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In this paper, we explore the descriptive complexity theory of finite groups by examining the power

of the second Ehrenfeucht–Fraı̈ssé bijective pebble game in Hella’s (Ann. Pure Appl. Log., 1989)

hierarchy. This is a Spoiler–Duplicator game in which Spoiler can place up to two pebbles each

round. While it trivially solves graph isomorphism, it may be nontrivial for finite groups, and other

ternary relational structures. We first provide a novel generalization of Weisfeiler–Leman (WL)

coloring, which we call 2-ary WL. We then show that the 2-ary WL is equivalent to the second

Ehrenfeucht–Fraı̈ssé bijective pebble game in Hella’s hierarchy.

Our main result is that, in the pebble game characterization, only O(1) pebbles and O(1) rounds

are sufficient to identify all groups without Abelian normal subgroups (a class of groups for which

isomorphism testing is known to be in P; Babai, Codenotti, & Qiao, ICALP 2012). In particular, we

show that within the first few rounds, Spoiler can force Duplicator to select an isomorphism between

two such groups at each subsequent round. By Hella’s results (ibid.), this is equivalent to saying that

these groups are identified by formulas in first-order logic with generalized 2-ary quantifiers, using

only O(1) variables and O(1) quantifier depth.

1 Introduction

Descriptive complexity theory studies the relationship between the complexity of describing a given

problem in some logic, and the complexity of solving the problem by an algorithm. When the problems

involved are isomorphism problems, Immerman and Lander [44] showed that complexity of a logical

sentence describing the isomorphism type of a graph was essentially the same as the Weisfeiler–Leman

coloring dimension of that graph, and the complexity of an Ehrenfeucht–Fraı̈ssé pebble game (see also

[17]).

It is a well-known open question whether there is a logic that exactly captures the complexity class

P on unordered (unlabeled) structures; on ordered structures such a logic was given by Immerman [43]

and Vardi [67]. The difference between these two settings is essentially the GRAPH CANONIZATION

problem, whose solution allows one to turn an unordered graph into an ordered graph in an isomorphism-

preserving way.

One natural approach in trying to capture P on unordered structures is thus to attempt to extend first-

order logic FO by generalized quantifiers (c.f., Mostowski [60] and Lindstrom [57]) in the hopes that

the augmented logics can characterize finite graphs up to isomorphism, thus reducing the unordered case
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to the previously solved ordered case. A now-classical approach, initiated by Immerman [43], was to

augment fixed-point logic with counting quantifiers, which can be analyzed in terms of an equivalence

induced by (variable confined) fragments of first-order logic with counting. However, Cai, Fürer, &

Immerman [17] showed that FO+LFP plus counting does not capture P on finite graphs. More generally,

Flum & Grohe have characterized when FO plus counting captures P on unordered structures [26].

The approach of Cai, Fürer, & Immerman (ibid., see also [44]) was to prove a three-way equiva-

lence: between (1) counting logics, (2) the higher-dimensional Weisfeiler–Leman coloring procedure,

and (3) Ehrenfeucht–Fraı̈ssé pebble games. Ehrenfeucht–Fraı̈ssé pebble games [24, 27] have long been

an important tool in proving the inexpressibility of certain properties in various logics; in this case, they

used such games to show that the logics could not express the difference between certain pairs of non-

isomorphic graphs. Consequently, Cai, Fürer, & Immerman ruled out the Weisfeiler–Leman algorithm

as a polynomial-time isomorphism test for graphs, which resolved a long-standing open question in iso-

morphism testing. Nonetheless, the Weisfeiler–Leman coloring procedure is a key subroutine in many

algorithms for GRAPH ISOMORPHISM, including Babai’s quasi-polynomial-time algorithm [4]. It is thus

interesting to study its properties and its distinguishing power.

While the result of Cai, Fürer, & Immerman ruled out Weisfeiler–Leman as a polynomial-time iso-

morphism test for graphs, for groups it remains an interesting open question. The general WL procedure

for groups was introduced by Brachter & Schweitzer [12] and has been studied in several papers since

then [13, 30]. Outside the scope of WL, it is known that GROUP ISOMORPHISM is AC
0-reducible to

GRAPH ISOMORPHISM, and there is no AC
0 reduction in the opposite direction [19]. For this and other

reasons, group isomorphism is believed to be the easier of the two problems, so it is possible that WL—

and more generally, tools from descriptive complexity—could yield stronger results for groups than for

graphs.

On graphs, which are binary relational structures, if Spoiler is allowed to pebble two elements per

turn, then Spoiler can win on any pair of non-isomorphic graphs. However, groups are ternary relational

structures (the relation is {(a,b,c) : ab = c}), so such a game may yield nontrivial insights into the

descriptive complexity of finite groups. Hella [41, 42] introduced such games in a more general context,

and showed that allowing Spoiler to pebble q elements per round corresponded to the generalized q-ary

quantifiers of Mostowski [60] and Lindstrom [57]. When q = 1, Hella shows that this pebble game is

equivalent in power to the FO plus counting logics mentioned above. Our focus in this paper is to study

the power of the q = 2-ary game for identifying finite groups.

Main Results. In this paper, we initiate the study of Hella’s 2-ary Ehrenfeucht–Fraı̈ssé-style pebble

game, in the setting of groups. Our main result is that this pebble game efficiently characterizes iso-

morphism in a class of groups for which isomorphism testing is known to be in P, but only by quite a

nontrivial algorithm (see remark below). The full version of this paper appears on arXiv [29].

Theorem 1.1. Let G be a group with no Abelian normal subgroups (a.k.a. Fitting-free or semisimple),

and let H be arbitrary. If G 6∼= H, then Spoiler has a winning strategy in the Ehrenfeucht–Fraı̈ssé game

at the second level of Hella’s hierarchy, using 9 pebbles and O(1) rounds.

In proving Thm. 1.1, we show that with the use of only a few pebbles, Spoiler can effectively force

Duplicator to select an isomorphism of G and H . We contrast this with the setting of Weisfeiler–Leman

(which is equivalent to the 1-ary pebble game), for which the best upper bound we have on the WL-

dimension is the trivial bound of logn. Furthermore, we do not have any lower bounds on the WL-

dimension for semisimple groups.

Remark 1.2. Every group G can be written as an extension of its solvable radical Rad(G) by the quotient
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G/Rad(G), which does not have Abelian normal subgroups. As such, the latter class of groups is quite

natural, both group-theoretically and computationally. Computationally, it has been used in algorithms

for general finite groups both in theory (e.g., [5, 6]) and in practice (e.g., [18]). Isomorphism testing in

this family of groups can be solved efficiently in practice [18], and is known to be in P through a series

of two papers [7, 8].

In Section 3 we also complete the picture by giving a Weisfeiler–Leman-style coloring procedure

and showing that it corresponds precisely to Hella’s q-ary pebble games and q-ary generalized Lindstrom

quantifiers [57]. When the groups are given by their multiplication tables, this procedure runs in time

nΘ(log2 n) by reduction to GRAPH ISOMORPHISM. We note that Hella’s results deal with infinitary logics

[41, 42]. However, as we are dealing with finite groups, the infinitary quantifiers and connectives are not

necessary (see the discussion in [42], right above Theorem 5.3).

Further Related Work. Despite the fact that Weisfeiler–Leman is insufficient to place GRAPH ISOMOR-

PHISM (GI) into PTIME, it remains an active area of research. For instance, Weisfeiler–Leman is a key

subroutine in Babai’s quasipolynomial-time GI algorithm [4]. Furthermore, Weisfeiler–Leman has led to

advances in simultaneously developing both efficient isomorphism tests and the descriptive complexity

theory for finite graphs- see for instance, [32, 38, 49, 50, 34, 36, 35, 51, 1, 2, 64]. Weisfeiler–Leman also

has close connections to the Sherali–Adams hierarchy in linear programming [37].

The complexity of the GROUP ISOMORPHISM (GPI) problem is a well-known open question. In the

Cayley (multiplication) table model, GPI belongs to NP∩ coAM. The generator-enumerator algorithm,

attributed to Tarjan in 1978 [59], has time complexity nlogp(n)+O(1), where n is the order of the group

and p is the smallest prime dividing n. This bound has escaped largely unscathed: Rosenbaum [63] (see

[55, Sec. 2.2]) improved this to n(1/4) logp(n)+O(1). And even the impressive body of work on practical

algorithms for this problem, led by Eick, Holt, Leedham-Green and O’Brien (e. g., [11, 25, 10, 18]) still

results in an nΘ(log n)-time algorithm in the general case (see [70, Page 2]). In the past several years, there

have been significant advances on algorithms with worst-case guarantees on the serial runtime for special

cases of this problem including Abelian groups [47, 68, 65], direct product decompositions [69, 48],

groups with no Abelian normal subgroups [7, 8], coprime and tame group extensions [54, 62, 9, 31],

low-genus p-groups and their quotients [56, 15], Hamiltonian groups [20], and groups of almost all

orders [23].

Key motivation for GPI is due to its close relation to GI. In the Cayley (verbose) model, GPI reduces

to GI [71], while GI reduces to the succinct GPI problem [40, 58] (recently simplified [39]). In light of

Babai’s breakthrough result that GI is quasipolynomial-time solvable [4], GPI in the Cayley model is a

key barrier to improving the complexity of GI. Both verbose GPI and GI are considered to be candidate

NP-intermediate problems, that is, problems that belong to NP, but are neither in P nor NP-complete

[53]. There is considerable evidence suggesting that GI is not NP-complete [66, 16, 45, 4, 52, 3]. As

verbose GPI reduces to GI, this evidence also suggests that GPI is not NP-complete. It is also known

that GI is strictly harder than GPI under AC0 reductions [19].

While the descriptive complexity of graphs has been extensively studied, the work on the descriptive

complexity of groups is scant compared to the algorithmic literature on GROUP ISOMORPHISM (GPI).

There has been work relating first order logics and groups [61], as well as work examining the descrip-

tive complexity of finite abelian groups [28]. Recently, Brachter & Schweitzer [12] introduced three

variants of Weisfeiler–Leman for groups, including corresponding logics and pebble games. These peb-

ble games correspond to the first level of Hella’s hierarchy [41, 42]. In particular, Brachter & Schweitzer

showed that 3-dimensional Weisfeiler–Leman can distinguish p-groups arising from the CFI graphs [17]
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via Mekler’s construction [58], suggesting that FO+ LFP+C may indeed capture PTIME on groups.

Determining whether even o(log n)-dimensional Weisfeiler–Leman can resolve GPI is an open question.

The use on Weisfeiler–Leman for groups is quite new. To the best of our knowledge, using Weisfeiler–

Leman for GROUP ISOMORPHISM testing was first attempted by Brooksbank, Grochow, Li, Qiao, &

Wilson [14]. Brachter & Schweitzer [12] subsequently introduced three variants of Weisfeiler–Leman

for groups that more closely resemble that of graphs. In particular, Brachter & Schweitzer [12] char-

acterized their algorithms in terms of logics and Ehrenfeucht–Fraı̈ssé pebble games. The relationship

between the works of Brachter & Schweitzer and Brooksbank, Grochow, Li, Qiao, & Wilson [14] is an

interesting question.

In subsequent work, Brachter & Schweitzer [13] further developed the descriptive complexity of

finite groups. They showed in particular that low-dimensional Weisfeiler–Leman can detect key group-

theoretic invariants such as composition series, radicals, and quotient structure. Furthermore, they also

showed that Weisfeiler–Leman can identify direct products in polynomial-time, provided it can also iden-

tify the indecomposable direct factors in polynomial-time. Grochow & Levet [30] extended this result

to show that Weisfeiler–Leman can compute direct products in parallel, provided it can identify each

of the indecomposable direct factors in parallel. Additionally, Grochow & Levet showed that constant-

dimensional Weisfeiler–Leman can in a constant number of rounds identify coprime extensions H ⋉N,

where the normal Hall subgroup N is Abelian and the complement H is O(1)-generated. This placed iso-

morphism testing into L; the previous bound for isomorphism testing in this family was P [62]. Grochow

& Levet also ruled out FO+LFP as a candidate logic for capturing PTIME on finite groups, by showing

that the count-free Weisfeiler–Leman algorithm cannot even identify Abelian groups in polynomial-time.

2 Preliminaries

We recall the bijective pebble game of Hella [41, 42], in the context of WL on graphs as that is likely

more familiar to more readers. This game is often used to show that two graphs X and Y cannot be distin-

guished by k-WL. The game is an Ehrenfeucht–Fraı̈ssé game, with two players: Spoiler and Duplicator.

Each graph begins with k+1 pebbles, p1, . . . , pk+1 for X and p′1, . . . , p′k+1 for Y , which are placed beside

the graphs. Each round proceeds as follows.

1. Spoiler chooses i ∈ [k+1], and picks up pebbles pi, p′i.

2. We check the winning condition, which will be formalized later.1

3. Duplicator chooses a bijection f : V (X)→V (Y ).

4. Spoiler places pi on some vertex v ∈V (X). Then p′i is placed on f (v).

In a given round, let v1, . . . ,vm be the vertices of X pebbled at the end of step 1 (in the list above),

and let v′1, . . . ,v
′
m be the corresponding pebbled vertices of Y . Spoiler wins precisely if the map vℓ 7→ v′ℓ

is not an isomorphism of the induced subgraphs X [{v1, . . . ,vm}] and Y [{v′1, . . . ,v
′
m}]. Otherwise, at that

point, Duplicator wins the game. Spoiler wins, by definition, at round 0 if X and Y do not have the same

number of vertices. We note that X and Y are not distinguished by the first r rounds of k-WL if and only

if Duplicator wins the first r rounds of the (k+1)-pebble game [41, 42, 17].

1In the literature, some authors check the winning condition at this point, and others check the winning condition at the end

of each round. The choice merely has the effect of changing the number of required pebbles by at most 1 in ordinary WL, or at

most q in the q-ary version, and changing the number of rounds by at most 1. We have chosen this convention for consistency

with other works on WL specific to groups [12, 13, 30].
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Hella [41, 42] exhibited a hierarchy of pebble games where, for q ≥ 1, Spoiler could pebble a se-

quence of 1 ≤ j ≤ q elements (v1, . . . ,v j) 7→ ( f (v1), . . . , f (v j)) in a single round; more formally, follow-

ing the description above, in step 1, Spoiler picks up q pebbles pi1 , . . . , piq and their partners p′i1 , . . . , p′iq ,

with step 4 changed accordingly. The case of q = 1 corresponds to the case of Weisfeiler–Leman. As

remarked by Hella [42, p. 6, just before §4], the q-ary game immediately identifies all relational struc-

tures of arity ≤ q. For example, the q = 2 game on graphs solves GI: for if two graphs X and Y are

non-isomorphic, then any bijection f : V (X)→ V (Y ) that Duplicator selects must map an adjacent pair

of vertices u,v in X to a non-adjacent pair f (u), f (v) in Y or vice-versa. Spoiler immediately wins by

pebbling (u,v) 7→ ( f (u), f (v)). However, as groups are ternary relational structures (the relation being

{(a,b,c) : a,b,c ∈ G,ab = c}), the q = 2 case can, at least in principle, be non-trivial on groups.

Brachter & Schweitzer [12] adapted Hella’s [41, 42] pebble games in the q = 1 case to the setting

of groups, obtaining three different versions. Their Version III involves reducing to graphs and playing

the pebble game on graphs, so we don’t consider it further here. Versions I and II are both played on the

groups G and H directly.

Both versions are played identically as for graphs, with the only difference being the winning condi-

tion. We recall the following standard definitions in order to describe these winning conditions.

Definition 2.1. Let G,H be two groups. Given k-tuples g = (g1, . . . ,gk) ∈ Gk and h = (h1, . . . ,hk) ∈ Hk,

we say (g,h) ...

1. ...gives a well-defined map if gi = g j ⇔ hi = h j for all i 6= j;

2. ...are partially isomorphic or give a partial isomorphism if they give a well-defined map, and for

all i, j,k we have gig j = gk ⇔ hih j = hk;

3. ...are marked isomorphic or give a marked isomorphism if it gives a well-defined map, and the

map extends to an isomorphism 〈g1, . . . ,gk〉 → 〈h1, . . . ,hk〉.

Let v1, . . . ,vm be the group elements of G pebbled at the end of step 1, and let v′1, . . . ,v
′
m be the

corresponding pebbled vertices of H . In Version I, Spoiler wins precisely if (v,v′) does not give a partial

isomorphism, and in Version II Spoiler wins precisely if (v,v′) does not give a marked isomorphism.

Both Versions I and II may be generalized to allow Spoiler to pebble up to q group elements at a

single round, for some q ≥ 1. Mimicking the proof above for q = 2 for graphs, we have that q = 3 is

sufficient to solve GPI in a single round. The distinguishing power, however, of the q= 2 game for groups

remains unclear, and is the main subject of this paper. As we are interested in the round complexity, we

introduce the following notation.

Definition 2.2 (Notation for pebbles, rounds, arity, and WL version). Let k ≥ 2,r ≥ 1, q ≥ 1, and J ∈
{I, II}. Denote (k,r)-WL

q
J to be the k-pebble, r-round, q-ary Version J pebble game.

We refer to q as the arity of the pebble game, as it corresponds to the arity of generalized quantifiers2

in a logic whose distinguishing power is equivalent to that of the game:

Remark 2.3 (Equivalence with logics with generalized 2-ary quantifiers). Hella [41] describes the game

(essentially the same as our description, but with no restriction on number of pebbles, and a transfinite

number of rounds) for general q at the bottom of p. 245, for arbitrary relational structures. We restrict to

the case of q = 2, a finite number of pebbles and rounds, and the (relational) language of groups. Hella

proves that this game is equivalent to first-order logic with arbitrary q-ary equantifiers in [41, Thm. 2.5].

2As our focus in this paper is not on the viewpoint of generalized quantifiers, we refer the reader to [41] for details.
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Observation 2.4. In the 2-ary pebble game, we may assume that Duplicator selects bijections that

preserve inverses.

Proof. Suppose not. First, Duplicator must select bijections that preserve the identity, for if not, Spoiler

pebbles 1G 7→ f (1) 6= 1H and wins immediately. Next, let f : G → H be a bijection such that f (g−1) 6=
f (g)−1. Spoiler pebbles (g,g−1) 7→ ( f (g), f (g−1)). Now gg−1 = 1, while f (g) f (g−1) 6= 1. So Spoiler

wins.

We frequently use this observation without mention.

3 Higher-arity Weisfeiler-Leman-style coloring corresponding to higher

arity pebble games

Given a k-tuple x = (x1, . . . ,xk) ∈ Gk, a pair of distinct indices i, j ∈ [k], and a pair of group elements y,z,

we define x(i, j)←(y,z) to be the k-tuple x′ that agrees with x on all indices besides i, j, and with x′i = y,x′j = z.

If i = j, we require y = z, and we denote this xi←y.

Finally, two graphs Γ1,Γ2, with edge-colorings ci : E(Γi)→C to some color set C (for i = 1,2) are

color isomorphic if there is a graph isomorphism ϕ : V (Γ1) → V (Γ2) that also preserves colors, in the

sense that c1((u,v)) = c2((ϕ(u),ϕ(v)) for all edges (u,v) ∈ E(Γ1).

Definition 3.1 (2-ary k-dimensional Weisfeiler-Leman coloring). Let G,H be two groups of the same

order, let k ≥ 1. For all k-tuples x,y ∈ Gk ∪Hk:

• (Initial coloring, Version I) χ2,I
0 (x) = χ2,I

0 (y) iff x,y are partially isomorphic.

• (Initial coloring, Version II) χ2,II
0 (x) = χ2,II

0 (y) iff x,y have the same marked isomorphism type.

• (Color refinement) Given a coloring χ : Gk ∪Hk → C, the color refinement operator R defines a

new coloring R(χ) as follows. For each k-tuple x ∈ Gk (resp., Hk), we define an edge-colored

graph Γx,χ ,i, j . If i = j, it is the graph on vertex set V (Γx,χ ,i,i) = G (resp., H) with all self-loops

and no other edges, where the color of each self-loop (g,g) is χ(xi←g). If i 6= j, it is the complete

directed graph with self-loops on vertex set G (resp., H), where the color of each edge (y,z) is

χ(x(i, j)←(y,z)). For an edge-colored graph Γ, we use [Γ] to denote its edge-colored isomorphism

class. We then define

R(χ)(x) =
(

χ(x); [Γx,χ ,1,1], [Γx,χ ,1,2], . . . , [Γx,χ ,k−1,k], [Γx,χ ,k,k]
)

.

That is, the new color consists of the old color, as well as the tuple of
(

k+1
2

)

edge-colored isomor-

phism types of the graphs Γx,χ ,i, j .

The refinement operator may be iterated: Rt(χ) := R(Rt−1(χ)), and we define the stable refinement of χ

as Rt(χ) where the partition induced by Rt(χ) on Gk ∪Hk is the same as that induced by Rt+1(χ). We

denote the stable refinement by R∞(χ).
Finally, for J ∈ {I, II} and all r ≥ 0, we define χ2,J

r+1 = R(χ2,J
r ), and χ2,J

∞ := R∞(χ2,J
0 ).

Remark 3.2. Brachter & Schweitzer [12] introduced Versions I and II of 1-ary WL, which are equivalent

up to a small additive constant in the WL-dimension [12] and O(logn) rounds [30]. For the purpose of

comparison, we introduce Versions I and II of 2-ary WL. We will see later that only one additional round

suffices in the 2-ary case (see Thm. 3.7). The differences in Versions I and II of WL (both the 1-ary and

2-ary variants) arise from whether the group is viewed as a structure with a ternary relational structure

(Version I) or as a structure with a binary function (Version II).
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Remark 3.3. Since it was one of our stumbling blocks in coming up with this generalized coloring, we

clarify here how this indeed generalizes the usual 1-ary WL coloring procedure. In the 1-ary “oblivious”

k-WL procedure (see [33, §5], equivalent to ordinary WL), the color of a k-tuple x is refined using its old

color, together with a k-tuple of multisets

({{χ(x1←y) : y ∈ G}},{{χ(x2←y) : y ∈ G}}, . . . ,{{χ(xk←y) : y ∈ G}}).

For each i, note that two multisets {{χ(xi←y) : y ∈ G}} and {{χ(x′i←y) : y ∈ G}} are equal iff the graphs

Γx,χ ,i,i and Γx′,χ ,i,i are color-isomorphic. That is, edge-colored graphs with only self-loops and no other

edges are essentially the same, up to isomorphism, as multisets. Our procedure generalizes this by also

considering graphs with other edges, which (as we’ll see in the proof of equivalence, which will appear

in the full version) are used to encode the choice of 2 simultaneous pebbles by Spoiler in each move of

the game.

Theorem 3.4. Let G,H be two groups of order n, with x ∈ Gk,y ∈ Hk. Starting from the initial pebbling

xi 7→ yi for all i= 1, . . . ,k, Spoiler has a winning strategy in the k-pebble, r-round, 2-ary Version J pebble

game (for J ∈ {I, II}) iff χ2,J
r (x) 6= χ2,J

r (y).

Proof. To appear in the full version.

Corollary 3.5. For two groups G,H of the same order and any k ≥ 1, the following are equivalent:

1. The 2-ary k-pebble game does not distinguish two groups G,H

2. The multisets of stable colors on Gk and Hk are the same, that is, {{χ2,J
∞ (x) : x ∈ Gk}}= {{χ2,J

∞ (y) :

y ∈ Hk}}

3. χ2,J
∞ ((1G,1G, . . . ,1G)) = χ2,J

∞ ((1H , . . . ,1H)).

The analogous result holds in the q = 1 case, going back to [12].

Proof. To appear in the full version.

Remark 3.6. For arbitrary relational structures with relations of arity a+1, the a-order pebble game may

still be nontrivial, as pointed out in Hella [42, p. 6, just before §4]. Our coloring procedure generalizes

in the following way to this more general setting, and the proof of the equivalence between the coloring

procedure and Hella’s pebble game is the same as the above, mutatis mutandis. The main change is that

for an a-th order pebble game, instead of just considering a graph on edges of size 1 (when i = j) or 2

(when i 6= j), we consider an a′-uniform directed hypergraph, where each hyperedge consists of a list of

a′ vertices, for all 1 ≤ a′ ≤ a. This gives a coloring equivalent of the logical and game characterizations

provided by Hella; this trifecta is partly why we feel it is justified to call this a “higher-arity Weisfeiler–

Leman” coloring procedure.

We note that there has been some work on equivalences with specific binary and higher-arity quan-

tifiers: see for instance, the invertible map game of Dawar & Holm [21] which generalizes rank logic,

in which Spoiler can place multiple pebbles, but the bijections Duplicator selects must satisfy additional

structure. Subsequently, Dawar & Vagnozzi [22] provided a generalization of Weisfeiler–Leman that

further subsumes the invertible map game. We note that Dawar & Vagnozzi’s “W Lk,r”, although it looks

superficially like our r-ary k-WL, is in fact quite different: in particular, their refinement step “flattens” a

multiset of multisets into its multiset union, which loses information compared to our 2-ary (resp., r-ary)

game; indeed, they show that their WL∗,r is equivalent to ordinary (1-ary) WL for any fixed r, whereas

already 2-ary WL can solve GI. In general, the relationship between Hella’s 2-ary game and the works

of Dawar & Holm and Dawar & Vagnozzi remains open.
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3.1 Equivalence between 2-ary (k,r)-WL Versions I and II

In this section we show that, up to additive constants in the number of pebbles and rounds, 2-ary WL

Versions I and II are equivalent in their distinguishing power. For two different WL versions W,W ′, we

write W �W ′ to mean that if W distinguishes two groups G and H , then so does W ′.

Theorem 3.7. Let k ≥ 2,r ≥ 1. We have that:

(k,r)-WL2
I � (k,r)-WL2

II � (k+2,r+1)-WL2
I .

Proof. To appear in the full version.

4 Descriptive Complexity of Semisimple Groups

In this section, we show that the (O(1),O(1))-WL2
II pebble game can identify groups with no Abelian

normal subgroups,3 also known as semisimple groups. We begin with some preliminaries.

4.1 Preliminaries

Semisimple groups are motivated by the following characteristic filtration:

1 ≤ Rad(G)≤ Soc∗(G)≤ PKer(G)≤ G,

which arises in the computational complexity community where it is known as the Babai–Beals filtration

[5], as well as in the development of practical algorithms for computer algebra systems (c.f., [18]). We

now explain the terms of this chain. Here, Rad(G) is the solvable radical, which is the unique maximal

solvable normal subgroup of G; recall that a group N is solvable if the sequence N(0) := N, N(i) =
[N(i−1),N(i−1)] terminates in the trivial group after finitely many steps, and [A,B] denotes the subgroup

generated by {aba−1b−1 : a∈A,b∈B}. The socle of a group, denoted Soc(G), is the subgroup generated

by all the minimal normal subgroups of G. Soc∗(G) is the preimage of the socle Soc(G/Rad(G)) under

the natural projection map π : G → G/Rad(G). To define PKer, we start by examining the action on

Soc(G/Rad(G))∼= Soc∗(G)/Rad(G) that is induced by the action of G on Soc∗(G) by conjugation. As

Soc∗(G)/Rad(G)∼=Soc(G/Rad(G)) is the direct product of finite, non-Abelian simple groups T1, . . . ,Tk,

this action permutes the k simple factors, yielding a homomorphism ϕ : G → Sk. The kernel of this action

is denoted PKer(G).
When Rad(G) is trivial, G has no Abelian normal subgroups (and vice versa). We refer to such

groups as semisimple (following [7, 8]) or trivial-Fitting (following [18]). As a semisimple group G has

no Abelian normal subgroups, we have that Soc(G) is the direct product of non-Abelian simple groups.

As the conjugation action of G on Soc(G) permutes the direct factors of Soc(G), there exists a faithful

permutation representation α : G → G∗ ≤ Aut(Soc(G)). G is determined by Soc(G) and the action α .

Let H be a semisimple group with the associated action β : H → Aut(Soc(H)). We have that G ∼= H

precisely if Soc(G)∼= Soc(H) via an isomorphism that makes α equivalent to β in the sense introduced

next.

We now introduce the notion of permutational isomorphism, which is our notion of equivalence for

α and β . Let A and B be finite sets, and let π : A → B be a bijection. For σ ∈ Sym(A), let σ π ∈ Sym(B)

3In many places, we will use O(1) for number of pebbles or rounds; we believe all of these can be replaced with particular

numbers by a straightforward, if tedious, analysis of our proofs. However, since our focus is on the fact that these numbers are

constant rather than on the exact values, we use the O(1) notation.
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be defined by σ π := π−1σπ . For a set Σ ⊆ Sym(A), denote Σπ := {σ π : σ ∈ Σ}. Let K ≤ Sym(A) and

L ≤ Sym(B) be permutation groups. A bijection π : A → B is a permutational isomorphism K → L if

Kπ = L.

The following lemma, applied with R = Soc(G) and S = Soc(H), gives a precise characterization of

semisimple groups in terms of the associated actions.

Lemma 4.1 ([7, Lemma 3.1], cf. [18, §3]). Let G and H be groups, with R ⊳G and S ⊳H groups with

trivial centralizers. Let α : G → Aut(R) and β : H → Aut(S) be faithful permutation representations

of G and H via the conjugation action on R and S, respectively. Let f : R → S be an isomorphism.

Then f extends to an isomorphism f̂ : G → H if and only if f is a permutational isomorphism between

G∗ = Im(α) and H∗ = Im(β ); and if so, f̂ = α f ∗β−1, where f ∗ : G∗ → H∗ is the isomorphism induced

by f .

We also need the following standard group-theoretic lemmas. The first provides a key condition for

identifying whether a non-Abelian simple group belongs to the socle. Namely, if S1
∼= S2 are non-Abelian

simple groups where S1 is in the socle and S2 is not in the socle, then the normal closures of S1 and S2 are

non-isomorphic. In particular, the normal closure of S1 is a direct product of non-Abelian simple groups,

while the normal closure of S2 is not a direct product of non-Abelian simple groups. We will apply this

condition later when S1 is a simple direct factor of Soc(G); in which case, the normal closure of S1 is of

the form Sk
1.

Lemma 4.2 (c.f. [30, Lemma 6.5]). Let G be a finite semisimple group. A subgroup S ≤ G is contained

in Soc(G) if and only if the normal closure of S is a direct product of nonabelian simple groups.

Lemma 4.3 (c.f. [30, Lemma 6.6]). Let S1, . . . ,Sk ≤ G be nonabelian simple subgroups such that for all

distinct i, j ∈ [k] we have [Si,S j] = 1. Then 〈S1, . . . ,Sk〉= S1S2 · · ·Sk = S1 ×·· ·×Sk.

4.2 Main Results

We show that the second Ehrenfeucht–Fraı̈ssé game in Hella’s hierarchy can identify both Soc(G) and

the conjugation action when G is semisimple. We first show that this pebble game can identify whether

a group is semisimple. Namely, if G is semisimple and H is not semisimple, then Spoiler can distinguish

G from H .

Proposition 4.4. Let G be a semisimple group of order n, and let H be an arbitrary group of order n. If

H is not semisimple, then Spoiler can win in the (4,2)-WL2
II game.

Proof. To appear in the full version.

We now apply Lemma 4.2 to show that Duplicator must map the direct factors of Soc(G) to isomor-

phic direct factors of Soc(H).

Lemma 4.5. Let G,H be finite groups of order n. Let Fac(Soc(G)) denote the set of simple direct factors

of Soc(G). Let S ∈ Fac(Soc(G)) be a non-Abelian simple group, with S = 〈x,y〉. If Duplicator selects a

bijection f : G → H such that:

(a) S 6∼= 〈 f (x), f (y)〉, then Spoiler can win in the (2,1)-WL2
II game; or

(b) f (S) 6= 〈 f (x), f (y)〉, then Spoiler can win in the (4,2)-WL2
II pebble game.

Note that the lemma does not require f |S : S → f (S) to actually be an isomorphism, only that S and f (S)
are isomorphic.
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Proof. To appear in the full version.

Proposition 4.6. Let G be a semisimple group of order n, and let H be an arbitrary group of order n.

Let f : G → H be the bijection Duplicator selects. If there exists S ∈ Fac(Soc(G)) such that f (S) /∈
Fac(Soc(H)) or f (S) 6∼= S, then Spoiler can win in the (4,2)-WL2

II pebble game.

Proof. To appear in the full version.

Lemma 4.7. Let G,H be groups of order n, let S be a nonabelian simple group in Fac(Soc(G)). Let

f , f ′ : G → H be two bijections selected by Duplicator at two different rounds. If f (S)∩ f ′(S) 6= 1, then

f (S) = f ′(S), or Spoiler can win in the (4,2)-WL2
II pebble game.

Proof. By Prop. 4.6, both f (S) and f ′(S) must be simple normal subgroups of Soc(H) (or Spoiler wins

with 4 pebbles and 2 rounds). Since they intersect nontrivially, but distinct simple normal subgroups of

Soc(H) intersect trivially, the two must be equal.

We next introduce the notion of weight.

Definition 4.8. Let Soc(G) = S1 ×·· ·× Sk where each Si is a simple normal subgroup of Soc(G). For

any s ∈ Soc(G), write s = s1s2 · · · sk where each si ∈ Si, and define the weight of s, denote wt(s), as the

number of i’s such that si 6= 1.

Note that the definition of weight is well-defined since the Si are the unique subsets of Soc(G) that

are simple normal subgroup of Soc(G), so the decomposition s = s1s2 . . . sk is unique up to the order of

the factors. (This is essentially a particular instance of the “rank lemma” from [30], which intuitively

states that WL detects in O(logn) rounds the set of elements for a given subgroup provided that it also

identifies the generators. As we are now in the setting of 2-ary WL we give the full proof, which also has

tighter bounds on the number of rounds.)

Lemma 4.9 (Weight Lemma). Let G,H be semisimple groups of order n. If Duplicator selects a bijection

f : G → H that does not map Soc(G) bijectively to Soc(H), or does not preserve the weight of every

element in Soc(G), then Spoiler can win in the (4,3)-WL2
II game.

Proof. To appear in the full version.

Lemma 4.10. Let G and H be semisimple groups with isomorphic socles. Let S1,S2 ∈ Fac(Soc(G))
be distinct. Let f : G → H be the bijection that Duplicator selects. If there exist xi ∈ Si such that

f (x1x2) 6= f (x1) f (x2), then Spoiler can win in the (4,3)-WL2
II pebble game.

Proof. By Lem. 4.9, we may assume that wt(s) = wt( f (s)) for all s ∈ Soc(G); otherwise, Spoiler wins

with at most 4 pebbles and 3 rounds. As f (x1x2) has weight 2, f (x1x2) belongs to the direct product of

two simple factors in Fac(Soc(H)), so it can be written f (x1x2) = y1y2 with each yi in distinct simple

factors in Fac(Soc(H)). Without loss of generality suppose that y1 6= f (x1). Spoiler pebbles (x1,x1x2) 7→
( f (x1), f (x1x2)). Now wt(x−1

1 · x1x2) = 1, while wt( f (x1)
−1 · f (x1x2)) ≥ 2. (Note that we cannot quite

yet directly apply Lem. 4.9, because we have not yet identified a single element x such that wt(x) 6=
wt( f (x)).)

On the next round, Duplicator selects another bijection f ′. Spoiler now pebbles x2 7→ f ′(x2). Because

wt(x−1
1 · x1x2) = 1 but wt( f (x1)

−1 f (x1x2)) ≥ 2, and f ′ preserves weight by Lem. 4.9, we have f ′(x2) 6=
f ′(x1)

−1 f ′(x1x2). Thus, the pebbled map (x1,x2,x1x2) 7→ ( f ′(x1), f (x2), f (x1x2)) does not extend to an

isomorphism, and so Spoiler wins with 3 pebbles and 2 rounds.
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Recall that if G is semisimple, then G ≤ Aut(Soc(G)). Now each minimal normal subgroup N E G is

of the form N = Sk, where S is a non-Abelian simple group. So Aut(N) = Aut(S) ≀Sym(k). In particular,

G ≤ ∏
NEG

N is minimal normal

Aut(N).

So if g ∈ G, then the conjugation action of g on Soc(G) acts by (i) automorphism on each simple

direct factor of Soc(G), and (ii) by permuting the direct factors of Soc(G). Provided generators of

the direct factors of the socle are pebbled, Spoiler can detect inconsistencies of the automorphism action.

However, doing so directly would be too expensive as there could be Θ(log |G|) generators, so we employ

a more subtle approach with a similar outcome. By Lem. 4.9, Duplicator must select bijections f : G→H

that preserve weight. That is, if s ∈ Soc(G), then wt(s) = wt( f (s)). We use Lem. 4.9 in tandem with the

fact that the direct factors of the socle commute to effectively pebble the set of all the generators at once.

Namely, suppose that Fac(Soc(G)) = {S1, . . . ,Sk}, where Si = 〈xi,yi〉. Let x := x1 · · ·xk and y := y1 · · ·yk.

We will show that it suffices for Spoiler to pebble (x,y) rather than individually pebbling generators for

each Si (this will still allow the factors to be permuted, but that is all).

Lemma 4.11. Let G and H be semisimple groups with isomorphic socles, and write Fac(Soc(G)) =
{S1, . . . ,Sm}, with Si = 〈xi,yi〉. Let f : G → H be the bijection that Duplicator selects, and suppose that

(i) for all i, f (Si)∼= Si (though f |Si
need not be an isomorphism) and f (Si) ∈ Fac(Soc(H)), (ii) for every

s ∈ Soc(G), wt(s) = wt( f (s)), and (iii) for all i, f (Si) = 〈 f (x), f (y)〉.

Now suppose that Spoiler pebbles (x1 · · ·xm,y1 · · ·ym) 7→ ( f (x1 · · ·xm), f (y1 · · ·ym)). As f preserves

weight, we may write f (x1 · · ·xm) = h1 · · ·hm and f (y1 · · ·ym) = z1 · · · zm with hi,zi ∈ f (Si) for all i.

Let f ′ : G → H be the bijection that Duplicator selects at any subsequent round in which the pebble

used above has not moved. If any of the following hold, then Spoiler can win in the WL2
II pebble game

with 5 additional pebbles and 5 additional rounds:

(a) f ′ does not satisfy conditions (i)–(iii),

(b) there exists an i ∈ [m] such that f ′(xi) /∈ {h1, . . . ,hm} or f ′(yi) /∈ {z1, . . . ,zm}

(c) f ′|Si
is not an isomorphism

(d) there exists g ∈ G and i ∈ [m] such that gSig
−1 = Si and for some x ∈ Si, the following holds:

f ′(gxg−1) 6= f ′(g) f ′(x) f ′(g)−1.

Proof. To appear in the full version.

Lem. 4.11 provides enough to establish that Spoiler can force Duplicator to select at each round a

bijection that restricts to an isomorphism on the socles.

Proposition 4.12. (Same assumptions as Lem. 4.11.) Let G and H be semisimple groups with isomor-

phic socles, with Fac(Soc(G)) = {S1, . . . ,Sm}, with Si = 〈xi,yi〉. Let f0 : G → H be the bijection that

Duplicator selects, and suppose that (i) for all i, f0(Si) ∼= Si (though f0|Si
need not be an isomorphism)

and f0(Si) ∈ Fac(Soc(H)), (ii) for every s ∈ Soc(G), wt(s) = wt( f0(s)), and (iii) for all i, f0(Si) =
〈 f0(x), f0(y)〉. Now suppose that Spoiler pebbles (x1 · · ·xm,y1 · · ·ym) 7→ ( f0(x1 · · ·xm), f0(y1 · · ·ym)).

Let f ′ : G → H be the bijection that Duplicator selects at any subsequent round in which the pebbles

used above have not moved. Then f ′|Soc(G) : Soc(G)→ Soc(H) must be an isomorphism, or Spoiler can

win in 4 more rounds using at most 6 more pebbles (for a total of 7 pebbles and 5 rounds) in the WL2
II

pebble game.
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Proof. To appear in the full version.

Remark 4.13. Brachter & Schweitzer [13, Lemma 5.22] previously showed that (1-ary) Weisfeiler–

Leman can decide whether two groups have isomorphic socles. However, their results did not solve the

search problem; that is, they did not show Duplicator must select bijections that restrict to an isomor-

phism on the socle even in the case for semisimple groups. This contrasts with Lem. 4.12, where we

show that 2-ary WL effectively solves the search problem. This is an important ingredient in our proof

that the (7,O(1))-WL2
II pebble game solves isomorphism for semisimple groups.

We obtain as a corollary of Lem. 4.11 and Lem. 4.12 that if G and H are semisimple, then Duplicator

must select bijections that restrict to isomorphisms of PKer(G) and PKer(H).

Corollary 4.14. Let G and H be semisimple groups of order n. Let Fac(Soc(G)) := {S1, . . . ,Sm}, and

suppose that Si = 〈xi,yi〉. Let x := x1 · · ·xm and y := y1 · · ·ym. and Let f : G → H be the bijection that

Duplicator selects. Spoiler begins by pebbling (x,y) 7→ ( f (x), f (y)). Let f ′ : G → H be the bijection

that Duplicator selects at the next round. If f ′|PKer(G) : PKer(G)→ PKer(H) is not an isomorphism, then

Spoiler can win with 5 additional pebbles and 5 additional rounds in the WL2
II pebble game.

Proof. To appear in the full version.

We now show that if G and H are not permutationally equivalent, then Spoiler can win.

Lemma 4.15. (Same assumptions as Lem. 4.11.) Let G and H be semisimple groups with isomorphic so-

cles, with Fac(Soc(G)) = {S1, . . . ,Sm}, with Si = 〈xi,yi〉. Let f0 : G → H be the bijection that Duplicator

selects, and suppose that (i) for all i, f0(Si)∼= Si (though f0|Si
need not be an isomorphism) and f0(Si) ∈

Fac(Soc(H)), (ii) for every s ∈ Soc(G), wt(s) = wt( f0(s)), and (iii) for all i, f0(Si) = 〈 f0(x), f0(y)〉. Now

suppose that Spoiler pebbles (x1 · · ·xm,y1 · · ·ym) 7→ ( f0(x1 · · ·xm), f0(y1 · · ·ym)).

Let f ′ : G → H be the bijection that Duplicator selects at the next round. Suppose that there exist

g ∈ G and i ∈ [m] such that f ′(gSig
−1) = f ′(S j), but f ′(g) f ′(Si) f ′(g)−1 = f ′(Sk) for some k 6= j. Then

Spoiler can win with 4 additional pebbles and 4 additional rounds in the WL2
II pebble game.

Proof. To appear in the full version.

Theorem 4.16. Let G be a semisimple group and H an arbitrary group of order n, not isomorphic to G.

Then Spoiler has a winning strategy in the (9,O(1))-WL2
II pebble game.

Proof. If H is not semisimple, then by Prop. 4.4, Spoiler wins with 4 pebbles and 2 rounds. So we now

suppose H is semisimple.

Let Fac(Soc(G)) = {S1, . . . ,Sk}, and let xi,yi be generators of Si for each i. Let f be the bijection

chosen by Duplicator. Spoiler pebbles (x1x2 · · ·xk,y1y2, . . . ,yk) 7→ ( f (x1 · · ·xk), f (y1 · · ·yk)). On subse-

quent rounds, we thus have satisfied the hypotheses of Lem. 4.11 and Prop. 4.12. Spoiler will never move

this pebble, and thus all subsequent bijections chosen by Duplicator must restrict to isomorphisms on the

socle (or Spoiler wins with at most 7 pebbles and O(1) rounds).

Recall from Lem. 4.1 that G ∼= H iff there is an isomorphism µ : Soc(G) → Soc(H) that induces a

permutational isomorphism µ∗ : G∗ → H∗. Thus, since G 6∼= H , there must be some g ∈G and s ∈ Soc(G)
such that f (gsg−1) 6= f (g) f (s) f (g)−1 . Write s = s1 · · · sk with each si ∈ Si (not necessarily nontrivial).
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We claim that there exists some i such that f (gsig
−1) 6= f (g) f (si) f (g)−1. For suppose not, then we have

f (gsg−1) = f (gs1g−1gs2g−1 · · ·gskg−1)

= f (gs1g−1) f (gs2g−1) · · · f (gskg−1)

= f (g) f (s1) f (g)−1 f (g) f (s2) f (g)−1 · · · f (g) f (sk) f (g)−1

= f (g) f (s1 · · · sk) f (g)−1 = f (g) f (s) f (g)−1 ,

a contradiction. For simplicity of notation, without loss of generality we may assume i = 1, so we now

have f (gs1g)−1 6= f (g) f (s1) f (g)−1.

We break the argument into cases:

1. If gs1g−1 ∈ S1, then we have gS1g−1 = S1 (any two distinct simple normal factors of the socle

intersect trivially), we have by Lem. 4.11 (d) that Spoiler can win with at most 5 additional pebbles

(for a total of 7 pebbles) and 5 additional rounds (for a total of 6 rounds).

2. If gs1g−1 ∈ S j for j 6= 1 and f (g) f (s1) f (g)−1 /∈ f (S j), we have by Lem. 4.15 that Spoiler can win

with at most 4 additional pebbles (for a total of 6 pebbles) and 4 additional rounds (for a total of 5

rounds).

3. Suppose now that gs1g−1 ∈ S j for some j 6= 1 and f (g) f (s1) f (g)−1 ∈ f (S j). Spoiler begins by

pebbling (g,gs1g−1) 7→ ( f (g), f (gs1g−1)). Let f ′ : G → H be the bijection that Duplicator selects

at the next round. As gs1g−1 ∈ S j is pebbled, we have that f ′(S j) = f (S j) by Lem. 4.7 (or Spoiler

wins with 4 additional pebbles and 2 additional rounds). Now by assumption, gS1g−1 = S j and

f (g) f (S1) f (g)−1 = f (S j). So as g 7→ f (g) is pebbled, we claim that we may assume f ′(S1) =
f (S1). For suppose not; then we have g−1S jg = S1 but f ′(g)−1 f ′(S j) f ′(g) = f (g)−1 f (S j) f (g) =
f (S1) 6= f ′(S1). But then Spoiler can with win with 4 additional pebbles (for a total of 8 pebbles)

and 4 additional rounds (for a total of 7 rounds) by Lem. 4.15. Thus we have f ′(S1) = f (S1).

In particular, we have that f ′(x1) = f (x1) and f ′(y1) = f (y1), by the same argument as in the proof

of Lem. 4.11 (c). As S1 = 〈x1,y1〉, we have that f ′(s1) = f (s1), since they are both isomorphisms

on the socle by Prop. 4.12. Spoiler now pebbles (x1,y1) 7→ ( f ′(x1), f ′(y1)). As the pebbled map

(g,x1,y1,gs1g−1) 7→ ( f (g), f ′(x1), f ′(y1), f ′(gs1g−1)) does not extend to an isomorphism, Spoiler

wins. In this case, Spoiler used at most 8 pebbles and 7 rounds.

Note that the ninth pebble is the one we pick up prior to checking the winning condition.

5 Conclusion

We exhibited a novel Weisfeiler–Leman algorithm that provides an algorithmic characterization of the

second Ehrenfeucht–Fraı̈ssé game in Hella’s [41, 42] hierarchy. We also showed that this Ehrenfeucht–

Fraı̈ssé game can identify groups without Abelian normal subgroups using O(1) pebbles and O(1)
rounds. In particular, within the first few rounds, Spoiler can force Duplicator to select an isomorphism at

each subsequent round. This effectively solves the search problem in the pebble game characterization.

Our work leaves several directions for further research.

Question 5.1. Can the constant-dimensional 2-ary Wesifeiler–Leman algorithm be implemented in time

no(log n)?

Question 5.2. What is the (1-ary) Weisfeiler–Leman dimension of groups without Abelian normal sub-

groups?
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Question 5.3. Show that the second Ehrenfeucht–Fraı̈ssé game in Hella’s hierarchy can identify coprime

extensions of the form H⋉N with both H,N Abelian (the analogue of [62]). More generally, an analogue

of Babai–Qiao [9] would be to show that when |H|, |N| are coprime and N is Abelian, that Spoiler can

distinguish H ⋉N from any non-isomorphic group using a constant number of pebbles that is no more

than that which is required to identify H (or the maximum of that of H and a constant independent of

N,H).

Question 5.4. Let p > 2 be prime, and let G be a p-group with bounded genus. Show that in the second

Ehrenfeucht–Fraı̈ssé game in Hella’s hierarchy, Spoiler has a winning strategy using a constant number

of pebbles. This is a descriptive complexity analogue of [15, 46]. It would even be of interest to start

with the case where G has bounded genus over a field extension K/Fp of bounded degree.

In the setting of groups, Hella’s hierarchy collapses to some q ≤ 3, since 3-ary WL can identify

all ternary relational structures, including groups. It remains open to determine whether this hierarchy

collapses further to either q = 1 or q = 2. Even if it does not collapse, it would also be of interest

to determine whether the 1-ary and 2-ary games are equivalent. Algorithmically, this is equivalent to

determining whether 1-ary and 2-ary WL are have the same distinguishing power.

Question 5.5. Does there exist an infinite family of non-isomorphic pairs of groups {(Gn,Hn)} for which

Spoiler requires ω(1) pebbles to distinguish Gn from Hn? We ask this question for the Ehrenfeucht–

Fraı̈ssé games at both the first and second levels of Hella’s hierarchy.

Recall that the game at the first level of Hella’s hierarchy is equivalent to Weisfeiler–Leman [17,

41, 42], and so a lower bound against either of these games provides a lower bound against Weisfeiler–

Leman. More generally, it would also be of interest to investigate Hella’s hierarchy on higher arity

structures. For a q-ary relational structure, the q-ary pebble game suffices to decide isomorphism. Are

there interesting, natural classes of higher arity structures for which Hella’s hierarchy collapses further

to some level q′ < q?
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