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ABSTRACT

This paper presents the derivation of a general wave dispersion relation for warm magnetized plasma under the two-fluid formalism. The dis-
cussion is quite general except for the assumption of low frequency and slow phase speed, for which the displacement current is negligible,
under the implicit assumption that the plasma is sufficiently dense to satisfy the condition xpe > xce, where xpe and xce denote the plasma
oscillation frequency and electron gyro frequency, respectively. The present discussion does not invoke charge neutrality associated with the
fluctuations although it is implicitly satisfied. The resulting dispersion relation that includes the fluid thermal effects shows that there are
three eigen modes, which include those corresponding to ideal MHD, namely, fast, slow, and kinetic Alfv�en waves, as well as higher-
frequency modes including the ion and electron cyclotron and lower-hybrid resonances. The fluid effects in the ideal MHD wave branches
are influenced by the finite Larmor radius scales, and when the wave number in the cross field direction is comparable to these values, the
fluid effects become significant. It is found that the Larmor radius should be interpreted in the sense as ion-acoustic gyro-radius instead of
ion thermal gyro radius only. That is, it is found that the electrons also contribute to the non-ideal effect associated with the kinetic Alfv�en
wave. A comprehensive explanation of the polarization of each mode is also presented. The present findings indicate that the polarity may
change its sign only for the kinetic Alfv�en mode branch and that such a transition is based on the propagation angle. When such a change
does take place, it is found that the kinetic Alfv�en wave transits to an ion-acoustic mode. For each branch, it is also found that the electric
field along the ambient magnetic field is purely transverse.

Published under an exclusive license by AIP Publishing. https://doi.org/10.1063/5.0149227

I. INTRODUCTION

Despite more than five decades of research, issues that relate to
the heating and acceleration of charged particles in space are not fully
resolved. Alfv�en waves are believed to be the one of the candidates for
particle acceleration and heating.1–5 In this regard, Hasegawa and
Chen6 suggested that linear Alfv�en wave with ion kinetic effects may
explain the particle acceleration along the auroral field lines. Later
Goertz and Boswell7 found that in typical space environment above
the auroral ionosphere, it is the electron inertial effect associated with
the Alfv�en wave, which can be more important than the kinetic correc-
tion that arises from finite ion pressure. Thus, kinetic effects on the
Alfv�en wave are manifested in two limits: one is the pressure-induced
“kinetic” Alfv�en wave,6 while the other is the electron inertia-induced
“inertial” Alfv�en wave. Hui and Seyler8 demonstrated by means of

numerical simulation that Alfv�en waves in the inertial scale with small
perpendicular (with respect to magnetic field) wavelength may lead to
an electron acceleration up to several keV energy, which is typical of
the auroral electrons. Alfv�en waves with small perpendicular wave-
length are observed in sounding rocket experiment9,10 and in Freja sat-
ellite mission.11,12 Alfv�en waves are also found and discussed in the
context of various environments of the space and solar system such as
in the planetary magnetospheres,13–18 cometary jets,19 solar radio
bursts,20 solar flares,21 and in the context of solar coronal heating.22

On account of the significance of parallel electric field in the par-
ticle energization, understanding the polarization of the Alfv�en wave
as it relates to the parallel E field (with respect to external magnetic
field) is important.23 In the literature, a number of discussions can be
found that attempt to address the various properties of kinetic Alfv�en
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waves (KAWs) within the framework of two-fluid plasma model. For
example, Wu24 and Chen and Wu25 discussed the two-fluid theory of
kinetic Alfv�en waves and showed that both ions and electrons affect
the pressure-driven as well as the inertia-driven corrections to the
standard Alfv�en waves. Their works, however, made simplifying
assumptions by ignoring terms of order me=mi (where me and mi are
electron and proton masses, respectively) in order to reduce the math-
ematical complexity. Historically, discussions of low-frequency waves
that include the thermal and inertia corrections within the warm two-
fluid theoretical framework go back to the pioneering work of
Stringer,26 who provided a comprehensive treatment of low-frequency
waves within the warm two-fluid theory, but the treatise is restricted
to low b (the ratio of thermal to magnetic pressure). Formisano and
Kennel27 subsequently extended the discussion to high b regime.
Along such a line of research, Bellan28 made further contribution by
formulating the two-fluid warm plasma wave analysis in an alternative
way. In the intervening years, Hollweg29 also made significant contri-
butions to the two-fluid plasma wave theory for low-frequency waves.
In this regard, one of the present authors also considered the property
of low-frequency waves from the perspective of the Hall-magnetohy-
drodynamics30—see also, Ref. 31, for a similar discussion.

Of course, all the above-cited works pertain to the macroscopic
description that lacks the wave–particle interactions, which requires
kinetic prescription.15,16,31–33 However, if one is to limit the discussion
within the framework of warm two-fluid theory despite the fact that
such a theory lacks wave damping effects, then a completely general
theoretical approach for the analysis of waves in a warm magnetized
two-fluid plasma can be found in the monumental work by
Goedbloed et al.34 By a brute force method, the authors of the above-
referenced monograph managed to obtain a completely general dis-
persion equation for warm two-fluid electron–proton plasma waves,
which includes not only the low-frequency but also high-frequency
waves, given as a sixth-order polynomial equation in x2, the square of
the angular frequency (or 12th-order equation in x). Their compli-
cated polynomial dispersion equation is specified by 19 coefficients

that are functions of xpe ¼ ð4pn0e2=meÞ1=2; xpi ¼ ð4pn0e2=miÞ1=2;
xce ¼ eB0=ðmecÞ; xci ¼ eB0=ðmicÞ; vthe ¼ ðceTe=meÞ1=2, and vthi
¼ ðciTi=miÞ1=2, where these are the electron and ion (proton) plasma
oscillation frequencies, the electron and ion (proton) cyclotron fre-
quencies, electron and ion (proton) fluid thermal speeds, in that order.
Here, e, me, mi, c, Te, Ti, n0, and B0 stand for the unit charge, electron
and proton masses, speed of light in vacuo, electron and ion fluid tem-
peratures (in the unit of energy), ambient density, and the ambient
magnetic field intensity, respectively. The quantities ce and ci denote
the ratios of specific heat, which are related to polytropic indices. Note
that a similar effort has also been carried out by Kakuwa.35 The general
dispersion relation found in Ref. 34 is continually being analyzed to
this day.36–38

Despite the availability of such a general result, because of the
fact that the result is so general, there have been attempts to re-derive,
as it were, a reduced form of warm two-fluid plasma dispersion rela-
tions restricted to the low-frequency modes, satisfying the condition
ck=x > 1. To reduce the general formalism to the low-frequency
regime, all one has to do is to ignore the displacement current in the
Maxwell’s equation. Of course, one must exercise caution when imple-
menting such an approximation. The slow-mode dispersion relation

that results from the procedure of ignoring the displacement current is
accurate only if the plasma is characterized by the condition that the
frequency ratio xpe=xce is sufficiently higher than unity. The subse-
quent analysis is implicitly applicable under such a condition. As a
matter of fact, the above-cited references24,25 appear to represent just
such an effort—although curiously, these works do not reference the
completely general treatise mentioned above.34 However, as noted,
Refs. 24 and 25 made a simplifying assumption of ignoring terms of
orderme=mi. A formalism that is directly relevant to the present paper
is the paper by Zhao et al.,39 who (re) derived the warm two-fluid
plasma dispersion relation in full generality, except that they ignored
the displacement current at the outset, thus restricting the discussion
to the low-frequency, or more accurately, the slow mode regime char-
acterized by the sub-luminal condition, ck > x. A similar discussion
can also be found in Ref. 40. In the derivation of Refs. 39 and 40, how-
ever, the authors made an assumption of quasi-neutrality as it relates
to the perturbed electron and ion density fluctuations. We find, how-
ever, that such an assumption is superfluous and that it is possible to
formulate the entire problem along the line of Refs. 34 and 35, except
for the fact that the simplifying assumption of ignoring the displace-
ment current is made.

The aim of this paper is, first, to revisit the work by Zhao et al.39

and Zhao40 and, second, to understand the polarization characteristics
of the low-frequency modes including the kinetic Alfv�en wave. The
organization of the present paper is as follows: In Sec. II, we discuss
the dispersion relation for warm two-fluid plasma under the assump-
tion of low frequency, or slow (ck > x) mode, and we also discuss the
polarization of the electric fields within the formalism of two-fluid
equation. In Sec. III, we restrict the discussion to the low-frequency
modes analogous to the MHD modes, namely, fast, kinetic Alfv�en,
and slow wave and discuss the corresponding branches in ideal MHD
limit. In Sec. IV, polarization properties associated with different
branches of the three modes are discussed in detail. In Sec. V, a brief
discussion on relation between low frequency, displacement current,
and charge neutrality is given and transverse properties of the parallel
electric field is shown. Finally, in Sec. VI, we briefly summarize the
present paper.

II. FULL TWO-FLUID DISPERSION RELATION FOR SLOW
WAVES

The present analysis starts from the two-fluid plasma equations,
which are given by

@na
@t

þr � navað Þ ¼ 0; (1a)

ma
@va
@t

þ va � rva

� �
¼ qa Eþ 1

c
va � B

� �
�rPa

na
; (1b)

@

@t
þ va � r

� �
Pa
nca

� �
¼ 0; (1c)

r� B� 1
c
@E
@t

¼ 4p
c

X
a

qanava; (1d)

r� E ¼ � 1
c
@B
@t

; (1e)

where a ¼ e; i denotes electrons and ions, respectively, with the corre-
sponding charge densities specified by qe ¼ �e, qi¼ e, respectively,
and ca ¼ ðN þ 2Þ=N , where N is degree of the freedom. Other
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quantities are standard, na; va; Pa denoting the fluid density, velocity,
and pressure, respectively, while E and B are electric and magnetic
field vectors, respectively. We separate all physical quantities into aver-
age and perturbed quantities, distinguished by subscripts 0 and 1,
respectively. In what follows, we assume that the zeroth-order electron
and ion pressures are specified by Pa0 ¼ na0kBTa, where kB is the
Boltzmann constant. Here, na0 and Ta denote the average fluid density
and temperature, respectively. We assume zero average fluid velocity,
va0 ¼ 0, and zero net average electric field, E0 ¼ 0. The average mag-
netic field is assumed to be constant, B0 ¼ const. Linearized two-fluid
equations are given as follows:

@na1
@t

þr � na0va1ð Þ ¼ 0; (2a)

ma
@va1
@t

¼ qa E1 þ
1
c
va1 � B0

� �
�rPa1

na0
; (2b)

Pa1 ¼ caPa0n
�1
a0 na1 ¼ cakBTana1; (2c)

r� B1 �
1
c
@E1

@t
¼ 4p

c

X
a

qana0va1; (2d)

r� E1 ¼ � 1
c
@B1

@t
: (2e)

Upon carrying out the spectral transformation of the above line-
arized warm two-fluid equations under the assumption that the wave
vector k lies in yz plane, k ¼ ky ŷ þ kz ẑ and that the ambient magnetic
field is directed along z axis, B0 ¼ B0ẑ, it is possible to derive the fol-
lowing dispersion relation, which can be found in many standard
works—see, e.g., Refs. 34, 35, 39, and 41

a � E ¼
a11 a12 a13
a21 a22 a23
a31 a32 a33

0
B@

1
CA E1x

E1y
E1z

0
B@

1
CA ¼ 0; (3)

where

a11 ¼ � c2k2

x2
�
X
a

x2 � k2v2tha
� �

x2
pa

Da
; (4a)

a12 ¼ �a21 ¼ �
X
a

ixca

x

x2
pa x2 � k2zv

2
tha

� �
Da

; (4b)

a13 ¼ �a31 ¼ �kykz
X
a

ixca

x

x2
pav

2
tha

Da
; (4c)

a22 ¼ � c2k2z
x2

�
X
a

x2
pa x2 � k2zv

2
tha

� �
Da

; (4d)

a23 ¼ a32 ¼ kykz
c2

x2
�
X
a

v2thax
2
pa

Da

 !
; (4e)

a33 ¼ �
c2k2y
x2

�
X
a

x2
pa x2 � x2

ca � k2yv
2
tha

� �
Da

; (4f)

Da ¼ x4 � x2 k2v2tha þ x2
ca

� �
þ x2

cak
2
zv

2
tha; (4g)

and where we have ignored the displacement current. Here, various
quantities are defined by x2

pa ¼ 4pn0q2a=ma; xca ¼ jqajB0=ðmacÞ;

vtha ¼ caTa=ma. As with the standard works, e.g., Refs. 34, 35, and 39,
we have carried out the matrix determinant calculation, following the
dictum “[t]he human qualities that are required to carry out these
[� � �] calculations are, in small proportion, insight, and in large propor-
tion, stamina” (quote from Stix,41 p. 266, which is also quoted by
Goedbloed et al.,34 p. 91), but in our case, we have also taken advan-
tage of the help provided by the symbolic mathematics package,
Mathematica. The important point is that we have not invoked
the assumption of charge-neutrality associated with the density per-
turbation, unlike Ref. 39. In spite of this, however, as it will be
shown in Sec. V, our formalism effectively reduces to an implicit
charge neutrality. This may be the reason, as it will be shown subse-
quently, why the present formalism and that of Ref. 39, which are
slightly different, virtually lead to indistinguishable numerical
results. But before we discuss such a final outcome, let us return to
the basic formalism first. The laborious process of the matrix deter-
minant calculation leads to the final result, which can be summa-
rized as follows:

0 ¼ D6x
6 þ D4x

4 þ D2x
2 þ D0; (5)

where

D6 ¼ � x2
pe þ x2

pi

� �
c2k2 þ x2

pe þ x2
pi

� �2
; (6a)

D4 ¼ c4k2 x2
pi k

4v2the þ k2x2
ce þ k2zx

2
ci

� �h
þx2

pe k4v2thi þ k2x2
ci þ k2zx

2
ce

� �i
þ x2

pe þ x2
pi

� �
� k2 x2

pe þ x2
pi

� �
v2thix

2
pe þ v2thex

2
pi

� �
þ xcix

2
pe þ xcex

2
pi

� �2� 	
þ2c2 x2

pe þ x2
pi

� �
k4yv

2
thi þ k4zv

2
thi þ k2zx

2
ci

� �
x2

pe

h
þ k4yv

2
the þ k4zv

2
the þ k2zx

2
ce

� �
x2

pi

i
þc2k2y 2x2

cix
4
pe þ 2x2

cex
4
pi þ xce þ xcið Þ2x2

pex
2
pi

h
þ4k2z x2

pe þ x2
pi

� �
v2thix

2
pe þ v2thex

2
pi

� �i
; (6b)

D2 ¼ �k2z v2thix
2
pe þ v2thex

2
pi

� �
� ðxcix

2
pe þ xcex

2
piÞ

2 þ 2c2k2 x2
cix

2
pe þ x2

cex
2
pi

� �h i
�c4k2k2z x2

cex
2
ci x2

pe þ x2
pi

� �h
þk2 x2

ce þ x2
ci

� �
v2thix

2
pe þ v2thex

2
pi

� �i
; (6c)

D0 ¼ c4k4zk
2x2

cex
2
ci v2thix

2
pe þ v2thex

2
pi

� �
: (6d)

With appropriate definitions, we make the following substitutions:

x ! XkzVA; x2
pe þ x2

pi ! x2
peð1þ QÞ; c ! xpeke;

v2thix
2
pe þ v2thex

2
pi ! ð1þ QÞV2

Abx
2
pe;

xce ! � VAffiffiffiffi
Q

p
ke
; xci !

ffiffiffiffi
Q

p
VA

ke
; x2

pi ! Qx2
pe;

v2thi ! ð1þ QÞV2
Ab� Qv2the; bk2e ! QqL; ki !

keffiffiffiffi
Q

p :

(7)

Physics of Plasmas ARTICLE pubs.aip.org/aip/pop

Phys. Plasmas 30, 092901 (2023); doi: 10.1063/5.0149227 30, 092901-3

Published under an exclusive license by AIP Publishing

 05 Septem
ber 2023 12:02:31

pubs.aip.org/aip/php


Obviously, Q ¼ me=mi, and ke ¼ c=xpe and ki ¼ c=xpi enjoy the
interpretation of being the electron and ion (proton) skin depths,
respectively. The Alfv�en speed VA is defined via V2

A ¼ B0=ð4pn0miÞ,
and the total plasma beta includes the contribution from the
ion-acoustic speed. The quantity b and Alfv�en speed are, thus,
related via b ¼ c2s =V

2
A, where cs ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðciTi þ ceTeÞ=ðmi þmeÞ

p
is

the ion-acoustic speed. Substituting Eq. (7) to Eqs. (6a)–(6d), we
obtain

D6 ¼ �X6x6
pek

6
zV

6
A 1þ Qð Þ 1þ Qþ k2k2e

� �2
; (8a)

D4 ¼ X4x6
pek

4
zV

6
Að1þ QÞ k2z þ k2 þ k2b 1þ Qþ k2k2e

� �� �


� 1þ Qþ k2k2e
� �

þ k2z 1� Qð Þ2 k
2k2e
Q

�
; (8b)

D2 ¼ �X2x6
pek

4
zV

6
Ak

2 1þ Qð Þ 1þ 2ð1þ QÞbþ k2ð1þ Q2Þq2L
� �

;

(8c)

D0 ¼ x6
pek

4
zV

6
Ak

2 1þ Qð Þb: (8d)

One can see that each term in Eqs. (8a)–(8d) contains a common fac-
tor,x6

pek
4
zV

6
Að1þ QÞ, which when eliminated, leads to

0 ¼ k2zA
2X6 � k2z þ k2 þ k2bA

� �
Aþ k2z 1� Qð Þ2k2k2i

h i
X4

þk2 Bþ 2 1þ Qð Þb½ �X2 � k2b;

A ¼ 1þ Qþ k2k2e ; B ¼ 1þ k2 1þ Q2ð Þq2L:

(9)

Here, qL ¼ cs=xci is the ion-acoustic gyro-radius. In Eq. (9), the defi-
nition of beta is different from the conventional one in that it is now
given as

b ¼ ciTi þ ceTe

ðmi þmeÞV2
A
¼ 1

2 1þ Qð Þ be þ bið Þ; (10)

where be ¼ 2ceTe=miV2
A and bi ¼ 2ciTi=miV2

A. It is worth noting
that the overall dispersion relation (9) does not depend on individual,
but only on b as defined in Eq. (10) which we call it the “ion-acoustic”
beta. As we will discuss subsequently, although the dispersion relation
only depends on the ion-acoustic beta, we find that the wave polariza-
tion depends on individual betas, be and bi.

This is a good place to discuss a similar dispersion relation, which
is also derived by Zhao et al.39 and further analyzed by Zhao.40 Our
dispersion relation (9) is alternatively written in terms of normalized
wave frequency - ¼ x=xce and wave number j ¼ ck=xpe as

0 ¼ ð1þ QÞð1þ Qþ j2Þ2-6

�j2 Qð1þ QÞ2ð1þ cos2hÞ þ j2ð1þ QÞ
�

� Qþ ð1� Qþ Q2Þ cos2h
� �

þ Qð1þ Qþ j2Þ2b
�
-4

þQj4 cos2 h Qð1þ QÞ þ 2Qð1þ QÞbþ ð1þ Q2Þj2b
� �

-2

� Q3j6b cos4 h; (11)

where cos h ¼ kz=k. Also, to be consistent with Zhao’s result, we used
old definition b ¼ ðbi þ beÞ=2. Now this can be compared with the
counterpart derived by Zhao et al.,39

0 ¼ ð1þ QÞð1þ Qþ j2Þ2-6

�j2 Qð1þ QÞ2ð1þ cos2hÞ þ j2ð1þ QÞ
�

� Qþ ð1� Qþ Q2Þ cos2h
� �

þ Qð1þ Qþ j2Þ2b
�
-4

þQj4 cos2 h Qð1þ QÞ þ 2Qð1þ QÞbþ Q
z}|{

ð1þ Q2Þj2b

� 	
-2

� Q3j6b cos4 h; (12)

where we have indicated the difference, by an over-brace. As one may
appreciate, the discrepancy involves a small term related to the quan-
tity Q ¼ me=mi. As such, in actual numerical solutions, the difference
hardly matters. Nevertheless, we believe that our representation is
more accurate—at least, it is alternative to the expression found in the
paper by Zhao et al.39 Note that both expressions become identical if
we set b¼ 0 (cold plasma limit).

Before moving on, we consider the numerical solutions of Eq.
(11), which is virtually indistinguishable from the same obtained on
the basis of Eq. (12), for various values of b. We first consider the case
of b¼ 0, in which case both Eqs. (11) and (12) reduce to a quadratic
equation in -2. Figure 1, thus, plots the cold-plasma dispersion rela-
tion. The top surface depicts the fast-magnetosonic mode for low fre-
quency, which smoothly turns into the whistler mode as the frequency
increases, until x approaches the electron cyclotron frequency,
x ! xce, at which point, the mode approaches the electron–cyclotron
resonance frequency. On the other hand, as the frequency increases
along perpendicular ky direction, the mode approaches the lower-
hybrid resonance frequency, xLH ¼ ½ðxcexciÞ�1 þ x�2

pi �
�1=2. The

lower branch depicts the shear Alfv�en wave, which approaches the ion
(proton) cyclotron frequency as x increases. Along ky direction, the
Alfv�en mode simply decreases in its frequency until it reaches zero
(note that we have used the logarithmic scales in the plot).

Once we include a finite value of b, the dispersion characteristics
becomes significantly modified as a third branch appears among the
solution. To show this, we next consider b ¼ 0:01, which is showcased

FIG. 1. The dispersion surfaces for the sub-luminal (ck > x) cold (b¼ 0) magne-
tized plasma. Various mode designations that are commonly discussed in the litera-
ture are indicated.
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in Fig. 2. We reiterate that the numerical solutions based on either Eq.
(11) or Eq. (12) remain indistinguishable for a wide range of b, includ-
ing up to b / Oð10Þ. The most obvious difference is along kz direc-
tion, where the ion-acoustic mode branch with the slope �cs is now
present. Upon a careful examination, one can see that the Alfv�en-ion
cyclotron mode now attains the characteristics of kinetic Alfv�en mode
along ky direction. As noted in the Introduction, the kinetic Alfv�en
wave (KAW) is influenced by two aspects, one relates to the thermal
correction, ðx=kzVAÞ2 ¼ 1þ k2yq

2
L, which leads to the increase in the

wave frequency as ky increases, and the other comes from the finite
electron inertia effect, ðx=kzVAÞ2 ¼ 1=ð1þ k2yk

2
eÞ, which leads to a

decrease in wave frequency for large ky. The kinetic Alfv�en correction
as indicated by “KAW” in Fig. 2 shows first an increase and subse-
quent decrease in x as ky increases for a fixed value of kz, thus demon-
strating that the mode surface correctly features the expected behavior
associated with KAW, that is, ðx=kzVAÞ2 ¼ ð1þ k2yq

2
LÞ=ð1þ k2yk

2
eÞ.

The fast-magnetosonic-whistler-lower hybrid branch, on the other
hand, undergoes an interesting mode-switchover behavior along ky
direction. It is seen that the quasi-perpendicular ion-acoustic branch
interferes with the whistler-lower hybrid branch such that the mode
no longer becomes a resonance mode at xLH, but instead, its fre-
quency increases as ky increases. It is interesting to note that along kz
direction, aside from the presence of ion-acoustic mode, the proton
and electron cyclotron modes largely retain their cold-plasma charac-
teristics. From this, it seems that the finite-b effect is important for
quasi-perpendicular propagation directions.

We next consider the case of increased beta of b¼ 1, and the
result is shown in Fig. 3. For such a high beta value, we recognize that
the fluid description is incomplete as the two-fluid theory does not
have the wave–particle resonance and the associated cyclotron/Landau
damping, but as far as the real frequency is concerned, the fluid
description still provides useful information. One of the most striking

features for the present high-beta situation relates to the behavior of
kinetic Alfv�en wave (KAW). Upon a careful visual examination, it can
be gleaned that the KAWmode for high ky range smoothly transitions
to the ion-acoustic mode surface rather than the shear-Alfv�en wave
branch. It is also noteworthy that the quasi-perpendicular range of
what was whistler-lower hybrid mode surface no longer bears any sig-
nature of lower-hybrid resonance, but rather, the dispersion surface
around the region that formerly was associated with xLH is now
completely dominated by the ion-acoustic mode surface. In fact, the
top two surfaces are a mixture of whistler mode and ion-acoustic
mode surfaces, which undergo mode interchange. These subtle mode
structures are best seen if one chooses a single propagation angle and
plots the various dispersion curves, as was done by Goedbloed et al.,34

Kakuwa,35 Chen andWu,25 Zhao et al.,39 Zhao,40 etc., but on the other
hand, the present way of plotting the dispersion surfaces also provides
a broader view of the overall mode configuration.

III. RELATION BETWEEN IDEAL MHD AND TWO-FLUID
PICTURE

In this section, we will investigate dispersion relation given by Eq.
(9) in detail, but our focus henceforth will be on the structure of the
dispersion relations as analogues and generalization of the ideal MHD
modes. The dispersion relation (9) is given by the sixth-order polyno-
mial equation in X has powers up to 6, or quartic equation in X2,
given by the (Cardan) form25,28

0 ¼ X2 � X2
0

� �3 þ p X2 � X2
0

� �
þ q;

X2
0 ¼ a=3; p ¼ b� 3X4

0; q ¼ �2X6
0 þ bX2

0 � c;

a ¼
k2z þ k2 þ k2bA
� �

Aþ k2zð1� QÞ2k2k2i
k2zA

2
;

b ¼ k2 Bþ 2ð1þ QÞb½ �
k2zA

2
; c ¼ k2b

k2zA
2

(13)
FIG. 2. The dispersion surfaces for finite beta (b ¼ 0:01) plasma. In addition to the
two previous mode surfaces, an additional mode is now present, which corresponds
to the ion-acoustic mode. The distinguishing feature as compared with the cold
case is the manifestation of kinetic Alfv�en mode characteristics (KAW) along
increasing ky axis, and the fact that the whistler-lower hybrid branch is no longer
resonant at xLH, but the mode frequency steadily increases as ky increases.

FIG. 3. The dispersion surfaces for an increased beta of b¼ 1. In this case, the
quasi-perpendicular kinetic Alfv�en mode smoothly transits to ion-acoustic mode as
the mode becomes more quasi parallel. Also, noteworthy is the fact that any signa-
ture associated with the lower-hybrid resonance is now completely wiped out. Note
also that the whistler and ion-acoustic mode surfaces are intermingled.
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with the general solution (three independent solutions are designated
by F, S, and A),

X2
F ¼ X2

0 þ Sþ T; (14a)

X2
S ¼ X2

0 �
Sþ T
2

þ i
ffiffiffi
3

p

2
S� Tð Þ; (14b)

X2
A ¼ X2

0 �
Sþ T
2

� i
ffiffiffi
3

p

2
S� Tð Þ; (14c)

where S¼ Rþ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
W3þR2

p� �1=3
; T ¼ R�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
W3 þR2

p� �1=3
; R¼�q=2,

and W ¼ p=3. Equation (14a) is the warm two-fluid generalization of
MHD fast-mode dispersion relation, Eq. (14b) is the same for the slow
mode, and Eq. (14c) is for the kinetic Alfv�en wave. Taking the limit
Q! 0 and ki ! 0, it can be shown that these expressions reduce to
the ideal MHD dispersion relation. It can be shown that the dis-
criminant D¼W3þR2 is always negative such that the three solu-
tions are all real and there is no imaginary part associated with the
solutions.

To see how the non-ideal effects in the warm two-fluid
formalism modify the ideal MHD waves, we consider the following
limits:

kz � k; Q � b � 1: (15)

Under these limits, we have X2
0 � k2=ð2k2zAÞ;

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
W3 þ R2

p
� iBk4=

6
ffiffiffi
3

p
A3k4z

� �
; Sþ T � 2k2=ð3k2zAÞ � B=A, and S� T � ðB=AÞ i=ðffiffiffi

3
p

Þ. Thus, we have X2
F ¼ ðk2V2

AÞ=ðAk2zÞ; X2
S ¼ ðc2s k2zÞ=ðk2zV2

AÞ, and
X2

A ¼ B=A, or

x2
F � k2?V

2
A

1þ k2?k
2
e

;

x2
S � c2s k

2
z ;

x2
A ¼ k2zV

2
A
1þ k2q2L
1þ k2k2e

:

(16)

Thus, we recover the well-known results, except that the kinetic
Alfv�en wave dispersion relation includes the “finite Larmor radius”
corrections which accounts for both ion and electrons by way of
qL.

IV. PROPERTIES OF WAVE POLARIZATION

The polarization characteristics of the eigenmodes can be dis-
cussed on the basis of Eq. (3). If we choose to represent E1z in terms of
E1x , then, we have

E1z ¼
a13a22 � a12a23
a22a33 � a223

E1x: (17)

Making use of explicit definitions given by Eqs. (4a)–(4g), one may
express the numerator as

a13a22 � a12a23

¼ ikykz
x

x2x2
pex

2
pi v

2
the � v2thi

� �
xce � xcið Þ

DeDi
þ c2

X
a

xcax2
pa

Da

 !
:

(18)

After some lengthy algebra, Eq. (18) is rewritten as

a13a22�a12a23 ¼
ikykz
x

1
DeDi

~G4X
4þ ~G2X

2þ ~G0

� �
;

~G4 ¼� 1þQ

ke
ffiffiffiffi
Q

p k2zx
4
peV

5
Að1�QÞk2zk2e ;

~G2 ¼� 1þQ

ke
ffiffiffiffi
Q

p k2zx
4
peV

5
A � Qb�beð Þ 1þQð Þþk2 be�bð Þk2e
� �

;

~G0 ¼� 1þQ

ke
ffiffiffiffi
Q

p k2zx
4
peV

5
A Qb�beð Þ;

(19)

where we have made substitution v2the ! beV
2
A=Q.

For the denominator, we have

a22a33 � a223 ¼ �k2yk
2
z � c2

x2
þ
X
a

v2thax
2
pa

Da

 !2

þ � c2k2z
x2

þ
X
b

k2zv
2
thb � x2

� �
x2

pb

Db

0
@

1
A

� �
c2k2y
x2

þ
X
c

k2yv
2
thc þ x2

cc � x2
� �

x2
pc

Dc

0
@

1
A:

(20)

After some lengthy algebra, which we have double checked with the
aid of symbolic math software Mathematica, we arrive at

a22a33 � a223 ¼
1

x2DeDi
x6ðx2

pe þ x2
piÞðc2k2 þ x2

pe þ x2
piÞ

n
þx4 � x2

pe þ x2
pi

� �
k2v2thix

2
pe þ k2v2thex

2
pi

�h
þx2

cix
2
pe þ x2

cex
2
pi

�
� c2x2

pe k4v2thi þ k2x2
ci þ k2zx

2
ce

� �
�c2x2

pi k
4v2the þ k2x2

ce þ k2zx
2
ci

� �i
þx2 k2zv

2
thix

2
pe þ k2zv

2
thex

2
pi

� �
x2

cix
2
pe þ x2

cex
2
pi

� �h
þ c2k2zx

2
cex

2
ci x2

pe þ x2
pi

� �
þ c2k2zk

2 x2
ce þ x2

ci

� �
� v2thix

2
pe þ v2thex

2
pi

� �i
� c2k4zx

2
cex

2
ci

� v2thix
2
pe þ v2thex

2
pi

� �o
: (21)

We now change the variable as given by Eq. (7). Then, Eq (21) can be
simplified as

a22a33 � a223 ¼
k4zx

4
peV

6
Að1þ QÞ

x2Qk2eDeDi

�
k2zQk

2
e 1þ Qþ k2k2e
� �

X6

�X4
n
Q 1þ Qð Þ þ k2e k2z þ k2yQþ k2zQ

2
h

þk2 1þ Qð ÞQb
i
þ Qbk4k4e

o
þX2 Q 1þ bþ Qbð Þ þ k2 1þ Q2

� �
bk2e

h i
� Qb

�
:

(22)

At this point, we simplify Eq. (22) by means of the dispersion relation
(9), with the end result

Physics of Plasmas ARTICLE pubs.aip.org/aip/pop

Phys. Plasmas 30, 092901 (2023); doi: 10.1063/5.0149227 30, 092901-6

Published under an exclusive license by AIP Publishing

 05 Septem
ber 2023 12:02:31

pubs.aip.org/aip/php


a22a33 � a223 ¼
k4zx

4
peV

6
A 1þ Qð Þ2

x2k2eDeDik2
X2 AX2 � 1ð Þ k2b� k2zX

2
� �

:

(23)

Thus, finally writing down the entire term,

E1z
E1x

¼a13a22�a12a23
a22a33�a223

¼ ikykz
x

1
DeDi

x2k2eDeDik2

k4zx
4
peV

6
Að1þQÞ2

� 1þQ

ke
ffiffiffiffi
Q

p k2zx
4
peV

5
A

� �

� Qb�beð Þ 1� 1þQð ÞX2
� �

þk2k2e be�bð ÞX2þk2z 1�Qð Þk2eX4

X2 AX2�1ð Þ k2b�k2zX
2

� � ;

(24)

which upon canceling out some terms further simplifies

E1z ¼ �
iE1xkyk2kiCE

1þ Qð ÞX k2b� k2zX
2

� �
�1þ AX2ð Þ ;

CE ¼ Qb� beð Þ 1� 1þ Qð ÞX2
� �

þk2k2e be � bð ÞX2 þ k2zð1� QÞk2eX4:

(25)

This is the wave polarization of E1z expressed in terms of E1x .
We may likewise express E1y in terms of E1x ,

E1y ¼
a12a33 � a13a23
a22a33 � a223

E1x: (26)

As the denominator a22a33 � a223 is already know, the remaining task
is to compute the numerator,

a12a33 � a13a23 ¼
X
a

xca

x

x2
pa x2 � k2zv

2
tha

� �
Da

 !

�
c2k2y
x2

þ
X
b

x2
pb x2 � x2

cb � k2yv
2
thb

� �
Db

0
@

1
A

�k2yk
2
z

X
a

ixca

x

x2
pav

2
tha

Da

 !
c2

x2
�
X
b

v2thbx
2
pb

Db

0
@

1
A:

(27)

Again, after some lengthy algebra, it can be shown that Eq. (27) is
expressed as follows:

a12a33 � a13a23 ¼
i

xDeDi
x4 c2k2y þx2

pe þx2
pi

� �n
� xcex

2
pe þxcix

2
pi

� �
þx2 �x4

pexce k2v2thi þx2
ci

� �h
�x4

pixci k
2v2the þx2

ce

� �
�x2

pex
2
pi x

2
cexci þx2

cixce

�
þk2yv

2
thixce þ k2yv

2
thexci þ k2zv

2
thexce þ k2zv

2
thixci

�i
þk2zxcexci v2thix

2
pe þ v2thex

2
pi

� �
xcix

2
pe þxcex

2
pi

� �h
þc2k2y xciv

2
thixpe

2 þxcev
2
thex

2
pi

� �io
: (28)

Again making use of the convention defined in Eq. (7), we obtain

a12a33 � a13a23 ¼
i

xDeDi

~K 4X
4 þ ~K 2X

2 þ ~K 0

� �
;

~K 4 ¼ �
k2zð1þ QÞV5

Ax
4
peffiffiffiffi

Q
p

ke
k2z 1� Qð Þ 1þ Qþ k2yk

2
e

� �
;

~K 2 ¼
k2zð1þ QÞV5

Ax
4
peffiffiffiffi

Q
p

ke
k2zð1� QÞbþ k4y b� beð Þk2e
h

þk2y b� beð Þð1þ Qþ k2zk
2
eÞ
i
;

~K 0 ¼ �
k2zð1þ QÞV5

Ax
4
peffiffiffiffi

Q
p

ke
k2y Qb� beð Þ:

(29)

Making further connection with CE as defined in Eq. (25), we can write
Eq. (29) as

a12a33� a13a23 ¼� i
xDeDi

k2zV
5
Ax

4
peð1þQÞffiffiffiffi
Q

p
k3e

� A� k2zk
2
e

� �
CE � 1�AX2ð Þð1þQÞ Qb�beð Þ

h i
:

(30)

With Eq. (23) and eliminating the common factor, we finally arrive at

E1y ¼ � iE1xk2ki ðA� k2zk
2
eÞCE � ð1� AX2Þð1þ QÞðQb� beÞ

� �
kzð1þ QÞk2eXðk2b� k2zX

2Þð�1þ AX2Þ
:

(31)

This can be used to depict the wave polarization E1y=E1x . There are
several ways to arrive at this conclusion, but we find that the present
treatise is the most straightforward way. In Sec. V, we will demonstrate
the importance of such expressions. Note that the factor i, which
appears on the right-hand side of E1y , indicates that electric field is
elliptically polarized in the plane perpendicular to the magnetic field.

For the case of magnetic field polarization, starting from
Faraday’s low, the ratio of perturbed magnetic field along and across
the external field is given by

B1z

B1x
¼

kyE1x
kzE1y � kyE1z

¼
ky

kzE1y=E1x � kyE1z=E1x
: (32)

Making use of

kzE1y � kyE1z
E1x

¼ �ik2ki
ðA� k2zk

2
eÞCE � ð1� AX2Þð1þQÞðQb� beÞ � k2yk

2
eCE

ð1þQÞk2eXðk2b� k2zX
2Þð�1þ AX2Þ

¼ ik2ki
ð1�QÞX
�1þ AX2 ; (33)

we may express the compressional magnetic field as

B1z ¼
ikyðAX2 � 1ÞB1x

k2ð1� QÞkiX
: (34)

Despite the complicated intermediate calculations, the final solution is
amazingly simple. It is interesting to note that when the wave disper-
sion is characterized by the kinetic Alfv�en wave, then, we know from
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Sec. III that X2 ¼ B=A. Thus, for the case of kinetic Alfv�en wave, the
compressional component of magnetic field is given by

B1z ¼
ic2kyqLcsB1x

VA

ffiffiffiffi
A
B

r
(35)

with Q � 1. This result is same as given by Hollweg29 if we set
A¼B—see Eq. (11) in Ref. 29. However, when finite Larmor radius
effect is included, then, for small kqL, we have

B1z �
ic2kyqL

ffiffiffi
b

p
B1x

1þ k2q2L=2
: (36)

The factor 1/2 is different from Eq. (28) of Ref. 29. This is because
Hollweg29 included the finite Larmor radius effect starting from the
most simple MHD relations, and such a finite Larmor radius effect has
been included through diamagnetic current by intuition. Thus for the
case of kinetic Alfv�en wave, compressional component of magnetic
field is proportional to kyqL, the perpendicular structure of the wave,
and the square root of plasma beta. So, compressional component of

kinetic Alfv�en wave is important when b becomes larger and the two-
potential approximation introduced by Hasegawa and Uberoi32 and
Goertz42 is not applicable.

In Fig. 4, we show the polarity E1z=E1x for different wave
branches with b ¼ 0:05, Q¼ 1/1800, R ¼ be=b ¼ 0:1; ke ¼ 0:1, and
X ¼ x=kzVA. For the case of the kinetic Alfv�en branch, there is a
polarization inversion across a singular line which is given as
k2b� k2zX

2 ¼ 0. Such a line provides a critical propagation angle
above which it has positive polarization and below it has negative
polarization. For our choice of parameters, it is about 78	. Also, such a
singular line indicates that kinetic Alfv�en waves with such a propaga-
tion angle will have linear polarization with E1x ¼ 0. For the case of
fast and slow mode branches, we do not have the change of polariza-
tion inversion as shown in Figs. 4(a) and 4(c).

In Fig. 5, we display the polarity of E1y=E1x . Again just as with
the E1z case, the polarity inversion and a singular line occurs only in
the kinetic Alfv�en wave branch such as in Fig. 5(b), which is plotted
with the same parameter values. It is interesting to note that besides
the singular line, we have another line of polarity inversion for certain

FIG. 4. Contour plot of E1z=E1x for (a) fast mode wave, (b) kinetic Alfv�en wave, and (c) slow mode wave with b ¼ 0:05, Q¼ 1/1800, R ¼ be=b ¼ 0:1; ke ¼ 0:1, and
X ¼ x=kzVA. Bold line is ion acoustic dispersion relation.

FIG. 5. Contour plot of E1y=E1x for (a) fast mode wave, (b) kinetic Alfv�en wave, and (c) slow mode wave with b ¼ 0:05, Q¼ 1/1800, R ¼ be=b ¼ 0:1; ke ¼ 0:1, and
X ¼ x=kzVA. Bold line is ion acoustic dispersion relation.
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values of wave numbers. Along such lines, we have E1y ¼ 0 which
again indicates linear polarization. However, for such cases, these lines
do not correspond to a certain angle, but given instead as a curve that
relates the wave number in x and y directions.

V. CHARGE NEUTRALITY AND PROPERTIES
OF THE ELECTRIC FIELD

In this session, we will first review the connection between charge
neutrality and displacement current as mentioned in Sec. I, and sec-
ond, from the polarization of the electric field, we will show how the
charge separation should be induced, or in other words, how the
electro-static component of the electric field should be generated.
Throughout the present paper, we have not explicitly made an
assumption on the charge neutrality condition at the outset, but it
turns out that the assumption of slow wave, namely, c2k2 > x2, is
equivalent to an implicit charge neutrality condition. To see this, recall
the Fourier transformed Ampère’s law, which along perpendicular
direction is given by

E? 1� x2

c2k2

� �
¼ � 4pexi

ck2
nivi? � neve?ð Þ; (37)

where ? refers to perpendicular direction with respect to k.
Neglecting the displacement current is equivalent to taking the
assumption of x2 � c2k2, which can be also interpreted as low fre-
quency modes—that is, modes whose frequency is sufficiently lower
than the radiation modes, under the implicit assumption that the
plasma frequency is much higher than the electron gyro frequency,
xpe 
 xce. Along the wave propagation direction, together with con-
tinuity equation, we have

0 ¼ x
c
k � E� 4pxqc

c
; (38)

where qc ¼
P

a qana is the overall charge density. Obviously, this is
Poisson’s equation. The first term is the displacement current term,
and neglecting this term is equivalent to assuming qc ¼ 0. So, in our
reduced model, perturbed charge density is automatically zero. In
other words, charge neutrality is implicitly presumed in the model
although we did not explicitly impose such a condition when we
derived the slow-wave dispersion relation.

As shown above, the charge neutrality is implicitly assumed
although not explicitly invoked. However, the electrostatic component
of the electric field is not zero, that is, k � E 6¼ 0. This is reminiscent of
the ion acoustic mode in unmagnetized plasma where different mobil-
ity of electrons and ions induce an electrostatic field, but the smallness
of wave number k guarantees the “charge neutrality” of the plasma. In
our model, we may extract electromagnetic E1ym and electrostatic
components E1ys from E1y ¼ E1ys þ E1ym as

E1ys ¼ � iE1xk2ki ACE � ð1� AX2Þð1þ QÞðQb� beÞ
� �

kzð1þ QÞk2eXðk2b� k2zX
2Þð�1þ AX2Þ

; (39a)

E1ym ¼ iE1xk2kzkiCE

ð1þ QÞXðk2b� k2zX
2Þð�1þ AX2Þ

: (39b)

Making use of Eq. (25) and from the properties of the electromagnetic
field, we get

k � EEM ¼ kzE1z þ kyE1ym

¼ �
iE1xkzkyk2kiCE

1þ Qð ÞX k2b� k2zX
2

� �
�1þ AX2ð Þ

þ iE1xk2kykzkiCE

ð1þ QÞXðk2b� k2zX
2Þð�1þ AX2Þ

¼ 0: (40)

Here, we note that the electric field along the magnetic field, that is
E1z , exactly cancels out E1ym, so the Fourier transformed Poisson’s
equation gives

ik � E ¼ ikyE1y þ ikzE1z ¼ ikyE1ys ¼ 4pqc: (41)

By virtue of the exact cancelation of E1z �a la Eq. (40), the charge sepa-
ration can only be induced through E1ys, that is the electric field
“perpendicular” to the magnetic field, but not along the wave propaga-
tion direction.

The reason why perpendicular electric field induces charge sepa-
ration is that it stems from the mobility of electrons and ions. For the
case of magnetized plasma, the distinct particle motions along and
cross the magnetic field imply that the mobility along the field lines is
orders of magnitude faster than that across the field. For low-
frequency reduced model, assuming zero pressure, the perpendicular
electric field is related to the perpendicular current as

Jperp �
c2qM
B2

dEperp

dt
; (42)

where qM is center of mass density and subscript perp means perpen-
dicular to the magnetic field. It is clear that this is polarization current
of the plasma and the equation can be understood as the polarization
current across the magnetic field has induced an electrostatic field.

In short, when the wave in plasma is associated with perturbed
electric field E, the electrons and ions both undergo E� B motion,
which has the same velocity perturbation. However, to a higher order,
difference of the finite Larmor radius for electrons and ions leads to
the polarization current perpendicular to the magnetic field. It is this
polarization current that induces the electric field perpendicular to the
magnetic field. Since the wave propagates oblique to the magnetic field
(that is, ky 6¼ 0), there should be electric field component along the
wave vector k, and such an electric field can possibly contribute to
the separation of charge, although it will be small just as in the case of
the ion acoustic wave in unmagnetized plasmas. Thus, instead of the
electric field, as noted by Hasegawa and Chen,6 parallel component of
the magnetic field is the key for the wave energy absorption, and such
a field can provide the magnetic field components along the ambient
magnetic field for the transit time damping.

VI. CONCLUSIONS

In this paper, we have (re)derived a general dispersion relation
for low-frequency waves by making use of warm two-fluid theory. As
noted in the Introduction, completely general dispersion relations for
warm magnetized electron–proton plasma have been derived on the
basis of the two-fluid theory,34,35 but it was also noted that a separate
derivation of the reduced form of warm two-fluid plasma dispersion
relations restricted to the low-frequency modes (or more accurately,
slow or sub-luminal modes satisfying the condition ck > x—which
can be derived by ignoring the displacement current) is also useful. In
this regard, Zhao et al.39 carried out just such an analysis, but under a
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simplifying assumption of quasi-neutrality as it relates to the perturbed
electron and ion density fluctuations. The purpose of the present paper
was primarily to revisit Ref. 39 by without making an explicit assump-
tion of quasi-neutrality at the outset although it is shown later that the
present formalism is implicitly equivalent to the charge-neutral situa-
tion. We have, thus, re-derived the desired dispersion relation (11)
and have compared our result with that of Ref. 39—Eq. (11) vs (12).
We have also found that while the two equations differ slightly, the
numerical solutions were virtually indistinguishable (the compara-
tive results are not shown). A close connection between our
approach and the formalism that invokes the charge neutrality39 is
shown, and it is verified that even if we have not invoked the charge
neutrality at the outset, it is implied in Ampère’s Law, thus showing
that the present formalism and Ref. 39 share a conceptual similarity,
and this may explain the virtually identical numerical results
between the two formalisms. Despite this, we believe that our result
is more formally correct. We have also presented a detailed analysis
of the warm magnetized plasma dispersion surfaces in Figs. 1–3. In
the second part of the present paper, we have focused on the low-
frequency MHD-like modes and their polarization characteristics.
Based upon the present analysis, we have reached the following new
conclusions:

The overall dispersion relation depends on the total beta of the
plasma that is sum of electron and ion betas. Such a finite beta effect
naturally enters the dispersion relation in the form of finite Larmor
radius effect. Although it is generally believed that finite Larmor radius
effect is due to the large ion Larmor radius combined with high per-
pendicular wave number, we found that it is actually the ion-acoustic
Larmor radius effect such that even without the ion thermal gyromo-
tion, Ti¼ 0, the finite electron temperature, Te, can also have a non-
ideal contribution to the dispersion relation. That is, generally speak-
ing, kinetic contributions to Alfv�en wave should include both electron
and ion thermal effects. All these findings are consistent with previous
findings by various authors.34,35,39,40,43–45

We have found that the electric field along the ambient magnetic
field is always transverse, implying that the parallel electric field does
not involve charge separation. Owing to the oblique nature of the
wave propagation, we found that the electrostatic components, which
could possibly lead to the charge separation, is the polarization cur-
rent. The polarization current relates to the perpendicular motion of
the electrons and ions as shown in Eq. (42). The reason why the per-
pendicular motion dominates the charge separation is that electron
and ion mobility across the magnetic field is orders of magnitude
smaller when compared to the parallel mobility.

Finally, we also have found that only the kinetic Alfv�en wave
branch can change the direction of electric field polarization as
shown in Figs. 4 and 5. Here, the line of such a polarization inversion
is characterized by X2k2z ¼ k2b. That is, this is none other than the
ion-acoustic mode dispersion relation, x2 ¼ c2s k

2. This indicates
that, in some specific directions, the transverse field Ex becomes zero
and kinetic Alfv�en wave loses its characteristics and, thus, becomes
ion acoustic mode. This feature is consistent with the dispersion sur-
face properties for high b case discussed in Fig. 3. Such a sudden
change of the wave characteristics is not surprising given that we
have a very similar case in the literature, that is X mode—a full elec-
tromagnetic wave that propagates exactly perpendicular to the mag-
netic field.41
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