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Eastern redcedar (Juniperus virginiana, redcedar) is a major woody species encroaching upon the native grasslands and forests 

of the southern Great Plains (SGP), representing a significant threat to regional ecosystem services. Future climate change is 

anticipated to influence redcedar habitat suitability, changing the probability of further encroachment and reshaping its spatial 

distribution. In this study, we trained seven Species Distribution Models (SDMs) with redcedar records from the USDA Forest 

Inventory Analysis database and used the ensemble of these SDMs to simulate redcedar distribution probability under current 

and future climate conditions in Kansas, Oklahoma, and Texas. Results reveal a distinct east-to-west gradient of decreasing 

distribution probability in the study domain, primarily driven by climate aridity. Throughout the 21st century, the optimal range 

of aridity for redcedar habitat is projected to shift eastwards by 0.7◦ (≈ 58 km) under the RCP45 climate scenario and 1.3◦ (≈ 108 

km) under the RCP85. Accordingly, the suitable habitat will shift eastward by 0.6◦ (≈ 49 km) in the RCP45 and by 1.2◦ (≈ 103 km) 

in the RCP85. The proportion of unsuitable habitat will increase from 40.2 % of the study domain during 2000 – 2019 to 48 % 

in the RCP45 and 54.2 % in the RCP85 during 2080 – 2099. Additionally, highly suitable land areas will decrease from 10.4 % of 

the study domain during 2000 – 2019 to 1.3 % in the RCP45 and 0 % in the RCP85 by the end of this century. This study suggests 

a low likelihood of further redcedar encroachment in the west of the SGP states under future climates, while anticipating 

continued expansion in the east, gradually replacing the existing oak forests and rangelands. The findings provide valuable 

insights for prioritizing WPE management resources and contribute to our understanding of future changes in the SGP 

vegetation composition and their impacts on ecosystem dynamics.    

1. Introduction  

Woody Plant Encroachment (WPE) is a widespread phenomenon observed 

globally in various regions, including Africa (Venter et al., 2018), Australia 

(Stevens et al., 2017), South America (Anadon et al., ´ 2014), and North 

America (Filippelli et al., 2020; Saintilan and Rogers, 2015). In the southern 

Great Plains (SGP) of the United States including Kansas, Oklahoma, and Texas, 

WPE is occurring at an alarming rate of over 1 % land cover change per year, 

which is five to seven times faster than in other regions of the nation (Archer 

et al., 2017; Barger et al., 2011; Wilcox et al., 2018). Eastern redcedar 

(Juniperus virginiana), a native woody species to eastern North America, has 

become the primary encroaching woody species upon the native grasslands 

and forests of the SGP. Over the past four decades, the encroachment of 

eastern redcedar has transformed Oklahoma grasslands into juniper 

woodlands at a rate of approximately 40 km2 per year (Wang et al., 2018).  

The encroachment of eastern redcedar is causing a range of adverse 

impacts on grassland ecosystems, such as the reduction in grassland 

productivity, livestock carrying capacity, ecosystem water yield, and wildlife 

habitat quality (Archer et al., 2017). Anadon et al. (2014) ´ estimated that a 1 

% increase in woody plant coverage can cause a decrease in grassland net 

primary productivity of 41 g C m− 2 yr− 1 and reduce livestock production by 0.6 

to 1.6 cows km− 2. Moreover, WPE can affect the water dynamics of 

ecosystems. Studies by Zou et al. (2018) showed that WPE influences all 

components of the water budget in affected areas. Woody plants exhibit 

higher rates of evapotranspiration and rainfall interception compared to 

herbaceous species, resulting in reduced runoff generation and streamflow 

(Huxman et al., 2005; Kishawi et al., 2023; Qiao et al., 2017). Furthermore, the 

encroachment of eastern redcedar in the SGP has resulted in the loss of 

habitat for grassland-associated wildlife species (Thompson et al., 2014) and 

an increase in the transmission of vector-borne diseases (Loss et al., 2022).  

The encroachment of eastern redcedar into oak-dominated forests is 

having significant impacts on forest structure and functions in the eastern SGP 

(Hoff et al., 2018b; Torquato et al., 2020b). In the Cross Timbers forest matrix 

of Oklahoma, it has been estimated that encroached eastern redcedar trees 

in the midstory and understory have aboveground biomass of 6.3 Mg ha− 1, 

representing a 38 % increase in available wildfire fuel loads within the existing 

forest stands (Hoff et al., 2018b). As a result, the presence of eastern redcedar 

under oak tree canopy exacerbates forest flammability and creates more 

ladder fuels in the forests (Hoff et al., 2018b), which in turn raises the 

probability of catastrophic wildfires. In the SGP, eastern redcedar trees have a 

competitive advantage over many deciduous tree species due to their 
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relatively high drought tolerance (Torquato et al., 2020a). If left unchecked, 

they have the potential to replace native deciduous forests, resulting in a 

reduction in ecosystem biodiversity (Meneguzzo and Liknes, 2015) and 

constraining the growth of grasses beneath their canopies (Bennion and 

Ward, 2022).  

The encroachment of eastern redcedar in the SGP can be attributed to a 

number of natural and anthropogenic factors, including changes in 

precipitation patterns, fire exclusion and suppression, and overgrazing (Archer 

et al., 2017). Annual average precipitation is a critical factor in determining the 

boundary between grasslands and woody plants, as well as the upper limit of 

woody plant fraction (Sankaran et al., 2005; X. Yang et al., 2023). Over the past 

three decades, the SGP has experienced a wetter-than-average period, with 

Oklahoma having the wettest two decades in the 1990s and the 2010s (Kunkel, 

2022). This above-average precipitation may have contributed to the 

expanded range of eastern redcedar. Notably, as the SGP is expected to 

become drier and warmer in the future, the mortality rates of eastern 

redcedar trees may increase, potentially limiting their expansion and leading 

to the redistribution in the SGP (Breshears et al., 2005; Twidwell et al., 2014). 

However, the redistribution has not been rigorously examined in previous 

studies and become a critical knowledge gap in the predictive understanding 

of redcedar dynamics. Prior to European settlement, the grasslands in the SGP 

were maintained by a feedback loop between fine fuel and low-intensity fires 

that had been occurring for thousands of years (Pyne, 2017, 1984). Along with 

the aggressive fire exclusion and suppression policies in the 20th century, the 

feedback was disrupted, resulting in a significant increase in woody plant 

coverage (Fuhlendorf et al., 2008; Wilcox et al., 2018). Additionally, the 

introduction of large herds of domestic livestock (Box, 1967) reduced the 

frequency of wildfires and promoted the proliferation of woody plant species 

(Fuhlendorf et al., 2008).  

Various management practices have been used to control the redcedar 

expansion. During the 1960s and 1970s, brush management such as 

mechanical removal and herbicide injection began to be implemented to 

control the encroachment of woody plants in the SGP (Archer and Predick, 

2014). However, these methods are labor-intensive and have limited long-

term effectiveness, typically lasting less than 10 years (Scholtz et al., 2021). 

Currently, the most effective strategy for controlling redcedar encroachment 

in grasslands is the reintroduction of fire and the reestablishment of fine fuel 

(Wilcox et al., 2018). Utilization of prescribed burning must be carefully 

planned, taking into consideration the condition of the redcedar trees and the 

critical fire intensity-mortality threshold. Twidwell et al. (2013a) found that 

redcedar trees up to a height of 4.5 m can be killed when fire line intensity 

exceeds 160 kW m− 1.  

Due to the existence of varying control practices, the current distribution 

of redcedar may not accurately portray its complete potential for 

encroachment. Moreover, the suitability of its habitat can undergo significant 

changes in response to future climate conditions. To effectively devise 

proactive conservation and management strategies aimed at mitigating its 

expansion, particularly in areas of high conservation significance and those 

serving as vital watersheds, a comprehensive understanding of the most 

susceptible habitats for redcedar encroachment is crucial. Additionally, it is 

essential to anticipate how the range of this encroachment-prone species will 

evolve in response to future climate shifts. By acquiring such knowledge, 

conservationists and land managers can implement targeted measures to 

preserve valuable ecosystems and safeguard water resources.  

Species Distribution Models (SDMs) are valuable tools for predicting the 

potential distribution of plant and animal species by examining the 

relationship between species occurrence and environmental factors, based on 

the concept of a species’ ecological niche (Miller, 2010). They are increasingly 

being used to support management decisions related to biodiversity, 

biogeography, and natural resources (Guillera-Arroita et al., 2015). Over the 

last two decades, modeling algorithms and software packages for simulating 

species distribution have advanced significantly. Commonly used modeling 

methods include but are not limited to the Maximum Entropy model (MaxEnt) 

(Phillips et al., 2009; Phillips and Dudík, 2008), Generalized Linear Model 

(GLM) and Generalized Additive Model (GAM) (Guisan et al., 2002), and 

Random Forest (RF) (Evans et al., 2011). These SDMs have been extensively 

tested and used for predicting species distributions in future periods (e.g. 

Mainali et al., 2015; Remya et al., 2015; Wei et al., 2018). It is known that every 

single SDM has advantages as well as limitations in its spatial projection 

(Lissovsky and Dudov, 2021). Model ensemble approach that incorporates 

multiple SDMs (such as Generalized Linear Model, Random Forest, and 

MaxEnt) takes advantage of the strengths of different modeling techniques 

and reduces the biases in any individual model, resulting in more robust 

estimates of habitat suitability (Shabani et al., 2016). This study had two 

objectives: (1) training SDMs using eastern redcedar records from the USDA 

Forest Inventory Analysis (FIA) data to simulate the spatial pattern of 

distribution probability under current climate conditions in the SGP; and (2) 

simulating temporal and spatial changes in distribution probability for eastern 

redcedar trees under future climate change scenarios. Environmental factors 

to drive the model include climate, topography, soil texture and property 

variables. The anticipated climate warming and drying in the SGP in the 21st 

century (Modala et al., 2017; J. Yang et al., 2023) are expected to have 

significant impacts on habitat suitability and distribution of eastern redcedar. 

By examining these potential changes, this study provides valuable insights for 

government agencies and landowners in making informed decisions regarding 

the management of woody plant encroachment. Furthermore, the results of 

this study can contribute to our understanding of future changes in vegetation 

composition in the SGP and their impacts on ecosystem biophysical and 

biogeochemical processes.  

2. Materials and methods  

2.1. Study domain  

The study area encompasses the three SGP states of Kansas, Oklahoma, 

and Texas (Fig. 1A). The focus of this study is the three states excluding the 

highly managed areas of croplands, pasture, and urban. It is assumed that, if 

climate permits, eastern redcedar can potentially grow in barren land, forests, 

shrublands, grasslands, and wetlands in the SGP, which were identified from 

the 2019 land cover map in the National Land Cover Database (NLCD) (Homer 

et al., 2012). The study area covers a total of 0.82 million km2, with forests, 

shrubs, grasslands, wetlands, and barren land accounting for 17.8 %, 42.5 %, 

35.1 %, 4.2 %, and 0.4 %, respectively. The study domain encompassed of 17 

ecoregions, namely the South Central Plains, Ozark Highlands, Ouachita 

Mountains, Central Irregular Plains, Arkansas Valley, Western Corn Belt Plains, 

Flint Hills, Eastern Central Texas Plains, Western Gulf Coastal Plain, Texas 

Blackland Prairies, Cross Timbers, Central Great Plains, Southern Texas Plains, 

Edwards Plateau, Southwestern Tablelands, High Plains, and Chihuahuan 

Desert (Fig. 1B).  

Figure S1 provides an overview of the climate characteristics of the  

Fig. 1. Study domain of the three states in the southern Great Plains, encompassing Kansas, Oklahoma, and Texas. (A) Land cover types in the three states excluding  
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the highly managed area and (B) the 17 major EPA Level III ecoregions.  

study domain during 2000 – 2019, based on the gridMET dataset (Abatzoglou, 

2013). The average annual temperature shows a north-to-south increasing 

gradient, while annual precipitation and the Aridity Index (AI, calculated as the 

ratio of 20-year average annual precipitation to potential evapotranspiration) 

exhibit an east-to-west decreasing gradient. Over the 20 years, the study 

domain had an average annual temperature of 17.0 ºC. The Southern Texas 

Plains and Western Gulf Coastal Plain ecoregions had the highest annual 

temperature, reaching 22.1 ºC and 22.0 ºC, respectively, while the Western 

Corn Belt Plains and Flint Hills ecoregions had the lowest, at 12.2 ºC and 13.4 

ºC, respectively (Table S1). The average annual precipitation in the study 

domain was 765 mm, with the South Central Plains and Ouachita Mountains 

ecoregions receiving the highest amount at 1298 mm and 1300 mm, 

respectively. In contrast, the Chihuahuan Desert and the High Plains 

ecoregions had the lowest precipitation, with values of 345 mm and 471 mm, 

respectively. The AI values ranged from 0.22 in the Chihuahuan Desert to 0.97 

in the Ouachita Mountains. Using the AI-based climate classification scheme 

(Middleton and Thomas, 1997), five ecoregions were within the semi-arid 

climate zone, two ecoregions were in the sub-humid climate zone, and ten 

ecoregions were in the humid climate zone.  

Elevation in the study domain generally increases from east to west, 

ranging from less than 200 m to over 1200 m (Figure S2). The East Central 

Texas Plains (28 m) and the South Central Plains (93 m) are the ecoregions 

with the lowest elevation, while High Plains (1017 m) and Chihuahuan Desert 

(1097 m) have the highest elevation. Spatial variations in soil texture and 

properties are evident in the study domain (Figure S3). The percentage of sand 

in soil is higher in the southeast and southwest ecoregions, such as the South 

Central Plains and the Chihuahuan Desert. The percentages of silt and clay are 

generally higher in the northern and central ecoregions. Soil pH shows a 

gradual transition from acidic in the east (pH < 6.5), to neutral in the central 

(6.5 < pH < 7.5), and alkaline in the west (pH > 7.5), which aligns with the 

changing pattern of annual precipitation. Soil bulk density tends to be greater 

in ecoregions in the central and southern parts (> 1.45 g cm− 3) than those in 

the eastern and northern parts (< 1.45 g cm− 3).  

2.2. Species distribution models  

In this study, we used the “biomod2” R package (Thuiller et al., 2023) to 

train seven SDMs and construct the ensemble model. The seven SDMs include 

Artificial Neural Network (ANN), Flexible Discriminant Analysis (FDA), 

Generalized Additive Model (GAM), Generalized Boosting Model (GBM), 

Generalized Linear Model (GLM), MaxEnt, and Random Forest (RF). All of 

these models have been previously used to predict the probability of species 

distribution based on the relationship between environmental conditions and 

species presence records (e.g. Elith et al., 2011; Franklin, 2010). They have also 

been used to project changes in habitat suitability under future climate 

conditions (e.g. Remya et al., 2015; Wei et al., 2018; Zhou et al., 2021). In this 

study, we used the seven SDMs to simulate the spatial pattern of eastern 

redcedar’s distribution probability at a spatial resolution of 0.005º over the 

contemporary period (2000 – 2019) and four future periods (i.e., 2020 – 2039, 

2040 – 2059, 2060 – 2079, and 2080 – 2099).  

It should be noted that the extent of model simulations in this study was 

larger than the study domain, encompassing both the three SGP states (i.e., 

Kansas, Oklahoma, and Texas) and three additional states to the east (i.e., 

Missouri, Arkansas, and Louisiana) and two states to the west (i.e., Colorado 

and New Mexico) (Fig. 2). The inclusion of these additional states provided a 

larger sample size of eastern redcedar records and a greater range of 
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environmental conditions during the model training process. SDMs can suffer 

from reduced accuracy when making future projections due to environmental 

variables, particularly future climate conditions, being outside the range of 

conditions encountered during model training (Merow et al., 2013; Phillips, 

2005). Therefore, we expanded the spatial extent of model simulations to 

increase the range of climate conditions during model training and improve 

model transferability to future climate conditions.  

2.3. Data preparation for species distribution models  

2.3.1. Records of eastern redcedar trees  

The locations of eastern redcedar samples were obtained from the dataset 

of the USDA Forest Inventory and Analysis (FIA) National Program. Raw FIA 

data for the eight states were downloaded from the FIA DataMart 

(https://apps.fs.usda.gov/fia/datamart/datamart.html). Using the species 

code (068), we selected tree records of eastern redcedar that were 

inventoried after the year of 2000 and linked them to their respective plot 

records to extract their geographic coordinates.  

In the public release version of the FIA data, plot coordinates are rounded 

to the nearest 100 ′onds to protect landowners’ privacy. This rounding can 

result in errors in tree plot coordinates of up to 1.6 km and lead to 

uncertainties in their associated environmental conditions with fast spatial 

changes, such as topography. To mitigate this potential error, an adjustment 

process was implemented using Google Earth Pro, as illustrated in Fig. 3. First, 

we created a buffer zone (circle polygon with a radius of 1.6 km) around each 

FIA plot. Then, we used high-resolution satellite remote sensing imageries 

from multiple years and different seasons to visually identify areas containing 

eastern redcedar trees within each buffer zone. Winter imagery was found to 

be particularly useful for identifying redcedar trees when deciduous trees 

were dormant. Finally, the original FIA plots were moved to their new 

locations based on the identified redcedar areas (as shown by the cyan 

pinpoint being relocated to the magenta pinpoint in Fig. 3). This process was 

repeated for all these selected FIA plots in the model simulation domain. It is 

possible that there were more than one redcedar stands within one buffer 

zone. In that case, we selected the larger stand and moved the FIA plot to the 

centroid of that stand.  

In the process of adjusting the redcedar plot locations using satellite 

imageries, there were cases where eastern redcedar trees could not be 

identified within their buffer zones. This could be attributed to human 

management practices or land disturbances such as wildfires that cleared the 

forest stands. These plots were excluded from the sample dataset and were 

not used for model training. Furthermore, there were challenges in 

differentiating eastern redcedar trees from other evergreen trees from 

satellite imageries, particularly in pine plantation areas. These plots were also 

excluded from the model training samples. Ultimately, we obtained a total of 

3378 eastern redcedar plots with corrected coordinate information (Fig. 2). 

These plots were distributed across six states, with 1060 in Missouri, 856 in 

Arkansas, 77 in Louisiana, 139 in Kansas, 720 in Oklahoma, and 526 in Texas. 

Although there was no FIA eastern redcedar plots in New Mexico and 

Colorado (Fig. 2),  

 

Fig. 2. Model simulation extent, which covers eight states in the southern U.S. including the three states in the southern Great Plains (Kansas, Oklahoma, Texas), as well as three states 

to the east (Missouri, Arkansas, and Louisiana) and two states to the west (Colorado and New Mexico). The red dots on the map denote the locations of eastern redcedar plots in the 

eight states, modified based on the records from the USDA Forest Inventory and Analysis (FIA) National Program.  

https://apps.fs.usda.gov/fia/datamart/datamart.html
https://apps.fs.usda.gov/fia/datamart/datamart.html
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Fig. 3. An example of the adjustment of FIA plot using Google Earth Pro. In this example, the redcedar plot is located in Payne County, Oklahoma (35º57’, 97º06’). The high-resolution 

satellite image was captured on February 25, 2014. The original plot location is marked by the cyan pinpoint, while the magenta pinpoint indicates the adjusted location. The red circle 

is the created buffer zone with a radius of 1.6 km around the plot.  

the two states were still included in the model simulation to enable SDMs to 

select background points and expand the range of climate conditions during 

the training process.  

2.3.2. Potential predictor variables  

To drive the model, we utilized three types of environmental factors: 

climate conditions, topography, and soil texture and properties, all of which 

are known to influence the distribution of eastern redcedar trees (Bennion, 

2023). These predictor factors covered the eight states of the model 

simulation domain (Fig. 2) and were downscaled/upscaled to a spatial 

resolution of 0.005º for model simulations.  

Climate data were prepared for five 20-year periods in the 21st century, 

i.e., 2000 – 2019, 2020 – 2039, 2040 – 2059, 2060 – 2079, and 2080 – 2099. 

Climate data during 2000 – 2019 were obtained from the gridMET data 

(Abatzoglou, 2013), which provides daily surface meteorological data in the 

contiguous U.S. at a spatial resolution of approximately 4 km. For the four 

future 20-year periods, climate data were from the downscaled General 

Circulation Model (GCM) simulation results under two Representative 

Concentration Pathways of the RCP45 and RCP85 scenarios in the CMIP5 

(Taylor et al., 2012). To account for the divergence in the projected climate 

conditions by GCMs, we used climate data simulated by seven GCMs, 

including BCC–CSM1, CCSM4, GFDL-ESM2G, HadGEM2-ES365, IPSL-CM5A-LR, 

MIROC5, and  

NorESM1-M. These data had been downscaled to a spatial resolution of 4 km 

and bias-corrected according to the gridMET historical climate data using the 

Multivariate Adaptive Constructed Analogs (MACA) developed by Abatzoglou 

and Brow (2012).  

Six climate factors were considered as potential predictors for SDM 

simulations. These factors included the 20-year average temperature  

(Tavg, ºC), 20-year average hottest month temperature (Thotmonth, ºC), the 

average diurnal temperature range (Trange, ºC), the number of days each year 

with a daily minimum temperature greater than 0 ºC (Ntmin>0), the average 

annual precipitation (Pann, mm), and the Aridity Index (AI). AI was calculated 

as the ratio of annual precipitation to potential evapotranspiration, which was 

determined using the Priestley-Taylor equation (Priestley and Taylor, 1972).  

Topographic variables of slope and aspect were included in the SDMs as 

potential predictors, which were derived from the 90-m Multi-Error- Removed 

Improved-Terrain DEM (MERIT DEM) (Yamazaki et al., 2017). Slope and aspect 

were calculated using ArcToolbox in ArcGIS 10.8. The aspect was further 

categorized into eight directions: North, Northeast, East, Southeast, South, 

Southwest, West, and Northwest. We also processed the 250-m SoilGrid data 

(Poggio et al., 2021) to obtain five types of soil texture and properties in the 

topsoil layer. These five types of soil data included the percentages of sand 

(sand%), silt (silt%), and clay (clay%), soil bulk density (bulkden, g cm− 3), and 

soil pH value.  

2.3.3. Feature selection  

Multicollinearity among predictor variables can impact parameter 

estimation by inflating the variance of regression parameters and leading to 

inaccurate identification of relevant predictors (Dormann et al., 2013). While 

some SDMs, such as MaxEnt and RF, are generally resilient to predictor 

collinearity during model training, the shift in collinearity under novel climate 

conditions can reduce model transferability (Feng et al., 2019). To address the 

issue of multicollinearity, we calculated the variance inflation factor (VIF) for 

the potential climate, topographic, and soil predictor variables in the 3378 

redcedar plots. Predictor variables with a VIF greater than 5 were excluded. In 

the end, we selected nine predictor variables for model training and future 

prediction, which were Tavg, Trange, AI, slope, aspect, sand%, clay%, bulkden, 

and pH (Table 1). Noted that Thotmonth, Pann, Ntmin>0, and silt% were not included 

in the model due to their high correlation with AI, Tavg, sand%, and clay%. This 

exclusion helps mitigate potential redundancy in the model, ensuring the 

selected variables capture distinct information and improve model 

performance. Additionally, the removal of multicollinearity ensures the 

marginal response curve can effectively reflect the response of habitat 

suitability to environmental factors (see Section 2.5).  
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Table 1  

The calculated variance inflation factor (VIF) for predictor variables before and after 

feature selection.   

Predictor  VIF before feature selection  VIF after feature selection variables  

Tavg *  517.3  3.1  

Thot month  26.6  Not selected  
Trange *  20.9  1.5  

Ntmin>0  336.0  Not selected  

Pann  339.5  Not selected  

AI *  436.9  4.1  

slope *  1.3  1.2  

aspect *  1.0  1.0  

sand% *  2.1 × 1014  3.5  

silt%  1.7 × 1014  Not selected  

clay% *  3.7 × 1013  2.4  

bulkden *  3.8  3.8  

pH *  3.2  3.0  

 
Note:.  

* refers to the predictor variables selected for model training and future projection.  

2.4. Model settings and simulations  

In this study, we employed the function in biomod2 to randomly select 

4000 pseudo-absences. The FIA eastern redcedar plots and pseudo-absences 

were then randomly partitioned into a training dataset (80 % of the data) and 

an independent testing dataset (the remaining 20 %). To enhance the 

robustness of our simulation results, this process was repeated five times. 

Subsequently, we tuned the model options for each SDM. For the GLM, we 

opted for the “Quadratic” model form and set the interaction level to “1″ to 

account for the interactions between environmental factors. For the GBM, the 

parameter “n.trees” was set to 1000. For the GAM, we utilized the 

“GAM_mgcv” function to fit the model. RF was configured with “ntrees” set 

to 1000 and “nodesize” set to 5. For ANN, the number of cross validations to 

identify the best size and decay parameters (“ncCV”) was set to 5 and the 

maximum number of model iterations (“maxit”) was set to 200. For FDA, we 

chose the multivariate adaptive regression splines (“MARS”) as the regression 

method in optimal scaling. For MaxEnt, four feature functions including “linear 

features”, “quadratic features”, “threshold features”, and “hinge features” 

were selected to allow MaxEnt to automatically use the “best” feature 

function based on the sample size. We tuned the “Regularization multiplier” 

parameter and set it to 2 (Radosavljevic and Anderson, 2014).  

We conducted simulations in the contemporary period (2000 – 2019) to 

obtain distribution probability maps from the outputs of each SDMs and the 

ensemble model and assess the performance of the SDMs. Model 

performance was evaluated using the area under the receiver operating 

characteristic (ROC) curve (AUC), which is a popular metric to evaluate the 

performance of SDMs in distinguishing between species presence and 

background samples. After model evaluation, we used the ensemble model to 

generate redcedar distribution probability maps in the contemporary period 

and four future periods in the RCP45 and RCP85 scenarios.  

Although we expanded the simulation domain to encompass a broader 

range of climate conditions, it is possible that future climate in the three SGP 

states falls outside the current climate range. For future projections, we 

performed a Multivariate Environmental Similarity Surface (MESS) analysis to 

assess the degree of similarity or dissimilarity in environmental conditions 

between the model training and projection processes (Elith et al., 2010). The 

MES values range from − 100 % to 100 %. Negative MES values indicate that 

the predictors in the projection process are beyond the range of the reference 

training data, while positive values indicate a larger similarity between the 

reference data and the predictors in the projection process (Polce et al., 2014). 

A MES value of 100 % indicates the set of environmental factors is identical to 

those in the training process. Additionally, we identified the Most Dissimilar 

Variable (MDV) among the selected predictor variables for grids with negative 

MES values. The algorithm to calculate MES and identify MDV can be found in 

the Online Supplementary Material of Elith et al. (2010). The MESS analysis 

and MDV identification are useful to understand the potential limitations and 

model reliability associated with projecting redcedar habitat suitability under 

future climate conditions.  

Model simulations were conducted in each of the five 20-year periods of 

2000 – 2019, 2020 – 2039, 2040 – 2059, 2060 – 2079, and 2080 – 2099 using 

the ensemble model of the seven SDMs. For the four future periods, climate 

data were obtained from the simulations conducted by seven GCMs in the 

RCP45 and the RCP85 scenarios (see the description in 2.3.2). In total, the 

ensemble model was used to perform 56 simulations for the future periods (4 

future periods × 7 GCMs × 2 scenarios). 2.5. Analyses  

We conducted permutation tests to assess the relative importance of the 

nine selected environmental variables in each SDM and the ensemble model. 

The permutation test involved randomly permuting the values of each 

environmental variable for both the training presence data and pseudo-

absences and then refitting the SDMs using the permuted values. The 

resulting decrease in AUC for each variable was normalized to percentages to 

represent their relative importance in the model.  

The marginal response curves were generated to examine the response of 

the simulated eastern redcedar distribution probability to environmental 

factors. These curves could be misleading if the environmental variables are 

highly correlated. However, as we have already addressed the issue of 

multicollinearity by removing highly correlated variables (Section 2.3.3), the 

marginal response curves can effectively demonstrate the responses. To focus 

on the most influential variables, we created response curves only for the 

environmental factors with permutation importance greater than 10 % in the 

ensemble model.  

The simulated distribution probability ranges from 0 to 1. To facilitate 

result interpretation and analysis, we categorized these probability values into 

four habitat suitability classes: unsuitable habitat (0 – 0.05), poorly suitable 

habitat (0.05 – 0.33), moderately suitable habitat (0.33 – 0.67), and highly 

suitable habitat (0.67 – 1) (Wei et al., 2018). Finally, we analyzed the spatial 

pattern of redcedar habitat suitability and assessed how it would change 

under future climate conditions.  

3. Results  

3.1. Model evaluation and variable contributions  

Fig. 4 shows the simulated spatial pattern of the distribution probability of 

eastern redcedar by seven distribution models in the period of 2000 – 2019 

and their ensemble results. All these models simulated a higher distribution 

probability in the eastern part of the SGP, which is consistent with the spatial 

pattern of FIA redcedar plots in Fig. 2. The boxplot in Fig. 5 shows the average 

AUC and AUC variations of the five replications for each of the seven selected 

SDMs. In terms of the average AUC of five replications, ANN had the lowest 

average AUC of 0.868. The other six SDMs had an average AUC over 0.9, which 

was 0.901 for FDA, 0.904 for GAM, 0.909 for GBM, 0.908 for GLM, 0.908 for 

MaxEnt, and 0.911 for RF. The high AUC values indicate that all seven models, 

along with the selected predictor variables, effectively captured the spatial 

distribution of eastern redcedar distribution probability during the 

contemporary period. It also provides confidence in the ability of model 

ensemble approach to predict redcedar distribution probability under future 

climate conditions.  

The results of the permutation test indicate the relative importance of 

environmental factors in shaping the spatial pattern of eastern redcedar 
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distribution probability (Table 2). According to the results of the seven SDMs 

and the ensemble model, climate variables were identified as the most 

influential factors. In the ensemble model, AI was associated  

 

Fig. 4. The simulated distribution probability of eastern redcedar by seven species distribution models (A - G) in the contemporary period and their ensemble results (H). (A) ANN: Artificial 

Neural Network, (B) FDA: Flexible Discriminant Analysis, (C) GAM: Generalized Additive Model, (D) GBM: Generalized Boosting Model, (E) GLM: Generalized Linear Model, (F) MaxEnt: 

Maximum Entropy, and (G) RF: Random Forest.  

 

Fig. 5. The area under the receiver operating characteristic curve (AUC) for evaluating the performance of seven species distribution models in simulating the spatial distribution of 

eastern redcedar in the southern Great Plains. Boxplot is used to show the distribution of AUC of five model replications and triangles in the boxplot show the average AUC of the five 

replications. ANN: Artificial Neural Network, FDA: Flexible Discriminant Analysis, GAM: Generalized Additive Model, GBM: Generalized Boosting Model, GLM: Generalized Linear Model, 

MaxEnt: Maximum Entropy, and RF: Random Forest.  

Table 2  
The normalized permutation importance for the nine predictor variables in the seven species distribution models (ANN, FDA, GAM, GBM, GLM, Maxent, and RF) and the ensemble model.    

 ANN  FDA  GAM  GBM  GLM  MaxEnt  RF  Ensemble  

AI  30.2 %  81.0 %  69.8 %  85.9 %  49.2 %  52.2 %  50.1 %  69.9 %  

bulkden  4.2 %  2.6 %  1.5 %  3.4 %  4.4 %  3.0 %  4.8 %  1.9 %  
clay%  9.5 %  2.7 %  1.4 %  1.2 %  1.1 %  3.4 %  4.0 %  2.1 %  
aspect  0.0 %  0.0 %  0.0 %  0.0 %  0.0 %  0.1 %  0.2 %  0.0 %  
pH  22.5 %  0.5 %  0.4 %  0.1 %  6.1 %  3.3 %  6.5 %  2.6 %  
sand%  9.4 %  1.0 %  3.5 %  0.1 %  7.0 %  6.2 %  4.2 %  2.5 %  
slope  1.6 %  3.2 %  1.6 %  3.5 %  1.7 %  7.8 %  6.4 %  2.6 %  
Tavg  19.5 %  8.9 %  21.3 %  5.8 %  23.8 %  22.5 %  19.6 %  17.8 %  
Trange  3.1 %  0.1 %  0.4 %  0.0 %  6.6 %  1.4 %  4.3 %  0.8 %   
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with the highest importance of 69.9 %, followed by Tavg with an importance of 

17.8 %. Among the non-climate environmental factors, pH and slope exhibited 

the highest importance with a permutation importance value of 2.6 %. 

Additionally, sand%, clay%, and bulkden had an importance value of 2.5 %, 2.1 

%, and 1.9 %, respectively. This indicates soil properties and topography had a 

relatively lower but still noticeable contribution to the spatial pattern of 

distribution probability.  

Fig. 6 displays the responses of simulated relative habitat suitability to the 

most important environmental factors of AI and Tavg in the ensemble model. 

Habitat suitability initially increases with AI within the range of 0 to 0.9. 

However, in a humid environment where AI exceeds 0.9, habitat suitability 

starts to decline. The optimal AI range for eastern redcedar habitat 

(distribution probability > 0.67) lies between 0.6 and 1.25. For Tavg, redcedar 

habitat suitability increases with Tavg in regions with relatively low 

temperature (Tavg < 13 ∘C) and decreases with Tavg in regions with relatively 

high temperature (Tavg > 16 ∘C). The optimal Tavg range for eastern redcedar 

habitat (distribution probability > 0.67) falls between 11 ◦C and 18.6 ◦C. By 

considering the climate statistics in each ecoregion (Table S1), it is observed 

that seven ecoregions had average climate conditions within the optimal 

ranges for both AI and Tavg. These ecoregions were Ozark Highlands (AI = 0.94, 

Tavg = 

15.5 ∘C), Ouachita Mountains (AI = 0.97, Tavg = 16.4 ∘C), Central  

Irregular Plains (AI = 0.88, Tavg = 14.3 ∘C), Arkansas Valley (AI = 

0.88, Tavg = 16.7 ∘C), Western Corn Belt Plains (AI = 0.78, Tavg = 12.2 ∘C), Flint 

Hills (AI = 0.76, Tavg = 13.4 ∘C), and Cross Timbers (AI = 0.65, Tavg = 17.6 ∘C).  

3.2. Future shift in optimal climate conditions  

According to the future climate statistics in Tables S2 and S3, the SGP and 

all 17 ecoregions will have a warming and drying trend in both the RCP45 and 

RCP85 scenarios. In the RCP45, the annual temperature for the entire study 

domain is projected to increase from 17.0 ◦C in 2000 – 2019 to 19.6 ± 0.6 ◦C 

(mean ± 1 std. dev. of climate data from seven GCMs, same hereafter) in 2080 

– 2099 (Figure S4). AI is expected to decrease from 0.55 during 2000 – 2019 

to 0.49 ± 0.02 during 2080 – 2099 (Figure S5). By the end of the 21st century 

in the RCP45, only four ecoregions are projected to fall within the optimal 

climatic ranges for redcedar habitat, including Ozark Highlands (AI = 0.84 ± 

0.07, Tavg = 18.3 ± 0.7 ∘C), Central Irregular Plains (AI = 0.79 ± 0.06, Tavg = 

17.1 ± 0.8 ∘C), Western Corn Belt Plains (AI = 0.70 ± 0.06, Tavg = 

15.2 ± 0.8 ∘C), and Flint Hills (AI = 0.68 ± 0.06, Tavg  = 

16.3 ± 0.8 ∘C). In the RCP85, the SGP states are projected to experi- 

ence even higher temperature and drier climate conditions. The annual 

temperature for the study domain is expected to rise from 17.0 ◦C during 2000 

– 2019 to 22.1 ± 0.8 ◦C during 2080 – 2099, while AI is predicted to decrease 

from 0.55 during 2000 – 2019 to 0.44 ± 0.03 during 2080 – 2099. Western Corn 

Belt Plains is anticipated to be the only ecoregion that falls within the optimal 

ranges for AI and Tavg, simultaneously, by the end of the 21st century in the 

RCP85.  

With the projected changes in future climate conditions, the regions with 

the optimal AI will shift eastward in the 21st century under both the RCP45 

and RCP85 scenarios (Fig. 7). In the period from 2000 to 2019, the average 

longitude of the lower boundary of AI (AI = 0.6) is approximately 97.9 ◦W. 

Future climate projections indicate that in the four 20-year future periods 

under the RCP45, the average longitudes of the low AI boundary will shift to 

97.4 ◦W, 97.2 ◦W, 97.2 ◦W, and 97.2 ◦W, respectively. Similarly, in the RCP85, the 

average longitudes of the lower AI boundary are projected to be around 97.5 
◦W, 97.1 ◦W, 96.8  

◦W, and 96.6 ◦W for the respective future periods. Overall, the optimal AI 

boundary will shift eastward by approximately 0.7◦ (≈ 58 km) in the RCP45 and 

1.3◦ (≈ 108 km) in the RCP85 across the 21st century. This analysis focused on 

the spatial shift of the lower AI boundary rather than the upper boundary, 

which is projected to extend beyond the eastern side of the study domain.  

Meanwhile, the region with the optimal annual temperature will move 

northward during the five 20-year periods of the 21st century in both the 

RCP45 and RCP85 scenarios (Fig. 8). In the contemporary period (2000 – 

2019), the average latitude of the upper boundary of Tavg (Tavg = 18.6) is located 

at 31.4 ◦N. Under the RCP45, the average latitudes of the upper Tavg boundary 

will shift to 33.0 ◦N, 33.6 ◦N, 34.6 ◦N, and 35.0 ◦N, respectively, during the four 

20-year future periods. In the RCP85, the average latitudes of the upper Tavg 

boundary will be at 32.8  
◦N, 35 ◦N, 36.2 ◦N, 38.0 ◦N, respectively. Overall, the optimal upper Tavg 

boundary is projected to have a northward shift by approximately 3.6◦ (≈ 399 

km) in the RCP45 and by 6.6◦ (≈ 731 km) in the RCP85 throughout the 21st 

century. Noted that the analysis did not consider the shift in the lower 

boundary of the optimal Tavg, as it is projected to be beyond the northern side 

of the study domain.  

3.3. Distribution probability in the contemporary period  

During the contemporary period of 2000 – 2019, the average distribution 

probability of the study area was 0.23. The unsuitable, poorly suitable, 

moderately suitable, and highly suitable redcedar habitats accounted for 40.2 

%, 31.6 %, 17.9 %, and 10.4 % of the study area, respectively, in the SGP states 

(Table 3). Among the 17 ecoregions in the study domain, the highest average 

distribution probability was observed in Ozark Highlands (0.8), Ouachita 

Mountains (0.8), and Arkansas Valley (0.79), which had percentages of highly 

suitable habitat of 97.0 %, 96.2 %, and 96.7 %, respectively. On the other hand, 

the ecoregions with the lowest average distribution probability were Southern 

Texas Plains (0.04), Edwards Plateau (0.08), Southwestern Tablelands (0.07), 

High Plains (0.04), and Chihuahuan Desert (0.04), with unsuitable habitat 

percentages of 94 %, 53.3 %, 61.6 %, 93.1 %, and 95.2 %,  
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Fig. 6. Response curve illustrating the response of redcedar distribution probability to Aridity Index (A) and annual average temperature (B) in the ensemble model. The double-sided 

arrows highlight the optimal ranges for Aridity Index (between 0.6 and 1.25) and annual average temperature (between 11 ◦C and 18.6 ◦C) with a distribution probability greater than 

0.67.  

 

Fig. 7. The shift of the lower boundary of the optimal Aridity Index (AI = 0.6) in the RCP45 scenario (A) and RCP85 scenario (B) across the five 20-year periods of 2000 – 2019, 2020 – 

2039, 2040 – 2059, 2060 – 2079, and 2080 – 2099. The background image represents the region within the optimal AI range (between 0.6 and 1.28, depicted in light yellow) for the 

period of 2000 – 2019.  

 

Fig. 8. The shift of the upper boundary of the optimal annual temperature (Tavg = 18.6 ∘C) during the five 20-year periods of 2000 – 2019, 2020 – 2039, 2040 – 2059, 2060 – 2079, and 

2080 – 2099 in the RCP45 scenario (A) and the RCP85 scenario (B). The background image highlights the region within the optimal Tavg range (between 11 ◦C and 18.6 ◦C, depicted in 

light yellow) during the period of 2000 – 2019.  

respectively.  

Eastern redcedar showed a distinct west-to-east gradient of improving 

habitat quality in the study domain (Fig. 9). To the west of 101 ◦W, over 95 % 

of the land area was deemed unsuitable for the growth of eastern redcedar. 

However, as the longitude crosses 101 ◦W and moves towards the east, the 

distribution probability gradually increases (Fig. 9B and 9C). The most notable 

increase in distribution probability occurred within the longitude range 

between 100 ◦W and 97 ◦W. The highest distribution probability values were 

found within the longitude range of 97 ◦W and 94 ◦W, with particularly 

favorable conditions in Oklahoma.  

3.4. Future changes in distribution probability  

Distribution probability for eastern redcedar in the study domain is 

expected to have a continuous decline in the five 20-year periods under both 

the RCP45 and RCP85 scenarios (Fig. 10). Across the entire study domain, the 

average distribution probability is projected to decrease from 0.23 in the 

period of 2000 – 2019 to 0.16 ± 0.01 in the RCP45 and to 0.12 ± 0.01 in the 

RCP85 in the period of 2080 – 2099 (Table S4). The most significant decline in 

distribution probability is anticipated to occur in the longitudinal region 

between 98 ◦W and 95 ◦W. Within this area, the distribution probability is 

projected to decrease from 0.53 during 2000 – 2019 to 0.36 in the RCP45 and 

0.25 in the RCP85 during 2080 – 2099 (Figure S6). By the end of the 21st 
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century, the ecoregions with the highest distribution probability are predicted 

to be Ozark  

Highlands (0.59 ± 0.06 in the RCP45 and 0.48 ± 0.03 in the RCP85), Ouachita 

Mountains (0.61 ± 0.04 in the RCP45 and 0.49 ± 0.03 in the RCP85), and 

Arkansas Valley (0.59 ± 0.04 in the RCP45 and 0.46 ± 0.04 in the RCP85).  

Across the 21st century, the extent and locations of the four suitability 

classes will undergo considerable changes in response to the declining 

distribution probability (Fig. 11). The proportion of study area categorized as 

unsuitable is projected to increase from 40.2% during  

2000 – 2019 to 48 ± 1.8% during 2080 – 2099 in the RCP45, and to 54.2 ± 2.3% 

during 2080 – 2099 in the RCP85 (Fig. 12). While the total area of poorly 

Table 3  
Statistics of the average distribution probability and the percentages of four habitat suitability classes in the study domain and each individual ecoregion for the period of 2000 – 2019.    

 Average Distribution 

Probability  
Percentage of unsuitable 

(%)  
Percentage of poorly suitable 

(%)  
Percentage of moderately suitable 

(%)  
Percentage of highly 

suitable (%)  

Entire study domain  0.23  40.2  31.6  17.9  10.4  

South Central Plains  0.57  0.0  12.5  54.5  33.0  
Ozark Highlands  0.8  0.0  0.0  3.0  97.0  
Ouachita Mountains  0.8  0.0  0.0  3.7  96.2  
Central Irregular Plains  0.57  0.0  1.1  76.7  22.2  

Arkansas Valley  0.79  0.0  0.0  3.3  96.7  
Western Corn Belt Plains  0.47  0.0  16.1  80.2  3.7  

Flint Hills  0.5  0.0  6.7  85.3  8.0  
East Central Texas Plains  0.47  1.8  28.5  48.3  21.4  

Western Gulf Coastal 

Plain  
0.13  12.4  82.3  5.2  0.0  

Texas Blackland Prairies  0.35  0.1  51.0  44.4  4.6  

Cross Timbers  0.41  0.0  50.3  20.1  29.6  
Central Great Plains  0.24  10.5  60.6  25.6  3.3  
Southern Texas Plains  0.04  94.0  6.0  0.0  0.0  
Edwards Plateau  0.08  53.3  46.4  0.3  0.0  
Southwestern Tablelands  0.07  61.6  36.1  2.8  0.0  

High Plains  0.04  93.1  6.9  0.0  0.0  
Chihuahuan Desert  0.04  95.2  4.8  0  0   

 

Fig. 9. Spatial pattern of eastern redcedar suitability classes over the period of 2000 – 2019 based on the simulated distribution probability from the ensemble model. (A) spatial pattern 

of four suitability classes, (B) latitudinal averages of distribution probability and their changes in the longitudinal direction, and (C) latitudinal average of the percentages of four suitability 

classes and their changes in the longitudinal direction.  
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suitable land will not experience significant change throughout the century, 

the spatial centroid of the poorly suitable land will shift eastward by 

approximately 0.6◦ (≈ 49 km) in the RCP45 and 1.2◦ (≈ 103 km) in the RCP85 

over the course of the century. Since the  

Fig. 10. Spatial pattern and temporal changes in the distribution probability of eastern redcedar over the four 20-year periods of 2020 – 2039, 2040 – 2059, 2060 – 2079, and 2080 – 

2099 in the RCP45 (A, B, C, and D) and the RCP85 (E, F, G, and H) scenarios.  
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Fig. 11. Spatial pattern and temporal changes in the four suitability classes for eastern redcedar growth during the periods of 2020 – 2039, 2040 – 2059, 2060 – 2079, and 2080 – 2099 

under the RCP45 (A, B, C, and D) and the RCP85 (E, F, G, and H) scenarios.  

 

Fig. 12. Temporal changes in the percentages of the four habitat suitability classes, namely, (A) Unsuitable, (B) Poorly Suitable, (C) Moderately Suitable, and (D) Highly Suitable, in the 

study domain over the course of the five 20-year periods in the 21st century.  

poorly suitable class predominantly distributes within the study domain 

throughout the entire study period, it is used as a proxy to represent the 

spatial shift of all habitat suitability classes. Moderately suitable land area will 

diverge between the RCP45 and RCP85 scenarios. In the RCP45, the 

percentage of the moderately suitable land area is expected to have a slight 

increase from 17.9 % to 18.1 ± 1.7% by the end of the 21st century. Conversely, 

in the RCP85, it will decrease significantly from 17.9 % to 11.2 ± 3.9% (Fig. 10). 

For the highly suitable class, there will be a similar declining pattern in both 

the RCP45 and the RCP85, with the area decreasing from 10.4 % during 2000 

– 2019 to 1.3 ± 1.3% in the RCP45 and 0 ± 0% in the RCP85 by the end of the 

21st century.  

By the end of the 21st century in both the RCP45 and RCP85 scenarios, 

over 99 % of the land area that was classified as unsuitable during 2000 – 2019 

will remain unsuitable for redcedar to grow (Table 4). However, a significant 

portion of the land area initially classified as suitable during 2000 – 2019 will 

experience a degradation in suitability classes. In the RCP45, 22.4 % of poorly 

suitable land area  

Table 4  

during 2000 – 2019 will transition into unsuitable habitats by the end of the 

21st century. In the RCP85, this percentage will be 41.4 %. Regarding 

moderately suitable class, 50 % of the area will transition into poorly suitable 

class in the RCP45, while a higher proportion of 84.1 % will become poorly 

suitable in the RCP85. Additionally, in the RCP45, 92.5 % of highly suitable 

habitat will transition into either moderately suitable or poorly suitable classes 

by the end of the 21st century. In the RCP85 scenario, all highly suitable 

habitats will transition into either moderately suitable or poorly suitable 

classes.  

3.5. Dissimilarity of environmental variables between training samples 

and future projection  

Fig. 13 illustrates the average MESS derived from future projections driven 

by climate datasets from 7 GCMs for four 20-year future periods under the 

RCP45 and RCP85 scenarios. Negative MES values suggest a significant level of 

uncertainty, particularly in southern Texas,  

  Un- suitable  Poorly Suitable  Moderately Suitable  Highly Suitable  Un- suitable  Poorly Suitable  Moderately Suitable  Highly 

Suitable  

2000 -  
2019  

Unsuitable  
Poorly Suitable  

99.5 %  
22.4 %  

0.5 %  
76.5 %  

–  
1 %  

–  
–  

99.7 %  
41.4 %  

0.3 %  
58.5 %  

–  
0.4 %  

–  
–  

 Moderately Suitable  –  50 %  50 %  –  –  84.1 %  15.9 %  –  
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The transition of habitat suitability classes from the period of 2000 – 2019 to the period of 2080 – 2099 under the RCP45 and the RCP85 scenarios. The percentages in this table indicate 

the proportion of each suitability class in 2000 – 2019 that transitions to the four suitability classes by the end of this century.     

 

Fig. 13. Multivariate Environmental Similarity Surface (MESS) for the projections in four 20-year future periods of 2020 – 2039, 2040 – 2059, 2060 – 2079, and 2080 – 2099. The simulations 

are conducted under two climate scenarios: RCP45 (A, B, C, and D) and RCP85 (E, F, G, and H). The MESS maps illustrate the average value of Multivariate Environmental Similarity (MES) 

driven by climate data from seven General Circulation models.  

highlighting notable discrepancies between the training dataset and future 

climate conditions in that region. Furthermore, the spatial extent of areas with 

negative MES values is expected to expand as time progresses. In the last 20-

year period of the 21st century, the proportions of areas with negative MES 

values are projected to be 8.7% under the RCP45 and 34.5% in the RCP85, 

respectively.  

Tavg was identified to be the Most Dissimilar Variable (MDV) in the future 

projections for most of the study area with negative MES value (Figure S7). 

This is not surprising, given the projected rapid increase in annual 

temperature in the study area, particularly in the RCP85 scenario (Figure S4). 

This temperature rise is expected to push the southern Texas region beyond 

the temperature range in the training dataset, contributing to the dissimilarity 

between the reference data and the future environmental conditions. It is 

worth noting that AI will not be the MDV, except for a small area in western 

Texas under the RCP85 during the period of 2080 – 2099 (Figure S7H). 

Considering that AI is the most important variable in the SDMs (Table 2) and 

future AI values are expected to largely fall within the range of the training 

data, the projected future distribution probability is anticipated to have high 

reliability.  

4. Discussion  

4.1. Environmental factors influencing habitat suitability  

The SDMs in this study incorporated three types of environmental factors: 

climate, soil properties, and topography. Among these factors, climate 

conditions, particularly the long-term average aridity, were the most 

significant variable in shaping the spatial pattern of eastern redcedar habitat 

suitability (Table 2). This finding is consistent with previous research showing 

the crucial role of precipitation regimes in determining the growth and extent 

of woody plants (Archer et al., 2017). Therefore, future changes in eastern 

redcedar habitat suitability in the SGP will be primarily driven by the projected 

drying trend. Our findings indicate that the optimal aridity range for redcedar 

habitat in the 21st century will shift eastward by approximately 0.7◦ (≈ 58 km) 

under the RCP45 and by approximately 1.3◦ (≈ 108 km) under the RCP85 (Fig. 

7). Consequently, the spatial centroid of the suitable land area will also shift 

eastward by 0.6◦ (≈ 49 km) under the RCP45 and by 1.2◦ (≈ 103 km) under the 

RCP85 (Fig. 11). These shifts are expected to significantly reduce the overall 

area of suitable land for eastern redcedar growth in the mixed prairie and the 

west of the SGP states.  

Fire regimes and grazing are potential factors influencing the distribution 

of eastern redcedar in the SGP (Fuhlendorf et al., 2008). However, due to the 

lack of accurate future projections of wildfire regimes, the extent of 

prescribed burning, and livestock density, these factors were not explicitly 

incorporated into the development of the SDMs and future projections in this 

study. Wildfire regimes are strongly correlated with regional climate 

conditions (Abatzoglou and Williams, 2016; Westerling et al., 2003; Yang et al., 

2015). Therefore, by incorporating climate factors (i.e., AI and Tavg) into the 

SDMs, some implicit information related to future changes in wildfire regimes 

had been indirectly considered in these simulations.  

 Highly Suitable  –  1.4 %  91.1 %  7.5 %  –  23 %  77 %  0 %   
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4.2. Implications for land management and ecosystem composition  

The negative impacts of eastern redcedar encroachment on ecosystem 

services and agricultural production have been widely recognized by 

stakeholders. In response, government agencies and organizations have 

implemented various incentive programs to support the reduction of eastern 

redcedar in the SGP (Fogarty et al., 2021). For example, USDA NRCS allocated 

$5.5 million to $7 million each year through the Environmental Quality 

Incentive Program (EQIP) to assist Oklahoma landowners in addressing natural 

resource concerns and improving environmental quality. A large fraction of 

this fund has been dedicated to supporting the removal of eastern redcedar 

from rangelands. Our simulation results indicate that future climate change 

will decrease redcedar habitat suitability and limit its encroachment in the 

western region of the SGP states. Therefore, based on this information, we 

cautiously suggest that stakeholders prioritize the allocation of redcedar 

removal resources and efforts in the humid and semi-humid ecoregions in the 

eastern portion of the SGP states.  

Prescribed burning has been used by landowners in the SGP to improve 

forage quality and clear hazardous fuels, including redcedar (Twidwell et al., 

2013b). The implementation of pyric herbivory, which involves the synergistic 

integration of livestock grazing and patch burning, is an effective option for 

controlling eastern redcedar encroachment (Fuhlendorf et al., 2017; Wilcox et 

al., 2022). This approach creates a shifting mosaic of landscape patches with 

varying prescribed burning schedules and post-fire recovery. Pyric herbivory 

is a cost-effective management strategy and offers numerous benefits, 

including maintaining open grasslands (Twidwell et al., 2013b), enhancing 

forage quality and production (Boughton et al., 2022), reducing woody plants 

(Capozzelli et al., 2020), and creating breeding habitats for grassland birds 

(Augustine and Derner, 2015). Furthermore, the development of industries 

that utilize eastern redcedar, such as the manufacturing of mulch, 

particleboard, and biofuel, can make a significant contribution to the local and 

regional economy (Kaur et al., 2020). This highlights the potential of effective 

management strategies for eastern redcedar to not only address 

environmental and agricultural challenges but also provide economic 

opportunities and promote sustainable utilization of this resource.  

Our simulation results revealed that with climate warming and drying in 

the future, a significant portion of currently suitable lands in the western and 

central regions of the SGP states, particularly under the RCP85 scenario, will 

become unsuitable for eastern redcedar. This change is attributable to the 

increased occurrence of droughts and heatwaves, which would lead to higher 

mortality rates among eastern redcedar and other tree species (Allen et al., 

2010). The eastern part of the SGP states will also experience a reduction in 

habitat suitability, with the suitability class transitioning from highly suitable 

to moderately suitable. This means that redcedar trees are still expected to 

have higher chances of survival and growth in the east. Currently, the 

dominant tree species in the eastern ecoregions are oaks, such as Quercus 

stellata and Q. marilandica (Hoff et al., 2018a). Eastern redcedar 

encroachment into these oak-dominated forests began in the 1950s and has 

not yet reached its full potential. Given that eastern redcedar has greater 

drought tolerance and lower mortality rates related to drought compared to 

oak species (Gu et al., 2015; Torquato et al., 2020b), it is likely that redcedar 

trees will continue to encroach into deciduous forests under future climate 

conditions. If unchecked, this could result in the gradual replacement of oak-

dominated forests by redcedar trees.  

4.3. Employed strategies to mitigate uncertainties  

To reduce uncertainties in future simulations, several strategies were 

implemented in this study. During the model training and simulation 

processes, we obtained USDA FIA eastern redcedar samples and implemented 

simulations in eight states, which covered a larger spatial extent than the 

three SGP states. This approach ensured that the range of AI in the training 

dataset encompassed a wide spectrum and reduced the chances of future AI 

to exceed the range. Recognizing the divergence in future climate projections 

among different GCMs (Sillmann et al., 2013), this study followed an approach 

in J. Yang et al. (2023) and reported the average and standard deviation of 

simulation results driven by seven climate datasets from different GCMs. This 

strategy accounted for the variations in the projected future climate 

conditions by GCMs and increased confidence in the interpretation of 

projected patterns of future redcedar distribution probability. Additionally, 

every single SDM has limitations in its spatial projection (Lissovsky and Dudov, 

2021). To mitigate this uncertainty, we employed an ensemble approach 

based on the results of seven SDMs to reduce the biases in these individual 

models, resulting in more robust estimates of future habitat suitability 

(Shabani et al., 2016).  

4.4. Caveats and future research needs  

Currently, redcedar and honey mesquite (Prosopis glandulosa) coexist 

within the same ecological niche in the western region of the study domain. 

Honey mesquite, known for its greater drought tolerance, thrives in these arid 

environment conditions. As the climate continues to become drier, it is 

expected that intensified competition between redcedar and mesquite will 

occur, resulting in significant changes in their dynamics and contributing to 

the confinement of redcedar to the western boundary. The eastern region of 

our study domain has optimal conditions for the growth of eastern redcedar 

trees. However, their distribution in this area is limited by competition from 

faster growing mesic trees (Lawson, 1990). Therefore, to obtain a more 

accurate projection of redcedar future distribution, it would be highly 

beneficial to use an approach that incorporates not only the abiotic attributes 

but also species-specific competition in future endeavors. To achieve this, 

future studies could consider forest landscape models, such as LANDIS-II 

(Scheller et al., 2007), to simulate the changing distribution of eastern 

redcedar by simulating the competition between woody plant species. 

Additionally, we acknowledge that in southern Texas, the future annual 

temperature will exceed the upper boundary of the temperature range in 

model training samples (Fig. 13). As a result, model results for this region 

carried higher uncertainty and caution should be exercised when making 

interpretations in this region. Moreover, SDMs in this study did not consider 

the relationship between eastern redcedar and other biotic components, such 

as pests and diseases, which can lead to uncertainties in the projected 

distribution probability.  

5. Conclusion  

The encroachment of eastern redcedar poses a significant threat to 

ecosystem services in the SGP forests and grasslands. In this study, we utilized 

an ensemble approach of seven SDMs to project the spatiotemporal patterns 

of eastern redcedar distribution probability under future climate conditions. 

The simulation results indicate that throughout the 21st century, the suitable 

habitat for eastern redcedar will shift eastward by 0.6◦ (≈ 49 km) in the RCP45 

and by 1.2◦ (≈ 103 km) in the RCP85. These changes in habitat suitability will 

render most of the western region of the SGP states unsuitable for redcedar 

growth. However, although redcedar habitat suitability will decrease in the 

eastern regions of the SGP as well, it is still possible for eastern redcedar to 

grow and thrive. Based on these results, we suggest that stakeholders 

prioritize the allocation of redcedar removal resources and efforts in the 

humid and semi-humid ecoregions in the eastern portion of the SGP states, 

particularly in the context of the RCP85 scenario.  
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