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Abstract

The Implicit Association Test (IAT), like many behavioral measures, seeks to quantify meaningful individual differences
in cognitive processes that are difficult to assess with approaches like self-reports. However, much like other behavioral
measures, many [ATs appear to show low test-retest reliability and typical scoring methods fail to quantify all of the decision-
making processes that generate the overt task performance. Here, we develop a new modeling approach for IAT's based on the
geometric similarity representation (GSR) model. This model leverages both response times and accuracy on IATs to make
inferences about representational similarity between the stimuli and categories. The model disentangles processes related to
response caution, stimulus encoding, similarities between concepts and categories, and response processes unrelated to the
choice itself. This approach to analyzing IAT data illustrates that the unreliability in IATs is almost entirely attributable to
the methods used to analyze data from the task: GSR model parameters show test-retest reliability around .80-.90, on par
with reliable self-report measures. Furthermore, we demonstrate how model parameters result in greater validity compared
to the IAT D-score, Quad model, and simple diffusion model contrasts, predicting outcomes related to intergroup contact and
motivation. Finally, we present a simple point-and-click software tool for fitting the model, which uses a pre-trained neural
network to estimate best-fit parameters of the GSR model. This approach allows easy and instantaneous fitting of IAT data
with minimal demands on coding or technical expertise on the part of the user, making the new model accessible and effective.
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Improving the reliability and validity
of the IAT with a dynamic model driven
by similarity

For more than two decades, researchers have used the Implicit
Association Test (IAT) to measure psychological constructs
in a way that circumvents the need for introspection on
the part of respondents (Greenwald et al., 1998). Most
commonly, researchers use IATs in an attempt to capture
so-called “implicit” constructs that are generally conceived
of as evaluations or beliefs that are relatively uncontrollable
and whose existence or influence operates at least partly out-
side of conscious awareness [e.g.,][] (De Houwer, 2006).
The IAT paradigm has undoubtedly been influential outside
of academia, with more than 28 million IATs completed at
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the Project Implicit website (Ratliff and Smith, 2021). The
psychometric value of behavioral measures, however, stems
largely from their ability to reliably assess meaningful psy-
chological constructs. Critics have long argued the IAT does
not succeed in either of those requirements [e.g.,] (Fiedler et
al., 2006; Schimmack, 2021; Blanton et al., 20006).

For readers unfamiliar with IATS, the task is structured
as follows. Participants are presented with stimuli from two
conceptual and two attribute categories — which may include
words, pictures, phrases, or other visual or lexical items —
and asked to match them with their corresponding category
by pressing one of two keys on the keyboard (e.g., ’e’ or
1’ for ’left’ and ’right’ category responses). The task pro-
ceeds in a set of four types of blocks, each of which has
different sorting rules. Participants begin with two practice
blocks, sorting positive and negative words (valence stimuli)
and then words related to the categories of interest (e.g., faces
of young and old people). In these blocks, participants simply
have to classify each stimulus by pressing one button or the
other (e.g., positive words on the left, negative words on the
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right). The key manipulation of the IAT comes in the remain-
ing two blocks (referred to as critical blocks) in which the
two practice blocks are combined so that there are two cate-
gories on the left and two categories on the right side of the
screen. In these blocks, participants use a single response key
to sort evaluative stimuli (e.g., positive words) and category
stimuli (e.g., faces of young people). The task is illustrated
on the left side of Fig. 1. The guiding idea behind the IAT is
that responses will be easier (i.e., faster) when categories that
share a response key also share a relationship in the partici-
pant’s mind and more difficult (i.e., slower) when categories
sharing a response key do not share a relationship or are even
at odds with one another. In other words, researchers use an
individual’s pattern of responses on the IAT to draw conclu-
sions about, for example, their degree of positivity toward
one social group relative to another.

Of course, there are research practices such as selecting
appropriate stimuli and using multiple measurement occa-
sions that can improve on an IAT’s psychometric properties
(Greenwald et al., 2021; Carpenter et al., 2022), but there are
certainly serious and credible concerns about the structure of
the task and its ability to measure individual differences. In
aggregate (e.g., averaging scores by experimental condition
or geographical region), many IATs reliably produce large
effects, distinguish known-groups, and are associated with
relevant outcomes (Payne et al., 2017). Where the IAT could
stand to improve the most is at the individual-level. The exist-
ing research indicates low test-retest reliability (Gawronski et
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al., 2017) along with imprecise individual estimates (Klein,
2020), reflecting psychometric properties that make it poten-
tially undesirable as a measure of individual differences.
Moreover, the predictive validity of IATs is also disputed. On
one hand, some researchers interpret the available evidence
as indicating IATs can predict an array of relevant outcome
measures (Buttrick et al., 2020; Greenwald et al., 2009; Kurdi
et al., 2019), in some cases over and above analogous self-
report measures. On the other hand, critics argue that there is
little to no evidence that IATs meaningfully predict any out-
comes with practical relevance or real-world significance at
all (Carlsson and Agerstrom, 2016; Van Dessel et al., 2020),
and not incrementally over any sufficiently valid self-report
measure (Blanton et al., 2016; Oswald et al., 2013). We want
to continue to remind readers that the IAT is a measurement
procedure in much the same way that a survey is a measure-
ment procedure and that there is no such thing as The IAT. It
may be, for example, that psychometric properties are better
for IATs measuring some attitude objects rather than others.

Designing effective behavioral measures is difficult in
part because it requires balancing a trade-off between the
robustness of experimental manipulations (i.e., how con-
sistently a manipulation creates an effect) and the relia-
bility for assessing individual differences in task perfor-
mance [suggestthatotherdimensionsormeasuresofreliability-
maynotbeasconcerningfortheI AT] (Greenwald et al., 2021).
This issue is not unique to IATs, and has been termed the
“reliability paradox” (Hedge et al., 2018). However, Haines

Positive

Fig.1 Diagram of the structure of the GSR-DDM model. The stimulus
provides information that guides participants toward white / black and
positive / negative evaluations, which are mapped onto responses on the
left (L) or right (R) sides of the screen based on which threshold (dot-
ted / dashed lines for compatible / incompatible blocks, respectively) is
crossed. This drives an evidence accumulation process, shown in blue,
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that moves around until it hits one of the choice boundaries. Shown
here is a model of an individual with a slight bias toward white faces
(smaller angle between white faces & positive and black faces & nega-
tive) relative to black faces (larger angle between black faces & positive
and white faces & negative)
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etal. (2021) have shown that this issue is one of measurement
as opposed to an issue with behavior in general. Specifically,
they showed that the way behavior is quantified on tasks
like IATs is counterproductive to high reliability and, conse-
quently, predictive validity. There are two reasons for this.
First, simple summary statistics like mean response times do
not fully capture the rich patterns of behavior that people
exhibit on these tasks, lacking the distributional information
about response times as well as the accompanying accuracy
participants exhibit. By condensing performance down to a
single index like the D-score (Greenwald et al., 1998, 2003),
all the different cognitive processes involved in performance
— and the error in measurement — are confounded.

As we note below, there have been efforts to dissect per-
formance into multiple dimensions with models like the
diffusion model (Rohner and Lai, 2021; Klauer et al., 2007),
but even these models suffer from an additional issue related
to test-retest reliability. Specifically, they quantify perfor-
mance on IATs using a difference score or comparison
between conditions. Any time performance is quantified in
two separate conditions and then compared between them,
the summary statistic or model parameter used to quantify
behavior in any single condition is doubled. This issue has
been raised before in the psychology and educational mea-
surement literature (Bereiter, 1963; Thomas and Zumbo,
2012; Overall and Woodward, 1975; Gardner and Neufeld,
1987), but it was dismissed or glossed over largely because
tests of significance between conditions (e.g., blocks of the
IAT) based on the difference score are still well-powered
[and in fact they are highest when reliability is zero] (Over-
all and Woodward, 1975). This means that comparisons
between conditions are likely to yield significant results,
but will not serve well as reliable measures of individual
differences.

A natural parallel can be drawn to IATs, where large effects
of pairing manipulations (attitude-congruent / attitude-
incongruent) are observed alongside low test-retest relia-
bility (Gawronski et al., 2017). This trade-off is potentially
damaging to IATs because its theoretical underpinnings are
largely predicated on its ability to measure differences in
individual-level automatic cognitive processes (Greenwald
et al., 1998; Kurdi and Banaji, 2017). Its value as a behav-
ioral measure is in its ability to assess these latent processes,
making reliable measurement and high predictive validity
paramount to effective use. To the extent that the test-retest
reliability and predictive validity of IATs is diminished by
measurement practices, we should strive to improve our
measurement procedures to imbue the task with greater
utility. To use it as a measure of individual differences,
we must therefore solve the dual challenges of generative
modeling and avoiding relying on difference scores. This
paper outlines a modeling approach that accomplishes both
objectives.

Modeling IATs

One of the reasons that IATs have been criticized is that the
usual metric for summarizing IAT task performance (IAT
D-scores) is inappropriately interpreted as a process-pure
measure of individual differences in automatic associations
(Conrey et al., 2005; Schimmack, 2021). It is fairly clear
that, although IATs almost certainly pick up on associa-
tive relationships, a purely associative account is not tenable
and, instead, the possibility exists that IATs also pick up
on propositional information [for the most recent and com-
prehensive account see] (De Houwer et al., 2021). In other
words, researchers assume D-scores primarily capture the
strength of target-attribute associations stored in long-term
memory rather than ephemeral or non-associative factors see
(Fiedler et al., 2006; Bading et al., 2020). However, behavior
on an IAT does not correspond one-to-one with the (auto-
matic) activation of underlying attitudes (e.g., associations).
Rather, it results from a mix of controlled and automatic
processes see (Calanchini and Sherman, 2013) and contains
both attitudinal and non-attitudinal content (Calanchini et al.,
2014). For example, IAT task performance is influenced sys-
tematically by non-associative cognitive variables including
general processing speed, task-switching abilities, and cog-
nitive control [e.g.,] (Blanton et al., 2006; Ito et al., 2015;
Klauer et al., 2010).1 Additionally, different IATs that target
seemingly distinct attitudes still have substantial overlap in
their associations after decomposing IAT D-scores into asso-
ciative and non-associative components (Calanchini et al.,
2014), thus indicating the presence of construct-irrelevant,
common method variance or attitudinal content that is irrel-
evant to the specific constructs of interest.

We posit that the controversies surrounding the reliability
and validity of IATs are intractable until researchers embrace
modeling approaches that can decompose the individual-
level behaviors into unique components that are both reliably
quantifiable and theoretically-grounded [e.g.,] (Klauer et al.,
2007). Doing so will allow researchers to gain new insight
into which specific aspects of IAT task performance can be
reliably captured across repeated measurements (i.e., test-
retest reliability), and whether the unique parameters can
predict outcomes above and beyond typical D-scores (i.e.,
predictive validity). The complexity underlying IAT task
performance ought to be accompanied by scoring metrics
that can meaningfully capture and distinguish the multiple
underlying processes. Unfortunately, the simple metrics and
models traditionally used to characterize behavior [such as

1" Of note, reducing the impact of these cognitive variables was one of
the central improvements of the IAT D-score over the original scoring
procedure which consisted of unstandardized differences between block
means (Greenwald et al., 2003; Cai et al., 2004; Mierke and Klauer,
2003)
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the IAT D-scores, C-scores, or other summary statistics;
for an overview, see] (Rohner and Thoss, 2019) provide an
impoverished view.”

Recent evidence suggests that the IAT’s utility as a
trait-level measure can be increased greatly by requiring
individuals to complete at least two IATs and aggregating
D-scores onto a latent variable (Carpenter et al., 2022). This
approach has real promise, but retains the D-score, which we
argue is notideal. Indeed, the field’s near total reliance on IAT
summary statistics and scores has left researchers to make
inferences about “implicit” constructs that are, arguably, too
ill-defined and heterogeneous — not only between different
researchers but also within the same ones — to have real the-
oretical and practical utility (Corneille and Hiitter, 2020; De
Houwer et al., 2009; Gawronski et al., 2022; Schimmack,
2021). Furthermore, the repetition of IATs as in the proce-
dure described in Carpenter et al. (2022) increases the risk of
participants learning to fake their performance in an attempt
to mask their attitudes from detection via traditional scoring
methods (Rohner et al., 2011; Fiedler and Bluemke, 2005).
As we note below, models are better able to disentangle
faking strategies from activated associations, presenting an
additional solution to the repetition problem.

In this paper, we address this issue by developing a
new computational model of performance on IATSs, adopt-
ing and formalizing the link between models of semantic
meaning and similarity and models of decision-making on
response time tasks. The goal of our modeling approach
is to disentangle the many factors influencing performance
on IATs — including response caution, encoding, and non-
decision processes such as pushing the keys on the keyboard
(Ratcliff et al., 2016; Busemeyer et al., 2019) — from the
construct-relevant mental content that the task is designed
to measure. To accomplish this, we estimate the cosine-
similarity between the concepts specific to an IAT (e.g.,
Black, White, good, and bad for the Black/White Race IAT)
alongside model parameters describing other elements of
the decision process. A complete detailing of this model
is provided in the “Modeling approach” section, but we
provide a summary of the benefits here. Specifically, our
modeling approach provides a richer description of what
participants are actually doing on an IAT by providing multi-
ple measures quantifying performance on the task. Applying
a cognitive modeling perspective to IATs provides a rel-
atively clean theoretical slate. In particular, attempting to
define the “implicit” nature of the associations captured by
the task a priori (Corneille and Hiitter, 2020; Gawronski et

2 Tt is worth pointing out that there have been positive aspects to having
the IAT D-score serve as a field-standard metric, particularly in com-
parison to tasks such as evaluative priming in which there are many
different scoring procedures. For example, it is relatively intuitive, and
has facilitated ease of comparison across disparate data collections.
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al., 2022) is unnecessary to the approach. Measuring rep-
resentational similarity in terms of geometric relationships
makes no assumptions about how similarities are formed or
whether participants are aware of their existence. We merely
presuppose that these semantic similarities exist and affect
decisions, an assumption that has been well-validated [e.g.,][]
(Bhatia, 2013, 2017; Bhatia and Mullett, 2018) to the extent
that it should be reasonable even to the strongest critics of
IATs.

At their core, IATs are designed to measure the strength
of relationships (e.g., associations) between categories (e.g.,
social groups) and attributes such as valence (Greenwald
et al.,, 2021) or personality traits (Back et al., 2009). In
this respect, they are similar to vector space semantic mod-
els, which seek to represent the meanings of words and
concepts in terms of the similarities between them (Lan-
dauer and Dumais, 1997; Giinther et al., 2019), including
the representation of collective biases reflected in language
(Charlesworth et al., 2021). In typical semantic models, these
similarities are measured from word co-occurrences across
large samples of text (Turney and Pantel, 2010) ranging from
100,000 documents to 1-2 billion for large language models
like BERT (Zhu et al., 2015) or even half a trillion tokens for
models like GPT-3 (Brown et al., 2020). One of the architects
of the IAT, Greenwald (2017), noted the potential relationship
between [ATs and vector-space models seeking to represent
similarity between concepts: “Caliskan et al. (2017)’s Word-
Embedding Association Test (WEAT) algorithm uses cosine
similarity (a correlation-like indicator) between word vectors
in different word categories, much as the IAT uses response
latencies; greater cosine similarity corresponds to faster IAT
responding.”

The idea that response times on IAT's reflect semantic sim-
ilarities among words, or between words and visual stimuli
is intuitively appealing. The speed at which we can retrieve
the word “royal” from the word “gold” is much faster than
we can retrieve it from the word “shale” — which might
seem unassociated or even inversely associated with royalty.
When these associations are pitted against one another, it
can create competing or interfering relationships among cat-
egories. For example, if the categories were royal/gems vs
peasant/rocks, we might expect a “ruby” stimulus to easily
correspond to the former, resulting in a fast response; how-
ever, when they are juxtaposed or conflicting as in royal/rocks
vs peasant/gems, the royal and gems categories might com-
pete to make the response to “ruby” slower. Low conflict
stimuli, trials, and conditions should create less interference
and thus better (faster) performance, whereas conflicting
or incongruent semantic similarities should result in worse
(slower) performance. In this way, the degree of competi-
tion or interference is thought to provide the link between
semantic associations on one hand and response speed on
the other.
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However, IAT performance involves many processes
beyond similarity: a decision-maker performing the task must
encode the stimuli (a process which may be faster or slower
depending on the stimulus type, such as word vs face), relate
the stimuli to support for the different response categories,
determine what response to trigger, and carry out the action
of entering their response. The modeling challenge is to dis-
entangle these processes from those related to associations
between concepts, determining if and how similarity has
impeded or facilitated the choices that someone makes across
trials and conditions of IATs.

Critics and proponents of IATs agree that better modeling
techniques are the most promising path forward to developing
an accurate account of the multiple cognitive processes that
generate task performance (Carpenter et al., 2022; Schim-
mack, 2021; Corneille and Hiitter, 2020; Gawronski, 2019;
Fiedleretal., 2006). Applying cognitive models to behavioral
tasks allows for effective estimation of distinct latent cog-
nitive processes underlying performance on response time
tasks in social cognition (Pleskac et al., 2018; Johnson et
al., 2017). Thus, it becomes possible to reliably character-
ize individual differences in latent processes by developing
quantitative theories of how conceptual similarities influence
choices and response times.

Indeed, researchers have already begun applying var-
ious approaches to generative models of the behaviors
underlying IAT task performance. In the next section, we
outline how several of these approaches have improved
measurement practices on IATs, then segue into our own
approach and how it solves many outstanding issues with IAT
modeling.

Multinomial process trees

Two of the earliest and most common models for decom-
posing IAT task performance, the quad (Wang et al., 2019;
Dunhametal.,2016;Ruizetal.,2015; Wrzusetal.,2017) and
ReAL (Meissner and Rothermund, 2015; Jin, 2016; Koranyi
and Meissner, 2015; Calanchini et al., 2021) models, use
multinomial process trees [MPTs] to account for accuracy
data on IATs. In these models, error rates are compared
across conditions of the task to make inferences about the
order in which different cognitive processes occur (Hiitter
and Klauer, 2016). The first and most well-known model of
IAT behavior is the Quad model [i.e., Quadruple Process
model:] Conrey et al. (2005) which uses the distribution
of error responses to estimate four different parameters.
Namely, representing activation of target-attribute associa-
tions (estimated separately for each IAT block), accuracy
in detecting correct responses, self-regulation to overcome
associations that would result in incorrect responses, and
guessing when other processes fail to fully guide responding
(Calanchini and Sherman, 2013). The activation parameter

thus represents relatively process-pure associations whereas
the remaining parameters represent non-associative or mixed
processes. The model allows researchers to determine the
extent to which each process guides IAT task performance to
answer various research questions.

A second model, the ReAL model, estimates three param-
eters that represent a task-simplifying recoding process,
activation of evaluative associations (separately per IAT
block), and label-based discrimination of the correct response
(Meissner and Rothermund, 2013). The recoding parame-
ter is central to the model because it estimates the role of
a wide variety of response strategies that are distinct from
evaluative associations that are typically assumed to underlie
IAT effects. In general, participants are more likely to apply
recoding to the compatible’ IAT block by reducing the target
and attribute categories into a single category. Thus, recoding
is problematic for typical interpretations because it is a non-
associative process that causes IAT effects to appear more
stereotype-consistent (e.g., stronger preference for majority
over minoritized social groups).

Both the Quad [e.g.,] Wang et al. (2019); Dunham et al.
(2016); Ruiz et al. (2015); Wrzus et al. (2017) and ReAL
model [e.g.,] Meissner and Rothermund (2015); Jin (2016);
Koranyi and Meissner (2015); Calanchini et al. (2021) have
shed light onto the cognitive processes underlying perfor-
mance on IATs, and generated insights that would not have
been possible without these modeling approaches. For exam-
ple, research using the ReAL model suggests that recoding
is responsible for producing the smaller IAT effects that are
observed with word- versus picture-based stimuli (Meissner
and Rothermund, 2015) as well as the apparent differences
in gender associations for younger versus older males (Jin,
2016). After controlling for recoding, the ReAL model esti-
mates the unique contributions that positive and negative
associations between target concepts and attributes make to
IAT scores. Researchers can then not only be more confident
that they are making inferences about associations per se,
but also about the specific content of those associations. For
example, the ReAL model provided evidence that motiva-
tion to initiate romantic relationships leads specifically to
weaker associations between potential partners and nega-
tive characteristics (Koranyi and Meissner, 2015). Similarly,
the Quad model illustrated that performance on the Young-
Old IAT differs by gender, race, and motivation to control
prejudice (Ruiz et al., 2015), and age-related effects across

3 Note that we use the term “compatible” or “congruent” to describe
conditions where a minoritized group is paired with a negative valence
category while a majority group is paired with a positive one, and
“incompatible” or “incongruent” to refer to conditions where the
minoritized group / stimuli are paired with positive-valence words. In
other words, it is “compatible” with dominant cultural attitudes at the
time of writing, but does not indicate that it is “compatible” with truth
or with the attitude of any individual participant.
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various IATs appear to be attributable primarily to differ-
ences in overcoming bias rather than in association strength
(Wrzus et al., 2017). The ReAL model is used infrequently
despite its potential applications, perhaps because it requires
several modifications to the typical IAT procedure includ-
ing an increased number of trials. For example, Calanchini
et al. (2021) applied both the original ReAL model and a
simplified version across a wide set of IAT procedures (e.g.,
320 vs. 120 trials, single block vs. multi-block). The original
ReAL model performed well across a number of conditions
but cannot be fit to the standard IAT procedure; the simpli-
fied model was also unable to provide a range of meaningful
parameter estimates from standard IAT data. However, the
Quad model can be fit to standard IAT data, provided there
are enough errors. Below, we apply the Quad model and com-
pare it to our new approach in order to better situate it relative
to multinomial processing trees.

These models can provide unique insights into IAT task
performance in part because typical response time measures
like IAT D-scores omit response accuracy. Nevertheless,
multinomial process trees fail to overcome a major defi-
ciency of IAT D-scores because they omit a different source
of information (response times) that could shed light on the
underlying cognitive processes. Although some different for-
mulations of the D-score attempt to integrate the two sources
of information into a single metric, such as adding a response
time penalty for errors (R6hner and Thoss, 2019), they cannot
fully account for both at the same time. As a result, both sum
scores and Quad / ReAL models are unable to detect the joint
information that is provided at the intersection of response
times and accuracy, such as if a participant responds more
slowly to improve accuracy or when a participant sacrifices
accuracy to respond faster (Luce, 1986; Rohner et al., 2013).
People commonly differ in how they approach these so-called
speed-accuracy trade-offs when completing response time
tasks (Wickelgren, 1977; Heitz, 2014), so models that cannot
or do not capture this trade-off are almost certainly missing
a fundamental piece of the behavioral phenomenon of com-
pleting an IAT.

Diffusion model

A classic and effective approach to modeling binary choice
response time tasks, such as those in IATs, is to use a
dynamic decision-making model like the diffusion model,
where noisy information is accumulated over time until a
decision threshold is reached and a response is initiated
(Ratcliff, 1978; Ratcliff et al., 2016; Ratcliff and McK-
oon, 2008). A basic version of the diffusion model (i.e.,
not including start point bias or cross-trial variability) esti-
mates parameters related to three processes underlying IAT
performance, including the speed at which information is
gathered (drift), speed-accuracy tradeoffs (thresholds), and
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nondecision time (Rohner and Lai, 2021; Rohner and Ewers,
2016; Klauer et al., 2007). The accumulation speed param-
eter or drift represents how easily stimulus information is
processed before deciding which key to press on each trial,
and it is intended to reflect the relatively automatic associa-
tive processes between targets and responses that researchers
typically hope to measure with IATs. The speed-accuracy
tradeoff parameter (threshold) estimates the level of caution
people take to ensure accurate rather than quick responding.
It is often considered a construct-irrelevant decision-making
process for implicit measures, because it is thought of as rel-
atively controlled rather than automatic process, although it
has been demonstrated to be related to method-specific vari-
ance as well as faking strategies (Klauer et al., 2007; Rohner,
2016) and it is actually possible that thresholds are learned
or adjusted over time, which may occur automatically or
without awareness following reinforcement (Cavanagh et al.,
2011; Fontanesi et al., 2019b). Non-decision time captures
variance in IAT performance stemming from individual dif-
ferences in cognitive and motor abilities, as well as any other
external factors that cause people to increase or decrease
their response speed. As a result, the diffusion model distin-
guishes between processes that are directly related to decision
making (drift / v, threshold / @) and processes that can be
seen as outside the decision process (non-decision time / #0)
(Ro6hner, 2016).

A great deal of progress on modeling IATs using the
diffusion process has been made, often with the aim of dis-
entangling processes of interest (e.g., automatic activation
of evaluative associations) from processes deliberately con-
trolled by a participant (Rohner et al., 2013; Rohner and
Ewers, 2016; Rohner and Thoss, 2018; Rohner and Lai, 2021;
Rohner et al., 2022; Klauer et al., 2007; van Ravenzwaaij
et al., 2011b; von Krause et al., 2021). A strength of this
approach is that it is able to disentangle construct-related
variance in the drift from impression management and “fak-
ing” strategies, which often appear as shifts in thresholds
or non-decision times between congruent and incongruent
conditions (Rohner and Ewers, 2016; Fiedler and Bluemke,
2005). It has also succeeded in dissecting the processes
underlying the impact of interventions on IAT performance
(Rohner and Lai, 2021), and the effects of modifying IAT tar-
get categories and stimuli (van Ravenzwaaij et al., 2011b).

The limitation of traditional diffusion modeling methods
is that the parameters are estimated separately for congru-
ent and incongruent conditions — and often neglect the other
conditions entirely. Once computed for each condition, a dif-
ference score such as IAT, (difference in drift rates between
conditions), IAT, (difference in thresholds between condi-
tions), or AT,y (difference in non-decision time between
conditions) is computed. As we mention above, these differ-
ence scores are effective for detecting differences in behavior
between conditions, but they will naturally be unreliable
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because of the compound error variance (Bereiter, 1963;
Thomas and Zumbo, 2012; Overall and Woodward, 1975;
Gardner and Neufeld, 1987).

As with the ReAL model, diffusion model analyses are
typically too complex to be applied with less than 90 tri-
als per condition (Rohner and Ewers, 2016; Klauer et al.,
2007). One way to overcome this limitation is by using
the Discrimination-Association Model to estimate similar
parameters but with a mathematically simpler Poisson race
model (Stefanutti et al., 2013) or to use a simplified version
of the diffusion model like the E-Z diffusion model (Paige
et al., 2022; Wagenmakers et al., 2007; Rohner and Thoss,
2018). These approaches are advantageous over the diffusion
model in that they need less information and can function
even when there are no trials with incorrect responses, but
non-identifiable parameters remain common when analyzing
standard IAT data. However, all of them still require a rea-
sonably high level of coding and modeling ability to apply.
Although computational modeling ought to be an accessible
and achievable route to better theory in psychology (Guest
and Martin, 2021), it is often avoided because of the demands
on quantitative and programming skills on the part of the
model user. We suspect that this barrier has significantly
affected research on IATs, where many may wish to use com-
putational models but lack the background to confidently do
sO.

Technical issues with model estimation aside, each of
the variants of the diffusion model suffer from a major
disadvantage in that they do not directly index what IAT
researchers are usually interested in — capturing the degree
of similarity or association between concepts (e.g., Black /
White faces and positive / negative words). The models are
applied such that they estimate separate drift rates for the
compatible and incompatible IAT blocks, meaning the only
way to get a proxy for degree of similarity is by contrast-
ing the parameter estimates. As we mentioned above, this
falls prey to the second issue of reduced reliability in behav-
ior, which is the compound error of difference scores. This
issue is exacerbated by the fact that the drift rate measures
processes above and beyond the activation of associations,
such as the ease with which a particular type of stimulus
is processed (e.g., words vs faces), the discriminability of
the categories, and the relative strength of category activa-
tions (Kvam and Pleskac, 2016). The more processes that
need to be quantified using the same parameter, such as
drift, the less specific — and arguably, less informative —
that parameter tends to be. Using the difference between
catch-all drift rate parameters therefore results in an estimate
that contains greater uncertainty and fails to directly quan-
tify the association-specific processes that IATs are designed
to measure. In our analyses in this paper, we show that this
results in greatly reduced reliability and ultimately predictive
validity.

Despite its drawbacks, the diffusion model is an excel-
lent starting point for building a model of IATs because
it quantifies behavior — including both response times and
accuracy — in terms of meaningful cognitive processes. The
proposed work improves on the diffusion modeling approach
by directly addressing the practical and theoretical hurdles
outlined above. It specifically addresses the main drawbacks
of current modeling approaches, which are

1. Separately computed metrics of performance for congru-
ent and incongruent conditions, resulting in difference
scores [e.g., IAT,, IAT,, and IAT;o;] Rohner and Lai
(2021);

2. The absence of a single parameter that directly quantifies
conceptual similarities between stimuli and categories;

3. Focusing on response times alone (most D-score mea-
sures), accuracy alone (Quad, ReAL), or only the congru-
ent and incongruent conditions (Quad, ReAL, diffusion,
and D-score measures) while ignoring useful information
contained in the remaining IAT data;

4. The difficulty of applying complex dynamic cognitive
models to the relatively small number of trials typically
observed in IAT studies; and

5. The difficulty of applying cognitive models in general.

Our approach addresses each of these issues by (1) quanti-
fying associations between concepts (Black / White, positive
/ negative) in terms of a single parameter that quantifies
individual differences in performance; (2) doing so using a
representational similarity framework that predicts the differ-
ences in both choice and response time between conditions;
(3) leveraging data from all four conditions in order to disen-
tangle differences in performance related to different stimuli
versus differences related to experimental manipulations; (4)
using hierarchical Bayesian methods for model fitting that
help constrain estimates of individual-level performance on
IATs even with small sample sizes; and (5) introducing a new
online tool for automatically fitting the model we developed
to IAT data.

Modeling approach

Our approach to modeling behavior on IATs uses a frame-
work called the geometric similarity representation (Kvam,
2019a; Kvam and Turner, 2021), which generalizes the dif-
fusion decision model to an arbitrarily large number of
interrelated choice options. The GSR has been used to model
multi-alternative choice and continuous-response paradigms
(Kvam, 2019a,b; Kvam and Busemeyer, 2020; Kvam et al.,
2023), where it has been subjected to stringent tests like
selective influence. Because IATs only feature two response
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options (left and right), this generalization of the diffusion
model is largely conceptual, as drift rates cannot be disen-
tangled into direction and magnitude when there are only
two response options. Fortunately, the implementation of
the GSR in binary choice is still conceptually richer as well
as computationally convenient, sharing many advantages of
the diffusion model while introducing a measure of repre-
sentational similarity. The similarity metric is derived from
computational linguistic models (Deerwester et al., 1990;
Landauer, 2006; Landauer and Dumais, 1997; Furnas et al.,
1988; Goldberg and Levy, 2014; Lin et al., 1998), where
different concepts are represented as vectors in a multidi-
mensional space and the similarity between concepts is a
function of the angle between vectors. In doing so, it forges a
formal link between these two approaches that has been sug-
gested by others (Greenwald, 2017). We refer to this model as
the geometric similarity representation extension of the dif-
fusion decision model, GSR-DDM or simply GSR, reflecting
its roots in traditional evidence accumulation models like the
DDM while emphasizing its new connections to models of
conceptual similarity using vector-space semantics.

The idea underlying the GSR-DDM model is illustrated in
Fig. 1: a small angle between two concepts (< 90 degrees),
such as White faces and positive, indicates that two concepts
are more similar. Conversely, a large angle between concepts
(= 90 degrees), such as White faces and negative, indi-
cates that they are dissimilar to one another (Kvam, 2019a;
Kvam and Turner, 2021; Smith, 2016). The GSR-DDM
incorporates these representations of concepts to estimate the
angle between (for example) a Black-White faces axis and
a negative-positive valence axis as a measure of the relative
similarity between the concepts from an IAT.

The similarities among concepts are then built into a model
of accuracy and response time using a geometric framework
developed by Kvam (2019a). This model predicts the same
distributions of accuracy and response times as the diffusion
model (a Wiener distribution) but disentangles drift rates into
stimulus-specific factors and conceptual similarity among
category responses. In this approach, a decision can be facil-
itated or hindered based on the similarities or associations
between the options or features under consideration. As a
decision-maker considers their options, their state changes
over time according to the attributes or information provided
by the stimulus. In the Race IAT, the visual features of an
image might favor a “White” or “Black” response, mov-
ing their state upward or downward in a space like the one
depicted in Fig. 1. The idea motivating IATs as an implicit
measure of attitudes is that the image may also carry some
positive or negative valence based on a decision-maker’s
relatively automatic associations with those categories. In
GSR-DDM, this is reflected by a smaller angle between
concepts of Black (race) and negative (valence) as well as
between white and positive. Compatible associations or sim-
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ilarities speed up the decision process by allowing both the
target category and its evaluation valence to lead partici-
pants toward the same response (e.g., a “left” / L response).
Conversely, incompatible associations or dissimilarities slow
down the decision process by pulling decision-makers in
opposing directions [similar to lateral inhibition in the LCA]
;Usher and McClelland (2001). If the evidence accumulation
process crosses a category boundary associated with the tar-
get category or its partner (e.g., “Positive” or “White person”
for a positive word in the congruent condition), it triggers a
correct response. If it instead crosses a category boundary of
one of the two other categories (e.g., a “Negative” or “Black
person” response for a positive word in the congruent con-
dition), an incorrect response is generated. By connecting
these cognitive processes to the frequency of these bound-
ary crossings, both accuracy and response time are used to
estimate the parameters of the model.

The decision process for determining which choice is trig-
gered could be described as a mutual power struggle between
the responses of Black, White, positive, and negative on a
Race IAT. A stimulus showing a positive word tips the bal-
ance of power in favor of the positive response, but it may also
“activate” or cause the Black or White responses to muster
strength according to the conceptual similarity relationships
between race and valence. If they associate Black faces with
positive valence, then the Black faces and positive valence
responses will work in tandem, thus resulting in the fastest
response times when Black faces and positive valence are
paired on the same side of the screen. Conversely, the Black
faces and positive word responses would engage in a direct
struggle with one another when Black faces and positive
words are on opposing sides of the screen, thus resulting
in slower response times.

A confluence of interfering or facilitating activations is
a feature present in many psychological tasks. For exam-
ple, a participant in a Stroop task typically speeds up when
the words and colors are aligned relative to a neutral con-
dition where words are unrelated to colors (Heathcote et
al., 1991; Lindsay and Jacoby, 1994), indicating that the
presence of a facilitating word leads to faster choices. Con-
versely, colors that conflict with words can be influenced by
lexical processing that drives decisions away from the cor-
rect responses, thus slowing people down in incompatible
blocks (MacLeod, 1991, 1992). Like the Stroop task, IATs
seek to measure interference or facilitation among stimuli
by measuring response times. Using a model of response
times that closely resembles the underlying cognitive pro-
cess allows us to create more reliable and valid measures of
association (Haines et al., 2021), enabling the GSR-DDM
to substantively improve upon standard practices such as
the D-score. However, to do so, its assumptions must align
with the structure of the neural and cognitive mechanisms
that support performance on IATSs. There are a few aspects
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of the structure of IATSs that are relevant for constructing a
new model. Specifically, we make three observations about
decision-making on a typical IAT:

1. Most IATsS feature multiple types of stimuli, such as faces
and words, which are processed at different speeds in the
brain (Heider and Groner, 1997).

2. Participants can change their decision criteria from con-
dition to condition, either intentionally as part of a
deliberate impression management or faking strategy
(van Nunspeet et al., 2015; Rohner et al., 2013) or even
unintentionally based on feedback or cues to task diffi-
culty (Fontanesi et al., 2019b).

3. Response times for correct responses are typically faster
than those for incorrect category responses (which are
rare). This is true even when looking at the raw mean
response times, or after removing response time penalties
for incorrect responses included in some scoring proce-
dures.

The final observation may depend on the specific IAT
being used, but appears common from our analyses.* These
observations inform our modeling assumptions. Based on
point (1), we use two separate drift rates for different types
of stimuli, in this case words and faces. These two types of
stimuli are processed in entirely separate neural circuits of
the brain, with face processing occurring in the inferior tem-
poral cortex / fusiform face area (Bentin et al., 1996) and
lexical processing of written words occurring in opposite
hemisphere (McCandliss et al., 2003). Backward masking
studies have made it clear that words and faces are processed
at different speeds (Heider and Groner, 1997). Therefore,
drift rates that are intended to capture the processing of these
two types of stimuli relative to response options should nat-
urally differ according to whether faces or words are being
assigned to different categories. As we show later, this dis-
tinction in the model is vindicated by substantially higher
drift rates for faces than for words across participants and
conditions.

The second observation implies that participants can
adjust their thresholds strategically, either trading accuracy
for speed to reduce response time or taking a longer time on
each choice to maintain accuracy (Wickelgren, 1977; Luce,
1986; Heitz, 2014). Accounting for this speed-accuracy
tradeoff is critical to assessing performance on the IAT, and
is one of the main reasons that models like multinomial pro-
cessing trees (which only assess accuracy) or the D-score
(which only considers response times) alone cannot provide
complete accounts of performance. In GSR-DDM, changes

4 For example, the Personalized IAT (Olson and Fazio, 2004) does not
include error feedback or require the respondent to correct their error
responses.

in response caution can occur across conditions. For exam-
ple, a participant concerned about appearing biased in their
response times (Schlenker, 1980; Rohner et al., 2013; Roh-
ner and Ewers, 2016; Rohner et al., 2022) might sacrifice
accuracy to match their mean RTs across compatible and
incompatible blocks. Allowing thresholds to vary provides
the opportunity to involve explicit or conscious processes in
performance on an IAT. It also indexes an element of behav-
ior that is orthogonal to similarity (or implicit associations)
but still relevant to beliefs and behaviors related to topics an
IAT seeks to measure, like race, sexual orientation, age, and
SO on.

The final observation imposes a restriction on the mod-
eling approach; namely, that it should be able to capture
patterns of response times that are asymmetric (faster) for
correct relative to incorrect responses. In the modeling
approach we adopt, this is accomplished by assuming that
the stimuli have random effects (Ratcliff, 1978; Ratcliff and
Smith, 2004), i.e., some stimuli yield stronger signals than
others. This is a common assumption in signal detection,
where the strength of “signal” and “noise” stimuli each follow
normal distributions (Green and Swets, 1966). Our measure
of signal strength, the drift rate, affects both RT and choice
accuracy: higher drift rates result in more correct and faster
responses, while lower drift rates result in slower and fewer
correct responses. The reason this is able to produce asym-
metric response times is that weaker signals (lower drifts) are
more likely to result in incorrect responses. As a result, incor-
rect responses appear to result more frequently from weak
or conflicting signals, associated in the model with longer
response times, as opposed to fast guesses or strong / vari-
able prior beliefs, which are typically associated with shorter
response times.

Put together, the GSR-DDM features (1) a conceptual-
similarity parameter that describes the relationships between
the concepts on either side of the screen on an IAT; (2) a
mean drift rate for each type of stimulus present in the study
describing how fast they are processed; (3) a threshold for
each condition of the study, controlling how careful a partic-
ipant is relative to how quickly they wish to decide; and (4)
a drift rate variability parameter describing how much vari-
ance there is in the drift rates for different stimulus sets (e.g.,
"positive" stimuli). The effects of each of these parameters on
response times and accuracy is shown in Fig. 2. The key ele-
ment of GSR-DDM that enables it to account for differences
in behavior between compatible and incompatible blocks on
an IAT is the similarity parameter, which provides a singu-
lar measure of how a participant represents the relationship
between the concepts activated by stimuli. However, the rela-
tive response times and accuracy between conditions are also
affected by thresholds (how cautious a participant is) and
differences in processing speed between different stimulus
sets (drift rates) as well as variability within these stimu-

@ Springer



Behavior Research Methods

Fig.2 Effects of manipulating
each of the parameters of
GSR-DDM (except
non-decision time, which simply
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One final note is that we are using the relative-evidence
choice boundary version of the GSR, where responses are
made based on the balance of support between two actions
(left, right) as opposed to the absolute degree of support for
each of the possible categories (e.g., Black, White, good, and
bad) separately. This modeling choice is similar to using a
diffusion rather than an accumulator model, although these
are only two among many configurations of response bound-
aries that are possible (Kvam, 2019a; Kvam et al., 2023).
Because we only collect a limited amount of accuracy and
response time data with each IAT, it would be almost impossi-
ble to tell the two approaches apart from one another (Donkin
et al., 2011). However, future work looking at confidence
judgments (Reynolds et al., 2021), distributions of evidence
collected (Kvam et al., 2022), neuroimaging data (Turner
et al., 2015), or other information should shed light onto
the representations of evidence during decision-making on
IATs.
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Modeling summary

So far, we have examined a variety of different approaches to
modeling performance on IATs and enumerated their poten-
tial costs and benefits. A diagram of each of the approaches
to modeling the IAT we have described is shown in
Fig. 3. The classical difference-score approach (left) quanti-
fies attitudes and associations in terms of (standardized) mean
differences in response times between two conditions, under
the assumption that the sign and direction of this difference
is proportional to a participant’s degree of bias. The multino-
mial processing tree approach, including the Quad and ReAL
models (middle left), uses accuracy on IATs to estimate the
probabilities of different events happening — such as a partic-
ipant’s bias being being activated or overridden or a stimulus
being correctly discriminated. Third, we have the diffusion
decision model (center right), which quantifies both accuracy
and response times within a condition in terms of the quality
of incoming information (drift), response caution (threshold),
bias, and non-decision processes like stimulus encoding and
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Fig.3 A diagram of each approach to quantifying behavior on the IAT.
In this paper, we compare the classic scoring algorithms like the D-score
(left) as well as the diffusion decision model (as it has been previously
applied; center-right) and a new model based on geometric relationships

motor actions. Finally, we have our new geometric similar-
ity approach (right panel), which proposes that performance
across all conditions is driven by the stimulus and the degree
to which it activates different category responses.

Below, we examine a model from each of these four
examples. We test the D-score, Quad model, simple diffu-
sion model, and geometric similarity / association model,
examining their ability to predict important outcomes related
to outgroup contact and motivation from individual-level
parameter estimates.

There are clear issues we identified with the first three
approaches that are addressed in the new model. First, classic
scoring algorithms like the D-score, as well as the diffusion
decision model, suffer from the compound variance problem,
where difference scores result in much greater measurement
error than single parameters alone (Bereiter, 1963; Thomas
and Zumbo, 2012; Overall and Woodward, 1975; Gardner
and Neufeld, 1987). Second, the three approaches on the left
all ignore valid information contained in IAT data — clas-
sic scoring algorithms ignore both accuracy and non-paired
(single-category) conditions, multinomial processing trees
ignore response time information, and the diffusion decision
model ignores (or at least does not capitalize upon) non-
paired conditions.

Finally, each of the models presents an impoverished view
of what participants are doing on an IAT. Any model has
to deal with some degree of simplification or abstraction in
order to be effective (Sun, 2008). However, ignoring pro-
cesses like the speed at which different types of stimuli are
processed or the degree to which participants try to dis-
guise or control their performance across conditions omits
critical information that is directly or indirectly relevant to
understanding behavior. In the discussion, we revisit how the
validity of a model interacts with its reliability and predictive
power, emphasizing the importance of explicitly modeling

B+/W-
o condition

B+/W-
condition

time —
B-/W+
ndition
condition
Diffusion Geometric
decision IAT similarity DDM

among concepts involved in performance on the IAT. While we focus
on comparisons between congruent (green) and incongruent (blue) con-
ditions here, the GSR-DDM is fit to all four IAT conditions

relevant psychological processes as one seeks to understand
latent traits and processes from behavior.

Below, we test our new approach and its ability to reli-
ably capture behavior on several IATs. An ideal model of
behavior should have high test-retest reliability to its param-
eters, which should be associated with other measures and
real-world consequences of what they seek to quantify. At
minimum, we can show that this new model out-performs
current and past approaches in both respects.

Methods

To assess the performance of the model, we tested both the
reliability and the validity of its parameters using two large
IAT data sets for each analysis. The full GSR-DDM model
capitalizes on information both about the speed of partici-
pants’ responses as well as information about their accuracy,
rather than ignoring one as in other modeling approaches
(Meissner and Rothermund, 2013; Calanchini and Sherman,
2013). While future iterations may be fit to data that exclude
accuracy or response time to deal with practical constraints
imposed by existing datasets, the present version requires
both accuracy and response time data to best estimate its
parameters. Given the informativeness of both sources of
data, we strongly encourage any researchers considering
using IATs to record both accuracy and response times —
an individual’s data might not show an effect in accuracy
or speed alone due to their ability to deliberately control
the speed-accuracy tradeoff (Reed, 1973; Wickelgren, 1977;
Heitz, 2014). This is made clear from diffusion modeling
of IATs (Klauer et al., 2007; Rohner and Lai, 2021), where
thresholds can be seen to vary across conditions of the task.

Fortunately, there are several large existing data sets that
include information on both accuracy and response time that
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we can use to test the reliability and validity of the estimates
we obtain from the model. We focus on four main studies:
two to examine the test-retest reliability of the parameters,
and two to examine its ability to predict important real-world
behaviors relevant to the attitudes or associations IATs seeks
to measure.

These studies each included 1-2 blocks of 30-40 trials in
each IAT condition, with an average of 60 trials per condition
— typically 40 trials per condition for non-target condition,
and 80 trials per condition for congruent / incongruent con-
dition. As is fairly common in social psychological tasks, the
number of trials is lower than most dynamic decision-making
tasks for which the diffusion model is estimated, making
the hierarchical constraints we use particularly important
(Pleskac et al., 2018).

Transparency and openness

The goal of this study was to evaluate performance on exist-
ing data in order to evaluate whether our modeling approach
improves on current methods for analyzing IAT data. We
therefore used secondary data for all of the analyses pre-
sented here. Each data set was selected a priori by one of
the authors (L.H.I.) based on a set of constraints on sample
size and trial-level information provided by another author
(P.D.K.). This was done to avoid a biased data-selection
process whereby data were selected that might favor the
new modeling approach. Ultimately, we selected two data
sets with a test-retest design for reliability analyses [from]
Gawronski et al. (2017) and two data sets that included rel-
evant outcomes to assess predictive validity (Buttrick et al.,
2020). To avoid any file drawer effects (Rosenthal, 1979), we
report the results of all four studies regardless of the results.

The data that were used here can already be found at
osf.io0/792qj (reliability studies) and osf.io/6d7xp

Drift rates

(one per stimulus type)

Thresholds

(one each condition)

Fig. 4 Diagram of the structure of the model we used for reliability.
Observed response times [RTs] and accuracy at multiple measurement
time points (gray boxes) are viewed as the product of latent thresholds,
drift rates, and non-decision times. In turn, we estimate the covariance
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(predictive validity studies). The JAGS model code for GSR-
DDM and the MATLAB code for accessing and running it
are provided at osf.io/znsfb. We also provide JAGS
code for the diffusion model and Quad model. Note that
running these scripts requires JAGS, MATLAB, and the
JAGS-MATLAB interface matjags (Steyvers, 2011).

Since the inferential purposes of our study were primar-
ily abductive (i.e., what explanation / model best accounts
for the data?) as opposed to confirmatory hypothesis testing,
preregistrationg was largely irrelevant. Further, the methods
we use are not sensitive to issues of multiple testing and the
chosen data sets were selected for analysis a priori (Szollosi
et al., 2020; Devezer et al., 2020; Rubin and Donkin, 2022;
Rubin, 2020).

Assessing test-retest reliability

As we outlined above, part of the issue with accurately mea-
suring the reliability of behavioral measures is the lack of
good generative models explaining how observed data are
related to latent processes. Modeling processes underlying
a single test session — as in the ReAL, Quad, and diffusion
models — is a step in the right direction. However, there are
(at least) two levels of error that enter into assessments of
test-retest reliability. Modeling helps account for trial-level
error, or variability in response times and accuracy that occurs
within a single session. However, it does not account for
session-level error, or variability in performance that natu-
rally occurs from day to day or session to session. Properly
incorporating this error into our estimates of reliability is
critical to understanding how reliable our measures actually
are (Haines et al., 2021; Rouder and Haaf, 2019).

The approach that we took to re-assess reliability on IATS
is shown in Fig. 4. Rather than estimating a model sepa-
rately for time points 1 and 2, we used a joint model that

Drift
variability

Non-decision

structure of these latent cognitive processes across time points, account-
ing for error in both the observed data (RT, accuracy) and error in our
measurement of the latent cognitive processes at each time point
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simultaneously fit behavior across both time points using a
factor-based link (Kvam et al., n.d.; Turner et al., 2017). This
constitutes a shift from treating behavior at each time point
as a separate, independent measurement to treating behavior
as two measurements of a common set of latent cognitive
processes. Formally, we fit a bivariate normal distribution
that specified the relationship between parameter estimates
from the first session (x) and the parameter estimates for
the second session (y) in terms of their means (M, and
My), variances (Vy and Vy), and covariances (Xyy) along-
side the session-level parameters that we normally fit with
these models (conceptual-similarities y, drift rates §, thresh-
olds 6, non-decision times 7, and drift variabilities v; see Fig.
4). This accounts for both trial-level and session-level error,
and allows us to control for these dual sources of error when
estimating the test-retest reliability of our model parameters.

We tested this new approach to estimating reliability using
a data set from a series of studies where participants com-
pleted various implicit measures at two different timepoints
(Gawronski etal., 2017). Specifically, we re-assessed the test-
retest reliability of Race and introversion-extraversion 1ATs
administered twice over a one to two month interval. We com-
pare this against both the D-score (Greenwald et al., 1998,
2003) and a diffusion model that is fit separately to congruent
and incongruent conditions. In the original paper, the relia-
bility of both IATs was assessed as being relatively poor, with
correlations of » = .44 and .63 between IAT D-scores across
the two timepoints for Race and introversion-extraversion
IATs, respectively. Accordingly, the findings are commonly
cited as a key piece of evidence in failing to establish the
validity of IATs as valid measures of relatively stable indi-
vidual differences (Gawronski, 2019; Payne et al., 2017). In
the results, we show that a re-analysis modeling the measure-
ment relationships among latent variables and time points
ultimately paints a much more favorable picture of the relia-
bility of performance on the IAT, as well as quantifying how
these parameters change (e.g., with practice) across sessions.

Assessing predictive validity

In addition to reliability, we also sought to examine whether
our modeling approach could provide more a valid account
of behavior on IATs. By virtue of disentangling performance
into multiple cognitive processes, it already improves upon
the discriminant validity of previous approaches by quanti-
fying distinct elements of performance. Likewise, modeling
the underlying cognitive processes gets us closer to a com-
plete description of performance and helps IATs align more
closely with the established literature on lower-level per-
ception and decision-making (Weber and Johnson, 2009).
However, much of the debate surrounding IATs has con-
cerned their ability to predict real-world outcomes and by

extension their predictive validity. To test whether the model
parameters were indeed better predictors of important out-
comes, we fit GSR-DDM to another secondary data set
(Buttrick et al., 2020) and used its estimates to predict rel-
evant outcome measures that were related to the attitudes
or associations those IATs sought to quantify. Buttrick et
al. (2020) sought to compare a typical regression approach
versus a structural equation modeling approaches for esti-
mating the unique predictive validity of the IAT above and
beyond analogous self-report measures. To do this, they ran-
domly assigned participants (volunteers from the Project
Implicit website; total N > 14,000) to one of ten experimen-
tal conditions where they completed IATs and self-report
measures whose content was manipulated to target differ-
ent social groups. Although their study included 10 pairs
of social groups as well as self-reported criterion measures
spanning across five criterion domains, we selected two IAT's
that are both widely used in the extant research literature and
socially relevant (Race IAT and Sexuality IAT) along with
self-report measures for two highly relevant criteria (internal
motivation to respond without prejudice and prior intergroup
contact).

The Internal Motivation to Respond without Prejudice
scale was originally developed to understand how internal
and external motivation influenced people’s race-related atti-
tudes and behaviors (Plant and Devine, 1998). It is widely
used in the IAT literature and has been adapted to other con-
texts including prejudice toward gay men and lesbians. The
five-item internal motivation subscale is associated with rele-
vant outcomes in both domains, and it is especially relevant to
implicit measures like the IAT because it is theorized to index
arelatively automatic process. For example, internal motiva-
tion is associated with lower levels of implicit and explicit
race bias (Devine et al., 2002), increased automatic activa-
tion of egalitarian goals (Johns et al., 2008), and positive
interracial interactions LaCosse and Plant (2020). Similarly,
it is associated with positive sexuality attitudes (Ratcliff et
al., 2006), more positive experiences when interacting with
gay men (Lemm, 2006), and greater effectiveness of diversity
training (Lindsey et al., 2015).

The race and sexuality prior interpersonal contact mea-
sures each include five items adapted from commonly used
items in previous research (Pettigrew and Tropp, 2006) and
are especially relevant because it is the available criterion
measure that most closely approximates actual real-world
behavior. Although they were modified and aggregated ad
hoc to be administered on the Project Implicit demon-
stration website, the full sets of race and sexuality items
have respectively been found to be associated with negative
racial outgroup and positive ingroup evaluations (Rae et al.,
2020) and with less individual- and contexual-level prejudice
toward gay men and lesbians (Maclnnis et al., 2017).
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Results

All of the model fits presented in the results were gener-
ated using hierarchical Bayesian methods, which estimate
not only the individual-level parameters that characterize
individual differences in cognitive processes but also the
group-level central tendency of these parameters (Shiffrin et
al., 2008). In the next section, we examine a neural network-
based approach to fitting the model. Such an approach is more
accessible in that it can be embedded into point-and-click
model fitting tools, but it does not estimate the covariance
across testing sessions (and thus is not as useful for estimat-
ing reliability) like the Bayesian joint model shown in Fig.
4. Therefore, we focus for now on the Bayesian methods.
Bayesian analyses compute an approximate posterior distri-
bution of parameter values, which assigns probabilities to
different possible values of the parameters of the model. For
simplicity and brevity, we typically report the mean value
of each parameter along with the 95% highest density inter-
val [HDI], which specifies the range of the 95% most likely
values of each parameter. It is analogous to a confidence
interval except it directly quantifies the most likely values
for a parameter as opposed to quantifying the range in which
we would expect them to fall if the sampling process were
repeated many times, thus providing an overall more coherent
and interpretable measure of uncertainty (Kruschke, 2014;
Kruschke and Liddell, 2018).

Unless otherwise specified, these values were computed
using a Gibbs sampler [JAGS] Plummer (2003) using 4
chains of 5000 samples each, with 1000 burn-in samples
per chain. In all cases, these chains converged according to
both visual inspection and r-hat statistics for convergence [all
7 < 1.001;] Gelman and Rubin (1992); Roy (2020).

Reliability

The results of the first study (Self-Concept / introversion-
extraversion IAT), Study la from Gawronski et al. (2017)
are shown in Fig. 5. The top panels show the estimates of
the model parameters from the first testing session (x), com-
pared against the estimates from the second testing session
(y). There are a few key findings to note here. We discuss
the mean estimates of model parameters in greater detail in
the Predictive Validity section, but there are several findings
specifically related to reliability. First, GSR-DDM model
parameters related to the decision process — specifically, sim-
ilarity, thresholds, and drift rates — showed a high degree of
test-retest reliability, with all linear correlations at least .77.
Non-decision time has somewhat lower reliability atonly .51,
but this parameter specifically indexes non-decision com-
ponents of response time and is therefore not of particular
theoretical interest; its lower reliability is not particularly
surprising, as it is a catch-all parameter that quantifies multi-
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ple different processes like stimulus encoding and response
execution.

In addition to the reliability of the parameters, we also
observed that the base drift rate — indicating how well partici-
pants are able to assign words or faces to categories regardless
of the associations between categories on either side of the
screen — were higher in the second testing session than in
the first. This is exactly what we would expect from practice
effects, as participants get faster and more accurate as they do
the task more. Critically, drift rates were the only parameter
that changed between sessions — not similarity. This means
that the model is capturing one process related to decision-
making that is stable across time (associations) and another
that improves with practice (drifts). This lends credibility to
the conceptual-similarity parameter as a measure of latent
associations that participants have among concepts, and sug-
gests that the model is showing a high degree of discriminant
validity by disentangling practice effects from core individ-
ual differences. This stands in contrast to unitary measures of
performance like the D score or even advanced approaches
like the diffusion model where associations and information
processing speed are both combined into a single measure of
drift.

In the model, rather than merely correlating the estimates
from the first and second testing session (as in the top panels
of Fig. 5), we estimated the reliability of each parameter
directly by estimating the variance-covariance matrix for
parameter values across the two sessions. The covariance
is estimated in a Bayesian way that obtains a posterior dis-
tribution describing the likelihoods of different values for
the reliability given the data (Haines et al., 2021). Results
from this analysis are shown in the bottom panels of Fig.
5. The approach was stricter than the simple correlations
due to the inclusion of a prior centered at zero, and thus
resulted in lower mean estimates of reliability relative to
the top panels. Bayesian analyses require priors, and in all
cases we strove for relatively vague ones (i.e., ones that
would not favor particular conclusions a priori). However,
it is clear that almost all of the model parameters — associ-
ation strength (estimated reliability M (r,) = .77, posterior
95% HDI = [.72, .85]), threshold (M (rg) = .71, 95% HDI
= [.67, .75]), and drift for identity-related words (M (rs,) =
.90, 95% HDI = [.73,.99]) and intro/extraversion related
words (M (rs,.) = 0.67,95% HDI=[.56, .79]) —show greater
test-retest reliability than the IAT D score, shown as a vertical
dotted black line.

Compared to the reliability of the traditional diffusion
model contrasts, these reliabilities are exceptionally high,
as shown by the dashed lines in Fig. 5. Ironically, the raw
drift rates of the diffusion model show quite high reliabil-
ity (r(67) = .67 and r(6g) = .73), as do the thresholds
(r@c) = .64 and r9;) = .66). By taking the difference,
their error variability is doubled and the metric becomes unre-
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Fig.5 Estimates of model
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liable (r (1 AT,) =.61, r(IAT,) =.11, and r({ ATyp) =.03;
colored dashed vertical lines in Fig. 5), clearly illustrating the
issue of compound error in difference scores. This is exactly
the reason we approached the problem using one similar-
ity parameter to create differences between congruent and
incongruent conditions as opposed to computing a contrast
coefficient.

The results of the second reliability analysis using the
Race IAT [Study2b] Gawronski et al. (2017) are shown in
Fig. 6. Like the introversion-extraversion IAT, it showed rel-
atively high reliability of the model parameters relative to
the D-score. However, the reliability of the similarity param-
eter (M(ry) = .56, 95% HDI = [.55, .58]) and the drift
parameters (Faces: M (rs,) = .55, 95% HDI = [.40, .69];
Words: M (rsy,) = .52, 95% HDI =[.37, .67] was somewhat
lower than in the introversion-extraversion IAT analysis. The
difference in association strength reliability appears to stem

0.3

0.4
Estimated Reliability

0.5 0.6

primarily from smaller overall variance of the estimates. That
is, people appear to have less variability in their associa-
tions between race and positive/negative words than they do
between their representations of self/others and particular
traits.

Conversely, the test-retest reliability of the threshold
parameters in this study was much higher (M (#) = .86,
95% HDI = [.82,.93]). Even if participants behavior in
terms of information processing was more variable, the
level of caution they implemented across testing sessions
was highly consistent, to the point of being comparable
to the reliability of some trait-level measures. As in the
introversion-extraversion IAT, these reliabilities substan-
tially out-performed the D-score (rp .46) and were on
par or greater than the reliability of mean response times
("'RT = .55).
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Fig.6 Estimates of model

Similarity reliability
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The test-retest reliability of nondecision time was highly
uncertain, M (r;) = .46 (95% HDI = [—.49, .99]), prevent-
ing any clear conclusions regarding the reliability of this
parameter. As before though, the most important parameters
out-performed the diffusion model contrasts (r (I AT,) =.53,
r(IAT,) =.07, and r(IAT;9) =.19; colored dashed lines
in Fig. 6). Also as before, the diffusion model could reach
higher reliability by foregoing contrasts, as the individual
condition drift rates had fairly high reliability (r(6F) =.70
and r(8w) =.69) as did the thresholds (#(6¢c) =.54 and
r(0r) =.51).

A particularly interesting finding related to the drift rates
is that the face stimuli (M(ur) 3.34, 95% HDI =
[3.07, 3.62]) appeared to be processed faster than the words
(M(uw) = 2.87, 95% HDI = [2.59, 3.15]). Holistic visual
processing of images is often found to be an efficient process
relative to serial or lexical processing (Richler and Gauthier,
2014), so this appears to reflect real differences that we might
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have expected a priori. We elaborate on this finding further
in the latter part of the next section.

Predictive validity

It is clear from the reliability analyses that the test-retest
reliability of the GSR-DDM model parameters exceeds that
of simple metrics of performance like the D-score. In theory,
this should translate to greater predictive validity. Observed
correlations between constructs ry, are determined by both
the “true” relationship between the constructs (oxy) as well
as the reliability of the predictor(s) ry, and the reliability of
the outcome ryy. As aresult, if we can improve the reliability
of our predictor (r,, ), we should be able to better predict any
outcome (y) provided the true relationship between predictor
and outcome does not change by using a slightly different
version of our predictor (x). Put simply, being better able to
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measure individual differences in cognitive processes should
mean that we can better predict other outcomes.

For both studies, GSR-DDM was fit in a hierarchical
Bayesian way as in the previous studies. It included nine
total free parameters: baseline drift for face stimuli, base-
line drift for word stimuli, an association parameter indexing
the relative degree of association between White/Straight
or Black/Gay and positive or negative words, four thresh-
olds for the four conditions, a drift variability parameter to
account for slow errors, and the non-decision time. These
nine parameters were used as predictors of internal motiva-
tion and contact outcomes, and compared against the D-score
(a single predictor) as well as the difference scores from the
diffusion model (IAT,, IAT,, and IAT,) and the parameters
of the Quad model. The GSR-DDM having more parameters
makes it more complex, but ultimately serves as a benefit
to the model as a whole by indexing multiple cognitive pro-
cesses that can predict real-world outcomes. For example,
a desire to manage one’s impressions could appear as dif-
ferences in either 6¢ or 67, which may predict responses on
an explicit self-report, while differences in similarity y may
predict behavioral or self-report outcomes that cannot be as
easily controlled through impression management (Rohner
and Ewers, 2016).

Model fit

There are several ways to assess predictive validity of the
GSR-DDM model parameters relative to the D-score. If we
simply look at total variance in the outcomes that each one

can account for, the GSR-DDM is the clear winner (middle
column of Table 1. However, in some cases the GSR-DDM
may perform better simply because it is more complex (more
parameters and thus more predictors). To control for greater
number of predictors in GSR-DDM, we penalized model fit
for each parameter used to predict outcomes. We tested two
different metrics that favor models with fewer predictors:
a classical measure called Adjusted R? (Shieh, 2008; Yin
and Fan, 2001) and a Bayesian measure called the deviance
information criterion [DIC] (Spiegelhalter et al., 2014).

Even after applying the correction to the model fit indices,
GSR-DDM still out-performed the D-score, Quad model,
and diffusion contrasts on nearly every outcome measure, as
shown in the DIC and Adjusted R? columns of Table 1. The
only model to ever edge out the GSR-DDM, the Quad model,
did so only on one metric (Adjusted R?), and was inferior to
the GSR-DDM when predicting every other outcome. Note
that lower DIC scores indicate better predictive validity, with
differences of at least 10 between models indicating strong
support for the better-performing model (Spiegelhalter et
al., 2002; Schwarz, 1978). GSR-DDM exceeds this criterion
relative to the D score in all but one of the outcome mea-
sures (Contact on the Race IAT), where it only improves the
DIC by 2. Overall, GSR-DDM shows clearly superior perfor-
mance relative to the D-score, as well as the simple diffusion
model and Quad model, in predicting contact and motivation
outcomes.

It is also worth examining which model parameters pull
the most weight when predicting the outcomes of interest.
The estimates of the relationship between the motivation

Table 1 Model fit metrics for

the D-Score, GSR-DDM., Study Outcome Model DIC R? Adjusted R?
diffusion model, and Quad Motivation D-score 4520 0.00223 0.00161
model for each of the studies
and outcomes we examined GSR-DDM 4503 0.0206 0.0151
Diffusion 4520 0.00234 0.0005
Quad 4504 0.0188 0.0163
Race
Contact D-score 4477 0.029 0.0283
GSR-DDM 4475 0.0406 0.0352
Diffusion 4476 0.0298 0.0279
Quad 4494 0.0164 0.0139
Motivation D-score 4194 0.0245 0.0239
GSR-DDM 4161 0.0801 0.0745
Diffusion 4182 0.0304 0.0284
Quad 4204 0.0171 0.0145
Sexuality
Contact D-score 4150 0.0526 0.052
GSR-DDM 4099 0.0957 0.0902
Diffusion 4140 0.058 0.0561
Quad 4187 0.0281 0.0255
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and contact outcomes (for the Race and Sexuality IAT) and
each model parameter, as well as the D-score, Quad model
parameters, and the three diffusion model contrast scores, are
shown in Table 2. The conceptual-similarity parameter was
most strongly related to each outcome, which is intuitive
given it was designed specifically to quantify the similar-
ity among cognitive representations of race, sexuality, and
valence (positive / negative). In fact, this parameter alone
out-performed the D-score, Quad parameters, and diffusion
contrasts on almost every outcome measure. There are only
two exceptions, which are the D (discriminability) param-
eter in the Quad model for Race-Motivation outcome and
the D-score for the Sexuality-Contact outcome. Critically,
although the improvement in prediction moving from the
D-score to the similarity parameter is consistent, the small
overall improvement in predictive power with this parameter
alone is complemented by significant predictive power aris-
ing from the other parameters in the GSR-DDM such as the
thresholds. Together, the parameters of the GSR-DDM con-
stitute a considerable step up from the other existing models,
as shown in Table 1.

Those interested in a more “process-pure” measure of
similarity than the D-score need look no further than the
similarity parameter, which contains less noise / error due to
GSR-DDM’s ability to disentangle associations from effects
related to thresholds, drift rates, and other parameters. These
findings suggest that the strength of the model is not only

its greater number of estimable predictors, although this is
certainly a strength in terms of discriminant validity, but it
can also isolate the impact of associations from those of other
cognitive processes involved in performance on IATs.

In addition to the conceptual-similarity parameter, the
threshold for the incompatible block trials (e.g., with Gay
people+positive vs. Straight people+negative) adds consid-
erable predictive power. It seems that participants who set
higher thresholds in this condition had lower motivation and
contact scores. This could be because participants are trying
to manage their impressions in these conditions and avoid
bias-indicative mistakes by lengthening their response times,
as with participants who try to fake their IAT scores (RShner
et al., 2013). It could also be that participants who are more
biased are simply attuned to the fact that this condition could
be more difficult or more sensitive, and adjust their thresh-
olds based on this perceived difficulty. In either case, it is
clear that both similarity / interference and response caution
in the face of bias-induced conflict (measured by threshold
adjustment) are predictive of participants’ interactions with
minoritized group members (the majority of whom form an
outgroup to participants).

Beyond these parameters, there are remaining significant
correlations between base drift rates and motivation / contact
outcomes. These positive correlations indicate that partici-
pants who generally performed better on an IAT (were more
accurate, made faster responses) also reported more internal

Table2 Ability of the D-score, diffusion model, Quad model, and GSR-DDM model parameters (rows) to predict motivation and contact outcomes.
Values in bold indicate significant / credible predictors whose HDIs exclude zero

Race Sexuality
Motivation Contact Motivation Contact
Predictor Mean 95% HDI Mean 95% HDI Mean 95% HDI Mean 95% HDI
D-score -0.05 [-.10, .00] -0.17 [-.22,-.12] -0.16 [-.21, -.11] -0.23 [-.28, -.18]
IAT, -0.04 [-.14, -.04] -0.14 [-.19, -.09] -0.08 [-.14, -.04] -0.13 [-.18, -.08]
IAT, 0.02 [-.03,.07] 0.08 [.04, .13] 0.13 [.08, .18] 0.17 [.12,.22]
1AT 0.03 [-.02, .08] 0.03 [-.01,,.08] 0.02 [-.03, .07] 0.07 [.03, .12]
D 0.15 [.08, .22] .08 [-.00, .16] .09 [.01,.16] A1 [.03, .18]
AC .02 [-.03, .07] .10 [.05, .15] .06 [.00, .11] .10 [.05, .15]
OB -.04 [-.11,0.03] -.06 [-.14,.02] .01 [-.07, .09] -.03 [-.10, .05]
G .05 [-.00, .10] .01 [-.03,.07] .03 [-.02, .08] .07 [-.02, .12]
Base drift (faces) 0.02 [-.02,.06] 0.00 [-.03,.04] 0.09 [.04, .13] 0.07 [.02,.11]
Base drift (words) 0.12 [.05, .18] 0.05 [-.02, .12] -0.04 [-.11,.03] 0.04 [-.03, .10]
Similarity -0.07 [-.12,-.01] -0.18 [-.22,-.12] -0.17 [-.22,-.12] -0.21 [-.26, -.16]
Threshold (faces only) 0.04 [-.09, .02] 0.07 [.02,.13] -0.03 [-.09, .02] -0.03 [-.09, .02]
Threshold (words only) 0.00 [-.06, .06] -0.01 [-.07,.05] -0.01 [-.07,.05] 0.07 [.02, .13]
Threshold (compatible) 0.02 [-.04, .08] 0.04 [-.02,.10] 0.04 [-.01,.10] 0.06 [.00, .13]
Threshold (incompatible) 0.01 [-.05, .06] -0.08 [-.13,-.02] -0.14 [-.19, -.08] -0.20 [-.25, -.14]
Drift variability 0.07 [.01,.14] -0.03 [-.09, .04] 0.04 [-.04, .11] 0.05 [-.02, .11]
Non-decision time -0.01 [-.98, .91] 0.00 [-.97,.92] 0.01 [-.95, .94] 0.00 [-.97, .92]
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motivation to be unbiased as well as more prior contact with
outgroup members. Drift rates have been increasingly viewed
as global measures of neural processing speed (Schubert et
al., 2019) and intelligence (Lerche et al., 2020; van Raven-
zwaaij et al., 201 1a), indicating perhaps that more intelligent
or better educated participants tend to be less biased in their
behaviors toward others. This interpretation is consistent with
findings that executive functioning is associated with smaller
IAT effects and less explicit bias (Klauer et al., 2010; Ito et
al., 2015).

Put together, the conceptual-similarity parameter alone
provides an incremental advantage over existing approaches.
Even if we were to ignore all other parameters entirely,
this would be a small victory for the GSR-DDM. However,
when we consider the other parameters of the model and the
predictive power that they confer over and above similar-
ity, alongside the conceptual benefits of disentangling these
cognitive processes, the result overwhelmingly supports the
GSR-DDM on every outcome and data set we have tested.

Characterizing the model outcomes
Given that this is the first time this type of model has been

applied to such large IAT data sets, it is prudent to investigate
the patterns of GSR-DDM parameter estimates for each data

set. This can help us understand more about issues related to
biases that exist in large populations, how participants per-
form with different stimuli, and how they generally shift their
thresholds across conditions. It is rare that dynamic cognitive
models are fit to such a huge data set, as typical experiments
encompass only a few participants for thousands of trials each
rather than thousands of participants for a few trials each.
The use of hierarchical Bayesian approaches for model fit-
ting were therefore particularly important here (Shiffrin etal.,
2008), as each participant only had a few trials from which
to estimate their parameters.

Once the model is fit, we can explore the group-level dis-
tributions of estimates for each parameter to ensure (a) that
these distributions are sensible with respect to what they are
theorized to measure, and (b) to explore any patterns in the
data that allow us insights about the population. In general,
the approach we used for model fitting appears to have turned
up sensible results, indicating that the GSR-DDM is captur-
ing realistic patterns of individual differences. Distributions
of model parameter estimates across individuals for the Race
IAT in Buttrick et al. (2020) are shown in Fig. 7. For each
of the parameters we discuss, we report the mean group-
level estimate (best estimate of the population mean) and
the 95% highest density interval [HDI] on this mean. This
means that the 95% HDI is not describing the distribution of
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individual-level estimates, which are shown in Figs. 7 and
8, but the uncertainty about their central tendency. Because
of the immense volume of data in both experiments, these
HDIs are very thin. Any comparisons between conditions
with non-overlapping intervals will be significant by essen-
tially any classical or Bayesian inferential test.

There are a few key findings here to note. First, most
people are biased toward pro-White / anti-Black associa-
tions, on average. A total of 71.97% of conceptual-similarity
parameter estimates lie above zero (M (y) = .10, 95% HDI
= [.09, .10]), indicating a greater similarity between White
people and positive / Black people and negative than Black
people and positive / White people and negative. This is
consistent with findings based on the D score (Greenwald
et al., 2003; Nosek, 2007) as well as simpler metrics like
mean response times (Greenwald et al., 1998) and accuracy
(Calanchini and Sherman, 2013; Calanchini et al., 2014).
Out of an abundance of caution on our part, the priors for
the association parameter were actually centered at zero.
This means that the model likely slightly underestimated
the group-level mean of the association parameter, although
with over 14,000 participants, this underestimation should be
negligible. Regardless, the model reproduces the classic bias
findings related to race, although it does not make any claims
about whether these associations or biases are "implicit" or

"automatic" in any of the ways in which that term has been
used (Gawronski et al., 2022; Moors and De Houwer, 2006).

As in the reliability experiment, the drift rates for faces
(M (8Faces = 3.62, 95% HDI = [3.53,3.68]) were higher
than the drift rates for word stimuli (M (§woras = 3.43,95%
HDI = [3.34, 3.49]). This appears to reflect greater process-
ing speed for stimuli that are processed holistically (Richler
and Gauthier, 2014), and emphasizes the importance of dif-
ferentiating between types of stimuli that can be presented
from trial to trial in IATs.

The model does suggest that people have at least some
awareness or recognition that it is more difficult to respond
quickly and accurately to the incompatible block trials, as
shown in the threshold estimates in the upper-right panel of
Fig. 7. Participants set higher thresholds in the incompatible
block (M (@rncompatibie) =3.25, 95% HDI = [3.17, 3.30])
than in the race-only block (M (Brgce) = 3.04, 95% HDI =
[2.97, 3.09]) and compatible block (M (Ocomparibie) = 3.05,
95% HDI = [2.97, 3.10]), which are higher in turn than the
valence-only block (M (Ovaience—oniy) = 2.61, 95% HDI =
[2.56,2.65]). It appears that people are more careful when
they know race is involved in their choices, either because
they are aware of their biases or because they know that their
decisions during the IAT are meant to reflect self-relevant
evaluative information with respect to a sensitive topic.
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Estimations of non-decision time across participants
resulted in a wide distribution of individual differences, char-
acterized by a mean estimate of M(t) = 345ms (95%
HDI = [344, 346]). The drift rate variability indicating trial-
to-trial differences in stimulus processing speed showed a
relatively modest degree of drift variability with a mean of
M((v) = 0.53 (95% HDI =[0.51, 0.57]).

The distributions of parameter estimates for the Sexu-
ality IAT are shown in Fig. 8, and share many patterns
of results with the Race IAT distributions. Participants in
this task were slightly less biased in terms of the dis-
tribution of their conceptual-similarity parameters, with
69.30% of participants showing a Gay people/negative and
Straight people/positive association (M (y) = .08, 95% HDI
= [.07,.09]). They showed slightly faster processing for
valence words (M (8y aience = 2.77,95% HDI =[2.74, 2.80])
than for sexuality words (M (8sexuatiry = 2.32, 95% HDI =
[2.29, 2.34]). There are several reasons this could be the case.
For example, the valence words might be shorter, more com-
mon, or otherwise faster to encode or recover their meaning
as in the introversion-extraversion IAT reported in the Relia-
bility sections (Scarborough et al., 1977; Polich and Donchin,
1988).

Similar to the Race IAT, participants showed the highest
thresholds in the incompatible block (M (O1ncomparibie) =
3.22,95% HDI = [3.19, 3.25]), followed by the compatible
block (M (Bcompatibie) = 2.92,95% HDI =[2.89, 2.95]) and
sexuality-only block M (Osexuatity—oniy) = 2.77, 95% HDI
= [2.75, 2.79]), with the lowest thresholds in the valence-
only condition (M (Ovaience—oniy) = 2.44, 95% HDI =
[2.42,2.47]). This indicates that they had some feeling or
knowledge that the incompatible block would be more diffi-
cult and, consequently, exercised greater caution and exerted

Fig.9 Diagram of the structure
of the neural network fitting
approach. During training, data
is simulated from the model and
used to teach the network the
relationship between observed
IAT data (response times,
accuracy) and underlying model
parameters. Once trained, real
IAT data can be fed into the
network so as to obtain
appropriate parameter estimates
for that data set
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more control (higher thresholds) when sexuality associations
were being tested in those blocks of the IAT. Put together,
both IATs indicate that performance is driven by both dif-
ferences in conceptual similarity and in proactive response
caution. It may be that there are elements of the biases that
participants have some awareness about, or aspects that are
potentially beyond participants’ awareness, or alternatively
that participants are simply being more careful in some con-
ditions because they are aware it assesses sensitive material.
Accounting for both clearly improves the reliability of IATsS,
making modeling all the more important to interpreting per-
formance on the task.

An automated modeling tool

Despite the benefits of the modeling approach we have
outlined above, modeling approaches like these remain enig-
matic to many researchers. We suspect this will be a major
barrier to its widespread use. While most solutions to this
problem center around systemic issues like quantitative and
computational training, it is also possible for modelers to
make their models more accessible to a wide audience. We
seek to accomplish this by using a new approach to modeling
using neural networks (Radev et al., 2020a, ?, 2021; Lueck-
mann et al., 2019; Gutmann and Corander, 2016; Fengler
et al., 2020; Cranmer et al., 2020; Sokratous et al., 2022).
In this approach, rather than requiring a user to use a mod-
eler’s code to re-run their model on a new data set, a modeler
instead trains a neural network to map input data (e.g., accu-
racy and response times) onto the most likely parameter
estimates. This is made possible by the capacity of neural
networks to approximate functional relationships, such as the
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relationship between model parameters and behavioral data
[see the Universal Approximation ~ Theorem]
Cybenko (1989); Zhou (2020).

We implemented the GSR-DDM model in this way by
training it to map behavior on an IAT onto the parameters
of the model. A diagram of the approach is shown in Fig. 9.
First, a modeler simulates a large volume of data from the
model they want to fit — in our case, we used 100,000 sim-
ulated “participants.” Each simulated participant has a true
underlying set of 9 model parameters, including the similar-
ity parameter y; two drift rates § 4 and § p signifying different
types of stimuli; four thresholds 6,4 (first binary condition),
0p (second binary condition), 8¢ (congruent condition), and
07 (incongruent condition); non-decition time 7; and drift
variability v. For a specific combination of these parame-
ters, we can simulate a simulated participant’s performance
on the IAT, including 40-60 response times in each of the
four conditions. This allows us to understand how the values
of the model parameters are related to behavior — the neural
network is designed to invert the simulation process by tak-
ing observed behavior and mapping it backward onto model
parameters. Itis enabled by using a large volume of simulated
participants with known values for the different parameters,
which is used to train the network.

The data set of 100,000 simulated participants was cre-
ated by randomly varying the values of the 9 parameters
and drawing a new data set (performance on an IAT) for
each combination. The values of the parameters were each
drawn from a distribution as specified below. The distribu-
tion from which each of these parameters is drawn essentially
constitutes a prior distribution for the network over what it
considers to be reasonable parameter values, as the relative
frequency of parameter values in the training set will bias
the values that the network produces. In extreme cases where
there is no data, the network will simply predict the mean of
this training distribution — as we would like, as the group-
level mean is the best estimate one can give in absence of
individual-level data. We chose the following values to sim-
ulate data from, based in part on the posterior estimates from
the predictive validity study above:

y ~ Beta(3,3)
84 ~ Gamma(4, .8)
ép ~ Gamma(4, .8)
04 ~ Gamma(s, .75)
O ~ Gamma(5, .75) €))]
Oc ~ Gamma(5, .75)
0 ~ Gamma(5, .75)
T ~ Gamma(l.5, .25)
v ~ Gamma(l.5,.5)
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The data was fed into the network by summarizing the
response time distribution in terms of 5 quantiles (10%, 30%,
50%, 70%, and 90%) for correct and incorrect responses in
each condition and the accuracy in each condition, for a total
of 44 inputs (5 quantiles x 4 conditions x 2 correct/incorrect
+ 4 accuracies). If there were no incorrect responses, zeros
were passed for the incorrect quantiles. For example, if
there were 40 responses in each condition of an IAT and all
responses were correct, we would take the 4th, 12th, 20th,
28th, and 36th fastest responses in that condition as inputs to
the network along with five Os for the incorrects and 1.0 as the
accuracy. These quantiles and accuracy statistics allowed us
to summarize performance on an IAT in a way that was suf-
ficient to identify different values of the model parameters.
We also tried versions of the network where we fed in all 160
(for 40 trials / condition) or 240 (for 60 trials / condition), but
this approach would not work if there was any missing data.
We also tried versions where a kernel density estimator was
passed over the response times to approximate a probabil-
ity density function (Turner and Sederberg, 2014; Holmes,
2015) before passing the probability densities as inputs to
the network, but performance was no better than the current
approach.

The structure of the neural network was designed to con-
dense the information in the IAT data down into information
in the parameters. To do so, it helps to have multiple lay-
ers decreasing in size, allowing the network to iteratively
condense its representation of the inputs into ones that are
closer in dimensionality to the outputs (Jin et al., 2021).
Specifically, we decreased the size of each successive hid-
den layer by 50-75% (Walczak and Cerpa, 1999; Stathakis,
2009), going from 44 to 25, 15, and then 9 nodes in each
layer, with the final layer feeding into a regression layer to
predict the generative model parameters. We tested deeper
(more layers) and wider (more nodes per layer) up to 100
nodes x 5 layers, but there was not a substantial improvement
in network performance with either of these manipula-
tions. Fewer nodes often decreased performance, so although
they improved fitting time, we persevered with the original
network structure.

In addition to the 100,000 simulated data sets used to
train the network, we generated an additional 100,000 sim-
ulated data sets that were used as a validation data set. The
trained network was fit to these simulated data as an out-
of-sample prediction, allowing us to check for overfitting
and other issues that can arise with neural network-based
approaches. For the training and validation sets, we esti-
mated the parameters based on each set of inputs and
compared predicted parameters from the neural network
to the true parameters that were used to generate the
data.
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Results

A comparison between the true and estimated parameters for
both the training set (blue) and the validation set (orange) is
shown in Fig. 10. In general, the recovery of the true parame-
ters was excellent for both the training set and validation set,
with non-decision time and similarity slightly worse than the
other parameters. There was no difference for any parameters
between estimation for the training set and estimation for the
validation sets, indicating that the network is free of overfit-
ting. Therefore, we only report the correlation between true
and estimated parameters in Fig. 10.

The performance of the network in recovering known
parameter values provides evidence of both the model’s abil-
ity to be recovered (a non-trivial component of model design)
and the neural network’s ability to carry out the parameter
estimation. Fundamentally, it means that if the model nearly
enough approximates the true structure of the cognitive pro-
cesses underlying performance on an IAT, it should be able to
capture the values of these processes with reasonable fidelity.
Since there were no issues with out-of-sample prediction, we
expect it might work well even for a slightly misspecified
model.

Although it does well at recovering known parameters,
many readers may be more concerned that the network-based
estimation process lines up with other methods of estimating
the model, such as the hierarchical Bayesian approach we
used above. To test this, we fit the same data from the pre-
dictive validity studies above — the Race IAT and Sexuality
IAT from (Buttrick et al., 2020) — using the neural network.

We then compared the resulting estimates against those from
the hierarchical Bayesian approach.

The results are shown in Fig. 11 as correlations between
standardized (z-scored) parameter values. Because the scale
of a model is fixed by the value of the diffusion rate and
the step size used to approximate the diffusion process, the
parameters will not necessarily be on the same scale — hence
the standardization. In general, the two modeling approaches
lined up fairly well, with all correlations around .5 or higher.
Note that both methods are good at estimating the true param-
eters, in that they recover known values from simulations.
However, they both have imperfect correlations with the true
values, meaning that both the predictors (e.g., Bayesian esti-
mates) and predicted values (e.g., neural network estimates)
shown in Fig. 11 have noise. As a result, the correlation
between models is lower than the correlation between a
model and the true parameter values. Specifically, there is
a natural upper limit to how well they can correspond to one
another, which is how well they can correspond to them-
selves (i.e., the reliability). Therefore, we computed both
the linear correlation r between network-based and Bayesian
(MCMC)-based fitting approaches as well as the corrected
correlation p. These are shown in the top-left and the bottom-
right of each panel, respectively.

In general, we have found that comparisons between
hierarchical Bayesian and neural network-based approaches
to model fitting result in relative parity between the two
approaches. The major difference is the hierarchical Bayesian
approach tends to induce some shrinkage, drawing estimates
closer to the group-level mean compared to the neural net-
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Fig. 10 Relationship between the true parameter values (x) and the estimated parameter values from the neural network (y) for each parameter of

the GSR-DDM
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Fig. 11 Comparison between standardized estimates generated from a hierarchical Bayesian fitting method (x) and the new neural network fitting

method (y) for each parameter of the GSR-DDM

work estimates. We leave the question of whether this is
desirable to the user, but note that it often results in slightly
lower correlations between true and estimated parameters
(i.e., slightly worse recovery) for the hierarchical Bayesian
approach.

Availability

The estimates from the neural network appear to correspond
well to both true values (recovery) and estimates from a hier-
archical Bayesian fitting approach. However, much of its
value is in its ability to immediately fit the data. In terms of
fitting time, the hierarchical Bayesian model takes 2-4 hours
combined to fit the two Buttrick data sets, which is reasonable
given the hierarchical constraints on over 3700 participants.
By comparison, the neural network takes about 15 seconds.
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This speed-up is typical of neural network approaches, which
we have found to be on the order of 500-1000 times for large
data sets.

Because the trained neural network operates so quickly,
it is possible to embed it within online tools for model fit-
ting. Using MATLAB Compiler, we created a downloadable
application that allows users to upload their data, estimate the
model parameters, visualize the results, and save the result-
ing parameter estimates for each participant in their data set.
This app is available as an executable on the OSF page for
this paperat osf . io/znsfb. We strongly urge users to fol-
low the instructions in the readme file before using it on their
own data, and to be sure to inspect the resulting estimates
— and ideally compare them to estimates from a hierarchical
Bayesian implementation — to ensure they are sensible before
using them in any subsequent analyses.
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Our hope is that by making a simple point-and-click
web app for model fitting these tools will become more
widespread. The use of computational modeling has the
potential to make IATs much more effective measurement
tasks and, as we show above, shows clear promise in terms
of improving their reliability and predictive validity.

Discussion

In this paper, we introduced three main innovations. First, we
developed a model of performance on the IAT (GSR-DDM)
that put together cutting-edge models of decision-making and
similarity representation. This model teased apart conceptual
similarity - arguably the construct that the IAT is designed
to measure - from processing speeds for different stimuli,
control processes related to response caution, and processes
like stimulus encoding that each also make contributions to
behavior on the IAT. In doing so, it allows for a more in-
depth and complete understanding of what participants are
doing on IATs, and improves our ability to quantify individual
differences in performance in a meaningful way.

Second, we introduced a hierarchical Bayesian method
for model fitting and for estimating the test-retest relia-
bility of model parameters. This approach allows us to
characterize both individual differences in performance (e.g.,
similarity representations) alongside group-level trends (e.g.,
differences in response caution between conditions, general
tendencies toward anti-Black mental representations), as well
as to estimate the covariance and uncertainty in performance
across multiple testing sessions. By virtue of using hierarchi-
cal Bayesian estimation, we did not require the large volume
of data that other dynamic modeling approaches do (Réhner
and Lai, 2021; Klauer et al., 2007). As a result, this model is
widely applicable to the deep IAT literature whose founda-
tion is built on traditional paradigms with only 60 total trials
for the compatible or incompatible conditions (and only 20
or 40 per testing block within each condition), rather than
restricting our inferences to a limited set of specific data sets
featuring a large number of trials or heavy time pressure to
induce mistakes (Calanchini and Sherman, 2013).

Finally, we developed a neural-network implementation
of the model, which sped up the fitting process by nearly
1000 times over and allowed it to be embedded within a
freely-available web app. We showed that this approach con-
sistently arrived on the true underlying parameters in a model
recovery study, and that it arrived at similar estimates to the
hierarchical Bayesian approach on the two large Buttrick et
al. (2020) data sets.

Put together, the modeling and estimation approaches
allow us to reliably quantify performance on the IAT in terms
of the processes we are trying to measure, use these measures
to better predict real-world outcomes like contact with peo-

ple from minoritized social groups, and made it possible to
use these approaches without requiring extensive training on
computational modeling or coding. As an added bonus, the
model conferred insights that would not be possible without
the modeling. For example, participants appear to be more
careful when completing trials during the incompatible block
(higher thresholds), which would produce weaker IAT effects
while being undetectable when using purely response time-
based measures.

Our results suggest that the “reliability paradox” (Hedge
et al., 2018) and parallel criticisms of the IAT as an unreli-
able method for capturing individual differences (Banse et
al., 2001) are largely a matter of measurement. The D-score
and other simple metrics that attempt to summarize the rich-
ness of behavior with a single metric naturally miss many
psychologically meaningful aspects of task performance.
These metrics, as well as contrast-based measures of individ-
ual differences like between-condition parameter differences
from the diffusion model, contain a large amount of noise
when compared to GSR-DDM parameters, and thus provide
ahighly impoverished view of individual-level behaviors that
go into generating IAT data see Vadillo et al. (2021).

Construct validity and selective influence

One of the major reasons that the new model presented here
was able to out-perform other approaches is that it quanti-
fies behavior in terms of more (meaningful) psychological
processes. In other words, it appears to have greater discrim-
inant validity than other accounts of behavior. To truly test
whether the model parameters index separable psychological
and cognitive processes, we also examined the correlations
among GSR-DDM model parameters. The results are pro-
vided in Appendix A. In short, the two drift rates are highly
correlated in both the Race and Sexuality IATS, likely corre-
sponding to adomain-general measure of processing speed or
intelligence (Lerche et al., 2020; Schubert et al., 2015). This
provides convergent validity for the drift rates, as correla-
tions among within-person drifts across tasks and conditions
is something we should expect to find in any study (Schubert
et al., 2017).

There are otherwise only weak correlations among model
parameters, suggesting that they describe distinct compo-
nents of performance on IATS. In particular, the conceptual-
similarity parameter that is central to the GSR-DDM was
unrelated to any other parameters. Put together with the
finding that conceptual-similarity has the greatest predic-
tive validity of any of the model parameters, it is clear that
it is a critical component of the model and an element of
performance that ought to be delineated from other contri-
butions to performance like response caution. Overall, the
model exhibits a high degree of discriminant validity across
its different parameters, reinforcing the proposition that there
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are many components of behavior on the IAT that ought to
be differentiated in a valid model.

Fortunately, there seems to be sufficient evidence of dis-
criminant validity and its separability from other model
parameters, as shown in Appendix A. This evidence is com-
pounded by common-sense observations about most of the
model parameters: drift rates (but not conceptual-similarity)
increases over time reflecting practice effects, drifts for words
vs faces differs in the expected direction, parameter recovery
is consistently successful for each of the estimation meth-
ods we examined, and the conceptual-similarity parameter is
restricted to affect performance only in the paired-response
conditions (and in fact is the only parameter that can cap-
ture positive covariance between speed and accuracy in these
conditions!) yet the model accounts well for performance in
these conditions.

It is important to note that the restrictions we placed
on the parameters, and which ones change across condi-
tions, is critical to interpreting them. Both base drifts and
conceptual-similarity are parameters that ultimately feed into
drift rates to create the (statistical) Wiener distribution of
response times. This means that it is not possible to allow
them both to vary freely across conditions, as a completely
unrestricted model would not be identifiable — in the same
way that a diffusion model without the within-trial noise (or
some other) parameter would not have a fixed scale. Note that
this confusion only occurs for binary choice paradigms: these
parameters are clearly distinguishable and uniquely identifi-
able continuous-response or multi-alternative choice, where
drift magnitude and drift direction correspond to base drift
and conceptual similarity (Kvam et al., 2023). Future work
could explore the formation and change of attitudes and
conceptual-similarity using paradigms like reinforcement
learning, where participants learn an association between
stimuli and valence (or two stimulus features) and then take
an AT where performance is quantified using the GSR-
DDM. There is some evidence that it is at least theoretically
possible to induce secondary associations with unconscious
conditioning (Greenwald and De Houwer, 2017). If the
experimental paradigm induces a strong enough association,
then we should expect it to show up in estimates of y in such a
task. This type of study is a substantial undertaking and well
outside the scope of the current paper, but we look forward
to future work exploring this possibility.

Implications of GSR-DDM for the IAT’s “implicitness”

As noted throughout this paper, the ongoing (and, generally,
unexamined) assumption that a participant’s responses on the
IAT map directly onto something “implicit” has led us into
conceptual confusion. It is important to remember that the
IAT is a measurement procedure and does not have a one-to-
one relationship to the psychological construct of “implicit
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bias” (Gawronski et al., 2022). Further, it is important for
researchers to state in what way they mean that something
is implicit (Corneille and Hiitter, 2020). Recently, a con-
sensus appears to be building that the conceptual focus of
implicitness is more usefully organized around intentional-
ity rather than awareness which, arguably, was the primary
focus for the first two decades of research using the IAT see
De Houwer and Boddez (2022); Dovidio and Kunst (2022);
Krajbich (2022); Melnikoff and Kurdi (2022); Olson and
Gill (2022); Ratliff and Smith (2022). Although GSR-DDM
does make substantial progress in quantifying conceptual-
similarity and its role on IATs, it does not speak fully to
the “implicit” (e.g., automatic, unconscious, unintentional)
nature of the IAT (Corneille and Hiitter, 2020; Gawronski et
al., 2022). Traditionally, thresholds (6) have been thought of
as processes that are under the control of the decision maker
(Ratcliff et al., 2016), as they describe the level of caution a
person takes. Thresholds are thought to vary across blocks,
so that participants can set them strategically based on the
directions they are given, but not from trial to trial based on
the stimuli they see. These thresholds are often described as
“sticky” because they cannot be adjusted quickly with learn-
ing, directions, or even incentives (Larson and Hawkins, in
press; Fontanesi et al., 2019a). A participant would almost
certainly have to strategically set their threshold higher in
the incompatible condition for the model to detect an effect,
given the limited number of trials on most IATs. Whether or
not a participant will explicitly admit to having a bias, many
participants clearly recognize that the incongruent condition
will be more difficult for them and set their thresholds accord-
ingly.

Even without assuming that changes in thresholds are
driven by changes in strategy, we can at least say that
observing a threshold shift should increase our belief that par-
ticipants are aware of or control their performance between
conditions. Specifically, if we want to make an inference
about the likelihood of participants being aware (strategically
shifting their thresholds, Pr(strategic)) based on an observed
change in the threshold A6, we can use Bayes rule to update
our beliefs:

Pr(A#| strategic) - Pr(strategic)

Pr(strategic | Af) = Pr(A0)
r

. A threshold change should signal awareness by increas-
ing the strength of our beliefs in strategic manipulation
from the prior (Pr(strategic)) to the posterior (Pr(strategic
| AB)) whenever Pr(A#6 | strategic) > Pr(A#@). In essence, a
threshold change indicates strategic manipulation of choice
strategy so long as thresholds are more likely to change when
participants are strategically manipulating them. Given the
deep literature showing that participants successfully strate-
gically manipulate their thresholds under instructions to do
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so (Wickelgren, 1977; Pew, 1969; Heitz, 2014; Ratcliff et
al., 2016; Heathcote and Matzke, 2022; Donkin and Brown,
2018), this is effectively guaranteed. Detecting a difference
in thresholds when participants are deliberately changing
their strategies, Pr(A#@ | strategic), can be expected to occur
much more often than spontaneous differences in thresholds,
Pr(A@), ultimately providing strong support for strategic
manipulation when threshold changes are detected. We can
therefore infer, based on the available evidence, that par-
ticipants exhibiting this effect are likely to be deliberately
changing their strategies between congruent and incongru-
ent conditions.

Based on this evidence, the differences we observe
between conditions in thresholds (e.g., highest in incompati-
ble blocks) should correspond to biases for which participants
have some level of awareness. Previous research estimating
similar threshold parameters used the literature on ‘“fak-
ing” IAT task performance as their starting point (Réhner
and Ewers, 2016). Behavior on the IAT is less control-
lable than responses to analogous self-report measures (e.g.,
thermometer ratings), but participants can “fake” their IAT
scores, at least under some conditions (Fiedler and Bluemke,
2005; Kim, 2003; Steffens, 2004). The most straightforward
method for faking IAT scores is a combination of consciously
slowing down during the compatible blocks and speeding up
during the incompatible blocks (Cvencek et al., 2010; Fiedler
and Bluemke, 2005; Rohner et al., 2013). Accordingly, the
response caution parameter from the diffusion model is espe-
cially relevant to identifying faking behavior. For example,
(Rohner and Ewers, 2016) used a simplified diffusion model
and found that participants who were instructed to fake their
IAT performance — with or without being given explicit direc-
tions as to how — showed greater response caution on the
incompatible block trials. Likewise, our findings indicated
that the threshold parameter was relevant primarily for the
incompatible trials.

Consistent with the idea that response caution was affected
by intentions to fake IAT scores, people with less prior con-
tact with minoritized group members had higher thresholds
for the incompatible trials on the Race and Sexuality IATsS,
respectively. Yet, people with greater internal motivation to
respond without prejudice actually had a lower incompatible
threshold for the Sexuality IAT. The most coherent expla-
nation for this is that people with an intrinsic motivation to
respond without prejudice are successful at doing so —that is,
they wind up having fewer negative associations with minori-
tized groups and thus a lower similarity parameter (close to
zero), as shown in Table 2. As aresult, there is less of aneed to
“fake” performance on the Sexuality IAT by increasing their
thresholds on incongruent trials, and thus lower thresholds
for Motivation on these trials compared to other participants
who know they might be biased and have difficulty with this
condition (Table 2). Conversely, a similar effect did not occur

for the Race IAT, indicating that internal motivation to control
prejudice may not confer the same advantage across all target
social groups. Given that the Race IAT and implicit race bias
are the focal point of Project Implicit where these data were
collected (Xu et al., 2014), people who are more motivated to
control racial prejudice may set relatively higher thresholds
because they recognize how important the incompatible pair-
ings are in the context of Project Implicit. Accordingly, they
exercise additional response caution that puts them more in
line with people with lower motivation, albeit for different
reasons.

Although thresholds are typically deliberately controlled,
it is less clear whether drift and similarity in the model are
driven by features of the stimulus or by an underlying attitude.
It may be the case that participants are aware of their own
biases that are measured by the association parameter, but
unable to control them when elicited via the IAT, or it could
be that they simply do not know that they hold these negative
associations. For those participants who shifted their thresh-
old in the incongruent condition, we can be more certain that
they are aware of the bias on some level. That is, if it is unim-
portant for a person to appear unprejudiced, then they should
have no reason to go through the trouble of implementing
a strategy that makes their IAT scores indicate less bias. Of
note, the apparent presence of bias, and participants’ appar-
ent knowledge of them illustrated by the threshold shifts,
does not necessarily mean that participants will be able to
use explicit measures to report on the biases that the model
captures. This issue of whether one is (or can be made) aware
of the mental contents and/or processes indexed by the IAT
[e.g.,] Hahn et al. (2014); Gawronski et al. (2022) has been
an exceptionally thorny one over the years, in part because
the answer may depend on how one defines the terms (Hahn
and Goedderz, 2020). Methodical examination of the thresh-
old parameter in GSR-DDM may add productively to this
conversation.

Finally, although the positive correlation between IATs
and parallel explicit measures of attitudes is well-established
(Nosek, 2007), there is mounting evidence that the overlap is
more substantial than previously thought when researchers
account for measurement error and ensure that explicit mea-
sures provide adequate coverage of the attitudinal domain
(Blanton et al., 2016; Schimmack, 2021). Therefore, it is
especially valuable to develop modeling approaches that
can provide additional insight into the automatic versus
controlled processes underlying the IAT. In this case, our
approach provided unique insights by GSR-DDM’s ability
to not only isolate clearly distinguishable parameters that
should be controllable or uncontrollable, but also to use the
parameters to directly predict multiple explicit outcome mea-
sures. By doing so, we opened another avenue for generating
new hypotheses for future research; specifically, future work
should aim to identify the specific factors that cause response
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caution to function differently across people and IAT con-
tent.

Alternative approaches

We assumed that the effect of similarity is additive with those
of the stimulus in terms of determining drift, and can speed
up decision-making in cases where the similarities facilitate
a particular response in addition to slowing them down when
the similarities are incompatible. However, it may be the case
that the total information processing capacity (i.e., our overall
ability to update our beliefs over time) is restricted to the
point where these similarities cannot be processed in parallel
to the target categorization task, or where the overall drift is
a dilution of target categorization + similarities. This would
mean that the influence of similarities would be limited in
how they could intrude on the choice that someone is trying
to make. In such a case, even positive similarities might not
help information processing because attention would be split
between the target task and the similarities between stimuli
and irrelevant categories. Put differently, it may be that drift
for the target decision (good-bad, or Black-White in the Race
IAT) shares a fixed capacity with similarity-driven beliefs
(good-bad). One way to resolve this question would be to
identify clear facilitation effects (Lindsay and Jacoby, 1994;
Heathcote et al., 1991), which would directly contradict an
interference-only explanation for performance.

Another important consideration is the ability of the model
and experimental paradigm to disentangle positive attitudes
toward one category from negative attitudes toward the
opposing category. Here, we have treated race, introversion-
extraversion, and sexuality each as a single dimension with
the categories represented as polar opposites (e.g., Black is
opposite White in Fig. 1). Given that Black people are not
actually the opposite of White people nor straight people the
opposite of gay people, the model’s setup gives rise to the
potential that the model works best for attitude objects that
are naturally bipolar (e.g., Democrats vs. Republicans) or for
people who have a tendency to see groups as being opposite
from one another. For example, we might posit better model
fit for those high in essentialism (Haslam et al., 2000; Pren-
tice and Miller, 2007). Interestingly, IATs for bipolar pairs
of attitude objects correspond more closely to self-reported
attitudes than IATs for more unipolar pairs (Nosek, 2005).

IATs allow us to make inferences about the relative
valence of the two categories by comparing compatible
and incompatible conditions. We could weaken the overall
effect by increasing similarity with the minoritized category,
or by making more dissimilarities with the majority cate-
gory (Dasgupta and Greenwald, 2001; Joy-Gaba and Nosek,
2010). However, the base IAT does not allow us to exam-
ine the association of one category with positive / negative
in absence of the other category, and thus we cannot esti-
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mate separate similarities for each of the target categories.
However, the model could in principle incorporate multiple
similarities, including (e.g., for the race IAT) White-positive,
White-negative, Black-positive, Black-negative, and even
White-Black. The cognitive representations of these cat-
egories are high-dimensional, and are formed by many
examples and pairings that people encounter across their lives
(Deerwester et al., 1990; Kvam, 2019a). To get at each of the
separate similarities, we would need richer behavioral data.
This could involve looking at decisions consisting of only
three of the options, as in the single target IAT (Bluemke
and Friese, 2008), comparing multiple single-target IAT
conditions like those for neutral / reference stimuli, adopt-
ing approaches like the word-embedding association test
(Caliskan et al., 2017) to inform our estimates of multiple
similarity parameters, or even doing latent semantic analy-
sis on a large corpora of text all collected from one person
(Landauer and Dumais, 1997; Landauer, 2006) to estimate
these similarities a priori. Certainly, it would be an interest-
ing challenge to relate the model parameters to independent
assessments of similarity.

Another potential extension of our approach would be to
put it together with multi-stage models of decision making,
accounting for dual or sequential influences of automatic and
controlled processes. This could also bring together the dis-
parate lines of work looking at multinomial processing trees,
which are inherently multi-stage (Calanchini and Sherman,
2013; Meissner and Rothermund, 2013), with the type of
single-process, response-time focused models like the one
we present here. This might be accomplished by having evi-
dence accumulation unfold in multiple stages as in work by
Diederich and Trueblood (2018), or could extend MPTs with
response time models embedded into each branch as in work
by Klauer and Kellen (2018). Increasing start point variability
or having a contaminant guessing process would also bring
the model more closely in line with models like the Quad
model (Calanchini and Sherman, 2013); however, the lack of
fast errors in the IATs we analyzed suggest that guessing may
not play a significant role, at least in this data set (Ratcliff,
1985; Ratcliff et al., 2016).

Individual differences in parameter estimates

The relationship between individual differences and esti-
mated model parameters has not been tested in any meaning-
ful way and could make an important theoretical contribution
on its own. In one example, using a similar modeling
approach as the one we propose, those higher in Need for
Closure (Roets and Van Hiel, 2007) have a lower decision
threshold in a speed-accuracy tradeoff task when speed was
emphasized, but not when accuracy was emphasized (Evans
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etal., 2017).5 As such, testing the relationship between Need
for Closure and the threshold parameter in the current model
may prove be useful.

Closer to the current work, Calanchini et al. (2014) spec-
ulate that their observation that the Quad model’s Detection
parameter is correlated across attitude domains may indicate
that it is related to individual differences in motivation or
ability to focus on the task. They further suggest that the
overlap in AC (association activation) parameters, even for
highly-unrelated IATs, may be due to those higher in Need
to Evaluate (Jarvis and Petty, 1996) having stronger acti-
vation of associations across all tasks. Both of these ideas
remain untested, but they highlight how a focus on model-
ing processes that underlie behavior on an IAT can lead to
new hypotheses as compared to when a summary score such
as the IAT D-score is the unit of analysis. Given the lack
of previous theorizing in this vein, the following is highly
speculative. That said, it is worth testing the prediction of
Calanchini et al. (2014) that Need for Evaluation correlates
positively with GSR-DDM’s similarity parameter. In addi-
tion, it seems likely that the association / similarity parameter
would be stronger for those higher in Need for Affect (Maio
and Esses, 2001) due to the relationship between affect and
the IAT [e.g.,] Smith and Nosek (2011), as well as for those
whose behavior related to the measured construct is habitual
(Verplanken and Orbell, 2003). Any variable that increases
the accessibility of attitudes [see] Fazio (1995) would be
likely to increase the utility of the similarity parameter in
GSR-DDM, as it changes the decision space in which the
evidence accumulation process unfolds (Kvam, 2019a). We
can make additional predictions for the threshold parameter
such as that it will be lower for those who are more likely to
make decisions based on a reliance on intuition (Pacini and
Epstein, 1999) or spontaneity (Scott and Bruce, 1995). Again,
these predictions are speculative, but highlight a central ben-
efit of the described modeling approach in that it allows for
tests of this type of theoretically-informed speculation.

Limitations and future directions

Although evidence accumulation processes for modeling are
now ubiquitous within decision-making (Busemeyer et al.,
2019; Ratcliff et al., 2016), their adoption in social psy-
chological tasks has only just begun (Johnson et al., 2017,
Pleskac et al., 2018; Rohner and Lai, 2021). As further work
is carried out on specific tasks, our theories of the cognitive
and social processes that are involved will naturally improve.
While the GSR-DDM provides a step forward — an accessi-

5 1t is notable that instructions presented before the IAT commonly
instruct participants with some version of “go as fast as you can, while
making as few mistakes as possible”, which leaves the relative impor-
tance of speed and accuracy open for the participant.

ble and effective step, we hope — we are certain it will not be
the last. In particular, the similarity parameter serves only as
a first-pass method at quantifying the role of representational
overlap in IAT performance. There are undoubtedly multiple
similarities at play, and deeper ways to quantify representa-
tional similarity using neural measures (Kriegeskorte et al.,
2008).

The neural network fitting approach we used (Radev et
al., 2020; Sokratous et al., 2022) is also in its infancy, hav-
ing only been developed over the past few years. While it
already shows impressive performance compared to tradi-
tional modeling methods —yielding equally-precise estimates
in a tiny fraction of the time — it is best used as a method for
simulation-based models that are frequently applied to acom-
mon task. This makes it an excellent fit for modeling IATs,
but there is undoubtedly room for improvement in terms of
optimizing the structure of the neural network (number of
nodes, layers, etc.), estimating the error in model parame-
ters (Radev et al., 2020a), and comparing different models
(Radev et al., 2021). We are hopeful that more modelers will
adopt this approach in order to make modeling as a whole
more accessible.

One element of dynamic decision models that we did not
approach in this paper is starting point biases. Both multi-
nomial processing trees, like the Quad model, and dynamic
models often include a parameter that quantifies a partic-
ipant’s general tendency or bias to respond on the left or
right side. This can occur when there is a general bias toward
responding ‘positive’ on incongruent trials — on the premise
that it is worse to accidentally categorize a black face as
positive than it is to accidentally categorize it as negative.
Empirically, there did not appear to be an overall bias toward
one side or another in the data sets that we used, which is
why we did not include this parameter in the current model.
However, there are certainly data where this would be useful
to include, and potentially IATs where this would be impor-
tant to control and account for. Certainly paradigms where
there are manipulations of base rates, incentives for different
responses (including those conferred by social interactions),
or predecision information provided would constitute cases
where start point biases would be important to consider
(Diederich and Busemeyer, 2006; Axt and Johnson, 2021;
Heathcote et al., 2019).

Conclusion

In sum, our newly-developed GSR-DDM model describes
behavior on IATs in a more complete and accurate way not
only compared to simple summary metrics like IAT D-scores
but also other previous attempts to model the distinct pro-
cesses underlying IAT task performance. We gained unique
insights into test-retest reliability and predictive validity both
for the similarity parameter that is most reflective of the
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relatively automatic associative processes that researchers
typically intend to capture with the IAT, as well as pro-
cesses that may or may not be subject to participants’ control
or awareness. Consistent with the most common theoret-
ical accounts of the IAT (Greenwald and Banaji, 2017),
associations or conceptual similarities are a central part of
GSR-DDM and were most important for predicting relevant
outcomes [but see] De Houwer et al. (2021). These similari-
ties are formed and revised over time through both classical
and operant learning processes, they correspond to meaning-
ful individual differences, and they affect choices that people
make in the real world. The new approaches we developed
here should make them more accessible to researchers work-
ing on these problems, improving the utility of IATs and the
ease of modeling the cognitive processes involved in perfor-
mance on these tasks.
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Appendix A: Correlations among model
parameters

One concern among models in general is their ability to
index separable psychological and cognitive processes. To
do so, we can examine how strongly the estimates of dif-
ferent parameters are related to one another. Theoretically,
parameters that index common or related cognitive processes
will have high correlations with one another while ones that
are unrelated or easily malleable are more likely to have low
correlations with one another. Therefore, it is useful to look
at the inter-parameter correlations when assessing the dis-
criminant and convergent validity of the model.

The correlations among model parameters for the GSR
in the Race IAT (Buttrick et al., 2020) are shown in Table
4. The highest correlation is between the two drift rates, at
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Table 3 Correlations among GSR-DDM parameters for the Race IAT.
These parameters are conceptual similarity y, drift rates for faces ér,
driftrates for words 8y, threshold for words-only condition 6 —, thresh-
old for faces-only condition §py, threshold for black-negative/white-
positive condition 6p_, threshold for black-positive/white-negative
condition 0., non-decision time 7, and drift variability v

y SF Sw 0 6pw 6p— Opy T v
y 1
SA 007 1
3p 007 069 1
0, -0.13 -041 -03 1
Opw -0.07 -032 -0.28 026 1
6p— 029 -021 -027 0.09 0.13 1

O+ -022 -038 -039 0.14 007 007 1
T 009 012 009 005 014 024 021 1
v -0.01 -038 -031 033 043 04 029 022 1

r = .69. This is perfectly in line with what we should expect,
as correlations among drift rates reflect a general tendency
toward overall faster or slower information processing across
participants (Lerche et al., 2020). Aside from this, most cor-
relations among parameters are weak, with some stronger
ones between thresholds or drift rates and the drift variabil-
ity parameter v. Again, this is a relatively common finding
in diffusion models, and not one that should give us much
pause. The lower discriminant validity is part of why we do
not focus much on the drift rate variability parameter, as much
like non-decision time it tends to be a “nuisance” parameter
that is included to account for extraneous factors in order to
improve the overall fit of the model and recovery of other
parameters (Steingroever et al., 2020).

Finally, there are some weak correlations between the
thresholds in “basic” IAT conditions (valence-only “+-" con-
dition, and black-white “BW” condition) and drift rates for
the different types of stimuli (6 7 for faces and §y for words).
This can reflect either participants’ informed expectations
about their own performance — participants who know they
will perform well (higher drifts) on a basic task like these
conditions are able to set lower thresholds while maintaining
a high level of performance — or correlations among parame-
ters that sometimes occur with differences in speed-accuracy
manipulations (Donkin et al., 2014). All other correlations
were fairly weak and within acceptable limits for discrimi-
nant validity in cognitive modeling (Heathcote et al., 2015).

The correlations among model parameters for the GSR in
the Sexuality IAT (Buttrick et al., 2020) are shown in Table
4. The findings are almost exactly the same, lending credibil-
ity to the conclusions we drew from the Race IAT. As in the
Race IAT, the highest correlation among model parameters
is between the two drift rates, at r = .67, reflecting a general
tendency toward overall faster or slower information process-
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Table 4 Correlations among GSR-DDM parameters for the Sexual-
ity IAT. These parameters are conceptual similarity y, drift rates for
sexuality words 84, drift rates for valence words dp, threshold for
valence-only condition § _, threshold for sexuality-only condition 65
(G = gay, S = straight), threshold for gay-negative/straight-positive con-
dition 6 —, threshold for gay-positive/straight-negative condition 0+,
non-decision time t, and drift variability v

14 da dB 0+— Ocs 06— 06+ T v
1% 1
SA 0.04 1
op 0.01 0.67 1
64— -0.08 -037 -028 1
6gs -0.11 -035 -0.31 029 1
60— 0.07 -025 -0.18 0.12 025 1
6g+ -0.11 -0.28 -0.2 0.11 025 0.09 1

T 002 0.1 025 005 019 022 028 1
v -0.09 -042 -03 039 051 045 038 023 1

ing on the task. Also as before, there were some correlations
with drift rate variability and some between threshold and
drift rates that should not be too concerning (Steingroever et
al., 2020). All other correlations were fairly weak and within
acceptable limits for discriminant validity in cognitive mod-
eling.

Perhaps most importantly and most notably, the corre-
lations between the conceptual-similarity parameter y and
all other parameters, in both IATS, was extremely low. This
suggests that the most central parameter of our model was dis-
tinguishable from all other parameters, meaning it indexes a
unique component of performance on IATsS that is not clearly
captured by the classic DDM. These results therefore empha-
size the discriminant and convergent validity of our model —
parameters that are meant to be distinct (e.g., y) are uncor-
related with others, while those that are clearly related (e.g.,
drift rates) are tightly correlated.
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