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ABSTRACT
Eastern redcedar (Juniperus virginiana, redcedar) is a major woody species encroaching upon the native grasslands and forests
of the southern Great Plains (SGP), representing a significant threat to regional ecosystem services. Future climate change is
anticipated to influence redcedar habitat suitability, changing the probability of further encroachment and reshaping its spatial
distribution. In this study, we trained seven Species Distribution Models (SDMs) with redcedar records from the USDA Forest
Inventory Analysis database and used the ensemble of these SDMs to simulate redcedar distribution probability under current
and future climate conditions in Kansas, Oklahoma, and Texas. Results reveal a distinct east-to-west gradient of decreasing
distribution probability in the study domain, primarily driven by climate aridity. Throughout the 21st century, the optimal range
of aridity for redcedar habitat is projected to shift eastwards by 0.7° (= 58 km) under the RCP45 climate scenario and 1.3° (= 108
km) under the RCP85. Accordingly, the suitable habitat will shift eastward by 0.6° (= 49 km) in the RCP45 and by 1.2° (= 103 km)
in the RCP85. The proportion of unsuitable habitat will increase from 40.2 % of the study domain during 2000 — 2019 to 48 %
in the RCP45 and 54.2 % in the RCP85 during 2080 — 2099. Additionally, highly suitable land areas will decrease from 10.4 % of
the study domain during 2000 — 2019 to 1.3 % in the RCP45 and 0 % in the RCP85 by the end of this century. This study suggests
a low likelihood of further redcedar encroachment in the west of the SGP states under future climates, while anticipating

continued expansion in the east, gradually replacing the existing oak forests and rangelands. The findings provide valuable
insights for prioritizing WPE management resources and contribute to our understanding of future changes in the SGP
vegetation composition and their impacts on ecosystem dynamics.

1. Introduction to 1.6 cows km~ 2. Moreover, WPE can affect the water dynamics of

Woody Plant Encroachment (WPE) is a widespread phenomenon observed
globally in various regions, including Africa (Venter et al., 2018), Australia
(Stevens et al., 2017), South America (Anadon et al., © 2014), and North
America (Filippelli et al., 2020; Saintilan and Rogers, 2015). In the southern
Great Plains (SGP) of the United States including Kansas, Oklahoma, and Texas,
WPE is occurring at an alarming rate of over 1 % land cover change per year,
which is five to seven times faster than in other regions of the nation (Archer
et al., 2017; Barger et al., 2011; Wilcox et al., 2018). Eastern redcedar
(Juniperus virginiana), a native woody species to eastern North America, has
become the primary encroaching woody species upon the native grasslands
and forests of the SGP. Over the past four decades, the encroachment of
eastern redcedar has transformed Oklahoma grasslands into juniper
woodlands at a rate of approximately 40 km?per year (Wang et al., 2018).

The encroachment of eastern redcedar is causing a range of adverse
impacts on grassland ecosystems, such as the reduction in grassland
productivity, livestock carrying capacity, ecosystem water yield, and wildlife
habitat quality (Archer et al., 2017). Anadon et al. (2014) “ estimated thata 1
% increase in woody plant coverage can cause a decrease in grassland net
primary productivity of 41 g C m~2yr~'and reduce livestock production by 0.6

ecosystems. Studies by Zou et al. (2018) showed that WPE influences all
components of the water budget in affected areas. Woody plants exhibit
higher rates of evapotranspiration and rainfall interception compared to
herbaceous species, resulting in reduced runoff generation and streamflow
(Huxman et al., 2005; Kishawi et al., 2023; Qiao et al., 2017). Furthermore, the
encroachment of eastern redcedar in the SGP has resulted in the loss of
habitat for grassland-associated wildlife species (Thompson et al., 2014) and
an increase in the transmission of vector-borne diseases (Loss et al., 2022).
The encroachment of eastern redcedar into oak-dominated forests is
having significant impacts on forest structure and functions in the eastern SGP
(Hoff et al., 2018b; Torquato et al., 2020b). In the Cross Timbers forest matrix
of Oklahoma, it has been estimated that encroached eastern redcedar trees
in the midstory and understory have aboveground biomass of 6.3 Mg ha™?,
representing a 38 % increase in available wildfire fuel loads within the existing
forest stands (Hoff et al., 2018b). As a result, the presence of eastern redcedar
under oak tree canopy exacerbates forest flammability and creates more
ladder fuels in the forests (Hoff et al., 2018b), which in turn raises the
probability of catastrophic wildfires. In the SGP, eastern redcedar trees have a
competitive advantage over many deciduous tree species due to their
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relatively high drought tolerance (Torquato et al., 2020a). If left unchecked,
they have the potential to replace native deciduous forests, resulting in a
reduction in ecosystem biodiversity (Meneguzzo and Liknes, 2015) and
constraining the growth of grasses beneath their canopies (Bennion and
Ward, 2022).

The encroachment of eastern redcedar in the SGP can be attributed to a
number of natural and anthropogenic factors, including changes in
precipitation patterns, fire exclusion and suppression, and overgrazing (Archer
etal., 2017). Annual average precipitation is a critical factor in determining the
boundary between grasslands and woody plants, as well as the upper limit of
woody plant fraction (Sankaran et al., 2005; X. Yang et al., 2023). Over the past
three decades, the SGP has experienced a wetter-than-average period, with
Oklahoma having the wettest two decades in the 1990s and the 2010s (Kunkel,
2022). This above-average precipitation may have contributed to the
expanded range of eastern redcedar. Notably, as the SGP is expected to
become drier and warmer in the future, the mortality rates of eastern
redcedar trees may increase, potentially limiting their expansion and leading
to the redistribution in the SGP (Breshears et al., 2005; Twidwell et al., 2014).
However, the redistribution has not been rigorously examined in previous
studies and become a critical knowledge gap in the predictive understanding
of redcedar dynamics. Prior to European settlement, the grasslands in the SGP
were maintained by a feedback loop between fine fuel and low-intensity fires
that had been occurring for thousands of years (Pyne, 2017, 1984). Along with
the aggressive fire exclusion and suppression policies in the 20th century, the
feedback was disrupted, resulting in a significant increase in woody plant
coverage (Fuhlendorf et al.,, 2008; Wilcox et al., 2018). Additionally, the
introduction of large herds of domestic livestock (Box, 1967) reduced the
frequency of wildfires and promoted the proliferation of woody plant species
(Fuhlendorf et al., 2008).

Various management practices have been used to control the redcedar
expansion. During the 1960s and 1970s, brush management such as
mechanical removal and herbicide injection began to be implemented to
control the encroachment of woody plants in the SGP (Archer and Predick,
2014). However, these methods are labor-intensive and have limited long-
term effectiveness, typically lasting less than 10 years (Scholtz et al., 2021).
Currently, the most effective strategy for controlling redcedar encroachment
in grasslands is the reintroduction of fire and the reestablishment of fine fuel
(Wilcox et al., 2018). Utilization of prescribed burning must be carefully
planned, taking into consideration the condition of the redcedar trees and the
critical fire intensity-mortality threshold. Twidwell et al. (2013a) found that
redcedar trees up to a height of 4.5 m can be killed when fire line intensity
exceeds 160 kW m~1,

Due to the existence of varying control practices, the current distribution
of redcedar may not accurately portray its complete potential for
encroachment. Moreover, the suitability of its habitat can undergo significant
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methods include but are not limited to the Maximum Entropy model (MaxEnt)
(Phillips et al., 2009; Phillips and Dudik, 2008), Generalized Linear Model
(GLM) and Generalized Additive Model (GAM) (Guisan et al., 2002), and
Random Forest (RF) (Evans et al., 2011). These SDMs have been extensively
tested and used for predicting species distributions in future periods (e.g.
Mainalietal., 2015; Remya et al., 2015; Wei et al., 2018). It is known that every
single SDM has advantages as well as limitations in its spatial projection
(Lissovsky and Dudov, 2021). Model ensemble approach that incorporates
multiple SDMs (such as Generalized Linear Model, Random Forest, and
MaxEnt) takes advantage of the strengths of different modeling techniques
and reduces the biases in any individual model, resulting in more robust
estimates of habitat suitability (Shabani et al., 2016). This study had two
objectives: (1) training SDMs using eastern redcedar records from the USDA
Forest Inventory Analysis (FIA) data to simulate the spatial pattern of
distribution probability under current climate conditions in the SGP; and (2)
simulating temporal and spatial changes in distribution probability for eastern
redcedar trees under future climate change scenarios. Environmental factors
to drive the model include climate, topography, soil texture and property
variables. The anticipated climate warming and drying in the SGP in the 21st
century (Modala et al., 2017; J. Yang et al., 2023) are expected to have
significant impacts on habitat suitability and distribution of eastern redcedar.
By examining these potential changes, this study provides valuable insights for
government agencies and landowners in making informed decisions regarding
the management of woody plant encroachment. Furthermore, the results of
this study can contribute to our understanding of future changes in vegetation
composition in the SGP and their impacts on ecosystem biophysical and
biogeochemical processes.

2. Materials and methods
2.1. Study domain

The study area encompasses the three SGP states of Kansas, Oklahoma,
and Texas (Fig. 1A). The focus of this study is the three states excluding the
highly managed areas of croplands, pasture, and urban. It is assumed that, if
climate permits, eastern redcedar can potentially grow in barren land, forests,
shrublands, grasslands, and wetlands in the SGP, which were identified from
the 2019 land cover map in the National Land Cover Database (NLCD) (Homer
et al.,, 2012). The study area covers a total of 0.82 million km?, with forests,
shrubs, grasslands, wetlands, and barren land accounting for 17.8 %, 42.5 %,
35.1 %, 4.2 %, and 0.4 %, respectively. The study domain encompassed of 17
ecoregions, namely the South Central Plains, Ozark Highlands, Ouachita
Mountains, Central Irregular Plains, Arkansas Valley, Western Corn Belt Plains,
Flint Hills, Eastern Central Texas Plains, Western Gulf Coastal Plain, Texas
Blackland Prairies, Cross Timbers, Central Great Plains, Southern Texas Plains,
Edwards Plateau, Southwestern Tablelands, High Plains, and Chihuahuan

Fig. 1. Study domain of the three states in the southern Great Plains, encompassing Kansas, Oklahoma, and Texas. (A) Land cover types in the three states excluding

changes in response to future climate conditions. To effectively devise
proactive conservation and management strategies aimed at mitigating its
expansion, particularly in areas of high conservation significance and those
serving as vital watersheds, a comprehensive understanding of the most
susceptible habitats for redcedar encroachment is crucial. Additionally, it is
essential to anticipate how the range of this encroachment-prone species will
evolve in response to future climate shifts. By acquiring such knowledge,
conservationists and land managers can implement targeted measures to
preserve valuable ecosystems and safeguard water resources.

Species Distribution Models (SDMs) are valuable tools for predicting the
potential distribution of plant and animal species by examining the
relationship between species occurrence and environmental factors, based on
the concept of a species’ ecological niche (Miller, 2010). They are increasingly
being used to support management decisions related to biodiversity,
biogeography, and natural resources (Guillera-Arroita et al., 2015). Over the
last two decades, modeling algorithms and software packages for simulating
species distribution have advanced significantly. Commonly used modeling

Desert (Fig. 1B).
Figure S1 provides an overview of the climate characteristics of the
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the highly managed area and (B) the 17 major EPA Level Ill ecoregions.

study domain during 2000 — 2019, based on the gridMET dataset (Abatzoglou,
2013). The average annual temperature shows a north-to-south increasing
gradient, while annual precipitation and the Aridity Index (A/, calculated as the
ratio of 20-year average annual precipitation to potential evapotranspiration)
exhibit an east-to-west decreasing gradient. Over the 20 years, the study
domain had an average annual temperature of 17.0 °C. The Southern Texas
Plains and Western Gulf Coastal Plain ecoregions had the highest annual
temperature, reaching 22.1 °C and 22.0 °C, respectively, while the Western
Corn Belt Plains and Flint Hills ecoregions had the lowest, at 12.2 °C and 13.4
°C, respectively (Table S1). The average annual precipitation in the study
domain was 765 mm, with the South Central Plains and Ouachita Mountains
ecoregions receiving the highest amount at 1298 mm and 1300 mm,
respectively. In contrast, the Chihuahuan Desert and the High Plains
ecoregions had the lowest precipitation, with values of 345 mm and 471 mm,
respectively. The Al values ranged from 0.22 in the Chihuahuan Desert to 0.97
in the Ouachita Mountains. Using the Al-based climate classification scheme
(Middleton and Thomas, 1997), five ecoregions were within the semi-arid
climate zone, two ecoregions were in the sub-humid climate zone, and ten
ecoregions were in the humid climate zone.

Elevation in the study domain generally increases from east to west,
ranging from less than 200 m to over 1200 m (Figure S2). The East Central
Texas Plains (28 m) and the South Central Plains (93 m) are the ecoregions
with the lowest elevation, while High Plains (1017 m) and Chihuahuan Desert
(1097 m) have the highest elevation. Spatial variations in soil texture and
properties are evident in the study domain (Figure S3). The percentage of sand
in soil is higher in the southeast and southwest ecoregions, such as the South
Central Plains and the Chihuahuan Desert. The percentages of silt and clay are

8 Western Gulf Coastal Plain
generally higher in the northern and central ecoregions. Soil pH shows a
gradual transition from acidic in the east (pH < 6.5), to neutral in the central
(6.5 < pH < 7.5), and alkaline in the west (pH > 7.5), which aligns with the
changing pattern of annual precipitation. Soil bulk density tends to be greater
in ecoregions in the central and southern parts (> 1.45 g cm~3) than those in
the eastern and northern parts (< 1.45 g cm~3).

2.2. Species distribution models

In this study, we used the “biomod2” R package (Thuiller et al., 2023) to
train seven SDMs and construct the ensemble model. The seven SDMs include
Artificial Neural Network (ANN), Flexible Discriminant Analysis (FDA),
Generalized Additive Model (GAM), Generalized Boosting Model (GBM),
Generalized Linear Model (GLM), MaxEnt, and Random Forest (RF). All of
these models have been previously used to predict the probability of species
distribution based on the relationship between environmental conditions and
species presence records (e.g. Elith et al., 2011; Franklin, 2010). They have also
been used to project changes in habitat suitability under future climate
conditions (e.g. Remya et al., 2015; Wei et al., 2018; Zhou et al., 2021). In this
study, we used the seven SDMs to simulate the spatial pattern of eastern
redcedar’s distribution probability at a spatial resolution of 0.005° over the
contemporary period (2000 —2019) and four future periods (i.e., 2020 — 2039,
2040 - 2059, 2060 — 2079, and 2080 — 2099).

It should be noted that the extent of model simulations in this study was
larger than the study domain, encompassing both the three SGP states (i.e.,
Kansas, Oklahoma, and Texas) and three additional states to the east (i.e.,
Missouri, Arkansas, and Louisiana) and two states to the west (i.e., Colorado
and New Mexico) (Fig. 2). The inclusion of these additional states provided a
larger sample size of eastern redcedar records and a greater range of
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environmental conditions during the model training process. SDMs can suffer
from reduced accuracy when making future projections due to environmental
variables, particularly future climate conditions, being outside the range of
conditions encountered during model training (Merow et al., 2013; Phillips,
2005). Therefore, we expanded the spatial extent of model simulations to
increase the range of climate conditions during model training and improve
model transferability to future climate conditions.

2.3. Data preparation for species distribution models

2.3.1. Records of eastern redcedar trees

The locations of eastern redcedar samples were obtained from the dataset
of the USDA Forest Inventory and Analysis (FIA) National Program. Raw FIA
data for the eight states were downloaded from the FIA DataMart
(https://apps.fs.usda.gov/fia/datamart/datamart.html). Using the species
code (068), we selected tree records of eastern redcedar that were
inventoried after the year of 2000 and linked them to their respective plot
records to extract their geographic coordinates.

In the public release version of the FIA data, plot coordinates are rounded
to the nearest 100 ‘onds to protect landowners’ privacy. This rounding can
result in errors in tree plot coordinates of up to 1.6 km and lead to
uncertainties in their associated environmental conditions with fast spatial
changes, such as topography. To mitigate this potential error, an adjustment
process was implemented using Google Earth Pro, as illustrated in Fig. 3. First,
we created a buffer zone (circle polygon with a radius of 1.6 km) around each
FIA plot. Then, we used high-resolution satellite remote sensing imageries
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from multiple years and different seasons to visually identify areas containing
eastern redcedar trees within each buffer zone. Winter imagery was found to
be particularly useful for identifying redcedar trees when deciduous trees
were dormant. Finally, the original FIA plots were moved to their new
locations based on the identified redcedar areas (as shown by the cyan
pinpoint being relocated to the magenta pinpoint in Fig. 3). This process was
repeated for all these selected FIA plots in the model simulation domain. It is
possible that there were more than one redcedar stands within one buffer
zone. In that case, we selected the larger stand and moved the FIA plot to the
centroid of that stand.

In the process of adjusting the redcedar plot locations using satellite
imageries, there were cases where eastern redcedar trees could not be
identified within their buffer zones. This could be attributed to human
management practices or land disturbances such as wildfires that cleared the
forest stands. These plots were excluded from the sample dataset and were
not used for model training. Furthermore, there were challenges in
differentiating eastern redcedar trees from other evergreen trees from
satellite imageries, particularly in pine plantation areas. These plots were also
excluded from the model training samples. Ultimately, we obtained a total of
3378 eastern redcedar plots with corrected coordinate information (Fig. 2).
These plots were distributed across six states, with 1060 in Missouri, 856 in
Arkansas, 77 in Louisiana, 139 in Kansas, 720 in Oklahoma, and 526 in Texas.
Although there was no FIA eastern redcedar plots in New Mexico and
Colorado (Fig. 2),

105°' W 100° W 95° W 90° W
40°N L
Colorado
35°N
New Mexico
30°N
® Sample Locations i)
By s
E State Boundary e "
r"";

Fig. 2. Model simulation extent, which covers eight states in the southern U.S. including the three states in the southern Great Plains (Kansas, Oklahoma, Texas), as well as three states
to the east (Missouri, Arkansas, and Louisiana) and two states to the west (Colorado and New Mexico). The red dots on the map denote the locations of eastern redcedar plots in the
eight states, modified based on the records from the USDA Forest Inventory and Analysis (FIA) National Program.


https://apps.fs.usda.gov/fia/datamart/datamart.html
https://apps.fs.usda.gov/fia/datamart/datamart.html

J. Yang et al.

Agricultural and Forest Meteorology 345 (2024) 109836

Google Earth

Fig. 3. An example of the adjustment of FIA plot using Google Earth Pro. In this example, the redcedar plot is located in Payne County, Oklahoma (35°57’, 97°06’). The high-resolution
satellite image was captured on February 25, 2014. The original plot location is marked by the cyan pinpoint, while the magenta pinpoint indicates the adjusted location. The red circle

is the created buffer zone with a radius of 1.6 km around the plot.

the two states were still included in the model simulation to enable SDMs to
select background points and expand the range of climate conditions during
the training process.

2.3.2. Potential predictor variables

To drive the model, we utilized three types of environmental factors:
climate conditions, topography, and soil texture and properties, all of which
are known to influence the distribution of eastern redcedar trees (Bennion,
2023). These predictor factors covered the eight states of the model
simulation domain (Fig. 2) and were downscaled/upscaled to a spatial
resolution of 0.005° for model simulations.

Climate data were prepared for five 20-year periods in the 21st century,
i.e., 2000 — 2019, 2020 — 2039, 2040 — 2059, 2060 — 2079, and 2080 — 2099.
Climate data during 2000 — 2019 were obtained from the gridMET data
(Abatzoglou, 2013), which provides daily surface meteorological data in the
contiguous U.S. at a spatial resolution of approximately 4 km. For the four
future 20-year periods, climate data were from the downscaled General
Circulation Model (GCM) simulation results under two Representative
Concentration Pathways of the RCP45 and RCP85 scenarios in the CMIP5
(Taylor et al., 2012). To account for the divergence in the projected climate
conditions by GCMs, we used climate data simulated by seven GCMs,
including BCC—CSM1, CCSM4, GFDL-ESM2G, HadGEM2-ES365, IPSL-CM5A-LR,
MIROCS, and
NorESM1-M. These data had been downscaled to a spatial resolution of 4 km
and bias-corrected according to the gridMET historical climate data using the
Multivariate Adaptive Constructed Analogs (MACA) developed by Abatzoglou
and Brow (2012).

Six climate factors were considered as potential predictors for SDM
simulations. These factors included the 20-year average temperature
(Tavg, °C), 20-year average hottest month temperature (Thotmontn, °C), the
average diurnal temperature range (Trange, °C), the number of days each year
with a daily minimum temperature greater than 0 °C (N:min>0), the average
annual precipitation (Pann, mm), and the Aridity Index (A/). Al was calculated

as the ratio of annual precipitation to potential evapotranspiration, which was
determined using the Priestley-Taylor equation (Priestley and Taylor, 1972).

Topographic variables of slope and aspect were included in the SDMs as
potential predictors, which were derived from the 90-m Multi-Error- Removed
Improved-Terrain DEM (MERIT DEM) (Yamazaki et al., 2017). Slope and aspect
were calculated using ArcToolbox in ArcGIS 10.8. The aspect was further
categorized into eight directions: North, Northeast, East, Southeast, South,
Southwest, West, and Northwest. We also processed the 250-m SoilGrid data
(Poggio et al., 2021) to obtain five types of soil texture and properties in the
topsoil layer. These five types of soil data included the percentages of sand
(sand%), silt (silt%), and clay (clay%), soil bulk density (bulkden, g cm™3), and
soil pH value.

2.3.3. Feature selection

Multicollinearity among predictor variables can impact parameter
estimation by inflating the variance of regression parameters and leading to
inaccurate identification of relevant predictors (Dormann et al., 2013). While
some SDMs, such as MaxEnt and RF, are generally resilient to predictor
collinearity during model training, the shift in collinearity under novel climate
conditions can reduce model transferability (Feng et al., 2019). To address the
issue of multicollinearity, we calculated the variance inflation factor (VIF) for
the potential climate, topographic, and soil predictor variables in the 3378
redcedar plots. Predictor variables with a VIF greater than 5 were excluded. In
the end, we selected nine predictor variables for model training and future
prediction, which were Tavg, Trange, Al, slope, aspect, sand%, clay%, bulkden,
and pH (Table 1). Noted that Thotmonth, Pann, Nimin>0, and silt% were not included
in the model due to their high correlation with Al, Tav, sand%, and clay%. This
exclusion helps mitigate potential redundancy in the model, ensuring the
selected variables capture distinct information and improve model
performance. Additionally, the removal of multicollinearity ensures the
marginal response curve can effectively reflect the response of habitat
suitability to environmental factors (see Section 2.5).
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Table 1
The calculated variance inflation factor (VIF) for predictor variables before and after
feature selection.

Predictor VIF before feature selection VIF after feature selection variables

Lo 517.3 31

Thot month 26.6 Not selected
Trange 20.9 1.5

Ntmin>0 336.0 Not selected
Pann 339.5 Not selected
Al* 436.9 4.1

slope * 13 1.2

aspect * 1.0 1.0

sand% * 2.1x 10" 3.5

silt% 1.7 x 10 Not selected
clay% * 3.7 x 10" 2.4

bulkden * 3.8 3.8

pH * 3.2 3.0

Note:.

“refers to the predictor variables selected for model training and future projection.

2.4. Model settings and simulations

In this study, we employed the function in biomod2 to randomly select
4000 pseudo-absences. The FIA eastern redcedar plots and pseudo-absences
were then randomly partitioned into a training dataset (80 % of the data) and
an independent testing dataset (the remaining 20 %). To enhance the
robustness of our simulation results, this process was repeated five times.
Subsequently, we tuned the model options for each SDM. For the GLM, we
opted for the “Quadratic” model form and set the interaction level to “1” to
account for the interactions between environmental factors. For the GBM, the
parameter “n.trees” was set to 1000. For the GAM, we utilized the
“GAM_mgcv” function to fit the model. RF was configured with “ntrees” set
to 1000 and “nodesize” set to 5. For ANN, the number of cross validations to
identify the best size and decay parameters (“ncCV”) was set to 5 and the
maximum number of model iterations (“maxit”) was set to 200. For FDA, we
chose the multivariate adaptive regression splines (“MARS”) as the regression
method in optimal scaling. For MaxEnt, four feature functions including “linear
features”, “quadratic features”, “threshold features”, and “hinge features”
were selected to allow MaxEnt to automatically use the “best” feature
function based on the sample size. We tuned the “Regularization multiplier”
parameter and set it to 2 (Radosavljevic and Anderson, 2014).

We conducted simulations in the contemporary period (2000 — 2019) to
obtain distribution probability maps from the outputs of each SDMs and the
ensemble model and assess the performance of the SDMs. Model
performance was evaluated using the area under the receiver operating
characteristic (ROC) curve (AUC), which is a popular metric to evaluate the
performance of SDMs in distinguishing between species presence and
background samples. After model evaluation, we used the ensemble model to
generate redcedar distribution probability maps in the contemporary period
and four future periods in the RCP45 and RCP85 scenarios.

Although we expanded the simulation domain to encompass a broader
range of climate conditions, it is possible that future climate in the three SGP
states falls outside the current climate range. For future projections, we
performed a Multivariate Environmental Similarity Surface (MESS) analysis to
assess the degree of similarity or dissimilarity in environmental conditions
between the model training and projection processes (Elith et al., 2010). The
MES values range from - 100 % to 100 %. Negative MES values indicate that
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the predictors in the projection process are beyond the range of the reference
training data, while positive values indicate a larger similarity between the
reference data and the predictors in the projection process (Polce et al., 2014).
A MES value of 100 % indicates the set of environmental factors is identical to
those in the training process. Additionally, we identified the Most Dissimilar
Variable (MDV) among the selected predictor variables for grids with negative
MES values. The algorithm to calculate MES and identify MDV can be found in
the Online Supplementary Material of Elith et al. (2010). The MESS analysis
and MDYV identification are useful to understand the potential limitations and
model reliability associated with projecting redcedar habitat suitability under
future climate conditions.

Model simulations were conducted in each of the five 20-year periods of
2000 - 2019, 2020 — 2039, 2040 — 2059, 2060 — 2079, and 2080 — 2099 using
the ensemble model of the seven SDMs. For the four future periods, climate
data were obtained from the simulations conducted by seven GCMs in the
RCP45 and the RCP85 scenarios (see the description in 2.3.2). In total, the
ensemble model was used to perform 56 simulations for the future periods (4
future periods x 7 GCMs x 2 scenarios). 2.5. Analyses

We conducted permutation tests to assess the relative importance of the
nine selected environmental variables in each SDM and the ensemble model.
The permutation test involved randomly permuting the values of each
environmental variable for both the training presence data and pseudo-
absences and then refitting the SDMs using the permuted values. The
resulting decrease in AUC for each variable was normalized to percentages to
represent their relative importance in the model.

The marginal response curves were generated to examine the response of
the simulated eastern redcedar distribution probability to environmental
factors. These curves could be misleading if the environmental variables are
highly correlated. However, as we have already addressed the issue of
multicollinearity by removing highly correlated variables (Section 2.3.3), the
marginal response curves can effectively demonstrate the responses. To focus
on the most influential variables, we created response curves only for the
environmental factors with permutation importance greater than 10 % in the
ensemble model.

The simulated distribution probability ranges from 0 to 1. To facilitate
result interpretation and analysis, we categorized these probability values into
four habitat suitability classes: unsuitable habitat (0 — 0.05), poorly suitable
habitat (0.05 — 0.33), moderately suitable habitat (0.33 — 0.67), and highly
suitable habitat (0.67 — 1) (Wei et al., 2018). Finally, we analyzed the spatial
pattern of redcedar habitat suitability and assessed how it would change
under future climate conditions.

3. Results
3.1. Model evaluation and variable contributions

Fig. 4 shows the simulated spatial pattern of the distribution probability of
eastern redcedar by seven distribution models in the period of 2000 — 2019
and their ensemble results. All these models simulated a higher distribution
probability in the eastern part of the SGP, which is consistent with the spatial
pattern of FIA redcedar plots in Fig. 2. The boxplot in Fig. 5 shows the average
AUC and AUC variations of the five replications for each of the seven selected
SDM:s. In terms of the average AUC of five replications, ANN had the lowest
average AUC of 0.868. The other six SDMs had an average AUC over 0.9, which
was 0.901 for FDA, 0.904 for GAM, 0.909 for GBM, 0.908 for GLM, 0.908 for
MaxEnt, and 0.911 for RF. The high AUC values indicate that all seven models,
along with the selected predictor variables, effectively captured the spatial
distribution of eastern redcedar distribution probability during the
contemporary period. It also provides confidence in the ability of model
ensemble approach to predict redcedar distribution probability under future
climate conditions.

The results of the permutation test indicate the relative importance of
environmental factors in shaping the spatial pattern of eastern redcedar
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distribution probability (Table 2). According to the results of the seven SDMs
and the ensemble model, climate variables were identified as the most
influential factors. In the ensemble model, Al was associated
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Fig. 4. The simulated distribution probability of eastern redcedar by seven species distribution models (A - G) in the contemporary period and their ensemble results (H). (A) ANN: Artificial
Neural Network, (B) FDA: Flexible Discriminant Analysis, (C) GAM: Generalized Additive Model, (D) GBM: Generalized Boosting Model, (E) GLM: Generalized Linear Model, (F) MaxEnt:
Maximum Entropy, and (G) RF: Random Forest.
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Fig. 5. The area under the receiver operating characteristic curve (AUC) for evaluating the performance of seven species distribution models in simulating the spatial distribution of
eastern redcedar in the southern Great Plains. Boxplot is used to show the distribution of AUC of five model replications and triangles in the boxplot show the average AUC of the five
replications. ANN: Artificial Neural Network, FDA: Flexible Discriminant Analysis, GAM: Generalized Additive Model, GBM: Generalized Boosting Model, GLM: Generalized Linear Model,
MaxEnt: Maximum Entropy, and RF: Random Forest.

Table 2
The normalized permutation importance for the nine predictor variables in the seven species distribution models (ANN, FDA, GAM, GBM, GLM, Maxent, and RF) and the ensemble model.
ANN FDA GAM GBM GLM MaxEnt RF Ensemble

Al 30.2% 81.0% 69.8 % 85.9% 49.2 % 52.2% 50.1% 69.9 %
bulkden 4.2% 26% 15% 3.4% 4.4% 3.0% 4.8 % 19%
clay% 9.5% 2.7% 14% 12% 11% 34% 4.0% 21%
aspect 0.0% 0.0% 0.0% 0.0% 0.0% 0.1% 0.2% 0.0%
pH 225% 05% 0.4% 0.1% 6.1% 33% 6.5% 26%
sand% 9.4% 1.0% 35% 0.1% 7.0% 6.2% 42 % 25%
slope 16% 32% 1.6% 35% 1.7% 7.8% 6.4% 26%
Tavg 19.5% 8.9% 213 % 5.8% 23.8% 225% 19.6 % 17.8%
Trange 3.1% 0.1% 0.4% 0.0% 6.6 % 14 % 43 % 0.8%
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with the highest importance of 69.9 %, followed by Tay with an importance of
17.8 %. Among the non-climate environmental factors, pH and slope exhibited
the highest importance with a permutation importance value of 2.6 %.
Additionally, sand%, clay%, and bulkden had an importance value of 2.5 %, 2.1
%, and 1.9 %, respectively. This indicates soil properties and topography had a
relatively lower but still noticeable contribution to the spatial pattern of
distribution probability.

Fig. 6 displays the responses of simulated relative habitat suitability to the
most important environmental factors of Al and Taygin the ensemble model.
Habitat suitability initially increases with Al within the range of 0 to 0.9.
However, in a humid environment where A/l exceeds 0.9, habitat suitability
starts to decline. The optimal Al range for eastern redcedar habitat
(distribution probability > 0.67) lies between 0.6 and 1.25. For Tayg, redcedar
habitat suitability increases with Tag in regions with relatively low
temperature (Tavyg < 13 °C) and decreases with Tayg in regions with relatively
high temperature (Tawg > 16 °C). The optimal Ty, range for eastern redcedar
habitat (distribution probability > 0.67) falls between 11 °C and 18.6 °C. By
considering the climate statistics in each ecoregion (Table S1), it is observed
that seven ecoregions had average climate conditions within the optimal
ranges for both Al and Taus. These ecoregions were Ozark Highlands (Al = 0.94,
Tavg=

15.5 °C), Ouachita Mountains (Al = 0.97, Taw = 16.4 °C), Central
Irregular Plains (Al = 0.88, Tavy = 14.3 °C), Arkansas Valley (Al =
0.88, Tavg= 16.7 °C), Western Corn Belt Plains (Al = 0.78, Tawg= 12.2 °C), Flint
Hills (Al = 0.76, Tavg= 13.4 °C), and Cross Timbers (Al = 0.65, Tavg= 17.6 °C).

3.2. Future shift in optimal climate conditions

According to the future climate statistics in Tables S2 and S3, the SGP and
all 17 ecoregions will have a warming and drying trend in both the RCP45 and
RCP85 scenarios. In the RCP45, the annual temperature for the entire study
domain is projected to increase from 17.0 °C in 2000 — 2019 to 19.6 + 0.6 °C
(mean % 1 std. dev. of climate data from seven GCMs, same hereafter) in 2080
— 2099 (Figure S4). Al is expected to decrease from 0.55 during 2000 — 2019
to 0.49 + 0.02 during 2080 — 2099 (Figure S5). By the end of the 21st century
in the RCP45, only four ecoregions are projected to fall within the optimal
climatic ranges for redcedar habitat, including Ozark Highlands (A/ = 0.84 +
0.07, Tawg=18.3 £ 0.7 °C), Central Irregular Plains (Al =0.79 = 0.06, Tavg=

17.1 0.8 °C), Western Corn Belt Plains (Al =0.70 £ 0.06, Tavg=

15.2 £ 0.8 °C), and Flint Hills (Al = 0.68 £ 0.06, Tavg
16.3 £ 0.8 °C). In the RCP8S5, the SGP states are projected to experi-
ence even higher temperature and drier climate conditions. The annual
temperature for the study domain is expected to rise from 17.0 °C during 2000
—2019 to 22.1 + 0.8 °C during 2080 — 2099, while Al is predicted to decrease

from 0.55 during 2000 —2019 to 0.44 + 0.03 during 2080 —2099. Western Corn
0.9
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Belt Plains is anticipated to be the only ecoregion that falls within the optimal
ranges for Al and Tay, simultaneously, by the end of the 21st century in the
RCP85.

With the projected changes in future climate conditions, the regions with
the optimal Al will shift eastward in the 21st century under both the RCP45
and RCP85 scenarios (Fig. 7). In the period from 2000 to 2019, the average
longitude of the lower boundary of Al (Al = 0.6) is approximately 97.9 “W.
Future climate projections indicate that in the four 20-year future periods
under the RCP45, the average longitudes of the low Al boundary will shift to
97.4°W, 97.2°W, 97.2°W, and 97.2 °W, respectively. Similarly, in the RCP85, the
average longitudes of the lower Al boundary are projected to be around 97.5
W, 97.1 “W, 96.8

‘W, and 96.6 "W for the respective future periods. Overall, the optimal A/
boundary will shift eastward by approximately 0.7° (= 58 km) in the RCP45 and
1.3°(= 108 km) in the RCP85 across the 21st century. This analysis focused on
the spatial shift of the lower Al boundary rather than the upper boundary,
which is projected to extend beyond the eastern side of the study domain.

Meanwhile, the region with the optimal annual temperature will move
northward during the five 20-year periods of the 21st century in both the
RCP45 and RCP85 scenarios (Fig. 8). In the contemporary period (2000 —
2019), the average latitude of the upper boundary of Tavg (Tavg= 18.6) is located
at 31.4 °N. Under the RCP45, the average latitudes of the upper Ta,s boundary
will shift to 33.0 °N, 33.6 °N, 34.6 °N, and 35.0 °N, respectively, during the four
20-year future periods. In the RCP85, the average latitudes of the upper Tav
boundary will be at 32.8
°N, 35 °N, 36.2 °N, 38.0 °N, respectively. Overall, the optimal upper Tay
boundary is projected to have a northward shift by approximately 3.6° (= 399
km) in the RCP45 and by 6.6° (= 731 km) in the RCP85 throughout the 21st
century. Noted that the analysis did not consider the shift in the lower
boundary of the optimal Tau, as it is projected to be beyond the northern side
of the study domain.

3.3. Distribution probability in the contemporary period

During the contemporary period of 2000 — 2019, the average distribution
probability of the study area was 0.23. The unsuitable, poorly suitable,
moderately suitable, and highly suitable redcedar habitats accounted for 40.2
%, 31.6 %, 17.9 %, and 10.4 % of the study area, respectively, in the SGP states
(Table 3). Among the 17 ecoregions in the study domain, the highest average
distribution probability was observed in Ozark Highlands (0.8), Ouachita
Mountains (0.8), and Arkansas Valley (0.79), which had percentages of highly
suitable habitat of 97.0 %, 96.2 %, and 96.7 %, respectively. On the other hand,
the ecoregions with the lowest average distribution probability were Southern
Texas Plains (0.04), Edwards Plateau (0.08), Southwestern Tablelands (0.07),
High Plains (0.04), and Chihuahuan Desert (0.04), with unsuitable habitat
percentages of 94 %, 53.3 %, 61.6 %, 93.1 %, and 95.2 %,

0.9

=

-4 0 4 8 12 16

Annual Average Temperature (°C)

20 24



J. Yang et al. Agricultural and Forest Meteorology 345 (2024) 109836

Fig. 6. Response curve illustrating the response of redcedar distribution probability to Aridity Index (A) and annual average temperature (B) in the ensemble model. The double-sided
arrows highlight the optimal ranges for Aridity Index (between 0.6 and 1.25) and annual average temperature (between 11 °C and 18.6 °C) with a distribution probability greater than

0.67.
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Fig. 7. The shift of the lower boundary of the optimal Aridity Index (Al = 0.6) in the RCP45 scenario (A) and RCP85 scenario (B) across the five 20-year periods of 2000 — 2019, 2020 —
2039, 2040 — 2059, 2060 — 2079, and 2080 — 2099. The background image represents the region within the optimal Al range (between 0.6 and 1.28, depicted in light yellow) for the

period of 2000 — 2019.
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Fig. 8. The shift of the upper boundary of the optimal annual temperature (T,,,= 18.6 °C) during the five 20-year periods of 2000 — 2019, 2020 — 2039, 2040 — 2059, 2060 — 2079, and
2080 — 2099 in the RCP45 scenario (A) and the RCP85 scenario (B). The background image highlights the region within the optimal T, range (between 11 °C and 18.6 °C, depicted in

light yellow) during the period of 2000 —2019.
respectively.

Eastern redcedar showed a distinct west-to-east gradient of improving
habitat quality in the study domain (Fig. 9). To the west of 101 ‘W, over 95 %
of the land area was deemed unsuitable for the growth of eastern redcedar.
However, as the longitude crosses 101 ‘W and moves towards the east, the
distribution probability gradually increases (Fig. 9B and 9C). The most notable
increase in distribution probability occurred within the longitude range
between 100 ‘W and 97 “W. The highest distribution probability values were
found within the longitude range of 97 “W and 94 *W, with particularly
favorable conditions in Oklahoma.

3.4. Future changes in distribution probability

Distribution probability for eastern redcedar in the study domain is
expected to have a continuous decline in the five 20-year periods under both
the RCP45 and RCP85 scenarios (Fig. 10). Across the entire study domain, the
average distribution probability is projected to decrease from 0.23 in the
period of 2000 — 2019 to 0.16 + 0.01 in the RCP45 and to 0.12 + 0.01 in the
RCP85 in the period of 2080 — 2099 (Table S4). The most significant decline in
distribution probability is anticipated to occur in the longitudinal region
between 98 “W and 95 "W. Within this area, the distribution probability is
projected to decrease from 0.53 during 2000 — 2019 to 0.36 in the RCP45 and
0.25 in the RCP85 during 2080 — 2099 (Figure S6). By the end of the 21st
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century, the ecoregions with the highest distribution probability are predicted

to be Ozark
Table 3
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Across the 21st century, the extent and locations of the four suitability
classes will undergo considerable changes in response to the declining

Statistics of the average distribution probability and the percentages of four habitat suitability classes in the study domain and each individual ecoregion for the period of 2000 — 2019.

Average Distribution

Percentage of unsuitable

Percentage of poorly suitable

Percentage of moderately suitable Percentage of highly

Probability (%) (%) (%) suitable (%)
Entire study domain 0.23 40.2 31.6 17.9 10.4
South Central Plains 0.57 0.0 12,5 54.5 33.0
Ozark Highlands 0.8 0.0 0.0 3.0 97.0
Ouachita Mountains 0.8 0.0 0.0 3.7 96.2
Central Irregular Plains 0.57 0.0 1.1 76.7 22.2
Arkansas Valley 0.79 0.0 0.0 33 96.7
Western Corn Belt Plains ~ 0.47 0.0 16.1 80.2 3.7
Flint Hills 0.5 0.0 6.7 85.3 8.0
East Central Texas Plains ~ 0.47 1.8 28.5 48.3 21.4
Western Gulf Coastal 0.13 12.4 82.3 5.2 0.0
Plain
Texas Blackland Prairies 0.35 0.1 51.0 44.4 4.6
Cross Timbers 0.41 0.0 50.3 20.1 29.6
Central Great Plains 0.24 10.5 60.6 25.6 33
Southern Texas Plains 0.04 94.0 6.0 0.0 0.0
Edwards Plateau 0.08 53.3 46.4 0.3 0.0
Southwestern Tablelands  0.07 61.6 36.1 2.8 0.0
High Plains 0.04 93.1 6.9 0.0 0.0
Chihuahuan Desert 0.04 95.2 4.8 0 0
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Fig. 9. Spatial pattern of eastern redcedar suitability classes over the period of 2000 — 2019 based on the simulated distribution probability from the ensemble model. (A) spatial pattern
of four suitability classes, (B) latitudinal averages of distribution probability and their changes in the longitudinal direction, and (C) latitudinal average of the percentages of four suitability
classes and their changes in the longitudinal direction.

Highlands (0.59 + 0.06 in the RCP45 and 0.48 + 0.03 in the RCP85), Ouachita
Mountains (0.61 + 0.04 in the RCP45 and 0.49 + 0.03 in the RCP85), and
Arkansas Valley (0.59 + 0.04 in the RCP45 and 0.46 + 0.04 in the RCP85).

distribution probability (Fig. 11). The proportion of study area categorized as
unsuitable is projected to increase from 40.2% during

2000-2019 to 48 + 1.8% during 2080 — 2099 in the RCP45, and to 54.2 + 2.3%
during 2080 — 2099 in the RCP85 (Fig. 12). While the total area of poorly

10
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suitable land will not experience significant change throughout the century, approximately 0.6° (= 49 km) in the RCP45 and 1.2° (= 103 km) in the RCP85
the spatial centroid of the poorly suitable land will shift eastward by over the course of the century. Since the

Fig. 10. Spatial pattern and temporal changes in the distribution probability of eastern redcedar over the four 20-year periods of 2020 — 2039, 2040 — 2059, 2060 — 2079, and 2080 —
2099 in the RCP45 (A, B, C, and D) and the RCP8S5 (E, F, G, and H) scenarios.
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Fig. 11. Spatial pattern and temporal changes in the four suitability classes for eastern redcedar growth during the periods of 2020 — 2039, 2040 — 2059, 2060 — 2079, and 2080 — 2099

under the RCP45 (A, B, C, and D) and the RCP85 (E, F, G, and H) scenarios.
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Fig. 12. Temporal changes in the percentages of the four habitat suitability classes, namely, (A) Unsuitable, (B) Poorly Suitable, (C) Moderately Suitable, and (D) Highly Suitable, in the

study domain over the course of the five 20-year periods in the 21st century.

poorly suitable class predominantly distributes within the study domain
throughout the entire study period, it is used as a proxy to represent the
spatial shift of all habitat suitability classes. Moderately suitable land area will
diverge between the RCP45 and RCP85 scenarios. In the RCP45, the
percentage of the moderately suitable land area is expected to have a slight
increase from 17.9 % to 18.1 + 1.7% by the end of the 21st century. Conversely,
in the RCP85, it will decrease significantly from 17.9 % to 11.2 + 3.9% (Fig. 10).
For the highly suitable class, there will be a similar declining pattern in both
the RCP45 and the RCP85, with the area decreasing from 10.4 % during 2000
—2019to 1.3 £ 1.3% in the RCP45 and 0 + 0% in the RCP85 by the end of the
21st century.

By the end of the 21st century in both the RCP45 and RCP85 scenarios,
over 99 % of the land area that was classified as unsuitable during 2000 — 2019
will remain unsuitable for redcedar to grow (Table 4). However, a significant
portion of the land area initially classified as suitable during 2000 — 2019 will
experience a degradation in suitability classes. In the RCP45, 22.4 % of poorly
suitable land area

Table 4

during 2000 — 2019 will transition into unsuitable habitats by the end of the
21st century. In the RCP85, this percentage will be 41.4 %. Regarding
moderately suitable class, 50 % of the area will transition into poorly suitable
class in the RCP45, while a higher proportion of 84.1 % will become poorly
suitable in the RCP85. Additionally, in the RCP45, 92.5 % of highly suitable
habitat will transition into either moderately suitable or poorly suitable classes
by the end of the 21st century. In the RCP85 scenario, all highly suitable
habitats will transition into either moderately suitable or poorly suitable
classes.

3.5. Dissimilarity of environmental variables between training samples
and future projection

Fig. 13 illustrates the average MESS derived from future projections driven
by climate datasets from 7 GCMs for four 20-year future periods under the
RCP45 and RCP85 scenarios. Negative MES values suggest a significant level of
uncertainty, particularly in southern Texas,

Un- suitable  Poorly Suitable  Moderately Suitable  Highly Suitable Un- suitable  Poorly Suitable  Moderately Suitable  Highly
Suitable
2000 - Unsuitable 99.5 % 0.5% _ - 99.7 % 03% _ -
2019 Poorly Suitable 22.4% 76.5% 1% - 41.4% 58.5% 0.4% -
Moderately Suitable - 50 % 50 % - - 84.1% 15.9% -
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75% - 23% 77 % 0%
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RCP85, 2080 - 2099

The transition of habitat suitability classes from the period of 2000 — 2019 to the period of 2080 — 2099 under the RCP45 and the RCP85 scenarios. The percentages in this table indicate
the proportion of each suitability class in 2000 — 2019 that transitions to the four suitability classes by the end of this century.
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Fig. 13. Multivariate Environmental Similarity Surface (MESS) for the projections in four 20-year future periods of 2020 — 2039, 2040 — 2059, 2060 — 2079, and 2080 — 2099. The simulations
are conducted under two climate scenarios: RCP45 (A, B, C, and D) and RCP85 (E, F, G, and H). The MESS maps illustrate the average value of Multivariate Environmental Similarity (MES)

driven by climate data from seven General Circulation models.

highlighting notable discrepancies between the training dataset and future
climate conditions in that region. Furthermore, the spatial extent of areas with
negative MES values is expected to expand as time progresses. In the last 20-
year period of the 21st century, the proportions of areas with negative MES
values are projected to be 8.7% under the RCP45 and 34.5% in the RCP85,
respectively.

Tavg Was identified to be the Most Dissimilar Variable (MDV) in the future
projections for most of the study area with negative MES value (Figure S7).
This is not surprising, given the projected rapid increase in annual
temperature in the study area, particularly in the RCP85 scenario (Figure S4).
This temperature rise is expected to push the southern Texas region beyond
the temperature range in the training dataset, contributing to the dissimilarity
between the reference data and the future environmental conditions. It is
worth noting that A/ will not be the MDV, except for a small area in western
Texas under the RCP85 during the period of 2080 — 2099 (Figure S7H).
Considering that Al is the most important variable in the SDMs (Table 2) and
future Al values are expected to largely fall within the range of the training
data, the projected future distribution probability is anticipated to have high
reliability.

4. Discussion
4.1. Environmental factors influencing habitat suitability
The SDMs in this study incorporated three types of environmental factors:

climate, soil properties, and topography. Among these factors, climate
conditions, particularly the long-term average aridity, were the most

significant variable in shaping the spatial pattern of eastern redcedar habitat
suitability (Table 2). This finding is consistent with previous research showing
the crucial role of precipitation regimes in determining the growth and extent
of woody plants (Archer et al., 2017). Therefore, future changes in eastern
redcedar habitat suitability in the SGP will be primarily driven by the projected
drying trend. Our findings indicate that the optimal aridity range for redcedar
habitat in the 21st century will shift eastward by approximately 0.7° (= 58 km)
under the RCP45 and by approximately 1.3° (= 108 km) under the RCP85 (Fig.
7). Consequently, the spatial centroid of the suitable land area will also shift
eastward by 0.6° (= 49 km) under the RCP45 and by 1.2° (= 103 km) under the
RCP85 (Fig. 11). These shifts are expected to significantly reduce the overall
area of suitable land for eastern redcedar growth in the mixed prairie and the
west of the SGP states.

Fire regimes and grazing are potential factors influencing the distribution
of eastern redcedar in the SGP (Fuhlendorf et al., 2008). However, due to the
lack of accurate future projections of wildfire regimes, the extent of
prescribed burning, and livestock density, these factors were not explicitly
incorporated into the development of the SDMs and future projections in this
study. Wildfire regimes are strongly correlated with regional climate
conditions (Abatzoglou and Williams, 2016; Westerling et al., 2003; Yang et al.,
2015). Therefore, by incorporating climate factors (i.e., Al and Tay) into the
SDMs, some implicit information related to future changes in wildfire regimes
had been indirectly considered in these simulations.
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4.2. Implications for land management and ecosystem composition

The negative impacts of eastern redcedar encroachment on ecosystem
services and agricultural production have been widely recognized by
stakeholders. In response, government agencies and organizations have
implemented various incentive programs to support the reduction of eastern
redcedar in the SGP (Fogarty et al., 2021). For example, USDA NRCS allocated
$5.5 million to $7 million each year through the Environmental Quality
Incentive Program (EQIP) to assist Oklahoma landowners in addressing natural
resource concerns and improving environmental quality. A large fraction of
this fund has been dedicated to supporting the removal of eastern redcedar
from rangelands. Our simulation results indicate that future climate change
will decrease redcedar habitat suitability and limit its encroachment in the
western region of the SGP states. Therefore, based on this information, we
cautiously suggest that stakeholders prioritize the allocation of redcedar
removal resources and efforts in the humid and semi-humid ecoregions in the
eastern portion of the SGP states.

Prescribed burning has been used by landowners in the SGP to improve
forage quality and clear hazardous fuels, including redcedar (Twidwell et al.,
2013b). The implementation of pyric herbivory, which involves the synergistic
integration of livestock grazing and patch burning, is an effective option for
controlling eastern redcedar encroachment (Fuhlendorf et al., 2017; Wilcox et
al., 2022). This approach creates a shifting mosaic of landscape patches with
varying prescribed burning schedules and post-fire recovery. Pyric herbivory
is a cost-effective management strategy and offers numerous benefits,
including maintaining open grasslands (Twidwell et al., 2013b), enhancing
forage quality and production (Boughton et al., 2022), reducing woody plants
(Capozzelli et al., 2020), and creating breeding habitats for grassland birds
(Augustine and Derner, 2015). Furthermore, the development of industries
that utilize eastern redcedar, such as the manufacturing of mulch,
particleboard, and biofuel, can make a significant contribution to the local and
regional economy (Kaur et al., 2020). This highlights the potential of effective
management strategies for eastern redcedar to not only address
environmental and agricultural challenges but also provide economic
opportunities and promote sustainable utilization of this resource.

Our simulation results revealed that with climate warming and drying in
the future, a significant portion of currently suitable lands in the western and
central regions of the SGP states, particularly under the RCP85 scenario, will
become unsuitable for eastern redcedar. This change is attributable to the
increased occurrence of droughts and heatwaves, which would lead to higher
mortality rates among eastern redcedar and other tree species (Allen et al.,
2010). The eastern part of the SGP states will also experience a reduction in
habitat suitability, with the suitability class transitioning from highly suitable
to moderately suitable. This means that redcedar trees are still expected to
have higher chances of survival and growth in the east. Currently, the
dominant tree species in the eastern ecoregions are oaks, such as Quercus
stellata and Q. marilandica (Hoff et al.,, 2018a). Eastern redcedar
encroachment into these oak-dominated forests began in the 1950s and has
not yet reached its full potential. Given that eastern redcedar has greater
drought tolerance and lower mortality rates related to drought compared to
oak species (Gu et al., 2015; Torquato et al., 2020b), it is likely that redcedar
trees will continue to encroach into deciduous forests under future climate
conditions. If unchecked, this could result in the gradual replacement of oak-
dominated forests by redcedar trees.

4.3. Employed strategies to mitigate uncertainties

To reduce uncertainties in future simulations, several strategies were
implemented in this study. During the model training and simulation
processes, we obtained USDA FIA eastern redcedar samples and implemented
simulations in eight states, which covered a larger spatial extent than the
three SGP states. This approach ensured that the range of Al in the training
dataset encompassed a wide spectrum and reduced the chances of future A/
to exceed the range. Recognizing the divergence in future climate projections
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among different GCMs (Sillmann et al., 2013), this study followed an approach
in J. Yang et al. (2023) and reported the average and standard deviation of
simulation results driven by seven climate datasets from different GCMs. This
strategy accounted for the variations in the projected future climate
conditions by GCMs and increased confidence in the interpretation of
projected patterns of future redcedar distribution probability. Additionally,
every single SDM has limitations in its spatial projection (Lissovsky and Dudov,
2021). To mitigate this uncertainty, we employed an ensemble approach
based on the results of seven SDMs to reduce the biases in these individual
models, resulting in more robust estimates of future habitat suitability
(Shabani et al., 2016).

4.4. Caveats and future research needs

Currently, redcedar and honey mesquite (Prosopis glandulosa) coexist
within the same ecological niche in the western region of the study domain.
Honey mesquite, known for its greater drought tolerance, thrives in these arid
environment conditions. As the climate continues to become drier, it is
expected that intensified competition between redcedar and mesquite will
occur, resulting in significant changes in their dynamics and contributing to
the confinement of redcedar to the western boundary. The eastern region of
our study domain has optimal conditions for the growth of eastern redcedar
trees. However, their distribution in this area is limited by competition from
faster growing mesic trees (Lawson, 1990). Therefore, to obtain a more
accurate projection of redcedar future distribution, it would be highly
beneficial to use an approach that incorporates not only the abiotic attributes
but also species-specific competition in future endeavors. To achieve this,
future studies could consider forest landscape models, such as LANDIS-II
(Scheller et al., 2007), to simulate the changing distribution of eastern
redcedar by simulating the competition between woody plant species.
Additionally, we acknowledge that in southern Texas, the future annual
temperature will exceed the upper boundary of the temperature range in
model training samples (Fig. 13). As a result, model results for this region
carried higher uncertainty and caution should be exercised when making
interpretations in this region. Moreover, SDMs in this study did not consider
the relationship between eastern redcedar and other biotic components, such
as pests and diseases, which can lead to uncertainties in the projected
distribution probability.

5. Conclusion

The encroachment of eastern redcedar poses a significant threat to
ecosystem services in the SGP forests and grasslands. In this study, we utilized
an ensemble approach of seven SDMs to project the spatiotemporal patterns
of eastern redcedar distribution probability under future climate conditions.
The simulation results indicate that throughout the 21st century, the suitable
habitat for eastern redcedar will shift eastward by 0.6° (= 49 km) in the RCP45
and by 1.2° (= 103 km) in the RCP85. These changes in habitat suitability will
render most of the western region of the SGP states unsuitable for redcedar
growth. However, although redcedar habitat suitability will decrease in the
eastern regions of the SGP as well, it is still possible for eastern redcedar to
grow and thrive. Based on these results, we suggest that stakeholders
prioritize the allocation of redcedar removal resources and efforts in the
humid and semi-humid ecoregions in the eastern portion of the SGP states,
particularly in the context of the RCP85 scenario.
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