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Abstract. The global ocean is losing oxygen with warm-
ing. Observations and Earth system model projections, how-
ever, suggest that this global ocean deoxygenation does not
equate to a simple and systematic expansion of tropical oxy-
gen minimum zones (OMZs). Previous studies have focused
on the Pacific Ocean; they showed that the outer OMZ deoxy-
genates and expands as oxygen supply by advective trans-
port weakens, the OMZ core oxygenates and contracts due
to a shift in the composition of the source waters supplied
by slow mixing, and in between these two regimes oxygen is
redistributed with little effect on OMZ volume. Here, we ex-
amine the OMZ response to warming in the Indian Ocean us-
ing an ensemble of Earth system model high-emissions sce-
nario experiments from the Coupled Model Intercomparison
Project Phase 6. We find a similar expansion—redistribution—
contraction response but show that the unique ocean circula-
tion pathways of the Indian Ocean lead to far more promi-
nent OMZ contraction and redistribution regimes than in
the Pacific Ocean. As a result, only the outermost volumes
(oxygen > 180 umolkg™!) expand. The Indian Ocean expe-
riences a broad oxygenation in the southwest driven by a re-
duction in waters supplied by the Indonesian Throughflow
in favor of high-oxygen waters supplied from the southern
Indian Ocean gyre. Models also project a strong localized
deoxygenation in the northern Arabian Sea due to the rapid
warming and shoaling of marginal sea outflows (Red Sea and
Persian Gulf) and increases in local stratification with warm-
ing. We extend the existing conceptual framework used to
explain the Pacific OMZ response to interpret the response
in the Indian Ocean.

1 Introduction

Oxygen minimum zones (OMZs) are naturally occurring
low-oxygen regions located in subsurface tropical oceans
(typically 100-1500m). OMZs develop in the ‘“shadow
zones” of the ocean thermocline, where oxygen supply by
ocean circulation is weak (Luyten et al., 1983; Pedlosky,
1983), and are generally located below highly productive sur-
face systems that boost respiration and biological oxygen de-
mand at the subsurface (Paulmier and Ruiz-Pino, 2009). The
global ocean has lost oxygen in response to global warm-
ing (Keeling et al., 2010; Helm et al., 2011; Schmidtko et
al., 2017; Bindoff et al., 2019), and this trend is expected
to continue and accelerate over the twenty-first century if
anthropogenic emissions are not significantly drawn down
(Bopp et al., 2013; Kwiatkowski et al., 2020). Global de-
oxygenation has been attributed to weakening ocean ven-
tilation (i.e., weakening oxygen supply by ocean circula-
tion and mixing) and decreasing oxygen solubility in sea-
water with warming (e.g., Oschlies et al., 2018). A con-
cern is that OMZs are expanding in response to global de-
oxygenation, potentially disrupting the physiology and sur-
vival of marine organisms and compressing the habitats of
marine species requiring oxygen for their survival (Vaquer-
Sunyer and Duarte, 2008; Miller et al., 2002; Stramma et
al., 2008, 2012; Deutsch et al., 2020; Levin, 2018). The
fate of OMZs under warming, in particular the two most in-
tense regions found in the tropical Pacific Ocean and trop-
ical Indian Ocean, however, has been highly debated, with
apparently inconsistent changes found across hydrographic
observations, paleo-oceanographic proxies, and Earth sys-
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tem model (ESM) projections. In situ hydrographic obser-
vations collected since the 1950s suggest that the tropical
Indo-Pacific oceans and the marginal seas that supply oxy-
gen to the tropical Indian Ocean (including the Persian Gulf
and Red Sea) have lost oxygen, supporting the view that trop-
ical OMZs are expanding (Stramma et al., 2008; Helm et al.,
2011; Ito et al., 2017; Banse et al., 2014; Piontkovski and
Al-Oufi, 2015; Queste et al., 2018; Naqvi, 2021). Yet, paleo-
oceanographic studies suggest that the OMZ in the eastern
tropical Pacific Ocean has contracted, rather than expanded,
under past warming conditions (Deutsch et al., 2014; Auder-
set et al., 2022). Looking into the future, studies using ESM
ensembles have projected a robust deoxygenation at middle
and high latitudes with warming, consistent with the weak-
ening of ventilation found at the global scale, but have failed,
until recently, to reach a consensus on the expected changes
in oxygen and OMZ volumes in tropical oceans (Cocco et al.,
2013; Bopp et al., 2013, 2017; Cabré et al., 2015; Resplandy,
2018; Kwiatkowski et al., 2020).

Busecke et al. (2022) recently showed that the inconsis-
tencies found in the fate of the OMZ in the Pacific Ocean
could be reconciled using an ensemble of ESMs from the
Coupled Model Intercomparison Project Phase 6 (CMIP6;
Eyring et al., 2016). They found that the OMZ response
to global warming was in fact consistent across the ESMs
when examined in an oxygen-space framework and fell into
three regimes: an expansion of the OMZ outer layers (large
OMZ volume delimited by oxygen thresholds of typically
~ 100 umol kg ™! or higher), a contraction of the eastern Pa-
cific “OMZ core” waters (OMZ volume delimited by oxy-
gen thresholds of ~ 20 umolkg ™! or lower), and a “transition
regime” between contraction and expansion that experiences
weak and uncertain changes associated with a spatial redis-
tribution of the OMZ volume. This three-regime framework
reconciles hydrographic work that shows an OMZ expan-
sion in the central Pacific Ocean where the OMZ outer layers
are located (Stramma et al., 2008) and paleo-oceanographic
studies that found evidence of a contraction in the eastern
Pacific (note that these studies used nitrogen isotopes which
are a proxy for OMZ core denitrifying waters; Deutsch et
al., 2014; Auderset et al., 2022). The framework also ex-
plains the discrepancies found in previous modeling studies
that often considered OMZ volume definitions that fall in the
transition regime where changes are smaller and uncertain
(e.g., Bopp et al., 2013; Cabré et al., 2015). In the Pacific
Ocean, the apparent discrepancy between outer OMZ expan-
sion and core contraction can be interpreted using the con-
ceptual framework proposed by Gnanadesikan et al. (2007),
which distinguishes between two models of ocean ventila-
tion: (1) a “single-pipe” model where ventilation is con-
trolled by advection from one source water mass and (2) a
“mixing network” model in which ventilation rates are sus-
tained by slow mixing of multiple source waters as in ocean
shadow zones (Lévy et al., 2022; Gnanadesikan et al., 2013;
Brandt et al., 2015). As ocean circulation pathways weaken,
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regions ventilated by a single pipe experience reduced sup-
ply of oxygen (transport rates of oxygenated surface water
to the thermocline slow), while regions ventilated by a mix-
ing network can either experience a reduction or increase in
ventilation and oxygen supply (by changing the connectiv-
ity and the contributions of each source water to the mixing
network). The single-pipe model explains the deoxygenation
of the outer OMZ layers, which has been attributed to the
weakening of the northern and southern subtropical cells that
ventilate the outer layers of the OMZ (Gnanadesikan et al.,
2012; Duteil et al., 2014, 2021; Busecke et al., 2022; Llanillo
et al., 2018; Margolskee et al., 2019). In contrast, changes in
mixing network connectivity explain the oxygenation of the
Pacific OMZ core, which was attributed to reduced contri-
butions from aged, oxygen-poor deep and intermediate wa-
ters, shifting the mixing ratio towards younger, oxygen-rich,
upper-ocean waters (Bryan et al., 2006; Gnanadesikan et al.,
2007, 2012; Takano et al., 2018; Busecke et al., 2022).

The fate of the Indian Ocean OMZ has been far less stud-
ied than its Pacific Ocean counterpart. Yet, the Indian Ocean
shows some of the fastest ocean warming trends in the world
(Roxy et al., 2014; Sharma et al., 2023), and the expansion
of its OMZ could have detrimental effects for coastal pop-
ulations that depend heavily on marine resources for food
security and economic stability in the region (Bouchard and
Crumplin, 2010; Clifton et al., 2012; Gattuso et al., 2015;
Llewellyn et al., 2016; Roy, 2019). The ventilation path-
ways and OMZ geometry in the Indian Ocean are funda-
mentally different from the two subtropical cells (one in each
hemisphere) and eastern-boundary OMZ found in the Pacific
Ocean. It is thus unclear whether the single-pipe and mixing
network framework which characterizes the Pacific Ocean is
sufficient to describe the behavior of the Indian Ocean. The
Indian Ocean is bounded by continent to the north and venti-
lation is almost exclusively sustained by one subtropical cell
originating in the southern Indian Ocean gyre (Harper, 2000;
Schott et al., 2002; Phillips et al., 2021). As a result, oxy-
gen levels are higher in the southern Indian Ocean, while an
OMZ extends over most of the Arabian Sea and the Bay of
Bengal in the north (see Fig. 1 for observed climatological
oxygen field and major ventilation pathways). Other pecu-
liarities of the Indian Ocean ventilation are the Indonesian
Throughflow, which brings waters from the tropical Pacific
Ocean into the southern Indian Ocean (Sprintall et al., 2009),
and the saline marginal sea outflow waters from the Red Sea
and Persian Gulf that ventilate the Arabian Sea (Rhein et
al., 1997; Beal et al., 2000; Menezes, 2021; Sheehan et al.,
2020). Ventilation by all these advective pathways (south-
ern gyre, Indonesian Throughflow, and marginal seas) is pro-
jected to weaken in response to climate change (Sen Gupta
et al., 2016; Feng et al., 2017; Stellema et al., 2019; Lachkar
et al., 2019; Kobayashi et al., 2012), but the extent to which
these changes in ventilation will affect basin-scale oxygen
content and the OMZ in the Indian Ocean, however, is still
poorly constrained. Here, we examine changes in oxygen
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content and OMZ volume in the Indian Ocean in response
to climate change using an ensemble of CMIP6-generation
ESMs with a focus on thermocline depths (upper 1000 m).
We show that the fate of the Indian Ocean OMZ is consis-
tent with the three-regime framework identified in the Pacific
Ocean (Busecke et al., 2022) but that broad oxygenation re-
sults in a much more prominent contraction regime in the
Indian Ocean than in the Pacific Ocean. Interpreting these
changes in oxygen and OMZ volume in the Indian Ocean
calls for an extension of the single-pipe and mixing network
conceptual framework to include the unique contributions
from the Indonesian Throughflow and marginal seas, which
we show can be interpreted as “two-pipe” and “moving-pipe”
systems.

2 Methods
2.1 Datasets

We use an ensemble of eight ESMs from the CMIPG6 archive
(Eyring et al., 2016; O’Neill et al., 2016). Out of the 14
CMIP6 ESMs that provided monthly dissolved oxygen data
for the pre-industrial control, historical, and SSP5-8.5 ex-
periments (Busecke et al., 2022), we exclude six models
that simulate virtually no suboxic (< 10pumolkg™!) vol-
ume in the Arabian Sea (ACCESS-ESMI1-5, CanESMS,
CanESM5-CanOE, CNRM-ESM2-1, IPSL-CM6A-LR; Ta-
ble S1 in the Supplement). We keep the eight remaining
ESMs (GFDL-CM4, GFDL-ESM4, MIROC-ES2L, MPI-
ESM1-2-HR, MPI-ESM1-2-LR, NorESM2-LM, NorESM2-
MM, UKESM1-0-LL). All six ESMs excluded from the
multi-model mean exhibit above-average salinity biases in
the Arabian Sea, likely from outflows (Fig. S1 in the Supple-
ment), and four of six models exhibit Red Sea outflow rates
over twice the observed rate (Fig. S2). Thus, the representa-
tion of marginal sea outflows may be improved significantly
in our ensemble by excluding these ESMs. For this analy-
sis, we use oxygen, salinity, and potential temperature for all
eight models. When available, we also use output for ideal
age (available for six ESMs), export of organic carbon at
100 m (available for seven ESMs), and mass transport (avail-
able for five ESMs). Stratification is calculated from poten-
tial temperature and salinity fields using the GSW Python
package (Firing et al., 2021). To limit computational costs of
this study and because we expect inter-model variability in
dissolved oxygen to dominate over internal variability, only
one member is used for each model. See Table 1 for member
labels and data availability of each model. All model out-
puts were regridded (via bilinear interpolation) to a uniform
1° x 1° grid using the XESMF Python package (Zhuang et
al., 2021), but transport calculations were performed on each
model’s native grid (Sect. 2.2.4). The pre-industrial simula-
tions were used to remove the linear control drifts from all
scalar fields (oxygen, salinity, temperature, ideal age, export)
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in the historical and SSP5-8.5 simulations using the xMIP
Python package (Busecke and Spring, 2020).

We also use the observational climatology of dissolved
oxygen concentrations from the World Ocean Atlas 2018
(WOA18; Garcia et al., 2019) to evaluate the representation
of the Indian Ocean OMZ and dissolved oxygen field in the
ensemble of ESMs. We use an average over the period of
1950-2015 in the historical simulations to compare to the
observed climatology.

2.2 Analysis

To characterize the response of ocean variables to cli-
mate change, we used linear trends over the 2015-2100
period in the SSP5-8.5 simulations (normalized to change
per century), except when calculating water mass fractions
(Sect. 2.2.3), for which we compare historical (1950-2015
average) and end-of-century (historical plus integrated linear
trend over 85 years) states. To represent the ESM ensemble,
we take the mean over models (multi-model mean) and use
1 standard deviation of the model spread on either side of the
mean as a measure of uncertainty. When presenting multi-
model mean trend fields, we stipple where less than 75 %
of available models agree on the sign of change to indicate
regions of uncertainty. While we perform our analysis over
the full water column, we focus on thermocline depths (up-
per 1000 m) so that the results may characterize impacts on
mesopelagic ecosystems. When examining oxygen and ideal
age trends, we exclude surface waters by examining changes
between 100 and 1000 m.

2.2.1 Tracking ocean volume by oxygen threshold

OMZ volume is generally defined as the volume of water
below a chosen oxygen concentration threshold. We extend
this idea to a wide range of oceanic oxygen concentration
values. Here, we define the full-column OMZ volume as a
function of oxygen thresholds, O, (following Busecke et
al., 2022):

Vou(Oa1) = f f / av, (1)

02<0; 1

where we integrate over the Indian Ocean from 30° S-25° N
and from the African continent to the west to Indonesia and
Australia, extending to about 125° E in the main strait of the
Indonesian Throughflow (Timor Sea), to the east. The Red
Sea and Persian Gulf are not included in the integration of
Vo,. We use the Equator to delimit the Arabian Sea and Bay
of Bengal sub-basins to the south. However, we do not focus
on the full OMZ volume but rather on the thermocline OMZ
volume.
1000 m

Voéooo O21) = / //dV 2)
0

0,<0;1
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Figure 1. Dissolved oxygen annual mean climatology from the World Ocean Atlas 2018 (WOA18) (a) averaged between 100 and 1000 m,
(b) at 65° E, and (c) at 90° E. Multi-model mean (MMM) dissolved oxygen in the Indian Ocean for the historical period (1950-2015) (d)
between 100 and 1000 m, (e) at 65° E, and (f) at 90° E. Difference between MMM (1950-2015) and WOA 18 dissolved oxygen (g) between
100 and 1000 m, (h) at 65° E, and (i) at 90° E. Solid black contours represent 20, 60, and 150 pmol kg_1 oxygen in (a—c) WOA18 and (d-i)
MMM. (a, d, g) Dashed gray lines indicate 65° E and 90° E. (b, ¢, e, f, h, i) Dashed gray lines indicate depths of 100 and 1000 m, and dashed
black contours are salinity contours highlighting Subtropical Underwater and Intermediate Water. Water masses and ventilation pathways are
illustrated schematically. Abbreviations: South Equatorial Current (SEC), Central Water (CW), Deep Water (DW), Subtropical Underwater
(STUW), Mode Water (MW), Intermediate Water (IW), Indonesian Throughflow (ITF).

Table 1. ESM data used in this study. Variables used: dissolved oxygen concentration (02), salinity (so), potential temperature (thetao), ideal
age (agessc), export of organic carbon at 100m (epc100), and mass transport (umo/vmo) where available. All data used in this study are
publicly available via ESGF, except ideal age fields from GFDL-CM4 and GFDL-ESM4 (see Busecke et al., 2022).

ESM Variables Member ID
GFDL-CM4 (Guo et al., 2018a, b) 02, thetao, so, agessc rlilplfl
GFDL-ESM4 (Krasting et al., 2018; John et al., 2018) 02, thetao, so, agessc, epc100 rlilplfl
MIROC-ES2L (Hajima et al., 2019; Tachiiri et al., 2019) 02, thetao, so, agessc, epc100 rlilplf2
MPI-ESM1-2-HR (Jungclaus et al., 2019; Schupfner et al., 2019) 02, thetao, so, epc100, umo/vmo rlilplfl
MPI-ESM1-2-LR (Wieners et al., 2019a, b) 02, thetao, so, agessc, epc100, umo/vmo  rlilplfl
NorESM2-LM (Seland et al., 2019a, b) 02, thetao, so, agessc, epc100, umo/vmo  rlilplfl
NorESM2-MM (Bentsen et al., 2019a, b) 02, thetao, so, agessc, epc100, umo/vmo  rlilplfl
UKESM1-0-LL (Tang et al., 2019; Good et al., 2019) 02, thetao, so, epc100, umo/vmo rlilplf2

Biogeosciences, 20, 4711-4736, 2023

https://doi.org/10.5194/bg-20-4711-2023



S. Ditkovsky et al.: Unique ocean circulation pathways reshape the Indian Ocean OMZ 4715

Note that we integrate over the upper 1000 m here, rather
than 100 to 1000 m, because OMZ volume will naturally ex-
clude surface waters. In both cases, we use oxygen thresh-
olds Oy 1 that vary between 5 and 225 pmol kg~! and high-
light three benchmark thresholds: (1) Oyt =20 umolkg~!
(OMZ20) as the core of the OMZ, (2) Oz 1 = 60 umol kg_l
(OMZ60) as a commonly cited threshold for hypoxia at
which marine ecosystems tend to experience significant
loss of biodiversity (Vaquer-Sunyer and Duarte, 2008), and
(3) O 1 =150 umolkg_l (OMZ150) as a common habitat
boundary for large commercial fish species such as tuna
(Brill, 1996; Prince and Goodyear, 2006; Bertrand et al.,
2011; Stramma et al., 2012; Brill, 1994). We note that oxy-
gen thresholds above 150 umolkg ™! are not generally used to
delimit low-oxygen environments and OMZs, but we present
them here to provide a holistic view of forced changes in
oxygen distribution.

2.2.2 Thermal and non-thermal dissolved oxygen
trends

We separate the influences of thermal and non-thermal pro-
cesses on oxygen trends. The thermal component, or oxygen
saturation OsaT, is calculated using the GSW Python pack-
age from potential temperature and salinity fields (Firing et
al., 2021). The non-thermal component, related to ocean ven-
tilation and biological sources and sinks of oxygen, is com-
puted as the residual between O, and OsaT and is referred
to as apparent oxygen utilization (AOU).

O2 = OgsaT — AOU 3)

We compute Oxsar and AOU for each year in the histori-
cal and SSP5-8.5 simulations, then take historical means and
projected linear trends. Trends in AOU represent the contri-
bution of non-thermal processes to overall changes in dis-
solved oxygen, but they encompass changes in both physical
(ventilation changes tied to slower circulation or changes in
mixing) and biological (respiration rates) effects. We use the
ideal age of seawater (i.e., the time since exposure to the sur-
face) to qualitatively infer the contribution of physical venti-
lation changes.

2.2.3 Identifying changes in ventilation pathway
contributions

In Sect. 3.5 and 3.6, we solve a mixture model in the South
Equatorial Current and in the Arabian Sea to evaluate shifts
in water mass fractions under SSP5-8.5 forcing. The mix-
ture model is based on extended optimum multiparameter
analysis (OMP) (Tomczak, 1981; Tomczak and Large, 1989;
Karstensen and Tomczak, 1998). This technique solves for
the water mass fractions at a given hydrographic section us-
ing the hydrographic properties of specified source water
mass types, each representing an advective ventilation path-
way. See Appendix A and references therein for details on the
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method and how the mixture model implemented here differs
from classical OMP. We use a Python implementation (py-
OMPA; Shrikumar et al., 2022) based on the original MAT-
LAB code from Karstensen and Tomczak (1998). We per-
form this analysis along potential density surfaces referenced
to zero pressure (op), calculated from potential temperature
and salinity fields using the GSW Python package (Firing et
al., 2021). For each region, we use a nominal value for po-
tential density that captures features of significant dissolved
oxygen change; however, we tune this value (within 0.5) for
individual ESMs to better capture features across models.

The number of source water mass types is limited to be
less than or equal to the number of hydrographic properties
available. Here, we use potential temperature, salinity, dis-
solved oxygen, and AOU. To account for remineralization
along the pathways (between source and case study regions),
we allow for the conversion of dissolved oxygen to AOU
(see Appendix A for details). In the case of the South Equa-
torial Current region, the source water types are Indonesian
Throughflow Water, Southern Pathway Waters, and Arabian
Sea Water, centered at (15° S, 120° E), (30° S, 100° E), and
(15°N, 65° E), respectively, at a nominal potential density of
oo = 26.4. In the case of the Arabian Sea, the source waters
are Persian Gulf Water, Red Sea Outflow Water, and Arabian
Sea Water centered at (24.5° N, 58.5°E), (12° N, 47° E), and
(15°N, 65°E), respectively, at a nominal potential density
of o9 =25.7. We exclude MIROC-ES2L from the mixture
model analysis in the Arabian Sea because the model does
not resolve the Persian Gulf and Red Sea. To account for
the sensitivity of results to small changes in the sampling of
source water types and potential density layer, we average 50
realizations of the experiment by applying random perturba-
tions to source water locations and density layers from their
central values. Source water locations are perturbed by up
to 5° in latitude and longitude for the South Equatorial Cur-
rent region and 2° for the Arabian Sea. For both locations,
the value of the potential density layer is perturbed by up to
0.1kgm™3.

For each ESM in the ensemble, we solve for the wa-
ter mass fractions, f, for a historical state and an end-of-
century state. For the historical state, we first compute po-
tential density for the historical mean (1950-2015) for each
ESM and use the xgcm (Abernathey et al., 2022) package
to transform the vertical coordinates of each model to po-
tential density space. We note that the results of the mixture
model are not sensitive to the order of operations (temporal
averaging and vertical transformation). To compute an end-
of-century state, we add 85-year (2015-2100) forced trends
from the SSP5-8.5 simulations to historical mean fields (po-
tential temperature, salinity, oxygen, AOU) to represent a cli-
matological year 2100, then repeat the coordinate transfor-
mation described above.

From the mixture model results, we quantify the change in
oxygen supply due to shifts in water mass composition and
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properties for key regions:

AO2,supply = D fi100,1 = ) fi.004,0, )
i i

where f; and O; are the fraction and oxygen concentration of
source water type i for future (1) and historical (0) states. We
compare AO gypply to the total simulated changes in oxygen
to evaluate how well changes in the system can be described
by only isopycnal transport and mixing of source water mass
types. While for conservative tracers (i.e., potential temper-
ature and salinity) the change in supply and total change
should be equal if the system is well represented by the mix-
ture model analysis, an allowance for the remineralization of
oxygen can lead to an imbalance between the two quantities
(see Appendix A).

A concern when solving for forced trends on a potential
density layer is that the results may be influenced by the dis-
placement of this isopycnal in depth. Indeed, the potential
density layers chosen here are displaced deeper in the water
column by about 100 m between the historical and end-of-
century states. To evaluate the impact of this deepening, we
perform an alternate set of mixture model experiments where
we use a lower density value at the end-of-century state than
for evaluating the historical state. The layer defined by this
lower density value samples the same depth as was sampled
for the historical state. The results of this alternative analy-
sis, presented in the Supplement, are qualitatively similar to
the analysis presented in the main text and do not change the
main results.

2.2.4 Quantifying changes in transport by ventilation
pathways

To provide context for trends in dissolved oxygen and ideal
age, we quantify changes in individual thermocline ventila-
tion pathways using mass transport fields on each model’s
native grid. The Indonesian Throughflow Water transport is
calculated as the westward flow through the main strait of the
Indonesian Throughflow at 114°E integrated between 100
and 1000 m. The Southern Pathway Water transport is calcu-
lated as the northward flow across 30° S integrated between
100 and 1000 m. We note that this representation of South-
ern Pathway Waters largely excludes the contribution of Sub-
tropical Underwater, which subducts north of 30° S. The up-
welling of Deep Waters into the thermocline is calculated as
the budget residual of transport below 1000 m across 30° S
and through the Indonesian Throughflow at 114° E. Trans-
ports by marginal sea outflows from the Red Sea and Per-
sian Gulf are defined as the outflowing components through
their respective channels. We report transport trends in sver-
drups (Sv) per century using a constant reference density of
1025kgm™3 to convert between mass and volume transport.
Transport fields are available for five of the eight ESMs in the
ensemble (MPI-ESM1-2-HR, MPI-ESM1-2-LR, NorESM2-
LM, NorESM2-MM, UKESM1-0-LL).
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3 Results

3.1 Historical oxygen and ventilation pathways in
observations and Earth system models

The observed oxygen distribution in the Indian Ocean ther-
mocline (100 to 1000m) is influenced by five main ven-
tilation pathways (Fig. la—c). First, the Southern Pathway
Waters which enter via the southern Indian Ocean gyre in-
clude (from least to most dense) Subtropical Underwater
(STUW; about 100 to 250 m depth), Indian Central Water and
Subantarctic Mode Water (CW+MW,; about 250 to 750 m
depth), and Antarctic Intermediate Water (IW; about 750 to
1000 m depth) (Sprintall and Tomczak, 1993; Karstensen and
Tomczak, 1997; McCarthy and Talley, 1999; Karstensen and
Quadfasel, 2002; Fine, 1993; Talley, 2011). This spectrum
of waters enters the basin with a range of oxygen between
about 160 and 250 umolkg™!, where Indian Central Water
and Subantarctic Mode Water account for the highest oxygen
levels. Southern Pathway Waters are capped by the salinity
maximum of Subtropical Underwater and the salinity min-
imum of Antarctic Intermediate Water (dashed black con-
tours in Fig. 1b and c). Second, the Indonesian Through-
flow (ITF) brings waters from the tropical Pacific Ocean
(with oxygen concentrations of about 80—170 umolkg ™" be-
tween 100 and 1000 m depth) into the southern Indian Ocean
which mix with Southern Pathway Waters in the South Equa-
torial Current (SEC). This mixture of waters then crosses
the Equator with the western boundary current to ventilate
the northern basin (pathway schematic in Fig. 1a) via eddy
mixing, monsoonal currents, and the weak North Equatorial
Current which flows east in the summer along about 5° N
(Schott et al., 2009; Phillips et al., 2021; Resplandy et al.,
2012; Lachkar et al., 2016). In the northern Indian Ocean,
two additional pathways are associated with saline marginal
sea outflows: Red Sea Outflow Water (RS, with concentra-
tions around 70 umol kg~ ') and Persian Gulf Water (PG, near
oxygen saturation > 200 umolkg™!) deliver oxygen directly
to the OMZ core in the Arabian Sea as they are quickly di-
luted by mixing (Fig. 1a). Finally, the fifth pathway corre-
sponds to Deep Waters (DWs) that enter from the Southern
Ocean and Indonesian Throughflow (here taken as waters be-
low 1000 m depth) and slowly upwell in the basin (McCarthy
etal., 1997), ventilating the thermocline from below with rel-
atively well-oxygenated waters (100—200 umolkg ™).

The multi-model mean (eight ESMs; see the Methods sec-
tion) captures the main features associated with the five path-
ways ventilating the Indian Ocean (Fig. 1d-f). The multi-
model mean simulates the full spectrum of Southern Pathway
Waters, indicated by the salinity maximum and minimum as-
sociated with Subtropical Underwater and Antarctic Interme-
diate Water (dashed black contours in Fig. le and f), and
overall captures the temperature and salinity properties of
water masses across the basin (Fig. S5). We note that three of
the eight ESMs simulate the Southern Pathway Waters par-
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ticularly well (GFDL-CM4, GFDL-ESM4, and UKESM1-0-
LL), while three others are missing the salinity minimum as-
sociated with Antarctic Intermediate Water (MIROC-ES2L,
MPI-ESM1-2-HR, and MPI-ESM1-2-LR, Fig. S4). The oxy-
gen supply from the Southern Pathway and the Indonesian
Throughflow is also relatively well simulated by the multi-
model mean (Fig. la—c), and the observed oxygen maximum
associated with Indian Central Water and Subantarctic Mode
Water is present in all the ESMs in the ensemble (though it is
weaker than observed in MPI-ESM1-2-HR and MPI-ESM 1-
2-LR, see Figs. S3 and S4). Overall, these simulated ther-
mocline ventilation pathways maintain a realistic meridional
oxygen gradient with well-oxygenated waters in the southern
basin and OMZ cores in the Arabian Sea and Bay of Bengal
(contours of 20, 60, and 150 umolkg~! water extent shown
in solid black contours in Figs. 1 and S4). There are, how-
ever, significant biases in the oxygen field simulated in the
northern basin where the multi-model mean simulates higher
than observed oxygen levels in the Arabian Sea and lower
than observed in the Bay of Bengal (Figs. 1g—i and S3). The
high oxygen bias in the Arabian Sea is likely due to exces-
sive ventilation from marginal seas and southern source wa-
ters, though it may also be influenced by deficiencies in pa-
rameterized oxygen consumption rates and eddy mixing rates
(Schmidt et al., 2021), while the low oxygen bias in the Bay
of Bengal is possibly tied to the overestimation of oxygen
consumption rates and remineralization depths (Al Azhar et
al., 2017). These are well-documented biases among ESMs
(Oschlies et al., 2008; Bopp et al., 2013; Rixen et al., 2020;
Schmidt et al., 2021). However, we have mitigated oxygen
biases in the Arabian Sea in our ensemble by removing mod-
els that lack suboxia there (Sect. 2.1 and Fig. S6).

We compare thermocline OMZ volume (Voéooo’ volume
in upper 1000 m) in observations and the multi-model mean
for oxygen thresholds between 5 and 225 umolkg ™! (Fig. 2a,
Voéooo for individual models are in Table S1). In the observed
climatology, Voéooo increases about linearly with oxygen

threshold, with a hypoxic volume OMZ60 (< 60 umolkg ")
of about 8.3 x 10" m? and a low oxygenated water vol-
ume OMZ150 (< 150 umolkg™") of about 21 x 10" m3.
The multi-model mean simulates this linear relationship. In
particular, it agrees with observations within 12 % for the
OMZ60 volume and within 7 % for the OMZ150 volume,
and at both benchmarks the observations fall within the en-
semble spread with no clearly outlying ESM. The volume of
the core OMZ20, however, is overestimated by about 50 %
in the multi-model mean. The good agreement at hypoxic
and higher thresholds arises from the realistic simulation of
the southern Indian Ocean ventilation pathways that control
these volumes. In contrast, the disagreement in the volume of
the OMZ core primarily comes from the systematic overesti-
mation of OMZ20 in the Bay of Bengal, a bias only partially
offset by the underestimation of OMZ20 in the Arabian Sea
(Fig. 2b and c).
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3.2 Projected OMZ volume exhibits diverging trends at
low and high oxygen thresholds

Projections of thermocline OMZ volume under SSP5-8.5
forcing fall into three regimes: a robust expansion of vol-
umes set by high oxygen thresholds (above 180 umolkg™!),
a robust contraction of volumes set by low oxygen thresholds
(below 85 umolkg™"), and a transition regime with weak and
uncertain trends characterized by redistribution of volume
(between 85 and 180 umolkg™'; Fig. 3a). We define robust
OMZ expansion and contraction as where the multi-model
mean trends exceed 1 standard deviation of the model spread.
The volumes of hypoxic waters (OMZ60) and core waters
(OMZ20) contract at similar rates in the multi-model mean
(0.74£0.4x 10" and 0.8 + 0.7 x 10'> m3 per century, respec-
tively). The model spread is tighter for trends in OMZ20, so
the multi-model mean signal of volume trends emerges in the
ensemble earlier for OMZ20 than for OMZ60 (Fig. 3b and c).
About half of the OMZ20 contraction occurs in the Arabian
Sea (Fig. S8). Meanwhile, the volume of OMZ150 falls be-
tween the regimes of robust expansion and contraction and
experiences near-zero volume changes in the multi-model
mean by 2100. Tracking the evolution of the OMZ150, we
see that ESMs project an expansion over the historical period
and first half of the twenty-first century before disagreeing on
the trajectory in the latter half of the century, with half of the
ESMs projecting a contraction by 2100 (GFDL-CM4, MPI-
ESM1-2-LR, UKESM1-0-LL, MIROC-ES2L) and the other
half projecting an expansion (GFDL-CM4, MPI-ESM1-2-
HR, NorESM2-LM, NorESM2-MM; Fig. 3d). Lastly, the
volume of waters with less than 200 umolkg ™" evolves simi-
larly to the volume of the OMZ150 over the historical period
but then continues to follow a trajectory of robust expansion
over the twenty-first century (Fig. 3e).

3.3 Regional contrasts in dissolved oxygen trends
reshape the Indian Ocean OMZ

Projected trends in dissolved oxygen are highly variable in
space, both horizontally and vertically, leading to regional
contraction, expansion, and redistribution of the OMZ vol-
ume (Fig. 4). The multi-model mean projects a weak in-
crease in oxygen in the OMZ cores of the Arabian Sea and
Bay of Bengal and a decline in oxygen in the relatively well-
oxygenated water masses entering via the Southern Pathway
(Fig. 4). Strongest oxygen changes, however, are found at
intermediate oxygen levels. We focus on the three major fea-
tures that influence the OMZ volume at these intermediate
levels (labeled by numbers in Fig. 4): the deoxygenation in
the southeastern basin (Feature 1), the oxygenation of the
western South Equatorial Current (Feature 2), and the de-
oxygenation in the northern Arabian Sea (Feature 3). Fea-
ture 1 coincides with the flow of Southern Pathway Waters
in the subtropical gyre and Indonesian Throughflow Water
entering the Indian Ocean. Indeed, we see two distinct max-
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ima of the deoxygenation along the meridional section at
90° E (Fig. 4c): one coinciding with Southern Pathway Wa-
ters (namely Central, Mode, and Intermediate Waters) cen-
tered around 500 m depth with deoxygenation rates up to
35umolkg~! per century and one coinciding with Indone-
sian Throughflow Waters at around 250 m depth with de-
oxygenation rates up to 50 umolkg~! per century. Feature 2
is located where Southern Pathway Waters and Indonesian
Throughflow Waters mix within the South Equatorial Cur-
rent. Feature 2 has a maximum oxygenation trend in the
South Equatorial Current between 100 and 500 m, where wa-
ters oxygenate at a rate of up to about 50 umolkg™! per
century, and a secondary maximum in the North Equato-
rial Current, with oxygenation rates up to 40 umolkg™! per
century (Fig. 4a and b). Together, Features 1 and 2 form
an oxygenation—deoxygenation dipole along the path of the
South Equatorial Current. Lastly, Feature 3 is deoxygena-
tion at a rate of up to about 60 umolkg™! per century in
the northern Arabian Sea between about 100 and 300m
depth, a region where the Persian Gulf Outflow (observed
down to about 400 m depth) and winter convection (observed
mixed layers down to about 100 m depth) dominate ventila-
tion (Fig. 4a and b).

The three features of dissolved oxygen trends are sim-
ulated by all individual ESMs in the ensemble (Figs. S9

Biogeosciences, 20, 4711-4736, 2023

and S10), leading to a robust pattern in the multi-model mean
(more than 75 % of models agree on sign of trend; Fig. 4).
However, there are some notable differences in their ampli-
tude and extent across the ensemble. Here, we leverage com-
parisons between models that share the same architecture but
differ either in their horizontal resolution or the complex-
ity of their biogeochemical module to illustrate the sensi-
tivity of the oxygen response to the model characteristics.
For example, GFDL-CM4 and GFDL-ESM4 have the same
dynamical ocean model but differ in both oceanic and at-
mospheric resolution (GFDL-CM4 has higher resolution) as
well as biogeochemical components (GFDL-ESM4 has more
complex representation of biogeochemistry) (Dunne et al.,
2020; Held et al., 2019). Despite very similar historical rep-
resentations of oxygen in the Indian Ocean, GFDL-CM4 and
GFDL-ESM4 simulate different strengths of oxygenation in
the SEC (Feature 2) and deoxygenation in the Arabian Sea
(Feature 3), with GFDL-CM4 projecting more pronounced
features in both regions (Fig. S10). Meanwhile, NorESM2-
LM and NorESM2-MM, which differ only in the horizontal
resolution of their atmospheric components (Seland et al.,
2020), project similar trends for oxygenation in the SEC but
differ on the strength of the deoxygenation in the Arabian
Sea, with weaker deoxygenation simulated in the higher-
atmospheric-resolution version (NorESM2-MM; Fig. S10).
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Finally, CanESMS5 and CanESMS5-CanOE only differ in the
complexity of their biogeochemical model (Christian et al.,
2022). Both CanESM models were removed from our multi-
model mean due to the absence of suboxia in the Arabian
Sea, but we use them here to illustrate the sensitivity to the
biogeochemical complexity. CanESM5-CanOE, which has
a more complex representation of biogeochemistry, projects
weaker oxygenation in the SEC and stronger deoxygenation
in the Arabian Sea than the simpler CanESMS5 model. These
results suggest that the sign of oxygen change is robust across
the ensemble but that both model resolution (atmospheric
and oceanic) and biogeochemical complexity influence the
amplitude of the change.

These three features ultimately explain the contraction,
expansion, and redistribution of the OMZ volume at ther-
mocline depths across oxygen thresholds. The deoxygena-
tion of the southeastern basin (Feature 1) is the primary
driver of the volume expansion at high oxygen thresholds (>
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180 umolkg ™!, Fig. 3b). The oxygenation-deoxygenation
dipole (from Features 1 and 2) redistributes the OMZ vol-
ume from west to east and explains the weak volume changes
found at intermediate oxygen thresholds (between 85 and
180 umolkg ") including the volume of the OMZ150 (re-
distribution regime, Fig. 3b). The oxygenation in the South
Equatorial Current, and in turn the western boundary cur-
rent waters (Feature 2), contributes to the OMZ contraction
at low oxygen thresholds including the volume of OMZ60
(contraction regime, Fig. 3b), although the net change in vol-
ume is relatively small due to the compensating expansion in
the northern Arabian Sea which also affects the low oxygen
thresholds (Feature 3).

3.4 Dissolved oxygen trends are dominated by changes
in ventilation

To identify which processes control projected dissolved
oxygen trends and in turn the reshaping of the Indian

Biogeosciences, 20, 4711-4736, 2023
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Ocean OMZ, we separate dissolved oxygen trends into ther-
mal and non-thermal components (Fig. 5). Thermal oxy-
gen trends relate to changes in oxygen saturation concentra-
tions, while non-thermal oxygen trends arise from changes
in physical ocean circulation and biological respiration rates
(Sect. 2.2.2). Thermal and non-thermal effects tend to in-
fluence different water masses: thermal trends are strongest
in surface waters (above 100 m), while non-thermal trends
are strongest at thermocline depths (100 to 1000 m) but are
also responsible for deoxygenation in the deep ocean (below
1000 m) (Fig. 5). Thermal oxygen changes drive relatively
uniform deoxygenation in the surface ocean of about 5 to
15umol kg™! per century. Thermal effects are only signifi-
cant below 100 m along the pathways of Subtropical Under-
water (Fig. 5b) and Indonesian Throughflow Water (Fig. 5a
and c). The non-thermal component largely explains the
strong patterns of oxygenation and deoxygenation discussed
above, including deoxygenation in the southeast, oxygena-
tion in the SEC, and deoxygenation in the northern Arabian
Sea (Features 1 to 3; Figs. 4 and 5d-f).

The ideal age of seawater, or the average time since wa-
ter has been exposed to the surface, is a direct measure
of ventilation timescale; trends in ideal age thus indicate
changes in the rate of ventilation from advection and mix-
ing. Trends in ideal age agree with the pattern of non-thermal
oxygen trends. The regions of maximum decreased ventila-
tion (i.e., waters get older) spatially correspond to deoxy-

Biogeosciences, 20, 4711-4736, 2023

genation in the southeastern basin (Feature 1) and Arabian
Sea (Feature 3), while the region of maximum increased ven-
tilation (i.e., waters get younger) corresponds to the region
of oxygenation in the South Equatorial Current (Feature 2;
Figs. 5g—i and S11). This suggests that changes in physical
ventilation pathways are the main control of features of dis-
solved oxygen change and ultimately the reshaping of OMZ
volume in the Indian Ocean.

3.5 Shifts in water mass composition control
oxygenation in South Equatorial Current

In this and the following section, we attribute the significant
features of projected oxygen trends in the Indian Ocean ther-
mocline to specific changes in ventilation pathways. Perhaps
the most remarkable aspect of projected dissolved oxygen
changes in the Indian Ocean under SSP5-8.5 forcing is the
oxygenation—deoxygenation dipole along the South Equato-
rial Current (SEC) (Features 1 and 2). The two major ven-
tilation pathways in this region are the Southern Pathway
Waters and Indonesian Throughflow Water. The transport of
these two pathways is projected to decline between 100 and
1000 m over the twenty-first century (Fig. S12). The trans-
port of Southern Pathway Water across 30° S is projected to
decline by 4.4 4= 3.2 Sv per century (from 53 £ 2 Sv) and the
transport of Indonesian Throughflow Water by 5.1 2.0 Sv
per century from (15 £ 3 Sv). The weakening of these trans-
port pathways can explain the deoxygenation in the south-
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eastern Indian Ocean where each pathway acts as a sin-
gle dominant source (thus accounting for Feature 1). Curi-
ously, however, this weakened transport seems in apparent
contradiction with the increased ventilation and oxygena-
tion of the western SEC (Fig. 4). We hypothesize that this
oxygenation must arise from a shift in the relative contribu-
tions between these source waters in the western SEC where
they co-dominate, favoring relatively young and oxygen-rich
waters from the Southern Pathway over relatively old and
oxygen-poor waters from the Indonesian Throughflow. To
test this hypothesis, we perform a mixture model analysis
(Tomczak and Large, 1989) in the tropical Indian Ocean
for both a historical mean state (1950-2015) and an end-
of-twenty-first-century mean state (climatological 2100) at
a potential density layer within the thermocline, nominally
00 =26.4 (Sect. 2.2.3). This potential density layer inter-
sects the dipole of oxygen change (Features 1 and 2) in the
South Equatorial Current (Fig. 6a). We solve for the frac-
tions of three source waters: Indonesian Throughflow Wa-
ter, Southern Pathway Water and Arabian Sea Water (oxygen
minimum water; Sect. 2.2.3). We find that the mixture model
analysis is able to reconstruct historical and future oxygen,
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temperature, and salinity in this region with composites of
source water types (see Fig. S13 for a comparison of simu-
lated and reconstructed states in the Feature 2 region).

In the multi-model mean historical state, the mixture
model analysis highlights Indonesian Throughflow Water
originating from the main straits of the Indonesian Through-
flow and penetrating across the basin along 10° S, as well as
Southern Pathway Water residing primarily within the south-
ern gyre until it joins the western boundary current (Fig. 6b;
in agreement with observed distribution from Tomczak and
Large, 1989). Specifically, the mixture model suggests that
waters in the region of Feature 2 in the western SEC are com-
posed of about 40 % Indonesian Throughflow Water, 30 %
Southern Pathway Water, and 30 % Arabian Sea Water in the
multi-model mean (average composition between 40-80° E
and 5-15°8S, Fig. 6b). Under SSP5-8.5 forcing, there is a
significant shift in water mass fractions in the western SEC
away from Indonesian Throughflow Water in favor of South-
ern Pathway Water between the historical and future states.
By the end of the century, the composition of this region is
projected to shift to about 20 % Indonesian Throughflow Wa-
ter and 55 % Southern Pathway Water (changes of —0.2 and

Biogeosciences, 20, 4711-4736, 2023
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+0.25 water mass fractions for Indonesian Throughflow and
Southern Pathway Waters, respectively), while the contribu-
tion of Arabian Sea Water stays relatively constant (Fig. 6b).

In all ESMs except one (MPI-ESM1-2-LR), the simulated
oxygenation in the western SEC is well approximated by the
change in oxygen supply associated with the shift in source
water composition in the mixture model (simulated AO; and
oxygen supply reconstructed from water mass compositions,
AO3 supply, fall within 5 ;,lmolkgf1 of the 1-to-1 line in
Fig. 7a). This suggests that changes in remineralization of
oxygen might have a relatively low influence compared to
changes in transport (Sect. 2.2.3). Furthermore, nearly all of
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the changes in oxygen can be accounted for by the changing
supply from the Indonesian Throughflow and Southern Path-
way (AO; and AOg gupply from Indonesian Throughflow and
Southern Pathway Waters alone fall near the 1-to-1 line in
7b). That is, the oxygenation in the western SEC can be ac-
counted for by a shift away from oxygen-poor Indonesian
Throughflow Water in favor of oxygen-rich Southern Path-
way Water. We note that MPI-ESM1-2-LR is the only ESM
in the ensemble which behaves qualitatively differently than
the multi-model mean, projecting an increased influence of
Indonesian Throughflow Water and weakened influences of
Southern Pathway and Arabian Sea Waters in this region (not
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shown). MPI-ESM1-2-LR is also the only model that re-
quires significant contributions from remineralization to ex-
plain the simulated changes in oxygen. Specifically, the mix-
ture model requires significantly weaker remineralization in
the future state than in the historical state to match the sim-
ulated oxygen fields (larger oxygenation AO, than recon-
structed from mixture model AO2 gypply for MPI-ESM1-2-
LR in Fig. 7a).

The modified water mass composition in the western SEC
is then propagated across the Equator by the western bound-
ary current along the Somali coast and then east into the basin
interior by the North Equatorial Current, increasing ventila-
tion in the northern basin and accounting for the secondary
oxygenation maximum north of the Equator (Fig. 6b). A pre-
vious study found that ESMs projected a strengthening of the
cross-equatorial transport and North Equatorial Current with
warming (Sharma et al., 2023), which may in turn strengthen
the northern oxygenation maximum. We note that despite the
movement of the og = 26.4 surface between the historical
and end-of-century states, the results here are not an artifact
of this isopycnal displacement (Fig. S14)

3.6 Shoaling marginal sea outflows shift ventilation in
the Arabian Sea

We perform a similar analysis as above to assess the role
of changing ventilation pathways, namely marginal sea out-
flows, in the deoxygenation projected in the northern Ara-
bian Sea (Feature 3). Unlike pathways in the southern In-
dian Ocean, the overall strength of marginal sea outflow
transport remains steady under SSP5-8.5 forcing (Fig. S12).
Neither the Persian Gulf outflow nor the Red Sea outflow
shows any robust trends in volume transport across the ESM
ensemble. We hypothesize that, although overall transport
from marginal seas does not change, the buoyancy of out-
flow plumes increases with the rapid heating of marginal
seas, which can shoal the outflow plumes and reduce ven-
tilation of the OMZ at thermocline depths. This hypothesis
is motivated by the findings of Lachkar et al. (2019), who
find that this mechanism can have a strong influence on the
OMZ in the Arabian Sea. To test this, we perform a mix-
ture model analysis along the nominal potential density layer
oo = 25.7, which corresponds to the region of deoxygena-
tion in the Arabian Sea (Feature 3; Fig. 8a). We define three
source waters for the region: Persian Gulf Water, Red Sea
Outflow Water, and Arabian Sea Water (Sect. 2.2.3). We find
that the mixture model analysis is able to reconstruct his-
torical and future oxygen, potential temperature, and salinity
from the three source water types in the northern Arabian
Sea region (see Fig. S15 for a comparison of simulated and
reconstructed states in the region of Feature 3).

In the multi-model mean historical state (1950-2015), Per-
sian Gulf Water spreads from the Gulf of Oman across the
northern Arabian Sea and Red Sea Water spreads from the
Gulf of Aden, while Arabian Sea Water acts as the ambient
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water in the basin (Fig. 8b). In the region of Feature 3 (be-
tween 60-70° E and 20-25° N), Persian Gulf Water accounts
for about 65 % of the water mass in the multi-model mean
historical state. Concurrent with the region of deoxygena-
tion in the northern Arabian Sea, there is a decrease in the
presence of Persian Gulf Water in the end-of-century mean,
which gets replaced by ambient Arabian Sea Water. Aver-
aged over the region of Feature 3, the contribution of Persian
Gulf Water decreases to 55 % by the end of the century (de-
crease in water mass fraction of about 0.1; Fig. 8b). This is
also associated with a shift in Persian Gulf Water westward.
Further south, there is a decrease in ventilation from Red Sea
Outflow Water along oy = 25.7, which may contribute to de-
oxygenation off the Omani coast (Fig. 8b).

In five out of the seven ESMs, the simulated deoxygena-
tion in the northern Arabian Sea is well approximated by
the change in oxygen supply reconstructed from the shift
in water masses in the mixture model (AO; and AO3 sypply
fall within &5 umolkg™! of the 1-to-1 line in Fig. 9a). We
find that the majority of this deoxygenation in the region
can be accounted for by changes in oxygen supply by the
Persian Gulf (AO; and AOj gupply from Persian Gulf Wa-
ter alone fall close to the 1-to-1 line in Fig. 9b). We note that
two ESMs (MPI-ESM1-2-HR and MPI-ESM1-2-LR) exhibit
weaker AOj gypply than AO, (ESMs fall below the 1-to-1
line in Fig. 9a). While this may suggest that remineraliza-
tion increases between the historical and future states in these
ESMs, this is unlikely given projected changes in export of
organic carbon (see next section). Rather, it is likely that the
region is poorly described by the source water types given to
the mixture model in these two ESMs.

We note that for an alternative analysis where the future
state is evaluated at a potential density layer which approx-
imately aligns with the historical depth of o9 =25.7 (i.e.,
aliasing from isopycnal displacement is removed; Sect. 2.2.3;
Fig. S16), we see greater agreement between the pattern of
deoxygenation and decreases in Persian Gulf Water fraction.

3.7 Contributions of biological and stratification
changes to oxygen changes

The mixture model analysis suggests that nearly all of the
simulated oxygen changes in the western SEC and north-
ern Arabian Sea can be accounted for by shifts in water
mass compositions driven by changes in advective ventila-
tion pathways (Figs. 7 and 9). However, the residual oxy-
gen changes that the mixture model analysis does not cap-
ture, while small for most ESMs, tend to be systematically
biased positive for the western SEC and negative for the
northern Arabian Sea. This suggests the influence of addi-
tional processes not accounted for in the reconstruction of
oxygen supply from the mixture model analysis, in particular
the increase in subsurface stratification expected with global
warming that can influence the vertical mixing between dif-
ferent water masses, and changes in biological oxygen con-
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Figure 7. Dissolved oxygen changes computed from water mass composition changes, AO3 supply, versus total simulated dissolved oxygen
changes in the western South Equatorial Current (indicated by the inset in a). (a) AOj gypply from all source water changes. (b) AO2 gypply
only from contributions of Indonesian Throughflow and Southern Pathway Waters. Solid markers are means of all samples (faded markers).

sumption along advective pathways once a water parcel has
left its source water region.

We examine trends in stratification (for the eight ESMs)
and the export of organic carbon at 100 m (available for seven
out of eight ESMs) under SSP5-8.5 forcing. The strongest
stratification increases are generally confined to the upper
100 m of the water column, but in both the Arabian Sea
and SEC regions, the multi-model mean simulates signifi-
cant stratification increases between 100 and 200 m (about
0.005kgm— m~! per century, Fig. 10). These stratification
increases are simulated consistently across the ESM ensem-
ble for both regions (Fig. S17). The oxygenation in the SEC
region occurs mostly below 200 m, where stratification does
not show strong changes, suggesting that changes in verti-
cal mixing likely play a relatively minor role in this region
(Fig. 10b and c). In contrast, the deoxygenation in the north-
ern Arabian Sea is largely collocated with the increase in
stratification simulated between 100 and 200 m, suggesting
that reduced vertical mixing of oxygenated surface waters
downward contributes to the deoxygenation projected in this
region. Increased subsurface stratification tends to limit the
vertical mixing of oxygenated surface waters downward but
also limits the mixing of subsurface nutrients into the sur-
face, which in turn limits primary productivity and the export
of organic matter at depth and potentially reduces the con-
sumption of oxygen in the subsurface. The export of organic
carbon consistently declines under SSP5-8.5 forcing over the
Indian Ocean in the multi-model mean, with local maximum
declines in the western SEC, the Bay of Bengal, and the Ara-
bian Sea (Figs. 11 and S18 for individual ESMs), suggest-
ing a decline in the consumption of oxygen along ventilation
pathways.

The projected decline in export and increase in stratifi-
cation have opposing effects on oxygen changes and there-
fore at least partially offset each other. The CMIP6 archive
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does not provide the necessary data to quantify the contri-
butions of these two factors to oxygen changes. However,
the signs of the residual oxygen changes that remain un-
explained by the mixture model analysis can provide some
qualitative information on the relative contributions of these
two processes. Positive residuals (i.e., stronger oxygenation
simulated in ESMs than reconstructed by the mixture model
analysis; Fig. 7) suggest that the decline in export dominates
over the increase in stratification in the western SEC. In con-
trast, negative residuals (i.e., stronger deoxygenation simu-
lated in ESMs than reconstructed by the mixture model anal-
ysis, Fig. 9) suggest that the influence of increased stratifica-
tion exceeds the influence of reduced export in the northern
Arabian Sea.

4 Discussion

We examine the changes in dissolved oxygen and OMZ
volume in response to the high-emissions scenario forcing
(SSP5-8.5) in the Indian Ocean using an ensemble of eight
CMIP6 Earth system models. In the following, we discuss the
three regimes that characterize the OMZ response to warm-
ing in the Indian Ocean thermocline (upper 1000 m). We
compare this response to that previously investigated for the
Pacific Ocean OMZ and to the unstudied response for the At-
lantic OMZ, and we contrast the OMZ changes projected in
the thermocline with the changes projected in the deep ocean
(Fig. 12). We also revise the existing single-pipe and mix-
ing network ventilation framework to interpret the OMZ re-
sponse of the Indian Ocean, discuss observational constraints
on ventilation pathways, and consider caveats in the model
ensemble projections.
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4.1 Three-regime response of the oxygen minimum
Zone

The response of oxygen and the OMZ in the Indian Ocean
thermocline (upper 1000 m) falls into three regimes (Figs. 3a
and 12a): a contraction of volume delimited by low oxygen
thresholds (< 85 umolkg™"), an expansion of volume delim-
ited by high oxygen thresholds (> 180 umolkg™"), and a re-
distribution of the volume at intermediate oxygen thresholds
(85 to 180 umolkg™!). This three-regime response is simi-
lar to the OMZ response described in the Pacific Ocean by
Busecke et al. (2022) (Fig. 12b). A striking difference be-
tween the two basins, however, is the widespread oxygen
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gain projected in the Indian Ocean. Indeed, ESMs robustly
project an oxygenation of the OMZ cores in the Arabian
Sea and Bay of Bengal, similar to the Pacific OMZ core, but
also an oxygenation of the southwestern Indian Ocean along
the path of the South Equatorial Current and North Equato-
rial Current. As a result, the OMZ contracts for thresholds
as high as 85pumolkg~! (including the volume of hypoxic
waters commonly defined by 60 umolkg™!) in the Indian
Ocean, whereas the contraction is restricted to the very low
oxygen levels found in the OMZ core in the Pacific Ocean
(typically volume with oxygen less than 10 to 20 umolkg~';
Fig. 12a and b). The oxygen gain in the southwestern In-
dian Ocean is associated with an oxygen loss in the south-
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Figure 9. Dissolved oxygen changes computed from water mass composition changes, AO2 sypply, versus total simulated dissolved oxygen
changes in the northern Arabian Sea (indicated by inset in a). (a) AOj gupply from all source water changes. (b) AOj gypply only from
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Figure 10. Multi-model mean (MMM) stratification trends under SSP5-8.5 scenario forcing (2015-2100). Stratification trends (a) between
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east. This dipole of southwest oxygenation and southeast
deoxygenation along the path of the South Equatorial Cur-
rent explains the redistribution regime and near-zero change
in volumes delimited by intermediate oxygen levels (85 to
180 umolkg™!; Fig. 12b). Finally, upstream of the South
Equatorial Current, the drastic decline in oxygen supplied
by the water masses that enter the thermocline through the
south Indian Ocean gyre and Indonesian Throughflow ex-
plains the expansion of volumes defined by high oxygen lev-
els (> 180 umolkg™'; Fig. 12a). The slowdown of the South-
ern Pathway is likely driven by either a weakening of Indian

Biogeosciences, 20, 4711-4736, 2023

Central Water or Subantarctic Mode Water formation, but we
do not disentangle these two effects in this study.

4.2 Beyond single-pipe and mixing network: cases for
two-pipe and moving-pipe systems

The projected oxygenation outside the Indian OMZ core, or
shadow zone, calls for a revision of the single-pipe and mix-
ing network ventilation framework used in the Pacific Ocean
(Gnanadesikan et al., 2007). In the original framework, in-
creased ventilation and oxygenation with weakened circu-
lation were only reconcilable in shadow zones where there

https://doi.org/10.5194/bg-20-4711-2023



S. Ditkovsky et al.: Unique ocean circulation pathways reshape the Indian Ocean OMZ

30°N

20°N

10°N

0°

10°S

20°S

30°S ..

-1.0 -06  -02 0.2 0.6 1.0
Trends in organic carbon export at 100 m
[mol/m?/yr/century]
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are no direct advective ventilation pathways and a mixing
network of multiple sources controls ventilation. In both the
Pacific and the Indian oceans, the oxygenation of the OMZ
core (which is associated with increased ventilation and re-
duced ideal age) can indeed be interpreted as a shift towards
a stronger contribution from younger, oxygen-rich, upper-
ocean waters using the mixing network model (Bryan et al.,
2006; Gnanadesikan et al., 2007, 2012; Takano et al., 2018;
Busecke et al., 2022). In the Pacific, this effect has been at-
tributed to a slowdown of Deep Waters upwelling to thermo-
cline depths, and there is evidence of this same effect in the
Indian Ocean basin. In the ESM ensemble used in this study,
upwelling of Deep Waters across 1000 m weakens at a rate of
2.0 £ 0.7 Sv per century in the Indian Ocean, even reversing
sign to be net downwelling (under SSP5-8.5 forcing in this
ESM ensemble, see Fig. S12).

Changes in mixing in the OMZ core, however, are not the
primary effect driving oxygenation in the Indian Ocean. In
the southern Indian Ocean, ESMs project oxygenation and
increased ventilation well outside the shadow zone, within
regions of strong advection such as the South Equatorial Cur-
rent. We show that this oxygenation can be interpreted as a
two-pipe system, an intermediate case between a single pipe
and a mixing network. Two sources with different oxygen
levels, rather than a network of many sources, are in fact
sufficient to have increased oxygenation, even though the
transport by both ventilation sources weakens. The unique
configuration of the Indonesian Throughflow and Southern
Pathway merging into the South Equatorial Current allows
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for this phenomenon despite intense advection. The venti-
lation by the Southern Pathway and Indonesian Through-
flow declines in response to warming in the ESM ensemble,
but the ventilation by the Indonesian Throughflow declines
more strongly, favoring the relative contribution of the better-
oxygenated Southern Pathway Waters.

Another feature of the Indian Ocean OMZ response which
differs from its Pacific Ocean counterpart is the importance
of ventilation by marginal sea outflows. We find that changes
in ventilation from marginal sea outflows may be a signifi-
cant driver of deoxygenation in the Arabian Sea. The Persian
Gulf rapidly warms in response to global warming, increas-
ing stratification and the buoyancy of outflow water from
the Persian Gulf. As outflow water shoals, it becomes un-
able to ventilate the OMZ in the Arabian Sea and is instead
confined to the upper 100 m where its impact on oxygen be-
comes marginal (the upper ocean is already well oxygenated;
Lachkar et al., 2021). The deeper Red Sea outflow plume also
shows evidence of shoaling in the ESM ensemble, but it has
a weaker impact on the ventilation of the OMZ because its
oxygen content is lower than that of the Persian Gulf (on av-
erage about 70 umolkg ™! for Red Sea Outflow Water versus
about 200 umolkg™! for Persian Gulf Water). We can de-
scribe this change in the ventilation from marginal seas as
a moving pipe, where oxygen supply may be affected by a
displacement of a pathway even if the strength of transport
along that pathway holds steady.

4.3 Global trends in tropical oxygen minimum zones

Now extending our scope to all tropical oceans, we find that
the three-regime OMZ response identified in the Indian (this
study) and Pacific (Busecke et al., 2022) oceans is also simu-
lated in the Atlantic Ocean (Figs. 12c and S19). The dynam-
ics driving this three-regime response in the Atlantic have not
yet been explored in detail, but it is likely that the even more
prominent contraction regime found for the Atlantic OMZ is
connected to changes in ventilation by the Atlantic merid-
ional overturning circulation, which is projected to weaken
in ESMs (IPCC, 2013; Bakker et al., 2016). This would lead
to a favoring of midlatitude waters from the south, as South
Atlantic Mode and Intermediate Water subduction rates are
projected to hold steady and ventilate lighter densities (Goes
et al., 2008; Downes et al., 2009). Looking beyond OMZ
volume changes in the ocean thermocline (above 1000 m)
to the deep-ocean response (below 1000 m), we see that
deoxygenation and OMZ expansion in the deep ocean are
more ubiquitous than in the thermocline (Fig. 12d—f). De-
oxygenation in the deep ocean is likely due to a slowdown
of Deep Water transports as the global thermohaline circula-
tion weakens with warming (e.g., Bakker et al., 2016). When
integrating the thermocline and deep-ocean components of
the OMZ response to consider the full depth of the water
column (similar to what was done for the Pacific Ocean in
Busecke et al., 2022), we find that the thermocline response
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Figure 12. Multi-model mean thermocline OMZ volume trends (above 1000 m) under SSP5-8.5 scenario forcing (2015-2100) as a function
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and (i) Atlantic oceans. Shading represents 1 standard deviation of model spread from the mean. Panel (a) is the same as Fig. 3a.

dominates the OMZ contraction at low oxygen thresholds,
while the deep-ocean response dominates the expansion at
high thresholds (Fig. 12g-1).

4.4 Observational constraints, limitations, and caveats

Projected oxygen changes and thus OMZ volume changes
are subject to uncertainties, in particular the magnitude of the
oxygenation—deoxygenation dipole along the South Equato-
rial Current and the deoxygenation in the northern Arabian
Sea. The slowdown of the Southern Pathway and Indonesian
Throughflow transports is a robust and well-studied feature
of ESM projections (Downes et al., 2009; Sen Gupta et al.,
2016; Feng et al., 2017; Stellema et al., 2019). The pattern
of multi-model mean oxygen trends (Fig. 4) is not sensi-
tive to our model selection protocol, as the three features are
also simulated by the six ESMs excluded from the ensemble
(Fig. S8). However, when all 14 available ESMs are included
in the multi-model mean, we find that the deoxygenation in
Features 1 and 3 are enhanced, while the oxygenation in Fea-
ture 3 is weakened (Fig. S9).

Historical observations support the slowdown and de-
oxygenation of the Southern Pathway (Helm et al., 2011;
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Kobayashi et al., 2012; Ito et al., 2017; McMonigal et al.,
2022). A secular weakening of the Indonesian Throughflow
has not yet been observed, possibly obscured by significant
decadal variability (Liu et al., 2015; Feng et al., 2018), but
there is evidence of forced trends in the global thermohaline
circulation that controls the Indonesian Throughflow trans-
port (Rahmstorf et al., 2015; Sun and Thompson, 2020) to
support the decline in ventilation by this pathway. However,
the relative changes in the two pathways, which control the
oxygenation—deoxygenation dipole, are highly uncertain and
unconstrained by observations. This dipole pattern has not
emerged in current observation-based estimates of historical
oxygen trends (Helm et al., 2011; Ito et al., 2017; Schmidtko
et al., 2017), though there is some signal of oxygenation near
Madagascar in the product of Ito et al. (2017). A detailed
study on the time of emergence of oxygen and volume trends
identified in this work would require greater availability of
large ensembles with biogeochemistry in future generations
of CMIP.

Deoxygenation in the northern Arabian Sea has been de-
tected in observations (reviewed by Lachkar et al., 2023).
The rapid heating of marginal seas compared to the open
ocean and the subsequent increase in stratification and buoy-
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ancy of the marginal sea outflows, particularly for the Persian
Gulf, are also supported by observations (Al-Yamani et al.,
2017; Naqvi, 2021). The projected changes in outflow venti-
lation are consistent with the findings of ocean model simu-
lation studies, which showed that the warming and shoaling
of the Persian Gulf were a major driver of the deoxygena-
tion in the northern Arabian Sea (Lachkar et al., 2019, 2021).
Yet, ESMs tend to overestimate the oxygen transport by these
marginal sea outflows to the Arabian Sea (e.g., Schmidt et
al., 2021 for CMIPS5). This partially explains the systematic
high oxygen bias in the Arabian Sea in the ensemble of eight
CMIP6 ESMs used in this study (Fig. 1) and the absence
of suboxia in the five ESMs that were excluded from the
ensemble (Table S1), and it could influence the magnitude
of the projected deoxygenation associated with the vertical
displacement of these outflows. In fact, a study by Vallivat-
tathillam et al. (2023), which applies downscaling methods
to CMIP5 projections of Arabian Sea oxygen under high-
emission RCP8.5 forcing, finds that the deoxygenation sim-
ulated in CMIPS models in the region is not preserved after
the bias-corrected downscaling method is applied (averaging
between 200 and 700 m). This suggests that ESM-simulated
mean state biases in the Arabian Sea can have a profound
impact on the projected changes.

An additional challenge of the mixture model analysis is
to distinguish between changes due to source water types
and changes in mixing with surface waters. Specifically in
the Arabian Sea, Persian Gulf Water and Arabian Sea sur-
face water both tend to be anomalously warm, saline, and
well oxygenated. Thus, it is possible that increased stratifi-
cation and weakened vertical exchange with the surface are
interpreted as a decrease in Persian Gulf Water fraction in the
mixture model. The presence of northern Arabian Sea deoxy-
genation in MIROC-ES2L, an ESM which does not resolve
the marginal seas and was thus excluded from the OMP anal-
ysis for the region, also suggests that stratification increases
may play a first-order role in northern Arabian Sea deoxy-
genation in the ESM ensemble. This is also consistent with
a previous study by Lachkar et al. (2021), which investigates
deoxygenation in the Arabian Sea from 1982 to 2010 using
a high-resolution regional ocean model and attributes about
75 % of ventilation decreases over this period to vertical mix-
ing changes and only 25 % to advective changes. We note that
the compensation between the effects of export and stratifi-
cation changes may in fact be key to allowing the mixture
model to perform well in this region.

Further work, including, for example, a full oxygen budget
analysis or Lagrangian particle tracking, would be required
to better disentangle the effects of marginal sea shoaling and
increased stratification in the projections of Arabian Sea oxy-
gen for the ESMs used in this study; however, data for such
a study are not currently available. Based on these consid-
erations, the relative effects of marginal sea shoaling and
increased stratification in ESM projections of the northern
Arabian Sea remain largely uncertain. Ultimately though, the
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present study supports the conclusions of the recent review
by Lachkar et al. (2023): the Arabian Sea OMZ will be re-
shaped by changes in stratification and the Persian Gulf out-
flow driving deoxygenation in the northern subsurface layer,
while increased ventilation from the south drives oxygena-
tion of the deeper layers.

5 Conclusion

Oxygen minimum zones can be viewed as multiple con-
centric layers, like onions, with oxygen concentrations de-
creasing towards their core. Their response to deoxygenation
and global warming in Earth system models falls into three
regimes which are controlled by the mechanisms that ven-
tilate these different layers: the outer layers of the oxygen
minimum zone expand, the inner layers contract, and in be-
tween oxygen is redistributed, leading to near-zero changes
in volume but reshaping the spatial distribution of the inter-
mediate layers. We show that this contrast between inner-
layer oxygenation and outer-layer deoxygenation, which was
first identified in the Pacific Ocean (e.g., Gnanadesikan et al.,
2007; Busecke et al., 2022), applies to all tropical oxygen
minimum zones. However, the unique geometry and ventila-
tion pathways of the tropical Indian Ocean (bounded by con-
tinent to the north, Indonesian Throughflow, and marginal
seas) determine what layers of the oxygen minimum zone
experience contraction, redistribution, and expansion. The
Indian Ocean is characterized by a prominent oxygenation,
attributed to changes in the ventilation by the Indonesian
Throughflow, and consequently contraction and redistribu-
tion regimes that extend to a much larger range of oxygen
minimum zone layers than its Pacific counterpart. Further-
more, the rapid warming and shoaling of marginal sea out-
flows lead to localized deoxygenation in the inner layers of
the oxygen minimum zone of the northern Arabian Sea. We
identify the response of the Atlantic oxygen minimum zone
as also exhibiting regimes of contraction, redistribution, and
expansion, but further investigations are required to under-
stand the regional dynamics which produce a pronounced
contraction response in that basin.

Appendix A: Mixture model and extended optimum
multiparameter analysis

The mixture model used in this study is based on extended
optimum multiparameter (OMP) analysis (OMP; Karstensen
and Tomczak, 1998), which is a method of solving an overde-
termined linear mixture model that takes into account the
conversion of one tracer to another, generally by reminer-
alization. Detailed explanations of the OMP method can be
found in Tomczak and Large (1989) and Shrikumar et al.
(2022), but here we give a brief summary.

First, we define a set of N source water types with prop-
erties, p. Let e; be the values for property p and ith source
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water mass. Each sample in the evaluation region has a value
for each property, s},. The goal is to solve for the fraction of

ith source water type in each sample, xl.j . We can define the
objective function:

N
Ze’pxi] =slj,+€i,, (A1)
i=1

where e{, is a residual to minimize. Using user-defined

weights, W, to assign relative importance to each property,
the residual takes the form

&= Wp(3o(eh — o)l +rfAT = (h—np)), (A2

1

where we center the values for each property, efy with their
mean, (4. The user-defined weights play the role of normal-
izing across fields. We chose to set the weight for dissolved
oxygen and AOU at 2 % of the weight of potential tempera-
ture and salinity fields to account for the greater range of val-
ues in sources of dissolved oxygen. The results of the anal-
ysis are not sensitive to small changes in weight values. The
term rgAB allows for the conservation of two properties, A
and B, which are exchanged via remineralization. The cost
function is thus defined as the sum of residuals for every
property, p, as well as a mass conservation term ej,[ which
penalizes deviations from total mass fractions of unity for
each sample point.

Cl = () + 2 () (A3)
p

The pyOMPA implementation of this method allows for
a hard constraint on mass conservation rather than mini-
mizing a residual (Shrikumar et al., 2022). However, we do
not use this feature and thus recover the original method of
Karstensen and Tomczak (1998).

We note that the mixing model used in this study differs
in several ways from the traditional extended OMP. We solve
a “mixing triangle” of three source water types rather than
four as used in, for example, Tomczak (1981). Adding an
extra degree of freedom to track remineralization, we thus
have a total of 4 degrees of freedom. Typically, remineraliza-
tion is tracked as the conversion of oxygen to phosphate and
nitrate using Redfield ratios. Since we do not have access
to full nutrient fields for the ESM experiments used in this
study, we simply allow for the conversion of oxygen to AOU
with a ratio of —1. As constraints, we use potential temper-
ature, salinity, dissolved oxygen, AOU, and mass conserva-
tion. Since AOU is a function of dissolved oxygen, potential
temperature, and salinity, we have four unique constraints.
Thus, our mixture model is equivalent to a determined set of
linear equations rather than an overdetermined set (i.e., “mul-
tiparameter analysis” rather than “optimum multiparameter
analysis”; Tomczak, 1981; Tomczak and Large, 1989). How-
ever, since AOU must also be included in the calculation, we
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leverage the least-squares method used in solving the overde-
termined problem.
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