on the Laplacian paradigm [1, 17, 18].

Concurrent Work. Independently and concurrently, Cohen, Doron,
Sberlo, and Ta-Shma [11] obtained a matching result to Theorem 1.4,
using a different approach (in particular, their algorithm retains the
random shift technique).

1.2 Overview of Prior Work

As our work builds on that of Saks and Zhou and Cohen, Doron,
and Sberlo, we give a high-level presentation of their approaches
before describing our improvements.

24

Aaron (Louie) Putterman and Edward Pyne

The Work of Saks and Zhou [24]. We first present the approach
of [24]. For simplicity we assume we are approximating the nth
power of a single stochastic matrix M € R"?*",

The first step by Saks and Zhou was to divide the problem of com-
puting the nth power of a stochastic matrix M into /log n iterations

of computing the ¢ := 2 Viognyy power of matrices M, M?, ME
In each iteration, they used the Nisan generator, which we denote
NIS. NIS has an “offline” seed h, which in this case can be of length
O(log3/ 2 1), and an “online” seed of length O(log n), such that for
every fixed offline seed h the generator NISj can be evaluated in
space O(log n). Moreover, with high probability over h the genera-
tor NIS, produces a good approximation (in expectation over the
online seed) of the £th power of a fixed stochastic matrix. They then
reused the offline seed throughout the /log n levels of recursion, at
each step using NISy, to approximate the £th power of the previous
level. Thus, the algorithm uses O(log n) bits of space for the online
seed at each of the 4/log n levels, and a single offline seed of length
O(log®? n).

However, there is an issue with this construction as stated. The
approximation M ~ M! output by NIS, can (of course) depend on
h. But then the claim that NISj, is good at approximating powers
of M with high probability does not necessarily hold, as we reuse
the same offline seed h. To avoid this, the key insights from Saks
and Zhou was that between each level of recursion, they could
randomly shift and round the matrix M. By doing so, they ensure
that with high probability the rounded matrix equals the relevant
“true” power, and so NISy, is good for it with high probability. This
results in an additional O(log n) bits of randomness per level, which
is tolerable in their regime.

The Work of Cohen, Doron, and Sberlo [10]. We now discuss the
subsequent work of [10], which achieves improved space where
w < n and all matrices are the same. For simplicity, assume for

now that w = 2VI°8"_ Their work contributed the crucial insight

that one could use the Nisan generator to approximate 2 Viegnipy

powers to accuracy 2-cViogn 5 /n. This reduced the offline seed
to O(log n), and the online seed to O(4/logn).

While this larger error would degrade too much if we let it accu-
mulate over the y/log n levels, they instead used Richardson Itera-
tion to reduce the error back to 1/n between each level. Richardson
Iteration is a method for improving the accuracy of an approximate
power with near-optimal space complexity that has seen several
recent applications in the space bounded regime [1, 9, 10, 21].

Unfortunately, their approach seems to require that we are ap-
proximately powering a single w X w matrix, and thus cannot
be used to derandomize read-once branching programs of width
w < n and length n. The reason for this relates to the random shifts
used in the construction. Cohen et al. prove that the random shifts

can be sampled with O (\/log n+log w) bits per level. Intuitively,

this is because for the ith level, there are w? distinct values in the
true power M!", and we must ensure that with high probability
our rounding threshold does not lie near one of these values. But if
instead there are n distinct base matrices, there could be nw? “bad”

Near-Optimal Derandomization of Medium-Width Branching Programs

values per level and so we must invest O(log n) bits per level in the
shift, leading to an eventual space consumption of O(log3/ 2p).2
The other approach to dealing with distinct transition matrices,
the one taken in the original paper of Saks and Zhou and other
works [1, 9, 21, 24], is that given the w X w transition matrices

Mji, ..., Mp, first embed them as the off-diagonal elements in a
nearly nw X nw matrix:
0 M 0 - 0
0 0 . .
M= 0 My 0 @)
0 0 Mp
0 .. 0

Then the (1, n+1) block of M™ equals Mj - - - My, so an approximate
nth power of M can be used to read off an approximation to the
product. However, we are unable to take advantage of this method
for computing the product of n distinct w X w matrices when w =
n®(1) This is because this block matrix will necessarily be of size
at least n X n, and thus result in space consumption O(log3/ 2n).

1.3 Owur Approach

We obtain Theorem 1.4 by showing that the random shift step can
be eliminated from the algorithm of [10]. The reason for random
rounding in [10, 24] is the approximate product M ~ M, even at
iteration 1, can depend on the offline seed h to the Nisan PRG, and
so we cannot say that NISy is good for powering this new matrix
with high probability. The solution of prior works is to randomly
shift M before rounding, such that it is exactly equal to (the shifted
and rounded version of) M’, and then apply NIS. Since M’ is
defined without reference to h, we can say that NISy, is good for it
with high probability.

We take a different approach, by developing a more sophisticated
analysis of the error incurred when using NISy, to approximate pow-
ers. Given a stochastic matrix M € R¥*", we feed M through a
canonicalizer Ct that outputs a branching program B such that
the corresponding transition matrix for each layer of B is approxi-
mately M. We can then estimate walk probabilities using a suitable
pseudorandom generator (in this case, NISy). More precisely, from
state v € [w] the canonicalizer assigns the edge with label o € [27]
to the state k such that

k-1 k
ZMU,,- <27l.g< ZMUJ.
j=1 j=1

We observe that given M, M’ that are close (say, within y in £
distance), their canonicalizations B := C¢ [M],B’ := C¢ [M’] are
close as labeled branching programs. In particular, from every state
v, most of the edges from state v have exactly the same destination
in B and B’. Moreover, the only edges that differ must be those
assigned in places where the partial sums of rows of M and M’
differ. These locations can be (roughly) determined knowing only
the partial sums of M and a bound on the £« distance of M” to M.
More concretely, there is is a set of roughly 2/y “boundary” edges
from each state such that for every M’ such that |M — M’|| < y/w,

2They also gave an algorithm based on the Cayley Hamilton theorem that likewise
does not seem to generalize to distinct matrices.

25

STOC ’23, June 20-23, 2023, Orlando, FL, USA

every difference between B and B’ := C [M’] will occur on these
edges. Note that this set depends only on M and y, and not on
the specific M’. Thus, letting E be the program that accepts if we
traverse a boundary edge, a generator NISy, that fools B and E must
also fool B” = C¢ [M’], even for M’ that depend on the offline seed
seed h. We give the formal statement of this result here, and prove
it in Section 3:

TuEOREM 1.5. Fixt € Nandy > 27! and let My, ..., My € R¥*W
be sub-stochastic matrices. Suppose GEN : {0, 139 > [21)f is e-good
for Ct [My, ..., M¢] and E, where E is defined in Lemma 3.5 only
in terms of My, ..., M; and t and y. Then for every sub-stochastic

Mi,..., My € RY*Y where HMi -]\ZH <y foreveryi, GEN is p :=
6wty + 2¢-good for Ct [1\711, e ,M[].

Since an £ error of magnitude y can shift the value of all w
partial sums by y (and hence a w - y fraction of edges could be
allocated differently from each vertex), we obtain the promise that
if M, M’ are y close, we fool Ct [M’] up to error roughly y - w.
While this is too much for the original algorithm of Saks and Zhou
(except in the small-width regime, see Theorem 1.8), we can use the
idea of Cohen, Doron, and Sberlo [10] to reduce the error back to
O(y) using Richardson iteration. In fact, we prove that their exact
algorithm with the random shift step deleted computes a good
approximation. This results in a particularly simple analysis of the
final algorithm, which we view as an advantage of our approach.

Remark 1.6. We remark that our canonicalizer can be viewed as
truncating the matrix to t bits of precision, then locally monotoniz-
ing the edges from each vertex (in that the state reached from vertex
v is a non-decreasing function of the edge label o, for every v). This
local monotonization procedure has found several applications in
the black box setting, both in analyzing PRGs and bounding the
advantage of programs on the coin problem [4, 5, 7, 16]. While
previous results used local monotonization in the analysis, we take
advantage of the non-black-box setting to actually construct a lo-
cally monotone branching program and apply the PRG on it. In
Theorem 1.8, we give a space O(log3/ 2 n) algorithm for derandom-
izing programs of width up to exp(log'/? n) for which this is the
only non-black-box operation in the algorithm.

Decreasing the Failure Probability. We must make one final mod-
ification to the algorithm of [10] to handle distinct matrices. They
use the Nisan PRG [19] to approximate powers. Our result does not
seem to work with the Nisan PRG - we instead use the Nisan PRG
combined with the “sampler trick” of Armoni [2]. This is because
we require the failure probability § of the generator to be polyno-
mially small in n (over the offline randomness), not merely w as
in [10], because there are nw distinct subprograms to approximate.
For Nisan, this would force an online seed of length O(log n), which
would require too much space.

To obtain an online seed of length O (\/log n+log w), we com-

pose Nisan with an averaging sampler with doubly logarithmic de-
pendence on § in the online component. We note that evaluating the

averaging sampler on an online seed (of length O (\/log n+log w))

now takes workspace O(logn + +/logn - logw). However, since
this workspace is purely used to produce the sampler output (and

STOC ’23, June 20-23, 2023, Orlando, FL, USA

hence we do not read the input while using it) we can reuse a fixed
O(logn + y/logn - log w) bits of workspace for these evaluations
across all levels of recursion.

Interestingly, our argument relies on the sampler (and initial
PRG) being an averaging sampler, because we use a sandwiching
argument. The original argument of Saks and Zhou (and Cohen
et al.) works more generally for a weighted PRG, and this was
crucial for Hoza’s improved derandomization of BPL [13]. We view
whether our approach works for weighted PRGs to be an interesting
open question.

We give a sketch of the our algorithm in the case that M; = Mz =
-+ = M. For the formal description, see Algorithm 2.

Algorithm 1: Algorithm sketch

1 Draw a random seed h and let NISy, be the generator with
offline seed h.
2 Set M0 = M.

3 fori=1,...4/logn do

4 Canonicalize M1 to a degree 2°¢ Viogn branching
program denoted Ct, [1\7["*1].

_q2Vleen
5 Use NISy, to approximate walks on Ct, [M"l] up

to error 2-¢Vlogn,

6 Use O(loglog n) applications of the space efficient
Richardson Iteration algorithm to reduce the error of
the previous matrix to 1/n€ and call the matrix
resulting from this step M. This reduces the error
sufficiently such that we can apply Nisan’s generator
on M! despite the fact that this resulting matrix
depends on h.

7 end
s return MVIogn,

1.4 Other Results

Our approach allows us to eliminate the random shifts in the Saks-
Zhou algorithm in a range of regimes, which we explicate here.
First, by applying Richardson iteration to Theorem 1.4, we can
boost our main result to arbitrarily low error:

Corollary 1.7. Givenw,n € N withw < n and ¢ > 0 and arbitrary
stochastic matrices My, . .., My, € RW*W there is an algorithm ﬂi

that returns a matrix M satisfying
”Ml M, —MH <e
Furthermore, the space complexity of the algorithm is

o) ((1og n+ \logn - log w) log log(n) log log(1/¢) + log? log(1 /g)) .

Furthermore, we show that for matrices that are not too wide, the
naive approach of iteratively applying the Nisan generator (with
1/poly(n) error) and canonicalizing works, even without Richard-
son Iteration. This does not improve on Savitch, but we include it
as the resulting algorithm is particularly simple. In particular, the
only non-black-box step is the canonicalization operation.

26

Aaron (Louie) Putterman and Edward Pyne

THEOREM 1.8. There is an algorithm Ay that, givenn € N and ar-

bitrary stochastic matrices My, . .., My € R¥*"Y wherew < 2 Viogn
returns a matrix M satisfying

”M1 My — M'H < 1/n%.
Furthermore, the space complexity of the algorithm is O (log?’/2 n)

Finally, we show that we can achieve space complexity matching
Saks-Zhou (with no loglog factors) without random shifts, by inter-
leaving approximate powers with a constant number of Richardson
iterations.

THEOREM 1.9. There is an algorithm A3 that, given n,w € N and

a stochastic matrix M € RW*W, returns a matrix M satisfying

”M" —M‘| < 1/wk
Furthermore, the space complexity of the algorithm is

o (log3/2 n++/logn - log w) .

1.5 Organization

In Section 2 we define terms and recall the Nisan generator (with a
modification to decrease its failure probability) and space-efficient
Richardson iteration. In Section 3 we formally define the canonical-
izer and prove Theorem 1.5. In Section 4 we apply Theorem 1.5 to
prove our main result. In Section 5 we show that for small widths,
an algorithm without shifts or Richardson iteration can achieve
space O(log3/ 2). In Section 6 we show that we can achieve space
matching that of Saks and Zhou for large widths, by replacing
random shifts by a constant number of Richardson iterations per
level.

2 PRELIMINARIES

We first define several terms that we will use in the proofs.

e LetM e R;’S(W be a stochastic (resp. sub-stochastic) ma-
trix if every row sum is equal (resp. at most) 1. In the lan-
guage of Markov chains, M; ; is the transition probability
from state i to state j.

e Let || - || denote the fo matrix norm. We remark that none
of our results are sensitive to the precise choice of norm.

e Let Ug denote the uniform distribution over elements of the
set S. For n € N let U, be the uniform distribution over
{0,1}™.

We recall the property that for sub-stochastic matrices, the product
of approximations is an approximation to the product:

Claim 2.1. Given sub-stochasticAy, ...,Ar € R"*Y andBy, ...
RWXW_if||A; — B;|| < 8 for every i, then

[|A;---Ap—By---Be|| < ¢-6.

,Br €

We now formally define branching programs. We define them
without reference to a distinguished start or accept state, as we will
always require approximations of the walk probability from every
state in layer 1 to every state in layer n.

Definition 2.2. A (read-once) branching program B of width
w and length n with alphabet ¥ consists of n functions B; : [w] X

Near-Optimal Derandomization of Medium-Width Branching Programs

[X] — [w]. We define the composition of branching programs
B := B - - - B, in the natural way. For x € 2" we define

Bli,x] =(B1 -~ Bp)[i,x]
=Bp[Bn-1l... B2[B1[i, x1], x2] ...], xn—1], xn].
We view the expectation of a branching program as a stochastic
matrix. Let E [B] be the matrix where (E [B])ij = Pr[B[i, Usn] =

j]. For a function GEN : {0,1}° — 3", let GEN [B] = E [B o GEN].

We say a function GEN : {0, 1}* — =" is e-good for a branching
program B if for every subprogram B; ; we have (truncating the
output of GEN to its j — i bit prefix):

“@ [Bi.;] -E [Bi..j]]” <e

Averaging Samplers and Error Reduction Primitives. We recall the
family of pseudorandom generators to be used in our construction.
We use the Nisan PRG composed with an averaging sampler. We
use a formulation of Chattopadhyay and Liao [8].

THEOREM 2.3 ([8, 19, 22]). Givenn,w,|%| € N and ¢, 6 > 0, there
exists a generator NIS : {0,1}™ X {0, 134 5 3" such that for every
length n, width w branching program B we have:

P [”W[B] —E[B]H < g] >1-6

and we have m = O(log(n) log(nw/¢)+log(|Z]) +log(1/5)) andd =
O(log(nw|Z|/¢) + loglog(1/5)). Equivalently, for every branching
program B, with probability 1 — § over h NISy := NIS(h, -) is e-good
for B. Furthermore, NIS(x) can be evaluated in space O(m) given
two-way read-only access to the offline seed h.

For completeness, we provide a proof of this in Appendix A.

We can transform this generator into a space-efficient algorithm
for approximating walks in branching programs, and this is the
formulation we will use in the proof:

Lemma 2.4 ([8, 10, 19]). Given n,w,|X| € N and ¢,6 > 0, there
exists an algorithmNISy, , 5 that gets as (read only) input a branching
program B := By .-+ By : " — {0, 1}Y*Y of width w, accuracy
and confidence parameters €, > 0, and h € {0,1}" where m =
O(log(n) log(nw|Z|/¢) + log(1/6)). Furthermore:

o The algorithm runs in space O(log(nw|Z|/¢) + loglog(n/d)),
plus an additional O(m + log(n/5)) space that is used peri-
odically, during which it does not touch the input or output
tapes®.

o The algorithm outputs

{m [B]}
=) ije[n]

where NIS [B] is a substochastic matrix. For every i < j
1—]

and u,v € [w], (m [B]) is the fraction of outputs of
i—j wo

NISp . 5(x) that reach state v in layer j from state u in layer i.

If B; = Bj for alli, j we assume without loss of generality the

algorithm returns { NIS [B]
1—k

}ke[n] ‘

3This space is used for producing the output of the sampler.

27

STOC ’23, June 20-23, 2023, Orlando, FL, USA

o For every branching program B, with probability 1 — § over
h < Uy, we have that for everyi < j,

NIS[B] —E|[B;- - Bj]

i—j

We say that NISy, . s is e-good for B if this holds.

<e

Likewise, we recall the space-efficient Richardson Iteration algo-
rithm used in prior work.

Lemma 2.5 ([1, 9, 10, 21]). There exists an algorithm R that, given
sub-stochastic My, ..., M, € RW*Y and {M,]} ~and k € N such

i<j
that for alli < j, HMi <M~]\71,1H < 1/5n returns a sub-stochastic

matrix R({M;}i, {]\7Ii,j}i,j, k) where each entry is represented by at
most T bits of precision satisfying
k

HR ({Mi}i, {Mi,j}i,j,k) — MMy < 2nw? .27

Furthermore, R runs in space O(log? k + log(k) log(nT)) where
T is the maximum bit complexity of {M;}, {M; j}. In the case that
M; = M for all i, we drop the i subscript without loss of generality.

3 THE CANONICALIZER

We first formally define the canonicalizer. Informally, the canon-
icalizer is an algorithm that converts a substochastic matrix to a
branching program, so that we can approximate its expectation
using a pseudorandom generator. Our construction crucially relies
on how the canonicalizer assigns edges, which we detail below:

Definition 3.1. Given t € N, there exists a t-canonicalizer C¢
that takes in a sub-stochastic matrix M € RW*" with each entry
represented by at most s bits and returns a branching program
Ct [M] on w + 1 states® with alphabet % = [2]. Furthermore, for
i, j,0 € [w] X [w] x [2] the canonicalizer assigns Ct [M] [i,] = j

if and only if
i1 J
ZMi’k <o- 2_t < ZMi’k'
k=1 k=1

Furthermore, Ct can be computed in space O(log(wts)). We define
C¢ [My,...,M¢] = C¢ [Mq] - - C¢ [Mg] for substochastic matrices
Mj, ..., M, in the natural way, where now the canonicalizer outputs
a branching program of width w + 1 and length ¢ and the space
complexity is O(log(wtst)).

We collect some basic properties of the canonicalizer. In par-
ticular, as shown in prior work the expectation of the branching
program obtained from canonicalizing M is a close approximation
to M.

Claim 3.2 ([10, 24]). For everyt € N and sub-stochastic matrix
M € RY*Y we have

“E [Ce [M]] - M“ < w2t

This extends to canonicalizing a sequence of substochastic ma-
trices:

4Since in all cases this additional state will be immaterial, we implicitly pad M to be a
(stochastic) (w+1) X (w+1) matrix and treat the transformation as width preserving.

STOC ’23, June 20-23, 2023, Orlando, FL, USA

Claim 3.3. Foreveryt € N and sub-stochastic matrices My, ..., My €
RYXW vve have
HE [Ce[My,...,Mg]] =My --- M[H < we27t,
Proor. Deferred to Appendix A. O

We can further extend this to show “canonicalizations of similar
matrices are similar”.

Lemma 3.4. Given sub-stochastic My, ..., My and]\711, .. .,A7I(in

RWXW if |M; — M;|| < y for every i, then for everyt € N,
HE [Ct [My,...,M;]] - E [ct [1\711, ... M[”“ < 2ew2™ ! oy
Proor. Deferred to Appendix A. O

Note that this shows the expectations of the canonicalizations are
close, but does not show the canonicalizations are close as labeled
branching programs. Proving this stronger result is the primary
contribution of the section.

Proof of Theorem 1.5. We now state the main lemma, which
proves that canonicalizations of close matrices have similar struc-
tures as branching programs. In particular, the edges on which they
differ are rare, and can be predicted in advance given only M.

Lemma 3.5. Givent € N and sub-stochastic My, ..., M, € R¥V*W
andy > 271, there exists an ordered branching program E of width
w + 2 and length ¢ and alphabet [2"] such that:

(1) Forevery j € [w],
Pr [E [], U[zz](] = Uacc] <3wfl-y.

M; — M;

(2) Forevery M, ..., M, satisfying

| <y foreveryi, we

have that for every state j € [w] and every input x € [2']¢,

Ce [My, ..., M;] [j,x] #Ct [Ml,...,M[] [j,x] = E[Jj,x] = vacc.

Proor. Foreveryi € [¢] and state j € [w], let s := ZL(Mi)j,l
for every k € [w]. Define the boundary set BD(M;); C [2'] of
edges for state j in layer i as o for which

w
BD(M;);j = {0' co-27" e U[sk -V, Sk +y]} .

k=1
Let E be the program (with w + 2 states) that has identical states
and transitions to C¢ [M,. .., M,] except it transitions to state vacc
if and only if the input ever traverses such an edge (and once it
reaches v, always stays at this state). Observe that for every state
Jj and every layer i, a random edge from j lies in the boundary set

with low probability. In particular,

Pr

. w
[Ct [M;] [j,o] € BD(Mi)j] <2y-wH o <3yw

aUlyt) 2

and so a union bound over steps proves (1).

Now fix M, .. .,]\7Ig satisfying ”M,- -]\71,” < y for every i. Ob-
serve that the boundary sets and error test program have been
defined without reference to M.

Claim 3.6. For everyi € [£] and j € [w], BD(M;); contains all

edges o on which Ct [M;] [j, o] # Ct [Ml] [Jj, ol

28

Aaron (Louie) Putterman and Edward Pyne

Proor. Fixing i, j, for each k € [w] let

k
Sk = Z(Mi)j,z,
=1

and recall s is defined analogously. We have that for every k,

k k
DM = (M)
I=1 =1

< i |(A71i) il (Mi)j,l|
I=1

sk = Skl =

< HM, - M;

| <v.
Thus for every k,

[sks5k] € [sk — v, s +]

By definition of the canonicalizer, for every o such that
Ce [Mi] L, o] # ¢ i) L), o

we must have o - 277 € [s;, 5] C [sk — ¥, sk + y] for some k, and
so 0 € BD(M;j); as claimed. O

Then we observe that for every j, x such that
Ce [Mi, ..., Me] [J,x] # Ct [1\7111\7#] [x],
there is i such that

v:=C¢ [My,...,M;] [j,x1.i] =Ct [Mlﬁz] [J, x1..i]

and C¢ [A7I,-+1] [0,xi+1] # Ct [Mit+1] [0, xi+1], since otherwise x
would make identical transitions in both programs. But then the
edge labeled x;;1 from v must have received different labels in
C¢ [Mi+1] and C¢ [J\7Ii+1] and thus lie in BD(M;j41); by Claim 3.6,
and so by definition of E we must have E[j, x| = vacc. Note that it
could have been the case that x transited a boundary edge before
layer i + 1, but this likewise causes E[j, x] to reach state vacc on
input x. m]

We can then prove Theorem 1.5 using Lemma 3.5.

TuEOREM 1.5. Fixt € Nandy > 27¢ andlet My, ..., My € RWXV
be sub-stochastic matrices. Suppose GEN : {0, 139 > [21]f is e-good
for Ct [Ma, ..., Me] and E, where E is defined in Lemma 3.5 only
in terms of My, ..., M, and t and y. Then for every sub-stochastic

My,..., My € RW*W where HMi - M;

‘ <y foreveryi, GEN is p :=

6wly + 2¢e-good for Ct [1\711, .. ,]\71(].

Near-Optimal Derandomization of Medium-Width Branching Programs STOC ’23, June 20-23, 2023, Orlando, FL, USA

ProoF. By Lemma 3.5 applied with y = y and t = t we have Let NISy, . s be the family of online-offline samplers from Lemma 2.4
___ _ — — withn =Ry, w=w+2 3 = [211],¢ = ¢ and § = §. We remark that
HGEN [Ce [Mi,.... Me]] — GEN [Ct [Ml’ - "Mf”H the offline seed has length
< ma"{ Pr o [Ce[My,.... Me]] GEN(x)]] # m =0 (r1log(Riw2" /¢) +log(1/8) +log(1/¢))
o \xe

(o4 =0 (log n++/logn - log w) .

Ce [My, ..., Me] [, GEN(X)]]} Furthermore, the online seed has length

< max { Pr [E[j,GEN(x))] = Uacc]} (Property 2) d=0 (log(RIWZtl /o+ log 10g(1/5)) =0 (logn +log W) ’

J x‘_U{O l}d . c s . . .
: We give the formal description of the algorithm in Algorithm 2.
<3wlf-y+e
where the final line follows from Property 1 and GEN being e- Algorithm 2: SZ(M,, ..., My, h)
d for E. Furth , si b tion GEN is e-good fi
gooc for TRIEEHORE, SHICE Dy assEEpEot 's egood for 1 Given h € {0,1}™, let NIS := NISy . s be the sampler with
C¢ [My, ..., M]: &,
parameters set above.
H@ [Ce [My, ... M]] — B [Ce [Mn,.. ,,M[]]H < » return IMM(yTogn, 0, NIS).

and by Lemma 3.4,

“E [Ce [My,...,M]] - E [ct [M}M}HH

Algorithm 3: IMM(i, j, NIS)

<2ew2™ 4oy

1 if i = 0 then
< 3fwy. 2 ‘ return M;.);
Thus, applying the triangle inequality we conclude that 3 end

4 forl € [j,j+R;] do

”GEN [ct [Ml,...,Mg” —E[ct [Ml,...,Mf”H < 6wly +26. O s | Let M-l = IMM(i — 1Ry - + LNIS).

We note that in the regime w = n, applying this result directly ¢ end
in the original framework of Saks and Zhou [24] does not allow us 7 Let
to eliminate the random rounding step. This is because our error ~ I —i 1 i1
degrades with a factor of w per application, which could give a {Mk’l}k,le[Rl] = {IEILSI [Ct‘ [Mj e "Mj+R1H}k Ie[R]
final error of wViogn = yo (1), However, we can use the approach s Set ’

of Cohen et al. to repair the loss at each level.
a =R (A) '
/ (Her) o kerr

9 return M J’

4 PROOF OF THEOREM 1.4

We now apply Theorem 1.5 to prove Theorem 1.4. The analysis of
our resulting algorithm is cleaner than prior approaches due to the
absence of random rounding. In particular, we directly argue that

We now show Algorithm 2 works with high probability over the

the approximation at level i is close to the 20" VI8 th true power, outer seed h.

rather than comparing to a shifted and rounded version of such. As

we make the same parameter choices® as Cohen, Doron, and Sberlo THEOREM 4.1. Given n,w € N with w < n and arbitrary sub-
(and the components of our algorithm are a strict subset of theirs), stochastic matrices My, ..., My € R™*", Algorithm 2 returns with
the space complexity follows essentially from their analysis, though probability 1 — n%S over the outer seed h < {0,1}™ a matrix M =
we must be careful to avoid incurring an overhead of O(log n) bits SZ(Mj, ..., My, h) satisfying

per level for tracking indices or evaulating the sampler. We analyze

AT 3
the space complexity in Lemma 4.3. ”Ml e Mn - MH <1/n.

We are now prepared to analyze the algorithm. Given n, w as Moreover, SZ(My, . .., My, h) runs in space
specified in the upcoming theorem (where we may assume n > w
without loss of generality, as otherwise apply Theorem 1.9), we set (@) ((log n++/logn - log(w)) log log(n))

parameters as follows:))
We first define the true powers that we wish to approximate,

ri=rz=+logn, t;=20logn, 1t =2r1+logw+4 and their corresponding canonicalizations.
e=2"11"% §=92p7> Ry =2". Definition4.2. Givenn, w,#; € N and sub-stochastic M?, . .. ,Mg €
- RWXW define
SWith the exception of §, which we must take to be order 1/n to survive a bound over
he test programs M= ML ol oyl
the test programs. J Ry MR+ j-Ri+R;—1

29

STOC ’23, June 20-23, 2023, Orlando, FL, USA

and let P = {th [MJ’, .. "Mji‘+R1” U & where & is the family of
error testers of Lemma 3.5 applied with ¢t = #; and y = y (for y to
be globally chosen later) to every subproduct M]’ ey M]l. R,

Note that we have erz = M? -+~ MY by definition. We first prove
the correctness, then analyze the space consumption.

PROOF OF CORRECTNESS OF THEOREM 4.1. We condition on the
event that NIS := NIS;, s is £-good for the set of programs #
as defined in Definition 4.2. This occurs with probability at least
1 - n%5 by Lemma 2.4 and the fact that there are at most nw < n?
such programs. Subsequent to this assumption (which requires a
union bound over nw bad events, rather than w), the proof does
not change if we assume all base matrices are equal, so we do so
for clarity. We maintain the following invariant at level i of the
algorithm:

22ivr1
<

[- o]

1710

Ensuring this invariant holds certainly suffices to complete the
proof. Assuming the invariant holds for level i, we now verify that
the conditions of Theorem 1.5 are satisfied for t = t; and £ = Ry
ande =candy := 27 and M = M* and M = M'. We have that
NIS is e-good for M and the associated error tester by assumption.
Furthermore by the invariant we have

-

|< ! <
_nz_y.

Therefore by Theorem 1.5 applied to the generator NIS, we obtain
for every j € [Ry],

And thus by Claim 3.3 for every j € [R;],

E[Ct1 [Ml,...,MiH < 6WR1y + 2¢

- NS [ce, |47 41|
1—j

1

<
10- Ry

(Mi)j_m[c’u [Mi’~-~sMi]] < +WR12_t1 < .
1—=j 10 - Ry 5-R;
Therefore, recalling
M =R (M‘ {m |ce [31',.. 1\“4’”} ,tz)
1—j .
J
by Lemma 2.5 we have
“[\7[141 _ (Mi)th <2 _lezzftz < — (3)
n
Thus,
HMM _ v < HMM — (R + H(Mi)Rl _ it
1 ~ ,
ST H(M’)Rl - (M’)RI) 3)
n
2 —~. .
< WJ'RI'HML —M’“ Claim 2.1
n
22(i+1)~r1
<
nlO

which maintains the invariant for the next level.

30

Aaron (Louie) Putterman and Edward Pyne

Note that since that i < 4/logn, this means that our error is
bounded with

92ir 92Vlogn-y/logn
<

nlo = 1710

1
< g [m}
Lemma 4.3. SZ(Mj, ..
o} ((log n++/logn -log(w)) log log(n)) .

ProoF. We note that at no point do we explicitly write down the
matrix M ;, which would require w? log(nw) bits. Instead, whenever

. Mp, h) runs in space

IMM(i + 1, j) requests a bit of]\7Ij‘, we recurse on IMM(i, j/) and
determine only this bit, then return control to level i+1. This process
is formalized as the composition of space-bounded algorithms in
Lemma A.2.

We look at the individual space complexities of the components
of our algorithm:

(1) First, we note that the seed length for the generator requires

space (paid once)

O(logn+\/lo?~logw).

(2) Each function IMM(i, j) produces w?t; = O(w? log n) bits of
output, and so by Lemma A.2 we require O(log w+log log n)
bits per level to track the index of the bit to be output.

(3) The online space for NIS requires space (paid once per level)

(0] (\/@+logw).

(4) By Lemma 2.4, we require space O(logn + v/logn - log w) to
evaluate NISy(x) on online input x, and as we do not touch
the input or output during this time, this space can be reused
between levels and so only needs to be paid for once.

(5) Richardson iteration requires space (paid once per level)

0 (1og2 ty +log s - log(letl))

=0 ((log logn)? +loglogn - (logw + \/@)) .

(6) The canonicalizer requires space (paid once per level)

O(log(t1tawR1)) = O(ylogn +logw + loglog n).
(7) Specifying which matrices on the input tape should be multi-

plied can be done with O(log R;) = O(+/log n) bits per level
of recursion.

To justify the last statement above, we see that if we assume the
algorithm stores the index of which subproblem is currently being
solved in each level, it can directly compute which matrices are
supposed to be multiplied at any given step. Each index takes space
O(logRy), and is stored only once for each level in the call tree.
Bringing this together, we note that the maximum recursion depth
of our algorithm is r; = 4/log n, and the space complexity of each
recursive level is O(log w loglog n + +/log nloglog n). This means
in total, the space required for the call tree is

o (\/logn -logw -loglogn +logn - loglog n) ,

and this complexity does not change when we account for the
offline seed of Nisan’s generator. O

Near-Optimal Derandomization of Medium-Width Branching Programs

Finally, we can use Theorem 4.1 to prove Theorem 1.4. We note
that Cohen et al. [9] obtain a 1/n approximation by taking the
median of each entry over the offline randomness (as their algorithm
fails with probability 1/w > 1/n over h), but we obtain failure
probability 1/n over h, so we take the average for simplicity.

Proor or THEOREM 1.4. By our choice of §, with probability at
least 1 — 1/2n% over the outer seed we obtain a final matrix M
satisfying M = M; - - My|| < n~3. For a bad h, we receive a matrix
with distance at most w < n in £ distance, and so the theorem
follows from letting A; be the algorithm that returns the average
of Algorithm 2 over h. O

By applying a final layer of Richardson iteration, we can obtain
an arbitrary low-accuracy estimate at mild additional cost in space.
We use a more precise statement of Richardson iteration, but we
defer its statement to Section 6, where we use it as part of the inner
loop of an algorithm.

PRrOOF OF THEOREM 1.7. Let Algorithm A/ be the algorithm that
applies Lemma 6.1 to My, ..., M, and {Mi,j}i,je[n] with error &,
where for i, j, A7Il-3j is the output of Theorem 1.4 applied to M;, . . ., M;.
The correctness is direct from the correctness of Theorem 1.4, and
the space complexity follows from Lemma 6.1 and the composition
of space bounded algorithms (Lemma A.2). O

5 NAIVE SAKS-ZHOU FOR SMALL WIDTH

In this section we prove that the naive Saks-Zhou algorithm suc-
ceeds without random shifts as long as w = O(Z‘/@). We remark
that this gives a space O(loga/ 2 n) algorithm for derandomizing
width exp(logl/ 2 n) branching programs whose only non-black-
box step is repeatedly locally monotonizing subprograms (see Re-

mark 1.6). For the remainder of the section, let

RN

Let NISy, . 5 be the family of online-offline samplers from Lemma 2.4
withn =R, w=w+23 = [2!],e = ¢ and § = §. We remark that
the offline seed has length

t =20logn, e=n"10 §=n"° Ry =2,

m = O (ry log(riw2' /) +log(1/8) +log(1/e)) = O (log3/2 n) .
Furthermore, the online seed has length
d=0 (10g(r1w2t/£) +loglog(1/8)) = O (logn) .

We now formally state this algorithm.

Algorithm 4: SZN(Mj, ..., My, h)

1 Given h € {0,1}", let NIS := NISy, . 5 be the sampler with
parameters set above.
2 return NaiveIMM(+y/logn, 0,NIS).

We then state the theorem showing it is correct with high prob-
ability over the outer seed:

31

STOC ’23, June 20-23, 2023, Orlando, FL, USA

Algorithm 5: Algorithm NaiveIMM(i, j,NIS)

1 if i = 0 then

2 ‘ return M;.)

3 end

4 forle [j,j+Ry] do

5 | let Mi~!:=NaiveIMM(i — 1, Ry - j + L NIS).
6 end

~Ta vri—1 vri—1
7 return 1N—I>I§1 Ct, [Mj ""’Mj+R1H'

THEOREM 5.1. Givenn € N and w < 2VI°¢" and any sub-
stochastic My, ..., M, € RWXW, Algorithm 4 returns with prob-
ability 1 — n®5 over the outer seed h < {0,1}™ a matrix M =
SIN(My, . .., Mp, 11,12, h) satisfying

HMlmMn —MH <1/n.

Moreover, SIN(My, . . ., Mu, h) runs in space O (logg/2 n) .

We construct the true powers identically to Definition 4.2 (with
ty =tandy,...,Yr, to be chosen later, where the choice depends
on the recursion level and nothing else). Furthermore, the space
complexity directly follows from the analysis in the prior section,
where we no longer pay for Richardson iterations. The remainder
of the proof consists of setting parameters and walking through
the same analysis.

Proor oF THEOREM 5.1. We condition on the event that NIS :=
NISy, is e-good for P as defined in Definition 4.2, which occurs
with probability at least 1 — n? as claimed. As in the prior case,
subsequent to this assumption the proof does not change if we
assume all base matrices are equal, so we do so for clarity. We
maintain the following invariant at the start of the ith iteration of
the loop:

(8WRy)'R]

AfE i
L B

|<

Ensuring this invariant holds certainly suffices to complete the
proof. We now verify that the conditions of Theorem 1.5 are satisfied
fort =tande = cand y; = (8WR1)’Ri/n1° and M = M' and
M = M. We have that NIS is e-good for the relevant programs by
assumption. Furthermore by the invariant we have

-] <
Therefore by Theorem 1.5, recalling that

M= NIS [ct [M", . M’]]
1-R;

we obtain

“E [Ct [1\7Ii,...,]\71i]] - M < 6wWRyy; + 2¢ < (TwR1)yi.

and thus by Claim 3.3,

H(Mi)Rl —]\7Ii+1H < (7WR1)yi +WR12_t < (8WRy)yi- 4)

STOC ’23, June 20-23, 2023, Orlando, FL, USA

Thus,
”1\71”1 _ it < ”1\71”1 — (R + H(Mi)Rl _ i
< (wRyy+ [- | @
< (8wRy)y; + Ry - ||M! — M| Claim 2.1

. (8wRy)™*IRI . (8wRy)'RI*!
= 10 10

. (8WR1)I+1R;+1
<S5

which maintains the invariant for the next level. Note that since
that i < 4/log n, this means that our error is bounded with

(8WRy)'R} _n (Bw)VIogn _ (8w)Vleen

10 710

]
nd

Hence, we see that when w < 2‘/@, the original algorithm
of Saks and Zhou works without random shifting. The proof of
Theorem 1.8 from Theorem 5.1 is exactly analogous to that of
Theorem 1.4 from Theorem 4.1, so we omit it.

6 SAKS-ZHOU WITH CONSTANT
RICHARDSON ITERATIONS

To obtain space complexity matching Saks-Zhou without random
rounding (with no loglog factors), we state a more precise version
of Richardson iteration that utilizes stronger guarantees on the
initial error:

Lemma 6.1 ([1, 9, 10, 21]). There exists an algorithm R that, given
t,k € N and sub-stochastic M € R¥*Y and (M,)] andk € N

i€[n
such that for all i |M' - M,H < 1/(nw)? returns a substochastic
matrix R(M, (M;);, t, k) where each entry is represented by at most t
bits of precision satisfying

”R (M, {Mi}i,t, k) — M| < (nw) K.

Furthermore, R runs in space O(log? k + log(k) log(tnT)) where
T is the maximum bit complexity of M and {M;}.

Note that the above lemma implies that with only O(1) Richard-
son iterations, we can reduce the error from # back down to #
for arbitrary constants ¢ < ¢’, and this consumes O(log nw) space
per level.

As we are now in the regime where we may assume w > n
without loss of generality, we appeal to identity 2 and assume we
are computing the nth power of a single w X w stochastic matrix.
For the remainder of the section let

t =20log(w), e = w0 S§=w O =ry= Ylogn, Ry = 2",

Let NISy, . 5 be the family of online-offline samplers from Lemma 2.4
withn =R, w=w+23 = [2/],e = ¢ and § = §. We remark that
the offline seed has length

m=0 (r log(Ryw2!/¢) +1og(1/8) + log(1/¢))

=0 (logS/2 n+ vlogn -log w) .

32

Aaron (Louie) Putterman and Edward Pyne

Furthermore, the online seed has length
d=0 (log(lezt/f) +loglog(1/8)) = O (log nw) .
We formally describe the inner loop as Algorithm 6.

Algorithm 6: Algorithm SZC(M, h)

1 Given h € {0,1}"", let NIS, 5 be the sampler with
parameters set above.

2 Set M° := M.

3 fori=1,...rydo

4 Let

{Mk}ke[&] = {E [ct1 [M{—l,,,.,@f”}ke[m .

5 Set

M ::R(Mi_l, {Mk} ,t,lO).
ke[Ri]

6 end
7 return M"

We then show Algorithm 6 is correct with high probability over
the outer seed:

THEOREM 6.2. Given n,w € N with w > n and any stochastic
M € RWXW, Algorithm 6 returns with probability 1 — w2 over the
outer seed h < {0,1}"™ a matrix M = SZC(M, h) satisfying

”M" —]\71” <1/w’.

Moreover, SZC(M, h) runs in space

o (log3/2 n++/logn - log w) .

We construct the true powers identically to Definition 4.2 (with
t; = t). The rest of the proof is analogous to Theorem 4.1, except
that we set y to be 1/w€¢ and so require only a constant number of
Richardson iterations per level. The space complexity follows from
Lemma 6.1, as we now require O(log nw) space per level for the
Richardson iterations (and the online seed).

ACKNOWLEDGEMENTS

We thank Salil Vadhan and David Zuckerman for their insightful
comments during the writing of this paper.

A DEFERRED PROOFS

We collect proofs of claims regarding the accuracy of various trunca-
tion and rounding procedures. In all cases, our results are insensitive
to polynomial losses in the length and width of the relevant sub-
programs, and constant factors in terms of the bit complexity (i.e.
the parameters t1, t3).

We first extend Claim 3.2 to canonicalizations of sequences of
matrices.

Claim 3.3. Foreveryt € N and sub-stochastic matrices Mj, . .
RWXW e have

LMy e

HE [Ce [My, ..., Me]] = My -- -M[“ < we27h

Near-Optimal Derandomization of Medium-Width Branching Programs

Proor. We have
[Ece tats....Me11) - b -
= ”E [Ct [My]]---E[Ct [Me]] - My - .M[H
< ew2™!

where the second step uses Claim 2.1 with A; = E [C¢ [M;]] and
B; = M; and § = w2~! from Claim 3.2. |

We observe that this easily implies that the expectations of canon-
icalizations of similar matrices are similar.

Lemma 3.4. Given sub-stochastic My, ..., My and Ml, .. .,M[in

RYXY if |M; — M;|| < y for every i, then for everyt € N,
HE [Ct [My,...,M¢]] - E [Ct [1\711, .. ,M[”” <2ew2 i 4 ty.

Proor. We have
HE [Ce [M,....M]] - E [ct [Mlz\?(””
< [Ece vl =y - 0
+‘|M1...M[_]\711...]\71[H
+||#ts - 6 - E e 30, 60]
<2we2 ey
where the final line uses Claim 3.3 and Claim 2.1. O

We recall the formal statement of the composition of space-
bounded algorithms:

Lemma A.1([10]). Let fi, f2 : {0,1}* — {0,1}* be computable in
space s1,s2 : N — N, where s1(n),s2(n) > logn. Then, fi o fa(x)
can be computed in space

O(s1(£2(n)) + s2(n)),

where £2(n) is a bound on the length of the output of fo(x) on inputs
of length n.

We can apply this lemma to the case of a single function being
composed with itself many times:

Lemma A.2 ([10]). Let f : {0,1}* — {0, 1}* be computable in space
s : N — N, where s(n) > logn. Then, g(x,k) = fo fo---0 f(x)
can be computed in space

k-1
0 (Z s(fi(n») ,
i=0

where ¢;(n) is a bound on the length of the output of g(x, i) on inputs
of length n.

Samplers With Low Failure Probability. We prove that there ex-
ists a generator with our required properties. We first recall the
statement:

THEOREM 2.3 ([8, 19, 22]). Givenn,w,|2| € N and e, § > 0, there
exists a generator NIS : {0,1}™ X {0, 134 = 3" such that for every
length n, width w branching program B we have:

P [m[B]—E[B]”Se] >1-6

33

STOC ’23, June 20-23, 2023, Orlando, FL, USA

and we have m = O(log(n) log(nw/¢) +log(|Z|)+1log(1/6)) andd =
O(log(nw|Z|/e) + loglog(1/0)). Equivalently, for every branching
program B, with probability 1 — § over h NISy, := NIS(h, -) is e-good
for B. Furthermore, NISy(x) can be evaluated in space O(m) given
two-way read-only access to the offline seed h.

We construct this in a standard fashion via the sampler trick.
First, we recall both the PRG of Impagliazzo-Nisan-Wigderson [15],
and a space-efficient averaging sampler. We use the INW PRG as it
obtains optimal dependence on the size of the alphabet |3|.

THEOREM A.3 ([15]). Givenn,w, || € Nande > 0, thereis a func-
tion GEN : {0,1}* — X" withm = O(log nlog(nw/¢e)+log(|X|)) that
can be evaluated in space O(s) such that for every ordered branching
program B : [w] X " — [w] of length n and width w,

Heﬁ [B] -E [B]” <e

THEOREM A .4 ([8, 23]). For everye,d > 0 and s € N, there exists
an averaging sampler f : {0,1}™ x {0, 1} = {0,1}° such that
d = O(log(1/¢) +1oglog(1/6)) and m = s+ O(log(1/d) +log(1/¢)).
Formally, for every function g : {0,1}* — {0, 1}, we have

Pr
hU,,

E [g(f(h)]- E [9(s)] sf]zl_a.
y<—Us

x—Ug
By combining these two ingredients we can construct the gener-
ator.

Proor oF THEOREM 2.3. Let GEN : {0,1}* — X" be the function
of Theorem A.3 with n = n,w = w, |2| = |2]| and ¢ = ¢/2. Observe
that for every ordered branching program B of length n and width
w, we have

HE [BoGEN] —E[B]| < ¢/2.

Now let f : {0,1}™ x {0, 1}4 = {0,1}* be the function of Theo-
rem A.4 with § = §/w, ¢ = ¢/2w. For every function B o GEN (where
we choose a distinguished start and accept vertex and later take a
union bound over ¢ and §) we have

hE{Jm xiEUd[B o GEN(f(h,x))] — yiEUS[B o GEN(y)]| < E/ZW]
>1-356/w.
and thus
B [HGEN o f(h)[B] -E [B]H <ef2+ g/z] >1-5

so letting NIS(h,-) = GEN o f(h, -) we obtain the desired generator.
o

B BOUNDS AGAINST SINGLE TRANSITION
BRANCHING PROGRAMS

To illustrate the added power obtained from derandomizing prod-
ucts Mj - - - M, of stochastic matrices My, ..., M, € RW*Y versus
derandomizing powers M" of a stochastic matrix M € R¥*¥, we
observe that the latter model corresponds to derandomizing or-
dered branching programs with a single fixed transition function
for every layer. We show via a short combinatorial argument that
this limitation can be severe:

STOC ’23, June 20-23, 2023, Orlando, FL, USA

Lemma B.1. For every even n, the function f : {0,1}" — {0,1}
given by f(x) = x,, cannot be computed by a single-transition
ordered branching program of widthn/2 — 1.

We remark that f (and any parity on any subset of variables)
can easily be computed by an ordered branching program (with
distinct transition functions) of width 2.

ProoOF. Let B be a single-transition branching program of width
w computing f, and let vy be the start state and A C [w] be the set
of states marked as accept in the final layer.

Claim B.2. For arbitrary u,v € [w], if there exists o € {0,1}* such
that B[v, o] = u, there exists T € {0,1}=" such that B[v, 7] = u.

Proor. This follows from the fact that if an s — t path exists in a
directed graph of size w, there must be an s — ¢ path of length at
most w. m]

Now assume for contradiction that w < n/2 — 1. Let u :=
Bl o, on/2-1 1]. We first claim that for any o € {0, 1}*, B[u, o] € A.
This follows from Claim B.2 and the fact that B must accept all
strings of the form B[uo, 0"/2-115]. But then there is r € {0,1}="
such that B[vg, 7] = u, and hence B[vg, 70" !71] € A, and as
n — || > n/2 this is a contradiction to the fact that B computes

f o
REFERENCES

[1] AmirMahdi Ahmadinejad, Jonathan A. Kelner, Jack Murtagh, John Peebles, Aaron
Sidford, and Salil P. Vadhan. 2020. High-precision Estimation of Random Walks
in Small Space. In Proceedings of the 61st Annual IEEE Symposium on Foundations
of Computer Science (FOCS). 1295-1306. https://doi.org/10.1109/FOCS46700.2020.
00123

Roy Armoni. 1998. On the derandomization of space-bounded computations.
In Randomization and approximation techniques in computer science (Barcelona,
1998). Lecture Notes in Comput. Sci., Vol. 1518. Springer, Berlin, 47-59. https:
//doi.org/10.1007/3-540-49543-6_5

Mark Braverman, Gil Cohen, and Sumegha Garg. 2020. Pseudorandom Pseudo-
distributions with Near-Optimal Error for Read-Once Branching Programs. SIAM
J. Comput. 49, 5 (2020). https://doi.org/10.1137/18M 1197734

Mark Braverman, Sumegha Garg, and Or Zamir. 2021. Tight Space Complexity of
the Coin Problem. In 62nd IEEE Annual Symposium on Foundations of Computer
Science, FOCS 2021, Denver, CO, USA, February 7-10, 2022. IEEE, 1068-1079. https:
//doi.org/10.1109/FOCS52979.2021.00106

[5] Joshua Brody and Elad Verbin. 2010. The Coin Problem and Pseudorandomness
for Branching Programs. In Proceedings of the 51st Annual IEEE Symposium on
Foundations of Computer Science (FOCS). 30-39. https://doi.org/10.1109/FOCS.
2010.10

Eshan Chattopadhyay, Pooya Hatami, Kaave Hosseini, and Shachar Lovett. 2019.
Pseudorandom Generators from Polarizing Random Walks. Theory Comput. 15
(2019), 1-26. https://doi.org/10.4086/toc.2019.v015a010

Eshan Chattopadhyay, Pooya Hatami, Omer Reingold, and Avishay Tal. 2018.
Improved pseudorandomness for unordered branching programs through local
monotonicity. In Proceedings of the 50th Annual ACM SIGACT Symposium on
Theory of Computing, STOC 2018, Los Angeles, CA, USA, June 25-29, 2018, Ilias
Diakonikolas, David Kempe, and Monika Henzinger (Eds.). ACM, 363-375. https:
//doi.org/10.1145/3188745.3188800

Eshan Chattopadhyay and Jyun-Jie Liao. 2020. Optimal Error Pseudodistributions
for Read-Once Branching Programs. In Proceedings of the 35th Computational

(4]

l6

=

34

Aaron (Louie) Putterman and Edward Pyne

Complexity Conference (CCC). 25:1-25:27. https://doi.org/10.4230/LIPIcs.CCC.
2020.25

Gil Cohen, Dean Doron, Oren Renard, Ori Sberlo, and Amnon Ta-Shma. 2021.
Error Reduction for Weighted PRGs Against Read Once Branching Programs. In
Proceedings of the 36th Computational Complexity Conference (CCC). 22:1-22:17.
https://doi.org/10.4230/LIPIcs.CCC.2021.22

Gil Cohen, Dean Doron, and Ori Sberlo. 2022. Approximating Large Powers
of Stochastic Matrices in Small Space. Electron. Colloquium Comput. Complex.
TR22-008 (2022). ECCC:TR22-008 https://eccc.weizmann.ac.il/report/2022/008
Gil Cohen, Dean Doron, Ori Sberlo, and Amnon Ta-Shma. 2022. Approximating

Iterated Multiplication of Stochastic Matrices in Small Sﬁace. Electron. Colloquium
Comput. Complex. TR22-149 (2022). ECCC:TR22-149 https://eccc.weizmann.ac.

il/report/2022/149

Michael A. Forbes and Zander Kelley. 2018. Pseudorandom Generators for Read-
Once Branching Programs, in Any Order. In Proceedings of the 59th Annual
IEEE Symposium on Foundations of Computer Science (FOCS). 946-955. https:
//doi.org/10.1109/FOCS.2018.00093

William M. Hoza. 2021. Better Pseudodistributions and Derandomization for
Space-Bounded Computation. In Proceedings of the 25th International Conference
on Randomization and Computation (RANDOM). 28:1-28:23. https://doi.org/10.
4230/LIPIcs. APPROX/RANDOM.2021.28

William M. Hoza and David Zuckerman. 2020. Simple Optimal Hitting Sets for
Small-Success RL. SIAM J. Comput. 49, 4 (2020), 811-820. https://doi.org/10.
1137/19M1268707

Russell Impagliazzo, Noam Nisan, and Avi Wigderson. 1994. Pseudorandom-
ness for network algorithms. In Proceedings of the Twenty-Sixth Annual ACM
Symposium on Theory of Computing, 23-25 May 1994, Montréal, Québec, Canada,
Frank Thomson Leighton and Michael T. Goodrich (Eds.). ACM, 356-364. https:
//doi.org/10.1145/195058.195190

Raghu Meka, Omer Reingold, and Avishay Tal. 2019. Pseudorandom generators
for width-3 branching programs. In Proceedings of the 51st Annual ACM SIGACT
Symposium on Theory of Computing. ACM, 626-637. https://doi.org/10.1145/
3313276.3316319

Jack Murtagh, Omer Reingold, Aaron Sidford, and Salil Vadhan. 2019. Deter-
ministic Approximation of Random Walks in Small Space. In Proceedings of the
23rd International Conference on Randomization and Computation (RANDOM ‘19)
(LIPIcs, Vol. 145), Dimitris Achlioptas and Laszl6 A. Végh (Eds.). Schloss Dagstuhl
- Leibniz-Zentrum fiir Informatik, 42:1-42:22. https://doi.org/10.4230/LIPIcs.
APPROX-RANDOM.2019.42

Jack Murtagh, Omer Reingold, Aaron Sidford, and Salil P. Vadhan. 2017. De-
randomization Beyond Connectivity: Undirected Laplacian Systems in Nearly
Logarithmic Space. In 58th IEEE Annual Symposium on Foundations of Com-
puter Science, FOCS 2017, Berkeley, CA, USA, October 15-17, 2017. 801-812.
https://doi.org/10.1109/FOCS.2017.79

Noam Nisan. 1992. Pseudorandom generators for space-bounded computation.
Combinatorica 12, 4 (1992), 449-461. https://doi.org/10.1145/100216.100242
Noam Nisan and David Zuckerman. 1996. Randomness is Linear in Space. J.
Comput. System Sci. 52, 1 (Feb. 1996), 43-52. https://doi.org/10.1006/jcss.1996.0004
Edward Pyne and Salil Vadhan. 2021. Pseudodistributions That Beat All Pseu-
dorandom Generators (Extended Abstract). In Proceedings of the 36th Annual
Computational Complexity Conference (CCC). 33:1-33:15. https://doi.org/10.4230/
LIPIcs.CCC.2021.33

Omer Reingold, Salil Vadhan, and Avi Wigderson. 2002. Entropy Waves, the Zig-
Zag Graph Product, and New Constant-Degree Expanders. Annals of Mathematics
155, 1 (January 2002). https://doi.org/10.1109/SFCS.2000.892006

Omer Reingold, Salil Vadhan, and Avi Wigderson. 2004. A Note on Extracting
Randomness from Santha-Vazirani Sources. (September 2004). Unpublished
manuscript.

Michael Saks and Shiyu Zhou. 1999. BPSPACE(S) < DSPACE(S%/2). 7. Comput.
System Sci. 58, 2 (1999), 376-403. https://doi.org/10.1006/jcss.1998.1616

Walter J. Savitch. 1970. Relationships between nondeterministic and deterministic
tape complexities. J. Comput. System Sci. 4 (1970), 177-192. https://doi.org/10.
1016/S0022-0000(70)80006-X

[10

(1]

[12

[13

[14

[15

(17

[18

=
)

[20

[21

[22

[23

[24

[25

Received 2022-11-07; accepted 2023-02-06

https://doi.org/10.1109/FOCS46700.2020.00123
https://doi.org/10.1109/FOCS46700.2020.00123
https://doi.org/10.1007/3-540-49543-6_5
https://doi.org/10.1007/3-540-49543-6_5
https://doi.org/10.1137/18M1197734
https://doi.org/10.1109/FOCS52979.2021.00106
https://doi.org/10.1109/FOCS52979.2021.00106
https://doi.org/10.1109/FOCS.2010.10
https://doi.org/10.1109/FOCS.2010.10
https://doi.org/10.4086/toc.2019.v015a010
https://doi.org/10.1145/3188745.3188800
https://doi.org/10.1145/3188745.3188800
https://doi.org/10.4230/LIPIcs.CCC.2020.25
https://doi.org/10.4230/LIPIcs.CCC.2020.25
https://doi.org/10.4230/LIPIcs.CCC.2021.22
https://eccc.weizmann.ac.il/report/2022/008
https://eccc.weizmann.ac.il/report/2022/149
https://eccc.weizmann.ac.il/report/2022/149
https://doi.org/10.1109/FOCS.2018.00093
https://doi.org/10.1109/FOCS.2018.00093
https://doi.org/10.4230/LIPIcs.APPROX/RANDOM.2021.28
https://doi.org/10.4230/LIPIcs.APPROX/RANDOM.2021.28
https://doi.org/10.1137/19M1268707
https://doi.org/10.1137/19M1268707
https://doi.org/10.1145/195058.195190
https://doi.org/10.1145/195058.195190
https://doi.org/10.1145/3313276.3316319
https://doi.org/10.1145/3313276.3316319
https://doi.org/10.4230/LIPIcs.APPROX-RANDOM.2019.42
https://doi.org/10.4230/LIPIcs.APPROX-RANDOM.2019.42
https://doi.org/10.1109/FOCS.2017.79
https://doi.org/10.1145/100216.100242
https://doi.org/10.1006/jcss.1996.0004
https://doi.org/10.4230/LIPIcs.CCC.2021.33
https://doi.org/10.4230/LIPIcs.CCC.2021.33
https://doi.org/10.1109/SFCS.2000.892006
https://doi.org/10.1006/jcss.1998.1616
https://doi.org/10.1016/S0022-0000(70)80006-X
https://doi.org/10.1016/S0022-0000(70)80006-X

	Abstract
	1 Introduction
	1.1 Main Result
	1.2 Overview of Prior Work
	1.3 Our Approach
	1.4 Other Results
	1.5 Organization

	2 Preliminaries
	3 The Canonicalizer
	4 Proof of Theorem 1.4
	5 Naive Saks-Zhou For Small Width
	6 Saks-Zhou With Constant Richardson Iterations
	A Deferred Proofs
	B Bounds Against Single Transition Branching Programs
	References

