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ABSTRACT

Quasi electrostatic fluctuations in the upper-hybrid frequency range are commonly detected in the planetary magnetospheric environment.
The origin of such phenomena may relate to the instability driven by a loss-cone feature associated with the electrons populating the
dipole-like magnetic field. The present paper carries out a one-dimensional electrostatic particle-in-cell simulation accompanied by a reduced
quasilinear kinetic theoretical analysis to investigate the dynamics of the upper-hybrid mode instability driven by an initial ring electron dis-
tribution function, which is a form of loss-cone distribution. A favorable comparison is found between the two approaches, which shows that
the reduced quasilinear theory, which is grounded in the concept of a model of the particle distribution function that is assumed to maintain
a fixed mathematical form except that the macroscopic parameters that define the distribution are allowed to evolve in time, can be an effec-
tive tool in the study of plasma instabilities, especially if it is guided by and validated against the more rigorous simulation result.

Published under an exclusive license by AIP Publishing. https://doi.org/10.1063/5.0151710

I. INTRODUCTION

Planetary magnetosphere is replete with quasi-electrostatic fluc-
tuations in the upper-hybrid frequency range. Earth’s magnetosphere,
including the radiation belt and the ring current region, shows that
such high-frequency fluctuations are pervasively detected during the
quiet time condition.1–8 These fluctuations are sometimes accompa-
nied by emissions in the multiple harmonic electron cyclotron fre-
quencies, which are interpreted as Bernstein modes.9 In addition to
the magnetospheric examples, early laboratory experiments as well as
certain type of solar radio emissions have been interpreted in terms of
the Bernstein modes and related instabilities.10–20 The fluctuations in
the upper-hybrid frequency range, especially if they are accompanied
by multiple-harmonic cyclotron emissions, naturally lend themselves
to theoretical interpretation based upon the notion of spontaneous
emission in magnetized plasmas.21–31 This is because in thermal plas-
mas, fluctuations ranging from all frequencies and wave numbers are
spontaneously emitted, which includes plasma eigenmodes and non-
eigenmodes, although the emissions are enhanced in the vicinity of
eigenmodes. As such, multiple-harmonic Bernstein modes are all
spontaneously emitted in thermal plasmas.

On the other hand, fluctuations with peak intensity located in
the close vicinity of upper-hybrid frequency may be associated with
the collective mode excitation, that is, instability. This is because the

instability is dictated by resonant wave-particle interaction, which when
coupled with the unstable feature associated with the electron distribu-
tion, places limitations on the frequency range of the wave excitation.
For instance, let us consider the weakly-relativistic cyclotron resonance
condition for perpendicular propagation, cx� nXe � ½1þ v2=ð2c2Þ�x
�nXe ¼ 0, where x is the wave angular frequency, Xe ¼ eB0=mec is
the electron cyclotron frequency, with e, B0, me, and c being the unit
electric charge, ambient magnetic field intensity, the electron rest
mass, and the speed of light in vacuo, and n is an integer. Then, the
resonance condition is given by v2 ¼ 2c2ðnXe=x� 1Þ. This repre-
sents a circle in velocity space, provided x < nXe. Suppose also that
the free energy source for the instability resides with the inverted pop-
ulation in perpendicular velocity space, @f =@v? > 0, over a certain
range of perpendicular velocity space, where f represents the electron
velocity space distribution function. The resonance circle and the
range of velocity space over which @f =@v? > 0 takes place must be
matched for the wave excitation, and since not all possible n satisfies
such a favorable condition, the wave emission will necessarily be
restricted to a narrow range. Energetic electrons populating the mag-
netosphere are subject to the field-aligned inhomogeneity, as
they travel back and forth along the dipole-like magnetic field.
Consequently, the natural state of the velocity distribution function
may contain the loss-cone feature, which is a consequence of the
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magnetic mirror effect. Such a loss-cone distribution naturally pro-
vides the condition for an instability.

The ring distribution function is a form of loss-cone distribution.
It is known that the ring or more generally, the loss-cone distribution,
is unstable to the excitation of upper-hybrid mode instabil-
ity.10,12–18,20,32–38 However, linear theory is limited in that it cannot
predict the nonlinear state of the instability. Consequently, to under-
stand the nonlinear behavior, numerical simulations of instabilities
excited in a plasma with thermal ring electron distribution have been
carried out.39–50 These include particle-in-cell (PIC) or Vlasov simula-
tions performed under the assumption of one- or two-dimensional
systems, with electrostatic or electromagnetic formalism, and for uni-
form as well as for inhomogeneous medium. However, in the simplify-
ing limit of electrostatic upper-hybrid mode instability propagating in
exactly perpendicular direction with respect to the ambient magnetic
field, it is possible to carry out a quasilinear kinetic theoretical analysis
in addition to the linear theoretical calculation, which can be com-
pared against the PIC simulation. Indeed, Ref. 53 performed such an
analysis, where the linear theory of upper-hybrid mode instability is
worked out under the assumption of an initial Dory-Guest-Harris
(DGH) model distribution35 for energetic but tenuous electrons.
Reference 53 also formulated a quasilinear theory and made a direct
comparison against one-dimensional (1D) PIC simulation.

The purpose of this paper is to revisit Ref. 53. The type of quasi-
linear theory employed in Ref. 53 is a reduced theory in that, instead
of directly solving for the velocity-space diffusion equation, the mathe-
matical form of distribution function is assumed to be invariant except
that the underlying parameters are allowed to change in time. This
type of forced self-similar quasilinear theory has been used extensively
for bi-Maxwellian distributions of electrons, protons, and alpha-
particles, with applications in the context of the solar wind
research.54–63 Upon comparisons with PIC code simulations, the bi-
Maxwellian based reduced quasilinear theory was found to be in rea-
sonable agreement. Reference 53 attempted to apply the similar
scheme to the DGHmodel and the ensuing Bernstein mode instability.
However, the DGH model adopted in Ref. 53 turned out to be some-
what restrictive in that the comparison with the simulation revealed
only a qualitative convergence.

In the DGHmodel, the loss-cone feature is implemented by mul-
tiplying a polynomial velocity factor to the Maxwellian perpendicular
distribution, fDGH / v2l? exp ð�mev2?=2TÞ, where T denotes the veloc-
ity dispersion (or “temperature”). In the DGH model, the index
l ¼ 0; 1; 2;… represents discrete positive integers, which are not
smoothly varying. As such, the continuous time variation of ring speed
is difficult to model within the context of DGH distribution. For this
reason, Ref. 53 only allowed the thermal spread to vary in time
while considering the l value as fixed. To address this shortcoming, we
revisit the same problem by adopting the ring model instead,
fring / exp ½�meðv? � v0Þ2=2T�, for which, both the ring speed v0
and the perpendicular “temperature” associated with the ring distribu-
tion, T, can be treated as smoothly-varying functions of time. In order
to accurately model the dynamics of upper-hybrid instability and its
feedback on the ring distribution, we first carry out the 1D electrostatic
(ES) PIC simulation, which will be used as a guide for theoretical
modeling of quasilinear dynamics. The PIC code is the standard
KEMPO, originally developed by one of the present authors.64 In the
remainder of this paper, we systematically discuss the present findings.

The organization of the present paper is as follows: In Sec. II, we
discuss the linear theory of upper-hybrid/Bernstein mode instability.
Section III discusses the 1D ES PIC code simulation, whose outcome
provides the guideline for the subsequent quasilinear modeling, which
is presented in Sec. IV. Section V summarizes and concludes the pre-
sent paper and also discusses the ramification of the present paper.

II. UPPER-HYBRID MODE INSTABILITY DRIVEN
BY A RING ELECTRON DISTRIBUTION

In the present analysis, we assume that all perturbations propa-
gate in a direction exactly perpendicular to the ambient magnetic
field. We also assume that electrostatic interaction is dominant.
Under non-relativistic treatment, resonant wave-particle interaction
is absent for perpendicular propagation. We assume (weakly) rela-
tivistic formalism in the growth rate calculation. The protons are
treated as a neutralizing background. An isotropic Maxwellian core
electrons support the waves, while tenuous but energetic electrons
possessing a ring feature excite the instability. In the computation of
the dispersion relation, we resort to the non-relativistic formalism.
The weakly relativistic correction to the wave-particle resonance
condition is implemented only in the growth rate expression. We
resort to the (weakly) relativistic wave-particle resonance condition
because the non-relativistic formalism does not lead to the resonant
instability. Thus, the real frequency is determined from the non-
relativistic dispersion relation,9,32

0 ¼ 1þ
x2

pe

k2?

X1
n¼�1

nXe

x� nXe

ð
dv

J2nðb?Þ
v?

@f0
@v?

; (1)

where xpe ¼ ð4pn0e2=mÞ1=2 is the plasma frequency, b? ¼ k?v?=Xe,
and f0ðvÞ ¼ ð2pa20Þ

�3=2 exp ½�v2=ð2a20Þ� represents the thermal back-
ground electron velocity distribution function. Here, n0 denotes the
ambient plasma density, and Jn stands for the Bessel function of the
first kind of order n. The background electron thermal speed is defined
by a0 ¼ T0=me, where T0 designates the electron temperature (given
in terms of the unit of energy, hence, Boltzmann constant is absent).
Making use of the background distribution f0 and carrying out the
velocity integral, one obtains the familiar dispersion relation that sup-
ports the Bernstein waves,9,32

0 ¼ �rðk?;xrÞ ¼ 1þ
x2

pe

X2
ek

1� K0ðkÞ �
X1
n¼1

2x2
rKnðkÞ

x2
r � n2X2

e

 !
; (2)

where k ¼ k2?a
2
0=X

2
e ; KnðkÞ ¼ InðkÞe�k, and InðkÞ represents the

modified Bessel function of the first kind of order n.
As noted, in computing for the real frequency xr via Eq. (2), we

do not consider the relativistic effects, but in the growth rate expres-
sion, xi (imaginary part of the complex frequency), we retain the
weakly relativistic effects in the resonance condition,16

xi ¼
nh
n0

p
R

x2
pe

k2?

ð
dv
X1

n¼�1
J2n

k?v?
Xe

� �
d

v2

2c2
�nXe�xr

xr

� �
1
v?

@fh
@v?

;

R¼ @�rðk?;xrÞ
@xr

¼
X1
n¼1

4n2KnðkÞ
k

xrx2
pe

ðx2
r �n2X2

eÞ
2 ;

(3)

where nh denotes the “hot” electron density, whose velocity distribu-
tion function fh is given by the “ring” model,
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fh ¼
1

ð2pÞ3=2A0a2?ak
exp �ðv? � v0Þ2

2a2?
�

v2k
2a2k

 !
;

A0 ¼ 2
Ð1
0 dxx exp � x � v0ffiffiffi

2
p

a?

� �2
" #

:

(4)

Note that the normalization constant A0 can further be manipulated
in terms of the error function, specifically A0 ¼ exp ð�x20Þ þ x0

ffiffiffi
p

p
½1

þerfðx0Þ�, where x0 ¼ v0=
ffiffiffi
2

p
a? and erfðxÞ is the error function, but

in the later numerical growth rate computation we encounter a class
of similar x integrals, which we choose to evaluate numerically. Thus,
for the sake of numerical consistency, we retain the integral form of
A0. Note also that, without the relativistic correction (that is, if we let
v2=c2 ! 0), the resonant delta function condition does not involve
the velocity; hence, the problem becomes ill-defined. This shows that
for non-relativistic Bernstein mode instabilities driven by a ring elec-
tron distribution one cannot approach the problem from the perspec-
tive of resonant instability. Instead, the non-relativistic Bernstein
mode instability requires the formulation that takes into account of
the complex angular frequency x such that both the real and imagi-
nary parts of x are to be solved from the transcendental dispersion
relation. In fact, an early Ref. 11 has considered just such an instability
by taking the electron distribution function to have a delta-function
ring feature, feðv?Þ / dðv? � v?0Þ, and demonstrated that the reac-
tive type of Bernstein mode instability takes place when the two adja-
cent cyclotron harmonic modes merge to form a complex conjugate
pair. Recently, Refs. 45 and 46 have numerically simulated such an
instability. One final note before moving on relates to an early Ref. 16,
who also discussed the relativistic effect associated with the resonant
Bernstein mode instability. While in the present discussion we restrict
ourselves to the strictly perpendicular propagation and have approxi-
mated the Lorentz factor by c � 1þ v2=2c2, under the weakly relativ-
istic approximation, Ref. 16 considered an arbitrary angle of
propagation, including finite kk. However, they note that for small kk,
the cyclotron resonance condition amounts to a circle in momentum
space, which is equivalent to the present situation.

Upon inserting the hot ring distribution fh to the growth rate
expression, after some manipulations that include the use of delta func-
tion resonance condition to eliminate the vk integral, one arrives at

xi ¼ � nh
n0

2p1=2

A0R

x2
pe

k2?

c2

a3?ak

X1
n¼1

HðnXe � xrÞ

�
ðx�
0
dx

x � x0ð ÞJ2n bxð Þffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x2� � x2

p
�exp � x � x0ð Þ2 �

a2?
a2k

ðx2� � x2Þ
" #

;

x2� ¼
c2

a2?

nXe � xr

xr
; x0 ¼

v0ffiffiffi
2

p
a?

; b ¼
ffiffiffi
2

p
k?a?
Xe

;

(5)

where HðxÞ is the Heaviside step function, HðxÞ ¼ 1 for x> 0, and
zero otherwise.

In the present study, we consider the following input parameters:

a0
c
¼ 0:025 ¼ a?

c
¼

ak
c
;

v0
a0

¼ 10;
xpe

Xe
¼ 10;

nh
n0

¼ 4
104

: (6)

Figure 1 plots the normalized real frequency xr=Xe (in red) and nor-
malized growth rate xi=Xe [�4] — that is, the growth rate multiplied
by a factor of four — vs normalized wave number k?a0=Xe. We have
solved the cyclotron harmonics up to n¼ 20, and computed the
growth rate for each mode. In plotting the growth rate for each har-
monic, we upshifted the vertical position for each harmonic mode
growth rate according to the corresponding real frequency so that the
real frequency and its growth rate can easily be paired with. Note that
we have numbered the harmonic modes, n¼ 1, 2, 3, etc. When the
growth rate turns negative (damping) we do not plot its value to avoid
cluttering. Hence, we only plot the positive part of xi. This procedure
aids the visualization, but in the subsequent quasilinear wave analysis,
we allow each harmonic mode to freely absorb the wave energy when
xi becomes negative. As Fig. 1 indicates, the highest growth takes place
at n¼ 10 harmonic, which corresponds to the upper-hybrid frequency
range. The next higher mode, n¼ 11, also has some growth rate asso-
ciated with it, as do all lower harmonics, n � 9, albeit, their growth
rates are extremely low when compared with the leading mode n¼ 10.
We found that all modes higher than n¼ 12 are stable.

We have formulated a reduced quasilinear kinetic theory to
investigate the dynamics of upper-hybrid instability beyond linear
stage. The method involves making an assumption about the mathe-
matical form of the hot electron distribution as a function of time. At
t¼ 0, the hot electrons are, of course, distributed according to the ring
model, (4), but subsequent time evolution is difficult to predict a pri-
ori. In general, we expect that the positive gradient along v? direction,
which provides the free energy source for the instability, will be

FIG. 1. The real frequency (dispersion relation) plotted in red, and growth rate for
each harmonic (multiplied by a factor of 4 and upshifted vertically by adding the cor-
responding real frequency), vs the normalized wave number.
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diminished as the instability is excited, but the precise details of how
such a process will take place is non-trivial. This contrasts with trans-
verse instabilities excited in a bi-Maxwellian plasma. For transverse
modes involving the cyclotron resonance condition, the dominant
effect is known to be the pitch-angle diffusion, which generally pre-
serves the bi-Maxwellian nature of the underlying plasma distribu-
tion. As such, the assumption of bi-Maxwellian form of particle
distribution for all times is generally proven to be quite accurate when
compared against the simulations.54–63 However, for the ring, or
more generally, the loss-cone distribution, the situation is more sub-
tle. In an earlier work,53 we assumed that the initial form of DGH
model, fh / v2l? exp ð�mev2?=2T?Þ remained invariant except that T?
was allowed to changeover time. Under such an assumption, the ring
speed is forced to remain largely invariant but only the velocity spread
in v? direction is allowed to increase in time. However, as already
noted, such an approach did not produce a completely satisfactory
comparison. In order to aid the theoretical modeling, we, thus, turn
to the PIC simulation, which is discussed next. As it will be shown,
the PIC simulation indicates that not only the thermal spread
increases in time, but also, the ring speed undergoes a gradual reduc-
tion as the instability is excited and saturated. Thus, the theoretical
modeling of the time-dependent distribution will be guided by such a
result. Before we discuss the details of reduced quasilinear theory, let
us discuss the simulation result.

III. SIMULATION OF UPPER-HYBRID MODE
INSTABILITY

The present simulation is based on KEMPO code.64 As the
theory assumes 1D electrostatic (ES) situation, we also implement
the 1D ES version of the KEMPO code (although the code is avail-
able in 2D as well as in EM versions). In this code, we use periodic
boundary conditions for all physical quantities. Particles are
advanced in time by the Boris algorithm, and the electrostatic field
is calculated from the Poisson equation. The charge density and
electric field are weighed to and from the grid by a linear first order
weighting method. The ambient magnetic field lies perpendicular
to the simulation axis.

Figure 2 displays the wave energy density vs time computed from
the simulation. It is seen that the electrostatic wave energy density
grows from the initial noise level rather rapidly, within a short time
span of Xet � 0:2, until it reaches a plateau, and subsequently, the
intensity steadily rises until it reach a maximum value around
Xet � 10, beyond which, the wave energy slowly decays until the end
of the simulation run. One may check that the initial growth rate is
consistent with the theory. The highest growth rate associated with
n¼ 10 mode around k?a0=Xe � 1:5, shown in Fig. 1, turns out to be
cmax=Xe � 2:25 or so. If we take the initial level of electrostatic wave
energy to be I0 � 1� 10�1 or so, then according to Fig. 2 we
find, upon a visual inspection, that the intensity has amplified to
I � 3� 10�1 within a short time span of Xet � 0:2. From this, it is a
simple math to see that ln ðI=I0Þ � Oð1Þ or so, which is roughly in
agreement with the exponential growth factor 2cmaxDt � Oð0:9Þ, if
we chooseDt � 0:2. The gradual reduction of the wave energy beyond
the peak intensity can be interpreted as the result of electrons slowly
reabsorbing the wave energy. Later, we will take the snapshots of elec-
tron distribution function at intervals corresponding to Xet ¼ 6,
which represents the growth phase of wave intensity; to Xet ¼ 10,

which is at the point when the wave intensity reaches its peak; to
Xet ¼ 16, which is close to the end of the simulation shown in Fig. 2;
and to Xet ¼ 20.

In Fig. 3, we display the dynamic spectrum of wave energy den-
sity as a function of wave number and time. It is seen that the highest
wave growth takes place slightly below k?a0=Xe � 1:5 or so, but
some adjacent modes are also seen to have weak wave intensities. The
mode corresponding to k?a0=Xe � 1:5 is associated with the upper-
hybrid frequency, which can be confirmed upon comparison with the
theoretical dispersion relation shown in Fig. 1, but we must also
emphasize that the agreement is somewhat qualitative rather than
exact, since the theory predicts k?a0=Xe � 1:5 while the simulation
shows somewhat broader range, with the peak around k?a0=Xe

� 1:25 at Xet � 10, but shifting more close to k?a0=Xe � 1:5 at later
times. The exact cause of such a minor discrepancy is not known at

FIG. 2. Electrostatic wave energy density vs time. The normalization is arbitrary. It
is seen that the wave energy density exponentially grows from its initial noise, satu-
rates, and undergoes gradual reduction in intensity beyond the saturation stage.

FIG. 3. Dynamic spectrum showing the wave spectrum in k space evolving over
time. Note that the highest wave growth takes place around k?a0=Xe � 1:5 or so,
with some adjacent modes also showing weak wave intensities.
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this time, but this could be related to some unspecified nonlinear
effects. We note that the time period centered around Xet � 10 is
already beyond the linear growth stage. We also note that the simu-
lated dynamic spectrum features a broad range of low-intensity noise-
like background. Such a signature might indicate certain nonlinear
processes, or perhaps, they indicate the weak growths associated with
multiple harmonic modes as shown in Fig. 1—recall that according to
Fig. 1, all harmonics lower than n¼ 11 have some weak growth rates.

To further confirm that the peak intensity near k?a0=Xe � 1:5 is
indeed the upper-hybrid mode, or n¼ 10 mode, as following the con-
vention in Fig. 1, we plot in Fig. 4, the simulated frequency-wave num-
ber spectrum. We have also superposed the theoretical dispersion
relation on top of the simulated spectrum. As one may appreciate, the
peak wave growth coincides with the upper-hybrid mode which,
according to the linear theory, has the highest initial growth rate. This
confirms that the simulation result is consistent with the linear theo-
retical prediction.

Our purpose is not simply to confirm the linear theory by PIC
simulation but also to formulate an efficient quasilinear theory by
modeling a time-dependent particle distribution function. For this
goal, the snapshot of electron distribution function at selected intervals
would serve the purpose. Thus, in Fig. 5, we plot the perpendicular
electron velocity distribution function at four different intervals indi-
cated in Fig. 2. These are, as noted already, Xet ¼ 6 (the wave growth
phase), Xet ¼ 10 (quasi saturation phase when the wave intensity has
reached its peak), and Xet ¼ 16 (near the end of the simulation run),
and one last stage at Xet ¼ 20. For each panel, we also plot the initial
ring distribution to facilitate the visual comparison. From Fig. 5, one
may discern that the temporal evolution of the perpendicular velocity

FIG. 4. Simulated frequency-wave number spectrum and theoretical dispersion
relation superposed on top of the simulated spectrum.

FIG. 5. Snapshots of perpendicular elec-
tron velocity distribution function at three
four intervals indicated in the text, namely,
Xet ¼ 6, 10, 16, and 20.
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distribution function involves concomitant reduction of the ring speed
v0 as well as an increase in thermal spread a?. With such useful pieces
of information, we next formulate a reduced quasilinear kinetic theory.
As mentioned earlier, with the DGH model adopted in Ref. 53, the
reduction of ring speed is difficult to model, as the effective ring speed
in the DGH model is fixed by the term v2l?, with integer l. For this rea-
son, Ref. 53 only modeled the increasing thermal spread feature associ-
ated with the DGH model. In contrast, the present ring model is more
flexible in this regard. The dynamical progression of the ring speed v0
and perpendicular thermal spread a? will be determined from the
quasilinear theory, which is discussed next. One final comment before
moving on is that the present PIC simulation shows that parallel veloc-
ity distribution function remains largely invariant (the plot of parallel
velocity distribution is not shown). As it will be shown, this is consis-
tent with the quasilinear theory.

IV. QUASILINEAR KINETIC THEORY
FOR TIME-DEPENDENT RING DISTRIBUTION

In formulating and solving for the quasilinear kinetic theory, we
assume that the hot electron distribution function is given by the same
mathematical form as specified in Eq. (4), except that v0 and a? evolve
in time. This model is guided by the simulation result, which is dis-
cussed in relation to Fig. 5. The precise description of how these two
quantities evolve is dictated by the quasilinear kinetic theory. The par-
ticle kinetic equation that governs the time evolution of hot electron
distribution function, under the approximation of weakly relativistic
wave-particle resonance, and for exactly perpendicular propagation of
electrostatic modes, is given by51–53

@fh
@t

¼ 2p2e2

m2
e

X1
n¼�1

ð1
0

dk?k?
xr

nXe

v?

@

@v?
J2n

k?v?
Xe

� �
Wðk?Þd

� v2

2c2
� nXe � xr

xr

� �
nXe

v?

@fh
@v?

: (7)

Here, Wðk?Þ represents the spectral wave energy density for the elec-
trostatic mode, which satisfies the wave kinetic equation. The quantity
Wðk?Þ is a combination of individual harmonic modes, Wðk?Þ
¼
P1

n¼�1 Wnðk?Þ, with each harmonic component satisfying the
wave equation, @Wnðk?Þ=@t ¼ 2xn

i ðk?ÞWnðk?Þ, where xn
i ðk?Þ

denotes the n-th harmonic mode growth rate—see Fig. 1. Note that
Ref. 52 considered a similar problem as compared to the present paper
in that Ref. 52 employed the quasilinear theory to analyze the upper-
hybrid mode instability, but unlike our approach (to be discussed
below) the author of Ref. 52 sought an analytical solution to the diffu-
sion equation by considering an approximate form of Bessel function.

It is straightforward to show that the parallel temperature is
invariant, which can be seen by taking the second parallel velocity
moment of Eq. (7), ð

dv v2k
@fh
@t

¼ 0: (8)

Consequently, the parallel thermal spread ak should remain constant
in time. This conforms with PIC simulation, which we have already
discussed.

In what follows, we assume that fh is given by the form (4) but v0
and a? evolve in time. This model is guided by the simulated perpen-
dicular velocity distribution function shown in Fig. 5, and such a

model also differs from the assumed time-dependent DGH model
considered in Ref. 53, where only the thermal spread was allowed
change in time. For the purpose of deriving the evolution equations
for v0 and a?, it is sufficient to consider the first and second perpen-
dicular velocity moments of Eq. (7),

@

@t

ð
dv

v?
v2?

 !
fh ¼ � 2p2e2

m2
e

X1
n¼�1

n2X2
e

ð1
0

dk?k?
xr

Wðk?Þ

�
ð
dvJ2n

k?v?
Xe

� �
1

2v?

 !

� d
v2

2c2
� nXe � xr

nX

� �
1
v2?

@fh
@v?

: (9)

The left-hand side of Eq. (9) can be evaluated as follows upon making
an explicit use of model distribution (4),

@

@t

ð
dvv?fh ¼

A1

A0
� x0

A0A2 � A2
1

A2
0

 !
da?
dt

þ
ffiffiffi
2

p
ðA0A2 � A2

1Þ
A2
0

dv0
dt

;

@

@t

ð
dvv2?fh ¼ a?

2A2

A0
� x0

A0A3 � A1A2

A2
0

� �
da?
dt

"

þ
ffiffiffi
2

p
ðA0A3 � A1A2Þ

A2
0

dv0
dt

#
;

An ¼ 2
ð1
0
dxxnþ1 exp � x � x0ð Þ2

h i
; x0 ¼

v0ffiffiffi
2

p
a?

:

(10)

The right-hand side of Eq. (9) can be evaluated in the same man-
ner as in the derivation of growth rate (5). Upon carrying out
the detailed manipulations and rearranging the resultant expressions,
we arrive at the following dynamic equations for the two quantities v0
and a?,

dv0
dt

¼ N 1

D
C1 �

N 2

D
C2;

da?
dt

¼ �M 1

D
C1 þ

M 2

D
C2;

N 1 ¼
ffiffiffi
2

p
A0A2 � ðA0A3 � A1A2Þ

v0
a?

;

N 2 ¼ A0A1 �
ffiffiffi
2

p
ðA0A2 � A2

1Þ
v0
a?

;

M 1 ¼ A0A3 � A1A2; M 2 ¼
ffiffiffi
2

p
ðA0A2 � A2

1Þ;
D ¼ 2A1A2

2 � A1ðA0A3 þ A1A2Þ;

(11)

where

C1

C2

 !
¼ 8p3=2e2c2

m2
ea

2
?

ð1
0

dk?k?
xr

Wðk?Þ

�
X1
n¼1

HðnXe�xrÞn2X2
e

ðx�
0
dx

x�x0
x
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x2� �x2

p
�

1ffiffiffi
2

p
x

 !
J2n bxð Þexp � x�x0ð Þ2�

a2?
a2k

ðx2� �x2Þ
" #

: (12)

Here, the quantities x0, b, and x� are defined exactly as in Eq. (5).
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Before moving on, it is appropriate to make a little digression. We
should note that while the purpose of the present choice of perpendicu-
lar ring electron distribution, fring / exp ½�ðv? � v0Þ2=a2?�, is to rectify
the shortcoming of the DGH model, fDGH / v2l? exp ð�v2?=a

2
?Þ, in that

the integer l value is not flexible enough to model the time-dependence
of both the thermal spread and the peak perpendicular velocity, it would
also have been possible to resolve the issue by simply relaxing the integer
l to a real value. Indeed, such a model is known as the chi-distribution,
fchiðv?Þ ¼ Nvk�1

? exp ð�v2?=a
2
?Þ, where k is a continuous parameter

and the normalization constant is given by N�1 ¼ pakþ1C½ðkþ 1Þ=
2�—this follows from the requirement, 1 ¼ 2pN

Ð1
0 dv?v?fchiðv?Þ.

Obviously, k¼ 1 corresponds to the thermal distribution, and the
choice of k ¼ 2l þ 1 leads to the DGH model. One could take the
second and fourth velocity moments of the distribution, hv2?i
¼ 2p

Ð1
0 dv?v2?fchiðv?Þ ¼ ðkþ 3Þa2?=2 and hv4?i ¼ 2p

Ð1
0 dv?v4?

�fchiðv?Þ ¼ ðkþ 3Þðkþ 5Þa4?=4, from which we may extricate the
evolution equations for a? and k in the same manner as in Eq. (11).
Obviously, this alternative choice (which was suggested by an anony-
mous reviewer) is beyond the scope of the present paper, but it is cer-
tainly possible to employ the chi distribution both in the PIC simulation
and the reduced quasilinear analysis. However, such a task constitutes
an entirely separate effort, and in the remainder of the present article,
we return to the quasilinear analysis based upon the ring model.

Figure 6 displays the result of quasilinear analysis. The top panel
plots the normalized ring speed, v0=c, the middle panel corresponds to
the thermal spread associated with the hot ring electrons, a?=c, and
the bottom panel shows the electrostatic wave energy density,Ð
dk?k?Wðk?Þ, vs dimensionless time, Xet. We also indicate the time

intervals, t¼ 0 (the initial time), middle of the wave growth phase,
which we choose to be Xet ¼ 3:5, quasi-saturation phase, which we
designate as Xet ¼ 10, and the time at which the wave intensity
undergoes a reduction, which we chose as Xet ¼ 16, and the final
time Xet ¼ 20. These intervals are marked by vertical lines. Based on
the instantaneous values of v0 and a? at these time periods, we may
construct the instantaneous perpendicular velocity distribution func-
tion by substituting these values to the model equation (4), which will
be shown later.

In Fig. 7, we plot the dynamic spectrum computed on the basis of
present simplified quasilinear analysis. This result compares rather well
with the simulated dynamic spectrum shown in Fig. 3. The narrow
spectrum corresponds to the most unstable mode n¼ 10 (see Fig. 1).
At some later time, around Xet ¼ 10 or so, the next higher harmonic
mode n¼ 11 also begins to be generated. In the simulation, the spec-
trum surrounding the most intense region of wave numbers is some-
what broader than the quasilinear calculation, and the exact wave
number corresponding to the peak wave growth is slightly less than
ka0=Xe ¼ 1:5, as noted already. In spite of such small discrepancies,
the overall comparison is quite reasonable.

Finally, instantaneous perpendicular velocity distribution func-
tion is displayed in Fig. 8. The four time steps besides the initial state,
t¼ 0, namely, Xet ¼ 3:5; Xet ¼ 10; Xet ¼ 16, and Xet ¼ 20, which
correspond to the wave growth period, quasi saturation stage, the stage
when the wave intensity suffers gradual reduction, and the final com-
putational time, are chosen. The snapshots of ring distribution at these
intervals are reconstructed from the instantaneous values of v0 and a?
at each time step. The overall profile of the perpendicular velocity dis-
tribution function at each time step is qualitatively similar to the

FIG. 6. Time evolution of the ring speed (top), thermal spread (middle), and the
electrostatic wave energy density (bottom). Vertical lines mark the time intervals,
which will be used to reconstruct the snapshots of velocity distribution functions.

FIG. 7. Dynamic spectrum computed on the basis of reduced quasilinear theory.
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simulated electron distribution shown in Fig. 5. Although admittedly,
the particle distribution computed from the simulation is not exactly the
ring form, the overall sense of reduction in the ring speed and thermal
spread along perpendicular velocity space are captured by the reduced
quasilinear model. That the present reduced quasilinear theory is capable
of reproducing the simulation result, at least in a qualitative sense despite
the fact that the model electron distribution does not exactly describe the
true time evolution of the velocity distribution, is in and of itself, quite
remarkable. This finding points to the overall validity of the present
methodology, which could have a wider ramification.

V. SUMMARY, CONCLUSION, AND DISCUSSION

In the present paper, we have carried out a comparative study of
upper-hybrid instability driven by an initial ring electron distribution,
by employing an approximate quasilinear analysis, guided by the PIC
simulation. The type of quasilinear theory employed in the present
study assumes that the particle distribution function can be modeled
by an analytical time-dependent form. Such modeling must be done
carefully to reflect the actual physics. In the context of solar wind
research, the time-dependent bi-Maxwellian distribution has been
quite successfully used for various temperature anisotropy-driven
instabilities.54–63 The reason for such a success, especially if the exces-
sive temperature anisotropy is in the perpendicular direction, is
because the temperature anisotropy-driven instabilities are of the
transverse type, for which the cyclotron resonance translates to the
pitch-angle diffusion in velocity space. The end result is that the bi-
Maxwellian nature of the underlying particle distribution is approxi-
mately preserved while the temperature anisotropy is being reduced.
However, in the present case of an initial ring, or more generally, the
loss-cone instability, the time evolution of the electron distribution is
not trivial to predict a priori. In order to guide the theoretical model-
ing, we have, thus, first carried out a one-dimensional electrostatic (1D
ES) particle-in-cell (PIC) code simulation. Guided by the results of
simulation, we have subsequently modeled the time-dependent hot
electron distribution by the same ring form, except that the ring speed

v0 and thermal spread a? are allowed to vary in time. Upon verifying
the result of such a reduced quasilinear theory against the PIC simula-
tion, it is found that the quasilinear method quite reasonably reprodu-
ces the simulation result.

The significance of the present paper is that a similar type of qua-
silinear analysis may be extended to other types of plasma instabilities.
As noted, this type of reduced quasilinear, sometimes called the veloc-
ity moment-based quasilinear theory (since one takes a finite number
of velocity moments of the particle kinetic equation to extract the
dynamic equations for time-dependent parameters), or macroscopic
quasilinear theory (since the procedure of deriving the dynamic equa-
tions for the time-dependent parameters is analogous to formulating a
macroscopic fluid theory from a kinetic equation), has thus far been
quite extensively applied for the temperature anisotropy instabilities
driven by bi-Maxwellian form of particle distributions. However, other
types of plasma instabilities driven by different forms of particle distri-
butions may also be treated with this type of analysis. The present ring
electron distribution and upper-hybrid instability is one such example.

Before we close, we note that the present paper is largely moti-
vated by quasi electrostatic fluctuations in the upper-hybrid frequency
range pervasively detected in the terrestrial or planetary magneto-
sphere, which is presumably excited by the electron ring distribution,
which is a form of loss-cone. However, the occurrence of ring or non
gyrotropic ring (also known as the agyrotropic crescent) electron dis-
tribution can take place in other physical situations. For instance, such
a distribution of electrons have been seen in numerical simulations of
magnetic reconnection exhausts, e.g., Refs. 65 and 66. Such electron
distributions are detected by Magnetospheric Multi-Scale (MMS)
spacecraft close to the electron diffusion region, which are accompa-
nied by intense high-frequency upper-hybrid fluctuations.67,68 This
broadens the relevance of the present methodology to situations
beyond the magnetospheric applications.
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