
Near-Optimal Derandomization of Medium-Width Branching
Programs∗

Aaron (Louie) Putterman

aputterman@g.harvard.edu

Harvard University

USA

Edward Pyne

epyne@mit.edu

Massachusetts Institute of Technology

USA

ABSTRACT
We give a deterministic algorithm to estimate the expectation of a

read-once branching program of length 𝑛 and width𝑤 in space

𝑂

(
log𝑛 +

√︁
log𝑛 · log𝑤

)
. (1)

In particular, we obtain a nearly optimal space 𝑂 (log𝑛) derandom-

ization of programs up to width𝑤 = 2

√
log𝑛

. Previously, the best

known space complexity for this problem was

𝑂

(
min

{
log𝑛 · log𝑤, log

3/2 𝑛 +
√︁
log𝑛 · log𝑤

})
via the classic algorithm of Savitch (JCSS 1970) and Saks and Zhou

(JCSS 1999), which only achieve space𝑂 (log𝑛) for𝑤 = polylog(𝑛).
We prove this result by showing that a variant of the Saks-Zhou

algorithm developed by Cohen, Doron, and Sberlo (ECCC 2022)

still works without executing one of the steps in the algorithm,

the so-called “random shift step.” This allows us to extend their

algorithm from computing the 𝑛th power of a 𝑤 × 𝑤 stochastic

matrix to multiplying 𝑛 distinct 𝑤 ×𝑤 stochastic matrices with no

degradation in space consumption. In the regime where𝑤 ≥ 𝑛, we

also show that our approach can achieve parameters matching those

of the original Saks-Zhou algorithm (with no loglog factors). Finally,

we show that for𝑤 ≤ 2

√
log𝑛

, an algorithm even simpler than our

algorithm and that of Saks and Zhou achieves space 𝑂 (log3/2 𝑛).

CCS CONCEPTS
• Theory of computation→ Pseudorandomness and deran-
domization.

KEYWORDS
Pseudorandomness, Space-Bounded Computation, Branching Pro-

grams

ACM Reference Format:
Aaron (Louie) Putterman and Edward Pyne. 2023. Near-Optimal Deran-

domization of Medium-Width Branching Programs. In Proceedings of the

∗
A.P. was supported under the Simons Investigator Fellowship of Boaz Barak, NSF

grant DMS-2134157, DARPA grant W911NF2010021, and DOE grant DE-SC0022199.

E.P was supported by an Akamai Presidential Fellowship.

Permission to make digital or hard copies of all or part of this work for personal or

classroom use is granted without fee provided that copies are not made or distributed

for profit or commercial advantage and that copies bear this notice and the full citation

on the first page. Copyrights for components of this work owned by others than the

author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or

republish, to post on servers or to redistribute to lists, requires prior specific permission

and/or a fee. Request permissions from permissions@acm.org.

STOC ’23, June 20–23, 2023, Orlando, FL, USA
© 2023 Copyright held by the owner/author(s). Publication rights licensed to ACM.

ACM ISBN 978-1-4503-9913-5/23/06. . . $15.00

https://doi.org/10.1145/3564246.3585108

55th Annual ACM Symposium on Theory of Computing (STOC ’23), June
20–23, 2023, Orlando, FL, USA. ACM, New York, NY, USA, 12 pages. https:

//doi.org/10.1145/3564246.3585108

1 INTRODUCTION
There have been over four decades of work towards derandomiz-

ing space-bounded computation, i.e. proving BPL = L. A central,

extensively studied problem that is “BPL-complete” is to estimate

the expectation of a read-once branching program of length 𝑛 and

width 𝑤 = 𝑛. A long line of research has attacked BPL = L via

pseudorandom generators and other black-box derandomization

techniques [2, 3, 14, 15, 19, 20].

Here, however, our focus is on the non-black-box setting, where

the problem is equivalent to computing an approximate product of

𝑛 stochastic matrices𝑀1, . . . , 𝑀𝑛 ∈ R𝑤×𝑤 , where𝑀𝑖 corresponds

to the transition probabilities of the branching program from layer

𝑖 − 1 to layer 𝑖 . From the classical work of Savitch [25] it is easy to

derive a space 𝑂

(
log

2 𝑛

)
algorithm for this problem (where𝑤 = 𝑛)

via a divide and conquer approach.

In 1995, Saks and Zhou gave a breakthrough algorithm that

achieved space 𝑂 (log3/2 𝑛) for the same problem:

Theorem 1.1 ([24]). There is a deterministic algorithm such that
given stochastic matrices𝑀1, . . . , 𝑀𝑛 ∈ R𝑤×𝑤1, the algorithm com-
putes a 1/𝑛 entrywise approximation to 𝑀1 · · ·𝑀𝑛 . The algorithm
runs in space

𝑂

(
log

3/2 𝑛 +
√︁
log𝑛 · log𝑤

)
.

In 2022, Cohen, Doron, and Sberlo gave an algorithm that im-

proved on Saks and Zhou in the case where𝑤 ≪ 𝑛, and we add the

additional constraint that all the stochastic matrices are equal:

Theorem 1.2 ([10]). There is a deterministic algorithm such that
given a stochastic matrix𝑀 ∈ R𝑤×𝑤 , the algorithm computes a 1/𝑛
entrywise approximation to𝑀𝑛 . The algorithm runs in space

𝑂

(
log𝑛 +

√︁
log𝑛 · log𝑤

)
.

Unfortunately, Cohen et al.’s result does not seem to improve

on Saks and Zhou for computing the product of 𝑛 distinct 𝑤 ×
𝑤 stochastic matrices, and thus does not improve on the space

complexity of derandomizing branching programs. We remark that

for branching programs of width 𝑤 = 𝑜 (𝑛), the restriction that

all transition functions are the same is severe: there are simple

functions computable by ordered branching programs of width 2

that cannot be computed by “single transition” ordered programs of

width𝑛/2−1 (see Appendix B). Thus, for estimating the expectation

1
We assume all input matrices have𝑂 (log𝑛) bit entries for simplicity.

23

https://doi.org/10.1145/3564246.3585108
https://doi.org/10.1145/3564246.3585108
https://doi.org/10.1145/3564246.3585108
http://crossmark.crossref.org/dialog/?doi=10.1145%2F3564246.3585108&domain=pdf&date_stamp=2023-06-02

STOC ’23, June 20–23, 2023, Orlando, FL, USA Aaron (Louie) Putterman and Edward Pyne

of a width𝑤 , length 𝑛 read-once branching program, the best space

complexity remains

min

{
𝑂 (𝑤 log𝑛), 𝑂 (log𝑛 · log𝑤) +𝑂 (log𝑛),

𝑂

(
log

1/2−𝑜 (1) (𝑛) (log𝑛 + log𝑤)
) }

, where the first bound follows from a simple iterative algorithm,

the second from a modification of [25], and the third from the

algorithm of Saks Zhou [24] (as recently improved by Hoza [13]).

1.1 Main Result
Weachieve near-optimal space complexity for derandomizing branch-

ing programs up to 𝑤 = exp(log1/2 𝑛), and improve on known

results for all𝑤 ∈ [log𝜔 (1) 𝑛, exp(log.99 𝑛)].

Theorem 1.3. There is a deterministic algorithm such that given
𝑛,𝑤 ∈ N and a read-once branching program 𝐵 of length 𝑛 and width
𝑤 , the algorithm approximates the acceptance probability of 𝐵 up to
error 1/𝑛2. The algorithm runs in space

𝑂

(
log𝑛 +

√︁
log𝑛 · log𝑤

)
.

This result can be viewed as an attack on BPL vs L from a differ-

ent direction. While Saks and Zhou (with a further improvement

from Hoza) [13, 24] decrease the space required to derandomize a

width 𝑛, length 𝑛 branching program, we increase the maximum

width𝑤 such that we can near-optimally derandomize a width𝑤 ,

length 𝑛 branching program. This can be thought of as a non-black-

box analogue of trying to “build up” better PRGs by starting with

the constant width regime [6, 12, 16].

We state our main result in terms of computing an approximate

product of stochastic matrices. For this theorem, we without loss

of generality assume𝑤 ≤ 𝑛.

Theorem 1.4. There is an algorithm A1 that, given 𝑛,𝑤 ∈ N
with𝑤 ≤ 𝑛 and arbitrary stochastic matrices 𝑀1, . . . , 𝑀𝑛 ∈ R𝑤×𝑤 ,
returns a matrix𝑀 satisfying

𝑀1 · · ·𝑀𝑛 −𝑀

 ≤ 1/𝑛2 .

Furthermore, the space complexity of the algorithm is

𝑂

(
(log𝑛 +

√︁
log𝑛 · log𝑤) log log𝑛

)
.

We note that where we may assume additional structure on

𝑀1, . . . , 𝑀𝑛 , such as them being the random walk matrices of undi-

rected or Eulerian graphs, we have existing near-optimal algorithms

via a line of work on the Laplacian paradigm [1, 17, 18].

ConcurrentWork. Independently and concurrently, Cohen, Doron,
Sberlo, and Ta-Shma [11] obtained amatching result to Theorem 1.4,

using a different approach (in particular, their algorithm retains the

random shift technique).

1.2 Overview of Prior Work
As our work builds on that of Saks and Zhou and Cohen, Doron,

and Sberlo, we give a high-level presentation of their approaches

before describing our improvements.

The Work of Saks and Zhou [24]. We first present the approach

of [24]. For simplicity we assume we are approximating the 𝑛th

power of a single stochastic matrix𝑀 ∈ R𝑛×𝑛 .
The first step by Saks and Zhouwas to divide the problem of com-

puting the 𝑛th power of a stochastic matrix𝑀 into

√︁
log𝑛 iterations

of computing the ℓ := 2

√
log𝑛

th power of matrices𝑀,𝑀ℓ , 𝑀ℓ2 ,

In each iteration, they used the Nisan generator, which we denote

NIS. NIS has an “offline” seed ℎ, which in this case can be of length

𝑂 (log3/2 𝑛), and an “online” seed of length 𝑂 (log𝑛), such that for

every fixed offline seed ℎ the generator NISℎ can be evaluated in

space 𝑂 (log𝑛). Moreover, with high probability over ℎ the genera-

tor NISℎ produces a good approximation (in expectation over the

online seed) of the ℓth power of a fixed stochastic matrix. They then

reused the offline seed throughout the

√︁
log𝑛 levels of recursion, at

each step using NISℎ to approximate the ℓth power of the previous

level. Thus, the algorithm uses 𝑂 (log𝑛) bits of space for the online
seed at each of the

√︁
log𝑛 levels, and a single offline seed of length

𝑂 (log3/2 𝑛).
However, there is an issue with this construction as stated. The

approximation𝑀 ≈ 𝑀ℓ
output by NISℎ can (of course) depend on

ℎ. But then the claim that NISℎ is good at approximating powers

of𝑀 with high probability does not necessarily hold, as we reuse

the same offline seed ℎ. To avoid this, the key insights from Saks

and Zhou was that between each level of recursion, they could

randomly shift and round the matrix𝑀 . By doing so, they ensure

that with high probability the rounded matrix equals the relevant

“true” power, and so NISℎ is good for it with high probability. This

results in an additional𝑂 (log𝑛) bits of randomness per level, which

is tolerable in their regime.

The Work of Cohen, Doron, and Sberlo [10]. We now discuss the

subsequent work of [10], which achieves improved space where

𝑤 ≪ 𝑛 and all matrices are the same. For simplicity, assume for

now that 𝑤 = 2

√
log𝑛

. Their work contributed the crucial insight

that one could use the Nisan generator to approximate 2

√
log𝑛

th

powers to accuracy 2
−𝑐
√
log𝑛 ≫ 1/𝑛. This reduced the offline seed

to 𝑂 (log𝑛), and the online seed to 𝑂 (
√︁
log𝑛).

While this larger error would degrade too much if we let it accu-

mulate over the

√︁
log𝑛 levels, they instead used Richardson Itera-

tion to reduce the error back to 1/𝑛 between each level. Richardson

Iteration is a method for improving the accuracy of an approximate

power with near-optimal space complexity that has seen several

recent applications in the space bounded regime [1, 9, 10, 21].

Unfortunately, their approach seems to require that we are ap-

proximately powering a single 𝑤 × 𝑤 matrix, and thus cannot

be used to derandomize read-once branching programs of width

𝑤 ≪ 𝑛 and length 𝑛. The reason for this relates to the random shifts

used in the construction. Cohen et al. prove that the random shifts

can be sampled with 𝑂

(√︁
log𝑛 + log𝑤

)
bits per level. Intuitively,

this is because for the 𝑖th level, there are𝑤2
distinct values in the

true power 𝑀ℓ𝑖
, and we must ensure that with high probability

our rounding threshold does not lie near one of these values. But if

instead there are 𝑛 distinct base matrices, there could be 𝑛𝑤2
“bad”

24

Near-Optimal Derandomization of Medium-Width Branching Programs STOC ’23, June 20–23, 2023, Orlando, FL, USA

values per level and so we must invest𝑂 (log𝑛) bits per level in the

shift, leading to an eventual space consumption of 𝑂 (log3/2 𝑛).2
The other approach to dealing with distinct transition matrices,

the one taken in the original paper of Saks and Zhou and other

works [1, 9, 21, 24], is that given the 𝑤 × 𝑤 transition matrices

𝑀1, . . . , 𝑀𝑛 , first embed them as the off-diagonal elements in a

nearly 𝑛𝑤 × 𝑛𝑤 matrix:

𝑀 =



0 𝑀1 0 . . . 0

0 0

. . .
.
.
.

0 . . . 0 𝑀𝑛−1 0

0 0 𝑀𝑛

0 . . . 0


(2)

Then the (1, 𝑛+1) block of𝑀𝑛
equals𝑀1 · · ·𝑀𝑛 , so an approximate

𝑛th power of 𝑀 can be used to read off an approximation to the

product. However, we are unable to take advantage of this method

for computing the product of 𝑛 distinct𝑤 ×𝑤 matrices when𝑤 =

𝑛𝑜 (1) . This is because this block matrix will necessarily be of size

at least 𝑛 × 𝑛, and thus result in space consumption 𝑂 (log3/2 𝑛).

1.3 Our Approach
We obtain Theorem 1.4 by showing that the random shift step can

be eliminated from the algorithm of [10]. The reason for random

rounding in [10, 24] is the approximate product 𝑀 ≈ 𝑀ℓ
, even at

iteration 1, can depend on the offline seed ℎ to the Nisan PRG, and

so we cannot say that NISℎ is good for powering this new matrix

with high probability. The solution of prior works is to randomly

shift𝑀 before rounding, such that it is exactly equal to (the shifted

and rounded version of) 𝑀ℓ
, and then apply NISℎ . Since 𝑀ℓ

is

defined without reference to ℎ, we can say that NISℎ is good for it

with high probability.

We take a different approach, by developing a more sophisticated

analysis of the error incurred when using NISℎ to approximate pow-

ers. Given a stochastic matrix 𝑀 ∈ R𝑤×𝑤 , we feed 𝑀 through a

canonicalizer Ct that outputs a branching program 𝐵 such that

the corresponding transition matrix for each layer of 𝐵 is approxi-

mately𝑀 . We can then estimate walk probabilities using a suitable

pseudorandom generator (in this case, NISℎ). More precisely, from

state 𝑣 ∈ [𝑤] the canonicalizer assigns the edge with label 𝜎 ∈ [2𝑡]
to the state 𝑘 such that

𝑘−1∑︁
𝑗=1

𝑀𝑣,𝑗 ≤ 2
−𝑡 · 𝜎 <

𝑘∑︁
𝑗=1

𝑀𝑣,𝑗 .

We observe that given 𝑀,𝑀′ that are close (say, within 𝛾 in ℓ∞
distance), their canonicalizations 𝐵 := Ct [𝑀] , 𝐵′ := Ct [𝑀′] are
close as labeled branching programs. In particular, from every state

𝑣 , most of the edges from state 𝑣 have exactly the same destination

in 𝐵 and 𝐵′. Moreover, the only edges that differ must be those

assigned in places where the partial sums of rows of 𝑀 and 𝑀′

differ. These locations can be (roughly) determined knowing only

the partial sums of𝑀 and a bound on the ℓ∞ distance of𝑀′ to𝑀 .

More concretely, there is is a set of roughly 2
𝑡𝛾 “boundary” edges

from each state such that for every 𝑀′ such that ∥𝑀 −𝑀′∥ ≤ 𝛾/𝑤 ,

2
They also gave an algorithm based on the Cayley Hamilton theorem that likewise

does not seem to generalize to distinct matrices.

every difference between 𝐵 and 𝐵′ := Ct [𝑀′] will occur on these

edges. Note that this set depends only on 𝑀 and 𝛾 , and not on

the specific𝑀′. Thus, letting 𝐸 be the program that accepts if we

traverse a boundary edge, a generator NISℎ that fools 𝐵 and 𝐸 must

also fool 𝐵′ = Ct [𝑀′], even for𝑀′ that depend on the offline seed

seed ℎ. We give the formal statement of this result here, and prove

it in Section 3:

Theorem 1.5. Fix 𝑡 ∈ N and𝛾 ≥ 2
−𝑡 and let𝑀1, . . . , 𝑀ℓ ∈ R𝑤×𝑤

be sub-stochastic matrices. Suppose GEN : {0, 1}𝑑 → [2𝑡]ℓ is 𝜀-good
for Ct [𝑀1, . . . , 𝑀ℓ] and 𝐸, where 𝐸 is defined in Lemma 3.5 only
in terms of 𝑀1, . . . , 𝑀ℓ and 𝑡 and 𝛾 . Then for every sub-stochastic

𝑀1, . . . , 𝑀ℓ ∈ R𝑤×𝑤 where

𝑀𝑖 −𝑀𝑖

 ≤ 𝛾 for every 𝑖 , GEN is 𝜌 :=

6𝑤ℓ𝛾 + 2𝜀-good for Ct
[
𝑀1, . . . , 𝑀ℓ

]
.

Since an ℓ∞ error of magnitude 𝛾 can shift the value of all 𝑤

partial sums by 𝛾 (and hence a 𝑤 · 𝛾 fraction of edges could be

allocated differently from each vertex), we obtain the promise that

if 𝑀,𝑀′ are 𝛾 close, we fool Ct [𝑀′] up to error roughly 𝛾 · 𝑤 .

While this is too much for the original algorithm of Saks and Zhou

(except in the small-width regime, see Theorem 1.8), we can use the

idea of Cohen, Doron, and Sberlo [10] to reduce the error back to

𝑂 (𝛾) using Richardson iteration. In fact, we prove that their exact

algorithm with the random shift step deleted computes a good

approximation. This results in a particularly simple analysis of the

final algorithm, which we view as an advantage of our approach.

Remark 1.6. We remark that our canonicalizer can be viewed as

truncating the matrix to 𝑡 bits of precision, then locally monotoniz-

ing the edges from each vertex (in that the state reached from vertex

𝑣 is a non-decreasing function of the edge label 𝜎 , for every 𝑣). This

local monotonization procedure has found several applications in

the black box setting, both in analyzing PRGs and bounding the

advantage of programs on the coin problem [4, 5, 7, 16]. While

previous results used local monotonization in the analysis, we take

advantage of the non-black-box setting to actually construct a lo-
cally monotone branching program and apply the PRG on it. In

Theorem 1.8, we give a space 𝑂 (log3/2 𝑛) algorithm for derandom-

izing programs of width up to exp(log1/2 𝑛) for which this is the

only non-black-box operation in the algorithm.

Decreasing the Failure Probability. We must make one final mod-

ification to the algorithm of [10] to handle distinct matrices. They

use the Nisan PRG [19] to approximate powers. Our result does not

seem to work with the Nisan PRG – we instead use the Nisan PRG

combined with the “sampler trick” of Armoni [2]. This is because

we require the failure probability 𝛿 of the generator to be polyno-

mially small in 𝑛 (over the offline randomness), not merely 𝑤 as

in [10], because there are 𝑛𝑤 distinct subprograms to approximate.

For Nisan, this would force an online seed of length𝑂 (log𝑛), which
would require too much space.

To obtain an online seed of length 𝑂

(√︁
log𝑛 + log𝑤

)
, we com-

pose Nisan with an averaging sampler with doubly logarithmic de-

pendence on 𝛿 in the online component.We note that evaluating the

averaging sampler on an online seed (of length𝑂

(√︁
log𝑛 + log𝑤

)
)

now takes workspace 𝑂 (log𝑛 +
√︁
log𝑛 · log𝑤). However, since

this workspace is purely used to produce the sampler output (and

25

STOC ’23, June 20–23, 2023, Orlando, FL, USA Aaron (Louie) Putterman and Edward Pyne

hence we do not read the input while using it) we can reuse a fixed

𝑂 (log𝑛 +
√︁
log𝑛 · log𝑤) bits of workspace for these evaluations

across all levels of recursion.

Interestingly, our argument relies on the sampler (and initial

PRG) being an averaging sampler, because we use a sandwiching

argument. The original argument of Saks and Zhou (and Cohen

et al.) works more generally for a weighted PRG, and this was

crucial for Hoza’s improved derandomization of BPL [13]. We view

whether our approach works for weighted PRGs to be an interesting

open question.

We give a sketch of the our algorithm in the case that𝑀1 = 𝑀2 =

· · · = 𝑀𝑛 . For the formal description, see Algorithm 2.

Algorithm 1: Algorithm sketch

1 Draw a random seed ℎ and let NISℎ be the generator with

offline seed ℎ.

2 Set𝑀0 = 𝑀1.

3 for 𝑖 = 1, . . .
√︁
log𝑛 do

4 Canonicalize𝑀𝑖−1
to a degree 2

𝑐
√
log𝑛

branching

program denoted Ct1

[
𝑀𝑖−1

]
.

5 Use NISℎ to approximate walks on Ct1

[
𝑀𝑖−1

]
2

√
log𝑛

up

to error 2
−𝑐
√
log𝑛

.

6 Use 𝑂 (log log𝑛) applications of the space efficient

Richardson Iteration algorithm to reduce the error of

the previous matrix to 1/𝑛𝑐 and call the matrix

resulting from this step𝑀𝑖
. This reduces the error

sufficiently such that we can apply Nisan’s generator

on𝑀𝑖
despite the fact that this resulting matrix

depends on ℎ.

7 end

8 return𝑀
√
log𝑛

.

1.4 Other Results
Our approach allows us to eliminate the random shifts in the Saks-

Zhou algorithm in a range of regimes, which we explicate here.

First, by applying Richardson iteration to Theorem 1.4, we can

boost our main result to arbitrarily low error:

Corollary 1.7. Given𝑤,𝑛 ∈ N with𝑤 ≤ 𝑛 and 𝜀 > 0 and arbitrary
stochastic matrices 𝑀1, . . . , 𝑀𝑛 ∈ R𝑤×𝑤 , there is an algorithm A′

1

that returns a matrix𝑀 satisfying

𝑀1 · · ·𝑀𝑛 −𝑀

 ≤ 𝜀.

Furthermore, the space complexity of the algorithm is

𝑂

(
(log𝑛 +

√︁
log𝑛 · log𝑤) log log(𝑛) log log(1/𝜀) + log2 log(1/𝜀)

)
.

Furthermore, we show that for matrices that are not too wide, the

naive approach of iteratively applying the Nisan generator (with

1/poly(𝑛) error) and canonicalizing works, even without Richard-

son Iteration. This does not improve on Savitch, but we include it

as the resulting algorithm is particularly simple. In particular, the

only non-black-box step is the canonicalization operation.

Theorem 1.8. There is an algorithmA2 that, given 𝑛 ∈ N and ar-

bitrary stochastic matrices𝑀1, . . . , 𝑀𝑛 ∈ R𝑤×𝑤 where𝑤 ≤ 2

√
log𝑛 ,

returns a matrix𝑀 satisfying

𝑀1 · · ·𝑀𝑛 −𝑀

 ≤ 1/𝑛2 .

Furthermore, the space complexity of the algorithm is 𝑂
(
log

3/2 𝑛
)
.

Finally, we show that we can achieve space complexity matching

Saks-Zhou (with no loglog factors) without random shifts, by inter-

leaving approximate powers with a constant number of Richardson

iterations.

Theorem 1.9. There is an algorithm A3 that, given 𝑛,𝑤 ∈ N and
a stochastic matrix𝑀 ∈ R𝑤×𝑤 , returns a matrix𝑀 satisfying

𝑀𝑛 −𝑀

 ≤ 1/𝑤2 .

Furthermore, the space complexity of the algorithm is

𝑂

(
log

3/2 𝑛 +
√︁
log𝑛 · log𝑤

)
.

1.5 Organization
In Section 2 we define terms and recall the Nisan generator (with a

modification to decrease its failure probability) and space-efficient

Richardson iteration. In Section 3 we formally define the canonical-

izer and prove Theorem 1.5. In Section 4 we apply Theorem 1.5 to

prove our main result. In Section 5 we show that for small widths,

an algorithm without shifts or Richardson iteration can achieve

space 𝑂 (log3/2 𝑛). In Section 6 we show that we can achieve space

matching that of Saks and Zhou for large widths, by replacing

random shifts by a constant number of Richardson iterations per

level.

2 PRELIMINARIES
We first define several terms that we will use in the proofs.

• Let𝑀 ∈ R𝑤×𝑤≥0 be a stochastic (resp. sub-stochastic) ma-

trix if every row sum is equal (resp. at most) 1. In the lan-

guage of Markov chains, 𝑀𝑖, 𝑗 is the transition probability

from state 𝑖 to state 𝑗 .

• Let ∥ · ∥ denote the ℓ∞ matrix norm. We remark that none

of our results are sensitive to the precise choice of norm.

• Let𝑈𝑆 denote the uniform distribution over elements of the

set 𝑆 . For 𝑛 ∈ N let 𝑈𝑛 be the uniform distribution over

{0, 1}𝑛 .
We recall the property that for sub-stochastic matrices, the product

of approximations is an approximation to the product:

Claim2.1. Given sub-stochastic𝐴1, . . . , 𝐴ℓ ∈ R𝑤×𝑤 and𝐵1, . . . , 𝐵ℓ ∈
R𝑤×𝑤 , if ∥𝐴𝑖 − 𝐵𝑖 ∥ ≤ 𝛿 for every 𝑖 , then

∥𝐴1 · · ·𝐴ℓ − 𝐵1 · · ·𝐵ℓ ∥ ≤ ℓ · 𝛿.

We now formally define branching programs. We define them

without reference to a distinguished start or accept state, as we will

always require approximations of the walk probability from every

state in layer 1 to every state in layer 𝑛.

Definition 2.2. A (read-once) branching program 𝐵 of width

𝑤 and length 𝑛 with alphabet Σ consists of 𝑛 functions 𝐵𝑖 : [𝑤] ×

26

Near-Optimal Derandomization of Medium-Width Branching Programs STOC ’23, June 20–23, 2023, Orlando, FL, USA

[Σ] → [𝑤]. We define the composition of branching programs

𝐵 := 𝐵1 · · ·𝐵𝑛 in the natural way. For 𝑥 ∈ Σ𝑛 we define

𝐵 [𝑖, 𝑥] =(𝐵1 · · ·𝐵𝑛) [𝑖, 𝑥]
:=𝐵𝑛 [𝐵𝑛−1 [. . . 𝐵2 [𝐵1 [𝑖, 𝑥1], 𝑥2] . . .], 𝑥𝑛−1], 𝑥𝑛] .

We view the expectation of a branching program as a stochastic

matrix. Let E [𝐵] be the matrix where

(
E [𝐵]

)
𝑖, 𝑗

= Pr[𝐵 [𝑖,𝑈Σ𝑛] =

𝑗]. For a function GEN : {0, 1}𝑠 → Σ𝑛 , let GEN [𝐵] = E [𝐵 ◦ GEN].
We say a function GEN : {0, 1}𝑠 → Σ𝑛 is 𝜀-good for a branching

program 𝐵 if for every subprogram 𝐵𝑖 .. 𝑗 we have (truncating the

output of GEN to its 𝑗 − 𝑖 bit prefix):

GEN [
𝐵𝑖 .. 𝑗

]
− E

[
𝐵𝑖 .. 𝑗

]
]

 ≤ 𝜀.

Averaging Samplers and Error Reduction Primitives. We recall the

family of pseudorandom generators to be used in our construction.

We use the Nisan PRG composed with an averaging sampler. We

use a formulation of Chattopadhyay and Liao [8].

Theorem 2.3 ([8, 19, 22]). Given 𝑛,𝑤, |Σ| ∈ N and 𝜀, 𝛿 > 0, there
exists a generator NIS : {0, 1}𝑚 × {0, 1}𝑑 → Σ𝑛 such that for every
length 𝑛, width𝑤 branching program 𝐵 we have:

Pr

ℎ←𝑈𝑚

[

NIS(ℎ, ·) [𝐵] − E [𝐵]

 ≤ 𝜀

]
≥ 1 − 𝛿

and we have𝑚 = 𝑂 (log(𝑛) log(𝑛𝑤/𝜀) + log(|Σ|) + log(1/𝛿)) and 𝑑 =

𝑂 (log(𝑛𝑤 |Σ|/𝜀) + log log(1/𝛿)). Equivalently, for every branching
program 𝐵, with probability 1 − 𝛿 over ℎ NISℎ := NIS(ℎ, ·) is 𝜀-good
for 𝐵. Furthermore, NISℎ (𝑥) can be evaluated in space 𝑂 (𝑚) given
two-way read-only access to the offline seed ℎ.

For completeness, we provide a proof of this in Appendix A.

We can transform this generator into a space-efficient algorithm

for approximating walks in branching programs, and this is the

formulation we will use in the proof:

Lemma 2.4 ([8, 10, 19]). Given 𝑛,𝑤, |Σ| ∈ N and 𝜀, 𝛿 > 0, there
exists an algorithm NISℎ,𝜀,𝛿 that gets as (read only) input a branching
program 𝐵 := 𝐵1 · · ·𝐵𝑛 : Σ𝑛 → {0, 1}𝑤×𝑤 of width 𝑤 , accuracy
and confidence parameters 𝜀, 𝛿 > 0, and ℎ ∈ {0, 1}𝑚 where 𝑚 =

𝑂 (log(𝑛) log(𝑛𝑤 |Σ|/𝜀) + log(1/𝛿)). Furthermore:
• The algorithm runs in space 𝑂 (log(𝑛𝑤 |Σ|/𝜀) + log log(𝑛/𝛿)),
plus an additional 𝑂 (𝑚 + log(𝑛/𝛿)) space that is used peri-
odically, during which it does not touch the input or output
tapes3.
• The algorithm outputs{

NIS
𝑖→𝑗
[𝐵]

}
𝑖, 𝑗∈[𝑛]

where NIS
𝑖→𝑗
[𝐵] is a substochastic matrix. For every 𝑖 < 𝑗

and 𝑢, 𝑣 ∈ [𝑤],
(
NIS
𝑖→𝑗
[𝐵]

)
𝑢,𝑣

is the fraction of outputs of

NISℎ,𝜀,𝛿 (𝑥) that reach state 𝑣 in layer 𝑗 from state 𝑢 in layer 𝑖 .
If 𝐵𝑖 = 𝐵 𝑗 for all 𝑖, 𝑗 we assume without loss of generality the

algorithm returns
{
NIS
1→𝑘
[𝐵]

}
𝑘∈[𝑛]

.

3
This space is used for producing the output of the sampler.

• For every branching program 𝐵, with probability 1 − 𝛿 over
ℎ ← 𝑈𝑚 we have that for every 𝑖 < 𝑗 ,

NIS𝑖→𝑗

[𝐵] − E
[
𝐵𝑖 · · ·𝐵 𝑗

]

 ≤ 𝜀.

We say that NISℎ,𝜀,𝛿 is 𝜀-good for 𝐵 if this holds.

Likewise, we recall the space-efficient Richardson Iteration algo-

rithm used in prior work.

Lemma 2.5 ([1, 9, 10, 21]). There exists an algorithm R that, given

sub-stochastic 𝑀1, . . . , 𝑀𝑛 ∈ R𝑤×𝑤 and
{
𝑀𝑖, 𝑗

}
𝑖< 𝑗

and 𝑘 ∈ N such

that for all 𝑖 < 𝑗 ,

𝑀𝑖 · · ·𝑀𝑗 −𝑀𝑖, 𝑗

 ≤ 1/5𝑛 returns a sub-stochastic

matrix R({𝑀𝑖 }𝑖 , {𝑀𝑖, 𝑗 }𝑖, 𝑗 , 𝑘) where each entry is represented by at
most 𝑇 bits of precision satisfying

R (

{𝑀𝑖 }𝑖 , {𝑀𝑖, 𝑗 }𝑖, 𝑗 , 𝑘
)
−𝑀1 · · ·𝑀𝑛

 ≤ 2𝑛𝑤2 · 2−𝑘 .

Furthermore, R runs in space 𝑂 (log2 𝑘 + log(𝑘) log(𝑛𝑇)) where
𝑇 is the maximum bit complexity of {𝑀𝑖 }, {𝑀𝑖, 𝑗 }. In the case that
𝑀𝑖 = 𝑀 for all 𝑖 , we drop the 𝑖 subscript without loss of generality.

3 THE CANONICALIZER
We first formally define the canonicalizer. Informally, the canon-

icalizer is an algorithm that converts a substochastic matrix to a

branching program, so that we can approximate its expectation

using a pseudorandom generator. Our construction crucially relies

on how the canonicalizer assigns edges, which we detail below:

Definition 3.1. Given 𝑡 ∈ N, there exists a 𝑡-canonicalizer Ct
that takes in a sub-stochastic matrix 𝑀 ∈ R𝑤×𝑤 with each entry

represented by at most 𝑠 bits and returns a branching program

Ct [𝑀] on 𝑤 + 1 states4 with alphabet Σ = [2𝑡]. Furthermore, for

𝑖, 𝑗, 𝜎 ∈ [𝑤] × [𝑤] × [2𝑡] the canonicalizer assigns Ct [𝑀] [𝑖, 𝜎] = 𝑗

if and only if

𝑗−1∑︁
𝑘=1

𝑀𝑖,𝑘 ≤ 𝜎 · 2−𝑡 <
𝑗∑︁

𝑘=1

𝑀𝑖,𝑘 .

Furthermore, Ct can be computed in space 𝑂 (log(𝑤𝑡𝑠)). We define

Ct [𝑀1, . . . , 𝑀ℓ] = Ct [𝑀1] · · · Ct [𝑀ℓ] for substochastic matrices

𝑀1, . . . , 𝑀ℓ in the natural way, where now the canonicalizer outputs

a branching program of width 𝑤 + 1 and length ℓ and the space

complexity is 𝑂 (log(𝑤𝑡𝑠ℓ)).

We collect some basic properties of the canonicalizer. In par-

ticular, as shown in prior work the expectation of the branching

program obtained from canonicalizing𝑀 is a close approximation

to𝑀 .

Claim 3.2 ([10, 24]). For every 𝑡 ∈ N and sub-stochastic matrix
𝑀 ∈ R𝑤×𝑤 , we have

E [Ct [𝑀]] −𝑀

 ≤ 𝑤2

−𝑡 .

This extends to canonicalizing a sequence of substochastic ma-

trices:

4
Since in all cases this additional state will be immaterial, we implicitly pad𝑀 to be a

(stochastic) (𝑤+1) × (𝑤+1) matrix and treat the transformation as width preserving.

27

STOC ’23, June 20–23, 2023, Orlando, FL, USA Aaron (Louie) Putterman and Edward Pyne

Claim3.3. For every 𝑡 ∈ N and sub-stochastic matrices𝑀1, . . . , 𝑀ℓ ∈
R𝑤×𝑤 , we have

E [Ct [𝑀1, . . . , 𝑀ℓ]] −𝑀1 · · ·𝑀ℓ

 ≤ 𝑤ℓ2−𝑡 .

Proof. Deferred to Appendix A. □

We can further extend this to show “canonicalizations of similar

matrices are similar”.

Lemma 3.4. Given sub-stochastic 𝑀1, . . . , 𝑀ℓ and 𝑀1, . . . , 𝑀ℓ in
R𝑤×𝑤 , if ∥𝑀𝑖 −𝑀𝑖 ∥ ≤ 𝛾 for every 𝑖 , then for every 𝑡 ∈ N,

E [Ct [𝑀1, . . . , 𝑀ℓ]] − E

[
Ct

[
𝑀1, . . . , 𝑀ℓ

]]

 ≤ 2ℓ𝑤2
−𝑡 + ℓ𝛾 .

Proof. Deferred to Appendix A. □

Note that this shows the expectations of the canonicalizations are

close, but does not show the canonicalizations are close as labeled

branching programs. Proving this stronger result is the primary

contribution of the section.

Proof of Theorem 1.5. We now state the main lemma, which

proves that canonicalizations of close matrices have similar struc-

tures as branching programs. In particular, the edges on which they

differ are rare, and can be predicted in advance given only𝑀 .

Lemma 3.5. Given 𝑡 ∈ N and sub-stochastic 𝑀1, . . . , 𝑀ℓ ∈ R𝑤×𝑤
and 𝛾 ≥ 2

−𝑡 , there exists an ordered branching program 𝐸 of width
𝑤 + 2 and length ℓ and alphabet [2𝑡] such that:

(1) For every 𝑗 ∈ [𝑤],
Pr

[
𝐸

[
𝑗,𝑈 [2𝑡]ℓ

]
= 𝑣acc

]
≤ 3𝑤ℓ · 𝛾 .

(2) For every𝑀1, . . . , 𝑀ℓ satisfying

𝑀𝑖 −𝑀𝑖

 ≤ 𝛾 for every 𝑖 , we

have that for every state 𝑗 ∈ [𝑤] and every input 𝑥 ∈ [2𝑡]ℓ ,

Ct [𝑀1, . . . , 𝑀ℓ] [𝑗, 𝑥] ≠ Ct
[
𝑀1, . . . , 𝑀ℓ

]
[𝑗, 𝑥] =⇒ 𝐸 [𝑗, 𝑥] = 𝑣acc .

Proof. For every 𝑖 ∈ [ℓ] and state 𝑗 ∈ [𝑤], let 𝑠𝑘 :=
∑𝑘
𝑙=1
(𝑀𝑖) 𝑗,𝑙

for every 𝑘 ∈ [𝑤]. Define the boundary set 𝐵𝐷 (𝑀𝑖) 𝑗 ⊂ [2𝑡] of
edges for state 𝑗 in layer 𝑖 as 𝜎 for which

𝐵𝐷 (𝑀𝑖) 𝑗 :=
{
𝜎 : 𝜎 · 2−𝑡 ∈

𝑤⋃
𝑘=1

[𝑠𝑘 − 𝛾, 𝑠𝑘 + 𝛾]
}
.

Let 𝐸 be the program (with 𝑤 + 2 states) that has identical states
and transitions to Ct [𝑀1, . . . , 𝑀ℓ] except it transitions to state 𝑣acc
if and only if the input ever traverses such an edge (and once it

reaches 𝑣acc always stays at this state). Observe that for every state

𝑗 and every layer 𝑖 , a random edge from 𝑗 lies in the boundary set

with low probability. In particular,

Pr

𝜎←𝑈 [2𝑡]

[
Ct [𝑀𝑖] [𝑗, 𝜎] ∈ 𝐵𝐷 (𝑀𝑖) 𝑗

]
≤ 2𝛾 ·𝑤 + 𝑤

2
𝑡
≤ 3𝛾𝑤

and so a union bound over steps proves (1).

Now fix 𝑀1, . . . , 𝑀ℓ satisfying

𝑀𝑖 −𝑀𝑖

 ≤ 𝛾 for every 𝑖 . Ob-

serve that the boundary sets and error test program have been

defined without reference to𝑀 .

Claim 3.6. For every 𝑖 ∈ [ℓ] and 𝑗 ∈ [𝑤], 𝐵𝐷 (𝑀𝑖) 𝑗 contains all
edges 𝜎 on which Ct [𝑀𝑖] [𝑗, 𝜎] ≠ Ct

[
𝑀𝑖

]
[𝑗, 𝜎].

Proof. Fixing 𝑖, 𝑗 , for each 𝑘 ∈ [𝑤] let

𝑠𝑘 :=

𝑘∑︁
𝑙=1

(𝑀𝑖) 𝑗,𝑙 ,

and recall 𝑠𝑘 is defined analogously. We have that for every 𝑘 ,

|𝑠𝑘 − 𝑠𝑘 | =
����� 𝑘∑︁
𝑙=1

(𝑀𝑖) 𝑗,𝑙 −
𝑘∑︁
𝑙=1

(𝑀𝑖) 𝑗,𝑙

�����
≤

𝑘∑︁
𝑙=1

���(𝑀𝑖) 𝑗,𝑙 − (𝑀𝑖) 𝑗,𝑙
���

≤

𝑀𝑖 −𝑀𝑖

 ≤ 𝛾 .
Thus for every 𝑘 ,

[𝑠𝑘 , 𝑠𝑘] ⊂ [𝑠𝑘 − 𝛾, 𝑠𝑘 + 𝛾] .

By definition of the canonicalizer, for every 𝜎 such that

Ct [𝑀𝑖] [𝑗, 𝜎] ≠ Ct
[
𝑀𝑖

]
[𝑗, 𝜎],

we must have 𝜎 · 2−𝑡 ∈ [𝑠𝑘 , 𝑠𝑘] ⊂ [𝑠𝑘 − 𝛾, 𝑠𝑘 + 𝛾] for some 𝑘 , and

so 𝜎 ∈ 𝐵𝐷 (𝑀𝑖) 𝑗 as claimed. □

Then we observe that for every 𝑗, 𝑥 such that

Ct [𝑀1, . . . , 𝑀ℓ] [𝑗, 𝑥] ≠ Ct
[
𝑀1, . . . , 𝑀ℓ

]
[𝑗, 𝑥],

there is 𝑖 such that

𝑣 := Ct [𝑀1, . . . , 𝑀𝑖] [𝑗, 𝑥1..𝑖] = Ct
[
𝑀1, . . . , 𝑀𝑖

]
[𝑗, 𝑥1..𝑖]

and Ct
[
𝑀𝑖+1

]
[𝑣, 𝑥𝑖+1] ≠ Ct [𝑀𝑖+1] [𝑣, 𝑥𝑖+1], since otherwise 𝑥

would make identical transitions in both programs. But then the

edge labeled 𝑥𝑖+1 from 𝑣 must have received different labels in

Ct [𝑀𝑖+1] and Ct
[
𝑀𝑖+1

]
and thus lie in 𝐵𝐷 (𝑀𝑖+1) 𝑗 by Claim 3.6,

and so by definition of 𝐸 we must have 𝐸 [𝑗, 𝑥] = 𝑣acc. Note that it

could have been the case that 𝑥 transited a boundary edge before

layer 𝑖 + 1, but this likewise causes 𝐸 [𝑗, 𝑥] to reach state 𝑣acc on

input 𝑥 . □

We can then prove Theorem 1.5 using Lemma 3.5.

Theorem 1.5. Fix 𝑡 ∈ N and𝛾 ≥ 2
−𝑡 and let𝑀1, . . . , 𝑀ℓ ∈ R𝑤×𝑤

be sub-stochastic matrices. Suppose GEN : {0, 1}𝑑 → [2𝑡]ℓ is 𝜀-good
for Ct [𝑀1, . . . , 𝑀ℓ] and 𝐸, where 𝐸 is defined in Lemma 3.5 only
in terms of 𝑀1, . . . , 𝑀ℓ and 𝑡 and 𝛾 . Then for every sub-stochastic

𝑀1, . . . , 𝑀ℓ ∈ R𝑤×𝑤 where

𝑀𝑖 −𝑀𝑖

 ≤ 𝛾 for every 𝑖 , GEN is 𝜌 :=

6𝑤ℓ𝛾 + 2𝜀-good for Ct
[
𝑀1, . . . , 𝑀ℓ

]
.

28

Near-Optimal Derandomization of Medium-Width Branching Programs STOC ’23, June 20–23, 2023, Orlando, FL, USA

Proof. By Lemma 3.5 applied with 𝛾 = 𝛾 and 𝑡 = 𝑡 we have

GEN [Ct [𝑀1, . . . , 𝑀ℓ]] − GEN
[
Ct

[
𝑀1, . . . , 𝑀ℓ

]]

≤ max

𝑗

{
Pr

𝑥←𝑈{0,1}𝑑
[Ct [𝑀1, . . . , 𝑀ℓ] [𝑗, GEN(𝑥)]] ≠

Ct [𝑀1, . . . , 𝑀ℓ] [𝑗, GEN(𝑥)]]
}

≤ max

𝑗

{
Pr

𝑥←𝑈{0,1}𝑑
[𝐸 [𝑗, GEN(𝑥))] = 𝑣acc]

}
(Property 2)

≤ 3𝑤ℓ · 𝛾 + 𝜀

where the final line follows from Property 1 and GEN being 𝜀-

good for 𝐸. Furthermore, since by assumption GEN is 𝜀-good for

Ct [𝑀1, . . . , 𝑀ℓ]:

GEN [Ct [𝑀1, . . . , 𝑀ℓ]] − E [Ct [𝑀1, . . . , 𝑀ℓ]]

 ≤ 𝜀

and by Lemma 3.4,

E [Ct [𝑀1, . . . , 𝑀ℓ]] − E
[
Ct

[
𝑀1, . . . , 𝑀ℓ

]]

≤ 2ℓ𝑤2

−𝑡 + ℓ𝛾
≤ 3ℓ𝑤𝛾 .

Thus, applying the triangle inequality we conclude that

GEN [
Ct

[
𝑀1, . . . , 𝑀ℓ

]]
− E

[
Ct

[
𝑀1, . . . , 𝑀ℓ

]]

 ≤ 6𝑤ℓ𝛾 + 2𝜀. □

We note that in the regime𝑤 = 𝑛, applying this result directly

in the original framework of Saks and Zhou [24] does not allow us

to eliminate the random rounding step. This is because our error

degrades with a factor of 𝑤 per application, which could give a

final error of𝑤
√
log𝑛 = 𝑛𝜔 (1) . However, we can use the approach

of Cohen et al. to repair the loss at each level.

4 PROOF OF THEOREM 1.4
We now apply Theorem 1.5 to prove Theorem 1.4. The analysis of

our resulting algorithm is cleaner than prior approaches due to the

absence of random rounding. In particular, we directly argue that

the approximation at level 𝑖 is close to the 2𝑖 ·
√
log𝑛

th true power,

rather than comparing to a shifted and rounded version of such. As

we make the same parameter choices
5
as Cohen, Doron, and Sberlo

(and the components of our algorithm are a strict subset of theirs),

the space complexity follows essentially from their analysis, though

we must be careful to avoid incurring an overhead of 𝑂 (log𝑛) bits
per level for tracking indices or evaulating the sampler. We analyze

the space complexity in Lemma 4.3.

We are now prepared to analyze the algorithm. Given 𝑛,𝑤 as

specified in the upcoming theorem (where we may assume 𝑛 ≥ 𝑤

without loss of generality, as otherwise apply Theorem 1.9), we set

parameters as follows:

𝑟1 = 𝑟2 =
√︁
log𝑛, 𝑡2 = 20 log𝑛, 𝑡1 = 2𝑟1 + log𝑤 + 4

𝜀 = 2
−𝑟1−4, 𝛿 = 2𝑛−5, 𝑅1 = 2

𝑟1 .

5
With the exception of 𝛿 , which we must take to be order 1/𝑛 to survive a bound over

the test programs.

Let NISℎ,𝜀,𝛿 be the family of online-offline samplers from Lemma 2.4

with 𝑛 = 𝑅1,𝑤 = 𝑤 + 2, Σ = [2𝑡1], 𝜀 = 𝜀 and 𝛿 = 𝛿 . We remark that

the offline seed has length

𝑚 = 𝑂
(
𝑟1 log(𝑅1𝑤2

𝑡1/𝜀) + log(1/𝛿) + log(1/𝜀)
)

= 𝑂

(
log𝑛 +

√︁
log𝑛 · log𝑤

)
.

Furthermore, the online seed has length

𝑑 = 𝑂
(
log(𝑅1𝑤2

𝑡1/𝜀) + log log(1/𝛿)
)
= 𝑂

(√︁
log𝑛 + log𝑤

)
.

We give the formal description of the algorithm in Algorithm 2.

Algorithm 2: SZ(𝑀1, . . . , 𝑀𝑛, ℎ)
1 Given ℎ ∈ {0, 1}𝑚 , let NIS := NISℎ,𝜀,𝛿 be the sampler with

parameters set above.

2 return IMM(
√︁
log𝑛, 0, NIS).

Algorithm 3: IMM(𝑖, 𝑗, NIS)
1 if 𝑖 = 0 then
2 return𝑀0

𝑗
;

3 end
4 for 𝑙 ∈ [𝑗, 𝑗 + 𝑅1] do
5 Let𝑀𝑖−1

𝑙
:= IMM(𝑖 − 1, 𝑅1 · 𝑗 + 𝑙, NIS).

6 end
7 Let {

𝑀𝑘,𝑙

}
𝑘,𝑙∈[𝑅1]

:=

{
NIS
𝑘→𝑙

[
Ct1

[
𝑀𝑖−1

𝑗 , . . . , 𝑀𝑖−1
𝑗+𝑅1

]]}
𝑘,𝑙∈[𝑅1]

8 Set

𝑀𝑖
𝑗 := R

({
𝑀𝑖−1

𝑗+𝑙

}
𝑙∈[𝑅1]

,

{
𝑀𝑘,𝑙

}
𝑘,𝑙∈[𝑅1]

, 𝑡2

)
9 return𝑀𝑖

𝑗
.

We now show Algorithm 2 works with high probability over the

outer seed ℎ.

Theorem 4.1. Given 𝑛,𝑤 ∈ N with 𝑤 ≤ 𝑛 and arbitrary sub-
stochastic matrices 𝑀1, . . . , 𝑀𝑛 ∈ R𝑤×𝑤 , Algorithm 2 returns with
probability 1 − 𝑛2𝛿 over the outer seed ℎ ← {0, 1}𝑚 a matrix 𝑀 =

SZ(𝑀1, . . . , 𝑀𝑛, ℎ) satisfying

𝑀1 · · ·𝑀𝑛 −𝑀

 ≤ 1/𝑛3 .

Moreover, SZ(𝑀1, . . . , 𝑀𝑛, ℎ) runs in space

𝑂

((
log𝑛 +

√︁
log𝑛 · log(𝑤)

)
log log(𝑛)

)
We first define the true powers that we wish to approximate,

and their corresponding canonicalizations.

Definition 4.2. Given𝑛,𝑤, 𝑡1 ∈ N and sub-stochastic𝑀0

1
, . . . , 𝑀0

𝑛 ∈
R𝑤×𝑤 , define

𝑀𝑖
𝑗 = 𝑀𝑖−1

𝑗 ·𝑅1

·𝑀𝑖−1
𝑗 ·𝑅1+1 · · ·𝑀

𝑖−1
𝑗 ·𝑅1+𝑅1−1

29

STOC ’23, June 20–23, 2023, Orlando, FL, USA Aaron (Louie) Putterman and Edward Pyne

and let P =

{
Ct1

[
𝑀𝑖

𝑗
, . . . , 𝑀𝑖

𝑗+𝑅1

]}
∪ E where E is the family of

error testers of Lemma 3.5 applied with 𝑡 = 𝑡1 and 𝛾 = 𝛾 (for 𝛾 to

be globally chosen later) to every subproduct𝑀𝑖
𝑗
, . . . , 𝑀𝑖

𝑗+𝑅1

.

Note that we have𝑀
𝑟2
1

= 𝑀0

1
· · ·𝑀0

𝑛 by definition. We first prove

the correctness, then analyze the space consumption.

Proof of Correctness of Theorem 4.1. We condition on the

event that NIS := NISℎ,𝜀,𝛿 is 𝜀-good for the set of programs P
as defined in Definition 4.2. This occurs with probability at least

1 − 𝑛2𝛿 by Lemma 2.4 and the fact that there are at most 𝑛𝑤 ≤ 𝑛2

such programs. Subsequent to this assumption (which requires a

union bound over 𝑛𝑤 bad events, rather than 𝑤), the proof does

not change if we assume all base matrices are equal, so we do so

for clarity. We maintain the following invariant at level 𝑖 of the

algorithm:

𝑀𝑖 −𝑀𝑖

 ≤ 2

2𝑖 ·𝑟1

𝑛10

Ensuring this invariant holds certainly suffices to complete the

proof. Assuming the invariant holds for level 𝑖 , we now verify that

the conditions of Theorem 1.5 are satisfied for 𝑡 = 𝑡1 and ℓ = 𝑅1
and 𝜀 = 𝜀 and 𝛾 := 2

−𝑡1
and 𝑀 = 𝑀𝑖

and 𝑀 = 𝑀𝑖
. We have that

NIS is 𝜀-good for𝑀𝑖
and the associated error tester by assumption.

Furthermore by the invariant we have

𝑀𝑖 −𝑀𝑖

 ≤ 1

𝑛2
≤ 𝛾 .

Therefore by Theorem 1.5 applied to the generator NIS, we obtain
for every 𝑗 ∈ [𝑅1],

E [

Ct1

[
𝑀𝑖 , . . . , 𝑀𝑖

]]
− NIS

1→𝑗

[
Ct1

[
𝑀𝑖 , . . . , 𝑀𝑖

]]

 ≤ 6𝑤𝑅1𝛾 + 2𝜀

≤ 1

10 · 𝑅1
And thus by Claim 3.3 for every 𝑗 ∈ [𝑅1],

(𝑀𝑖) 𝑗 − NIS

1→𝑗

[
Ct1

[
𝑀𝑖 , . . . , 𝑀𝑖

]]

 ≤ 1

10 · 𝑅1
+𝑤𝑅12

−𝑡1 ≤ 1

5 · 𝑅1
.

Therefore, recalling

𝑀𝑖+1
:= R

(
𝑀𝑖 ,

{
NIS
1→𝑗

[
Ct

[
𝑀𝑖 , . . . , 𝑀𝑖

]]}
𝑗

, 𝑡2

)
by Lemma 2.5 we have

𝑀𝑖+1 − (𝑀𝑖)𝑅1

 ≤ 2 · 𝑅1𝑤2
2
−𝑡2 ≤ 1

𝑛10
. (3)

Thus,

𝑀𝑖+1 −𝑀𝑖+1

 ≤

𝑀𝑖+1 − (𝑀𝑖)𝑅1

 +

(𝑀𝑖)𝑅1 −𝑀𝑖+1

≤ 1

𝑛10
+

(𝑀𝑖)𝑅1 − (𝑀𝑖)𝑅1

 (3)

≤ 2

𝑛10
+ 𝑅1 ·

𝑀𝑖 −𝑀𝑖

 Claim 2.1

≤ 2
2(𝑖+1) ·𝑟1

𝑛10

which maintains the invariant for the next level.

Note that since that 𝑖 ≤
√︁
log𝑛, this means that our error is

bounded with

2
2𝑖 ·𝑟1

𝑛10
≤ 2

2

√
log𝑛·
√
log𝑛

𝑛10
≤ 1

𝑛8
. □

Lemma 4.3. SZ(𝑀1, . . . , 𝑀𝑛, ℎ) runs in space

𝑂

(
(log𝑛 +

√︁
log𝑛 · log(𝑤)) log log(𝑛)

)
.

Proof. We note that at no point do we explicitly write down the

matrix𝑀𝑖
𝑗
, which would require𝑤2

log(𝑛𝑤) bits. Instead, whenever
IMM(𝑖 + 1, 𝑗) requests a bit of 𝑀𝑖

𝑗 ′ , we recurse on IMM(𝑖, 𝑗 ′) and
determine only this bit, then return control to level 𝑖+1. This process
is formalized as the composition of space-bounded algorithms in

Lemma A.2.

We look at the individual space complexities of the components

of our algorithm:

(1) First, we note that the seed length for the generator requires

space (paid once)

𝑂

(
log𝑛 +

√︁
log𝑛 · log𝑤

)
.

(2) Each function IMM(𝑖, 𝑗) produces𝑤2𝑡2 = 𝑂 (𝑤2
log𝑛) bits of

output, and so by Lemma A.2 we require𝑂 (log𝑤 + log log𝑛)
bits per level to track the index of the bit to be output.

(3) The online space for NIS requires space (paid once per level)

𝑂

(√︁
log𝑛 + log𝑤

)
.

(4) By Lemma 2.4, we require space𝑂 (log𝑛 +
√︁
log𝑛 · log𝑤) to

evaluate NISℎ (𝑥) on online input 𝑥 , and as we do not touch

the input or output during this time, this space can be reused

between levels and so only needs to be paid for once.

(5) Richardson iteration requires space (paid once per level)

𝑂

(
log

2 𝑡2 + log 𝑡2 · log(𝑅1𝑤𝑡1)
)

= 𝑂

(
(log log𝑛)2 + log log𝑛 ·

(
log𝑤 +

√︁
log𝑛

))
.

(6) The canonicalizer requires space (paid once per level)

𝑂 (log(𝑡1𝑡2𝑤𝑅1)) = 𝑂 (
√︁
log𝑛 + log𝑤 + log log𝑛).

(7) Specifying which matrices on the input tape should be multi-

plied can be done with 𝑂 (log𝑅1) = 𝑂 (
√︁
log𝑛) bits per level

of recursion.

To justify the last statement above, we see that if we assume the

algorithm stores the index of which subproblem is currently being

solved in each level, it can directly compute which matrices are

supposed to be multiplied at any given step. Each index takes space

𝑂 (log𝑅1), and is stored only once for each level in the call tree.

Bringing this together, we note that the maximum recursion depth

of our algorithm is 𝑟2 =
√︁
log𝑛, and the space complexity of each

recursive level is 𝑂 (log𝑤 log log𝑛 +
√︁
log𝑛 log log𝑛). This means

in total, the space required for the call tree is

𝑂

(√︁
log𝑛 · log𝑤 · log log𝑛 + log𝑛 · log log𝑛

)
,

and this complexity does not change when we account for the

offline seed of Nisan’s generator. □

30

Near-Optimal Derandomization of Medium-Width Branching Programs STOC ’23, June 20–23, 2023, Orlando, FL, USA

Finally, we can use Theorem 4.1 to prove Theorem 1.4. We note

that Cohen et al. [9] obtain a 1/𝑛 approximation by taking the

median of each entry over the offline randomness (as their algorithm

fails with probability 1/𝑤 ≫ 1/𝑛 over ℎ), but we obtain failure

probability 1/𝑛 over ℎ, so we take the average for simplicity.

Proof of Theorem 1.4. By our choice of 𝛿 , with probability at

least 1 − 1/2𝑛3 over the outer seed we obtain a final matrix 𝑀

satisfying ∥𝑀 −𝑀1 · · ·𝑀𝑛 ∥ ≤ 𝑛−3. For a bad ℎ, we receive a matrix

with distance at most 𝑤 ≤ 𝑛 in ℓ∞ distance, and so the theorem

follows from letting A1 be the algorithm that returns the average

of Algorithm 2 over ℎ. □

By applying a final layer of Richardson iteration, we can obtain

an arbitrary low-accuracy estimate at mild additional cost in space.

We use a more precise statement of Richardson iteration, but we

defer its statement to Section 6, where we use it as part of the inner

loop of an algorithm.

Proof of Theorem 1.7. Let AlgorithmA′
1
be the algorithm that

applies Lemma 6.1 to 𝑀1, . . . , 𝑀𝑛 and {𝑀𝑖, 𝑗 }𝑖, 𝑗∈[𝑛] with error 𝜀,

where for 𝑖, 𝑗 ,𝑀𝑖, 𝑗 is the output of Theorem 1.4 applied to𝑀𝑖 , . . . , 𝑀 𝑗 .

The correctness is direct from the correctness of Theorem 1.4, and

the space complexity follows from Lemma 6.1 and the composition

of space bounded algorithms (Lemma A.2). □

5 NAIVE SAKS-ZHOU FOR SMALL WIDTH
In this section we prove that the naive Saks-Zhou algorithm suc-

ceeds without random shifts as long as𝑤 = 𝑂 (2
√
log𝑛). We remark

that this gives a space 𝑂 (log3/2 𝑛) algorithm for derandomizing

width exp(log1/2 𝑛) branching programs whose only non-black-

box step is repeatedly locally monotonizing subprograms (see Re-

mark 1.6). For the remainder of the section, let

𝑡 = 20 log𝑛, 𝜀 = 𝑛−10, 𝛿 = 𝑛−6, 𝑟1 = 𝑟2 =
√︁
log𝑛, 𝑅1 = 2

𝑟1 .

Let NISℎ,𝜀,𝛿 be the family of online-offline samplers from Lemma 2.4

with 𝑛 = 𝑅1,𝑤 = 𝑤 + 2, Σ = [2𝑡], 𝜀 = 𝜀 and 𝛿 = 𝛿 . We remark that

the offline seed has length

𝑚 = 𝑂
(
𝑟1 log(𝑟1𝑤2

𝑡/𝜀) + log(1/𝛿) + log(1/𝜀)
)
= 𝑂

(
log

3/2 𝑛
)
.

Furthermore, the online seed has length

𝑑 = 𝑂
(
log(𝑟1𝑤2

𝑡/𝜀) + log log(1/𝛿)
)
= 𝑂 (log𝑛) .

We now formally state this algorithm.

Algorithm 4: SZN(𝑀1, . . . , 𝑀𝑛, ℎ)
1 Given ℎ ∈ {0, 1}𝑚 , let NIS := NISℎ,𝜀,𝛿 be the sampler with

parameters set above.

2 return NaiveIMM(
√︁
log𝑛, 0, NIS).

We then state the theorem showing it is correct with high prob-

ability over the outer seed:

Algorithm 5: Algorithm NaiveIMM(𝑖, 𝑗, NIS)
1 if 𝑖 = 0 then
2 return𝑀0

𝑗

3 end
4 for 𝑙 ∈ [𝑗, 𝑗 + 𝑅1] do
5 let𝑀𝑖−1

𝑙
:= NaiveIMM(𝑖 − 1, 𝑅1 · 𝑗 + 𝑙, NIS).

6 end

7 return NIS
1→𝑅1

[
Ct1

[
𝑀𝑖−1

𝑗
, . . . , 𝑀𝑖−1

𝑗+𝑅1

]]
.

Theorem 5.1. Given 𝑛 ∈ N and 𝑤 ≤ 2

√
log𝑛 and any sub-

stochastic 𝑀1, . . . , 𝑀𝑛 ∈ R𝑤×𝑤 , Algorithm 4 returns with prob-
ability 1 − 𝑛2𝛿 over the outer seed ℎ ← {0, 1}𝑚 a matrix 𝑀 =

SZN(𝑀1, . . . , 𝑀𝑛, 𝑟1, 𝑟2, ℎ) satisfying

𝑀1 · · ·𝑀𝑛 −𝑀

 ≤ 1/𝑛3 .

Moreover, SZN(𝑀1, . . . , 𝑀𝑛, ℎ) runs in space 𝑂
(
log

3/2 𝑛
)
.

We construct the true powers identically to Definition 4.2 (with

𝑡1 = 𝑡 and 𝛾1, . . . , 𝛾𝑟2 to be chosen later, where the choice depends

on the recursion level and nothing else). Furthermore, the space

complexity directly follows from the analysis in the prior section,

where we no longer pay for Richardson iterations. The remainder

of the proof consists of setting parameters and walking through

the same analysis.

Proof of Theorem 5.1. We condition on the event that NIS :=

NISℎ is 𝜀-good for P as defined in Definition 4.2, which occurs

with probability at least 1 − 𝑛2𝛿 as claimed. As in the prior case,

subsequent to this assumption the proof does not change if we

assume all base matrices are equal, so we do so for clarity. We

maintain the following invariant at the start of the 𝑖th iteration of

the loop:

𝑀𝑖 −𝑀𝑖

 ≤ (8𝑤𝑅1)𝑖𝑅𝑖

1

𝑛10

Ensuring this invariant holds certainly suffices to complete the

proof.We now verify that the conditions of Theorem 1.5 are satisfied

for 𝑡 = 𝑡 and 𝜀 = 𝜀 and 𝛾𝑖 := (8𝑤𝑅1)𝑖𝑅𝑖
1
/𝑛10 and 𝑀 = 𝑀𝑖

and

𝑀 = 𝑀𝑖
. We have that NIS is 𝜀-good for the relevant programs by

assumption. Furthermore by the invariant we have

𝑀𝑖 −𝑀𝑖

 ≤ 𝛾𝑖 .

Therefore by Theorem 1.5, recalling that

𝑀𝑖+1
:= NIS

1→𝑅1

[
Ct

[
𝑀𝑖 , . . . , 𝑀𝑖

]]
we obtain

E [

Ct
[
𝑀𝑖 , . . . , 𝑀𝑖

]]
−𝑀𝑖+1

 ≤ 6𝑤𝑅1𝛾𝑖 + 2𝜀 ≤ (7𝑤𝑅1)𝛾𝑖 .

and thus by Claim 3.3,

(𝑀𝑖)𝑅1 −𝑀𝑖+1

 ≤ (7𝑤𝑅1)𝛾𝑖 +𝑤𝑅12

−𝑡 ≤ (8𝑤𝑅1)𝛾𝑖 . (4)

31

STOC ’23, June 20–23, 2023, Orlando, FL, USA Aaron (Louie) Putterman and Edward Pyne

Thus,

𝑀𝑖+1 −𝑀𝑖+1

 ≤

𝑀𝑖+1 − (𝑀𝑖)𝑅1

 +

(𝑀𝑖)𝑅1 −𝑀𝑖+1

≤ (8𝑤𝑅1)𝛾𝑖 +

(𝑀𝑖)𝑅1 − (𝑀𝑖)𝑅1

 (4)

≤ (8𝑤𝑅1)𝛾𝑖 + 𝑅1 · ∥𝑀𝑖 −𝑀𝑖 ∥ Claim 2.1

≤
(8𝑤𝑅1)𝑖+1𝑅𝑖

1

𝑛10
+
(8𝑤𝑅1)𝑖𝑅𝑖+1

1

𝑛10

≤
(8𝑤𝑅1)𝑖+1𝑅𝑖+1

1

𝑛10
.

which maintains the invariant for the next level. Note that since

that 𝑖 ≤
√︁
log𝑛, this means that our error is bounded with

(8𝑤𝑅1)𝑖𝑅𝑖
1

𝑛10
≤ 𝑛2 · (8𝑤)

√
log𝑛

𝑛10
=
(8𝑤)
√
log𝑛

𝑛8
. □

Hence, we see that when 𝑤 ≤ 2

√
log𝑛

, the original algorithm

of Saks and Zhou works without random shifting. The proof of

Theorem 1.8 from Theorem 5.1 is exactly analogous to that of

Theorem 1.4 from Theorem 4.1, so we omit it.

6 SAKS-ZHOU WITH CONSTANT
RICHARDSON ITERATIONS

To obtain space complexity matching Saks-Zhou without random

rounding (with no loglog factors), we state a more precise version

of Richardson iteration that utilizes stronger guarantees on the

initial error:

Lemma 6.1 ([1, 9, 10, 21]). There exists an algorithm R that, given

𝑡, 𝑘 ∈ N and sub-stochastic 𝑀 ∈ R𝑤×𝑤 and
(
𝑀𝑖

)
𝑖∈[𝑛]

and 𝑘 ∈ N

such that for all 𝑖 ∥𝑀𝑖 − 𝑀𝑖 ∥ ≤ 1/(𝑛𝑤)2 returns a substochastic
matrix R(𝑀, (𝑀𝑖)𝑖 , 𝑡, 𝑘) where each entry is represented by at most 𝑡
bits of precision satisfying

R (

𝑀,

{
𝑀𝑖

}
𝑖
, 𝑡, 𝑘

)
−𝑀𝑛

 ≤ (𝑛𝑤)−𝑘 .
Furthermore, R runs in space 𝑂 (log2 𝑘 + log(𝑘) log(𝑡𝑛𝑇)) where

𝑇 is the maximum bit complexity of𝑀 and {𝑀𝑖 }.

Note that the above lemma implies that with only 𝑂 (1) Richard-
son iterations, we can reduce the error from

1

𝑤𝑐 back down to
1

𝑤𝑐′

for arbitrary constants 𝑐 < 𝑐′, and this consumes 𝑂 (log𝑛𝑤) space
per level.

As we are now in the regime where we may assume 𝑤 ≥ 𝑛

without loss of generality, we appeal to identity 2 and assume we

are computing the 𝑛th power of a single𝑤 ×𝑤 stochastic matrix.

For the remainder of the section let

𝑡 = 20 log(𝑤), 𝜀 = 𝑤−10, 𝛿 = 𝑤−6, 𝑟1 = 𝑟2 =
√︁
log𝑛, 𝑅1 = 2

𝑟1 .

Let NISℎ,𝜀,𝛿 be the family of online-offline samplers from Lemma 2.4

with 𝑛 = 𝑅1,𝑤 = 𝑤 + 2, Σ = [2𝑡], 𝜀 = 𝜀 and 𝛿 = 𝛿 . We remark that

the offline seed has length

𝑚 = 𝑂
(
𝑟1 log(𝑅1𝑤2

𝑡/𝜀) + log(1/𝛿) + log(1/𝜀)
)

= 𝑂

(
log

3/2 𝑛 +
√︁
log𝑛 · log𝑤

)
.

Furthermore, the online seed has length

𝑑 = 𝑂
(
log(𝑅1𝑤2

𝑡/𝜀) + log log(1/𝛿)
)
= 𝑂 (log𝑛𝑤) .

We formally describe the inner loop as Algorithm 6.

Algorithm 6: Algorithm SZC(𝑀,ℎ)
1 Given ℎ ∈ {0, 1}𝑚 , let NISℎ,𝜀,𝛿 be the sampler with

parameters set above.

2 Set𝑀0
:= 𝑀 .

3 for 𝑖 = 1, . . . 𝑟2 do
4 Let {

𝑀𝑘

}
𝑘∈[𝑅1]

:=

{
NIS
1→𝑘

[
Ct1

[
𝑀𝑖−1
1

, . . . , 𝑀𝑖−1
𝑅1

]]}
𝑘∈[𝑅1]

.

5 Set

𝑀𝑖
:= R

(
𝑀𝑖−1,

{
𝑀𝑘

}
𝑘∈[𝑅1]

, 𝑡, 10

)
.

6 end
7 return𝑀𝑟2

We then show Algorithm 6 is correct with high probability over

the outer seed:

Theorem 6.2. Given 𝑛,𝑤 ∈ N with 𝑤 ≥ 𝑛 and any stochastic
𝑀 ∈ R𝑤×𝑤 , Algorithm 6 returns with probability 1 −𝑤2𝛿 over the
outer seed ℎ ← {0, 1}𝑚 a matrix𝑀 = SZC(𝑀,ℎ) satisfying

𝑀𝑛 −𝑀

 ≤ 1/𝑤3 .

Moreover, SZC(𝑀,ℎ) runs in space

𝑂

(
log

3/2 𝑛 +
√︁
log𝑛 · log𝑤

)
.

We construct the true powers identically to Definition 4.2 (with

𝑡1 = 𝑡). The rest of the proof is analogous to Theorem 4.1, except

that we set 𝛾 to be 1/𝑤𝑐
and so require only a constant number of

Richardson iterations per level. The space complexity follows from

Lemma 6.1, as we now require 𝑂 (log𝑛𝑤) space per level for the
Richardson iterations (and the online seed).

ACKNOWLEDGEMENTS
We thank Salil Vadhan and David Zuckerman for their insightful

comments during the writing of this paper.

A DEFERRED PROOFS
We collect proofs of claims regarding the accuracy of various trunca-

tion and rounding procedures. In all cases, our results are insensitive

to polynomial losses in the length and width of the relevant sub-

programs, and constant factors in terms of the bit complexity (i.e.

the parameters 𝑡1, 𝑡2).

We first extend Claim 3.2 to canonicalizations of sequences of

matrices.

Claim3.3. For every 𝑡 ∈ N and sub-stochastic matrices𝑀1, . . . , 𝑀ℓ ∈
R𝑤×𝑤 , we have

E [Ct [𝑀1, . . . , 𝑀ℓ]] −𝑀1 · · ·𝑀ℓ

 ≤ 𝑤ℓ2−𝑡 .

32

Near-Optimal Derandomization of Medium-Width Branching Programs STOC ’23, June 20–23, 2023, Orlando, FL, USA

Proof. We have

E [Ct [𝑀1, . . . , 𝑀ℓ]]] −𝑀1 · · ·𝑀ℓ

=

E [Ct [𝑀1]] · · ·E [Ct [𝑀ℓ]] −𝑀1 · · ·𝑀ℓ

≤ ℓ𝑤2

−𝑡

where the second step uses Claim 2.1 with 𝐴𝑖 = E [Ct [𝑀𝑖]] and
𝐵𝑖 = 𝑀𝑖 and 𝛿 = 𝑤2

−𝑡
from Claim 3.2. □

Weobserve that this easily implies that the expectations of canon-

icalizations of similar matrices are similar.

Lemma 3.4. Given sub-stochastic 𝑀1, . . . , 𝑀ℓ and 𝑀1, . . . , 𝑀ℓ in
R𝑤×𝑤 , if ∥𝑀𝑖 −𝑀𝑖 ∥ ≤ 𝛾 for every 𝑖 , then for every 𝑡 ∈ N,

E [Ct [𝑀1, . . . , 𝑀ℓ]] − E

[
Ct

[
𝑀1, . . . , 𝑀ℓ

]]

 ≤ 2ℓ𝑤2
−𝑡 + ℓ𝛾 .

Proof. We have

E [Ct [𝑀1, . . . , 𝑀ℓ]] − E
[
Ct

[
𝑀1, . . . , 𝑀ℓ

]]

≤

E [Ct [𝑀1, . . . , 𝑀ℓ]] −𝑀1 · · ·𝑀ℓ

+

𝑀1 · · ·𝑀ℓ −𝑀1 · · ·𝑀ℓ

+

𝑀1 · · ·𝑀ℓ − E
[
Ct

[
𝑀1, . . . , 𝑀ℓ

]]

≤ 2𝑤ℓ2−𝑡 + ℓ𝛾

where the final line uses Claim 3.3 and Claim 2.1. □

We recall the formal statement of the composition of space-

bounded algorithms:

Lemma A.1 ([10]). Let 𝑓1, 𝑓2 : {0, 1}∗ → {0, 1}∗ be computable in
space 𝑠1, 𝑠2 : N → N, where 𝑠1 (𝑛), 𝑠2 (𝑛) ≥ log𝑛. Then, 𝑓1 ◦ 𝑓2 (𝑥)
can be computed in space

𝑂 (𝑠1 (ℓ2 (𝑛)) + 𝑠2 (𝑛)),
where ℓ2 (𝑛) is a bound on the length of the output of 𝑓2 (𝑥) on inputs
of length 𝑛.

We can apply this lemma to the case of a single function being

composed with itself many times:

Lemma A.2 ([10]). Let 𝑓 : {0, 1}∗ → {0, 1}∗ be computable in space
𝑠 : N → N, where 𝑠 (𝑛) ≥ log𝑛. Then, 𝑔(𝑥, 𝑘) = 𝑓 ◦ 𝑓 ◦ · · · ◦ 𝑓 (𝑥)
can be computed in space

𝑂

(
𝑘−1∑︁
𝑖=0

𝑠 (ℓ𝑖 (𝑛))
)
,

where ℓ𝑖 (𝑛) is a bound on the length of the output of 𝑔(𝑥, 𝑖) on inputs
of length 𝑛.

Samplers With Low Failure Probability. We prove that there ex-

ists a generator with our required properties. We first recall the

statement:

Theorem 2.3 ([8, 19, 22]). Given 𝑛,𝑤, |Σ| ∈ N and 𝜀, 𝛿 > 0, there
exists a generator NIS : {0, 1}𝑚 × {0, 1}𝑑 → Σ𝑛 such that for every
length 𝑛, width𝑤 branching program 𝐵 we have:

Pr

ℎ←𝑈𝑚

[

NIS(ℎ, ·) [𝐵] − E [𝐵]

 ≤ 𝜀

]
≥ 1 − 𝛿

and we have𝑚 = 𝑂 (log(𝑛) log(𝑛𝑤/𝜀) + log(|Σ|) + log(1/𝛿)) and 𝑑 =

𝑂 (log(𝑛𝑤 |Σ|/𝜀) + log log(1/𝛿)). Equivalently, for every branching
program 𝐵, with probability 1 − 𝛿 over ℎ NISℎ := NIS(ℎ, ·) is 𝜀-good
for 𝐵. Furthermore, NISℎ (𝑥) can be evaluated in space 𝑂 (𝑚) given
two-way read-only access to the offline seed ℎ.

We construct this in a standard fashion via the sampler trick.

First, we recall both the PRG of Impagliazzo-Nisan-Wigderson [15],

and a space-efficient averaging sampler. We use the INW PRG as it

obtains optimal dependence on the size of the alphabet |Σ|.

TheoremA.3 ([15]). Given𝑛,𝑤, |Σ| ∈ N and 𝜀 > 0, there is a func-
tion GEN : {0, 1}𝑠 → Σ𝑛 with𝑚 = 𝑂 (log𝑛 log(𝑛𝑤/𝜀)+log(|Σ|)) that
can be evaluated in space 𝑂 (𝑠) such that for every ordered branching
program 𝐵 : [𝑤] × Σ𝑛 → [𝑤] of length 𝑛 and width𝑤 ,

GEN [𝐵] − E [𝐵]

 ≤ 𝜀.

Theorem A.4 ([8, 23]). For every 𝜀, 𝛿 > 0 and 𝑠 ∈ N, there exists
an averaging sampler 𝑓 : {0, 1}𝑚 × {0, 1}𝑑 → {0, 1}𝑠 such that
𝑑 = 𝑂 (log(1/𝜀) + log log(1/𝛿)) and𝑚 = 𝑠 +𝑂 (log(1/𝛿) + log(1/𝜀)).
Formally, for every function 𝑔 : {0, 1}𝑠 → {0, 1}, we have

Pr

ℎ←𝑈𝑚

[���� E
𝑥←𝑈𝑑

[𝑔(𝑓 (ℎ, 𝑥)] − E
𝑦←𝑈𝑠

[𝑔(𝑦)]
���� ≤ 𝜀

]
≥ 1 − 𝛿.

By combining these two ingredients we can construct the gener-

ator.

Proof of Theorem 2.3. Let GEN : {0, 1}𝑠 → Σ𝑛 be the function

of Theorem A.3 with 𝑛 = 𝑛,𝑤 = 𝑤, |Σ| = |Σ| and 𝜀 = 𝜀/2. Observe
that for every ordered branching program 𝐵 of length 𝑛 and width

𝑤 , we have

E [𝐵 ◦ GEN] − E [𝐵]

 ≤ 𝜀/2.

Now let 𝑓 : {0, 1}𝑚 × {0, 1}𝑑 → {0, 1}𝑠 be the function of Theo-

rem A.4 with 𝛿 = 𝛿/𝑤, 𝜀 = 𝜀/2𝑤 . For every function 𝐵 ◦ GEN (where
we choose a distinguished start and accept vertex and later take a

union bound over 𝜀 and 𝛿) we have

Pr

ℎ←𝑈𝑚

[���� E
𝑥←𝑈𝑑

[𝐵 ◦ GEN(𝑓 (ℎ, 𝑥))] − E
𝑦←𝑈𝑠

[𝐵 ◦ GEN(𝑦)]
���� ≤ 𝜀/2𝑤

]
≥ 1 − 𝛿/𝑤.

and thus

Pr

ℎ←𝑈𝑚

[

GEN ◦ 𝑓 (ℎ, ·) [𝐵] − E [𝐵]

 ≤ 𝜀/2 + 𝜀/2
]
≥ 1 − 𝛿

so letting NIS(ℎ, ·) = GEN ◦ 𝑓 (ℎ, ·) we obtain the desired generator.

□

B BOUNDS AGAINST SINGLE TRANSITION
BRANCHING PROGRAMS

To illustrate the added power obtained from derandomizing prod-

ucts 𝑀1 · · ·𝑀𝑛 of stochastic matrices 𝑀1, . . . , 𝑀𝑛 ∈ R𝑤×𝑤 versus

derandomizing powers𝑀𝑛
of a stochastic matrix𝑀 ∈ R𝑤×𝑤 , we

observe that the latter model corresponds to derandomizing or-

dered branching programs with a single fixed transition function

for every layer. We show via a short combinatorial argument that

this limitation can be severe:

33

STOC ’23, June 20–23, 2023, Orlando, FL, USA Aaron (Louie) Putterman and Edward Pyne

Lemma B.1. For every even 𝑛, the function 𝑓 : {0, 1}𝑛 → {0, 1}
given by 𝑓 (𝑥) = 𝑥𝑛/2 cannot be computed by a single-transition
ordered branching program of width 𝑛/2 − 1.

We remark that 𝑓 (and any parity on any subset of variables)

can easily be computed by an ordered branching program (with

distinct transition functions) of width 2.

Proof. Let 𝐵 be a single-transition branching program of width

𝑤 computing 𝑓 , and let 𝑣0 be the start state and 𝐴 ⊂ [𝑤] be the set
of states marked as accept in the final layer.

Claim B.2. For arbitrary 𝑢, 𝑣 ∈ [𝑤], if there exists 𝜎 ∈ {0, 1}∗ such
that 𝐵 [𝑣, 𝜎] = 𝑢, there exists 𝜏 ∈ {0, 1}≤𝑤 such that 𝐵 [𝑣, 𝜏] = 𝑢.

Proof. This follows from the fact that if an 𝑠 − 𝑡 path exists in a

directed graph of size 𝑤 , there must be an 𝑠 − 𝑡 path of length at

most𝑤 . □

Now assume for contradiction that 𝑤 ≤ 𝑛/2 − 1. Let 𝑢 :=

𝐵 [𝑣0, 0𝑛/2−11]. We first claim that for any 𝜎 ∈ {0, 1}∗, 𝐵 [𝑢, 𝜎] ∈ 𝐴.
This follows from Claim B.2 and the fact that 𝐵 must accept all

strings of the form 𝐵 [𝑣0, 0𝑛/2−11𝜎]. But then there is 𝜏 ∈ {0, 1}≤𝑤
such that 𝐵 [𝑣0, 𝜏] = 𝑢, and hence 𝐵 [𝑣0, 𝜏0𝑛−|𝜏 |] ∈ 𝐴, and as

𝑛 − |𝜏 | > 𝑛/2 this is a contradiction to the fact that 𝐵 computes

𝑓 . □

REFERENCES
[1] AmirMahdi Ahmadinejad, Jonathan A. Kelner, Jack Murtagh, John Peebles, Aaron

Sidford, and Salil P. Vadhan. 2020. High-precision Estimation of Random Walks

in Small Space. In Proceedings of the 61st Annual IEEE Symposium on Foundations
of Computer Science (FOCS). 1295–1306. https://doi.org/10.1109/FOCS46700.2020.

00123

[2] Roy Armoni. 1998. On the derandomization of space-bounded computations.

In Randomization and approximation techniques in computer science (Barcelona,
1998). Lecture Notes in Comput. Sci., Vol. 1518. Springer, Berlin, 47–59. https:

//doi.org/10.1007/3-540-49543-6_5

[3] Mark Braverman, Gil Cohen, and Sumegha Garg. 2020. Pseudorandom Pseudo-

distributions with Near-Optimal Error for Read-Once Branching Programs. SIAM
J. Comput. 49, 5 (2020). https://doi.org/10.1137/18M1197734

[4] Mark Braverman, Sumegha Garg, and Or Zamir. 2021. Tight Space Complexity of

the Coin Problem. In 62nd IEEE Annual Symposium on Foundations of Computer
Science, FOCS 2021, Denver, CO, USA, February 7-10, 2022. IEEE, 1068–1079. https:

//doi.org/10.1109/FOCS52979.2021.00106

[5] Joshua Brody and Elad Verbin. 2010. The Coin Problem and Pseudorandomness

for Branching Programs. In Proceedings of the 51st Annual IEEE Symposium on
Foundations of Computer Science (FOCS). 30–39. https://doi.org/10.1109/FOCS.

2010.10

[6] Eshan Chattopadhyay, Pooya Hatami, Kaave Hosseini, and Shachar Lovett. 2019.

Pseudorandom Generators from Polarizing Random Walks. Theory Comput. 15
(2019), 1–26. https://doi.org/10.4086/toc.2019.v015a010

[7] Eshan Chattopadhyay, Pooya Hatami, Omer Reingold, and Avishay Tal. 2018.

Improved pseudorandomness for unordered branching programs through local

monotonicity. In Proceedings of the 50th Annual ACM SIGACT Symposium on
Theory of Computing, STOC 2018, Los Angeles, CA, USA, June 25-29, 2018, Ilias
Diakonikolas, David Kempe, and Monika Henzinger (Eds.). ACM, 363–375. https:

//doi.org/10.1145/3188745.3188800

[8] Eshan Chattopadhyay and Jyun-Jie Liao. 2020. Optimal Error Pseudodistributions

for Read-Once Branching Programs. In Proceedings of the 35th Computational

Complexity Conference (CCC). 25:1–25:27. https://doi.org/10.4230/LIPIcs.CCC.

2020.25

[9] Gil Cohen, Dean Doron, Oren Renard, Ori Sberlo, and Amnon Ta-Shma. 2021.

Error Reduction for Weighted PRGs Against Read Once Branching Programs. In

Proceedings of the 36th Computational Complexity Conference (CCC). 22:1–22:17.
https://doi.org/10.4230/LIPIcs.CCC.2021.22

[10] Gil Cohen, Dean Doron, and Ori Sberlo. 2022. Approximating Large Powers

of Stochastic Matrices in Small Space. Electron. Colloquium Comput. Complex.
TR22-008 (2022). ECCC:TR22-008 https://eccc.weizmann.ac.il/report/2022/008

[11] Gil Cohen, Dean Doron, Ori Sberlo, and Amnon Ta-Shma. 2022. Approximating

IteratedMultiplication of Stochastic Matrices in Small Space. Electron. Colloquium
Comput. Complex. TR22-149 (2022). ECCC:TR22-149 https://eccc.weizmann.ac.

il/report/2022/149

[12] Michael A. Forbes and Zander Kelley. 2018. Pseudorandom Generators for Read-

Once Branching Programs, in Any Order. In Proceedings of the 59th Annual
IEEE Symposium on Foundations of Computer Science (FOCS). 946–955. https:

//doi.org/10.1109/FOCS.2018.00093

[13] William M. Hoza. 2021. Better Pseudodistributions and Derandomization for

Space-Bounded Computation. In Proceedings of the 25th International Conference
on Randomization and Computation (RANDOM). 28:1–28:23. https://doi.org/10.

4230/LIPIcs.APPROX/RANDOM.2021.28

[14] William M. Hoza and David Zuckerman. 2020. Simple Optimal Hitting Sets for

Small-Success RL. SIAM J. Comput. 49, 4 (2020), 811–820. https://doi.org/10.

1137/19M1268707

[15] Russell Impagliazzo, Noam Nisan, and Avi Wigderson. 1994. Pseudorandom-

ness for network algorithms. In Proceedings of the Twenty-Sixth Annual ACM
Symposium on Theory of Computing, 23-25 May 1994, Montréal, Québec, Canada,
Frank Thomson Leighton and Michael T. Goodrich (Eds.). ACM, 356–364. https:

//doi.org/10.1145/195058.195190

[16] Raghu Meka, Omer Reingold, and Avishay Tal. 2019. Pseudorandom generators

for width-3 branching programs. In Proceedings of the 51st Annual ACM SIGACT
Symposium on Theory of Computing. ACM, 626–637. https://doi.org/10.1145/

3313276.3316319

[17] Jack Murtagh, Omer Reingold, Aaron Sidford, and Salil Vadhan. 2019. Deter-

ministic Approximation of Random Walks in Small Space. In Proceedings of the
23rd International Conference on Randomization and Computation (RANDOM ‘19)
(LIPIcs, Vol. 145), Dimitris Achlioptas and László A. Végh (Eds.). Schloss Dagstuhl

- Leibniz-Zentrum für Informatik, 42:1–42:22. https://doi.org/10.4230/LIPIcs.

APPROX-RANDOM.2019.42

[18] Jack Murtagh, Omer Reingold, Aaron Sidford, and Salil P. Vadhan. 2017. De-

randomization Beyond Connectivity: Undirected Laplacian Systems in Nearly

Logarithmic Space. In 58th IEEE Annual Symposium on Foundations of Com-
puter Science, FOCS 2017, Berkeley, CA, USA, October 15-17, 2017. 801–812.
https://doi.org/10.1109/FOCS.2017.79

[19] Noam Nisan. 1992. Pseudorandom generators for space-bounded computation.

Combinatorica 12, 4 (1992), 449–461. https://doi.org/10.1145/100216.100242

[20] Noam Nisan and David Zuckerman. 1996. Randomness is Linear in Space. J.
Comput. System Sci. 52, 1 (Feb. 1996), 43–52. https://doi.org/10.1006/jcss.1996.0004

[21] Edward Pyne and Salil Vadhan. 2021. Pseudodistributions That Beat All Pseu-

dorandom Generators (Extended Abstract). In Proceedings of the 36th Annual
Computational Complexity Conference (CCC). 33:1–33:15. https://doi.org/10.4230/

LIPIcs.CCC.2021.33

[22] Omer Reingold, Salil Vadhan, and Avi Wigderson. 2002. Entropy Waves, the Zig-

Zag Graph Product, and New Constant-Degree Expanders. Annals of Mathematics
155, 1 (January 2002). https://doi.org/10.1109/SFCS.2000.892006

[23] Omer Reingold, Salil Vadhan, and Avi Wigderson. 2004. A Note on Extracting

Randomness from Santha–Vazirani Sources. (September 2004). Unpublished

manuscript.

[24] Michael Saks and Shiyu Zhou. 1999. BPSPACE(𝑆) ⊆ DSPACE(𝑆3/2) . J. Comput.
System Sci. 58, 2 (1999), 376–403. https://doi.org/10.1006/jcss.1998.1616

[25] Walter J. Savitch. 1970. Relationships between nondeterministic and deterministic

tape complexities. J. Comput. System Sci. 4 (1970), 177–192. https://doi.org/10.

1016/S0022-0000(70)80006-X

Received 2022-11-07; accepted 2023-02-06

34

https://doi.org/10.1109/FOCS46700.2020.00123
https://doi.org/10.1109/FOCS46700.2020.00123
https://doi.org/10.1007/3-540-49543-6_5
https://doi.org/10.1007/3-540-49543-6_5
https://doi.org/10.1137/18M1197734
https://doi.org/10.1109/FOCS52979.2021.00106
https://doi.org/10.1109/FOCS52979.2021.00106
https://doi.org/10.1109/FOCS.2010.10
https://doi.org/10.1109/FOCS.2010.10
https://doi.org/10.4086/toc.2019.v015a010
https://doi.org/10.1145/3188745.3188800
https://doi.org/10.1145/3188745.3188800
https://doi.org/10.4230/LIPIcs.CCC.2020.25
https://doi.org/10.4230/LIPIcs.CCC.2020.25
https://doi.org/10.4230/LIPIcs.CCC.2021.22
https://eccc.weizmann.ac.il/report/2022/008
https://eccc.weizmann.ac.il/report/2022/149
https://eccc.weizmann.ac.il/report/2022/149
https://doi.org/10.1109/FOCS.2018.00093
https://doi.org/10.1109/FOCS.2018.00093
https://doi.org/10.4230/LIPIcs.APPROX/RANDOM.2021.28
https://doi.org/10.4230/LIPIcs.APPROX/RANDOM.2021.28
https://doi.org/10.1137/19M1268707
https://doi.org/10.1137/19M1268707
https://doi.org/10.1145/195058.195190
https://doi.org/10.1145/195058.195190
https://doi.org/10.1145/3313276.3316319
https://doi.org/10.1145/3313276.3316319
https://doi.org/10.4230/LIPIcs.APPROX-RANDOM.2019.42
https://doi.org/10.4230/LIPIcs.APPROX-RANDOM.2019.42
https://doi.org/10.1109/FOCS.2017.79
https://doi.org/10.1145/100216.100242
https://doi.org/10.1006/jcss.1996.0004
https://doi.org/10.4230/LIPIcs.CCC.2021.33
https://doi.org/10.4230/LIPIcs.CCC.2021.33
https://doi.org/10.1109/SFCS.2000.892006
https://doi.org/10.1006/jcss.1998.1616
https://doi.org/10.1016/S0022-0000(70)80006-X
https://doi.org/10.1016/S0022-0000(70)80006-X

	Abstract
	1 Introduction
	1.1 Main Result
	1.2 Overview of Prior Work
	1.3 Our Approach
	1.4 Other Results
	1.5 Organization

	2 Preliminaries
	3 The Canonicalizer
	4 Proof of Theorem 1.4
	5 Naive Saks-Zhou For Small Width
	6 Saks-Zhou With Constant Richardson Iterations
	A Deferred Proofs
	B Bounds Against Single Transition Branching Programs
	References

