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In this paper we study some classical complexity-theoretic questions regarding Group Isomorphism (GpI). We focus on

�-groups (groups of prime power order) with odd � , which are believed to be a bottleneck case for GpI, and work in the model

of matrix groups over inite ields. Our main results are as follows.

• Although search-to-decision and counting-to-decision reductions have been known for over four decades for Graph

Isomorphism (GI), they had remained open for GpI, explicitly asked by Arvind & Torán (Bull. EATCS, 2005). Extending

methods from Tensor Isomorphism (Grochow & Qiao, ITCS 2021), we show moderately exponential-time such

reductions within �-groups of class 2 and exponent � .

• Despite the widely held belief that �-groups of class 2 and exponent � are the hardest cases of GpI, there was no

reduction to these groups from any larger class of groups. Again using methods from Tensor Isomorphism (ibid.), we

show the irst such reduction, namely from isomorphism testing of �-groups of łsmallž class and exponent � to those

of class two and exponent � .

For the irst results, our main innovation is to develop linear-algebraic analogues of classical graph coloring gadgets, a key

technique in studying the structural complexity of GI. Unlike the graph coloring gadgets, which support restricting to various

subgroups of the symmetric group, the problems we study require restricting to various subgroups of the general linear group,

which entails signiicantly diferent and more complicated gadgets. The analysis of one of our gadgets relies on a classical

result from group theory regarding random generation of classical groups (Kantor & Lubotzky, Geom. Dedicata, 1990). For

the nilpotency class reduction, we combine a runtime analysis of the Lazard correspondence with Tensor Isomorphism-

completeness results (Grochow & Qiao, ibid.).

CCS Concepts: · Theory of computation → Problems, reductions and completeness.

Additional Key Words and Phrases: group isomorphism, search-to-decision, counting-to-decision, �-groups

1 INTRODUCTION

In this paper, we study the algorithmic problem of deciding whether two inite groups are isomorphic, known
as the Group Isomorphism problem (GpI). Diferent variants of the GpI problem arise, with correspondingly
diferent complexities, when the groups are given in diferent ways, e.g. by a generating set of permutations,
a generating set of matrices, a full multiplication table, or a black box oracle. In its various incarnations, GpI
is a fundamental problem in computational algebra and computational complexity. The generator-enumerator
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algorithm solves isomorphism in |� |log |� |+� (1) -time [29, 60]1, and even the current state of the art for general
groupsÐin any of the aforementioned input modelsÐis still |� |Θ(log |� | ) [10, 11, 18, 28, 52, 68, 72]. Nonetheless,
over the past 15 years there has been signiicant progress on eicient isomorphism tests in various classes of
groups: here is an incomplete list of references [5ś7, 13, 14, 16, 33, 34, 50, 51, 65, 67, 68].
When given by multiplication tables, GpI reduces to GI [75], and in the other, more realistic (for computer

algebra systems) and more succinct models, we get a reduction in the other direction [35, 37, 54, 59]. As a result,
the techniques and complexity of GpI are closely bound up with GI. However, since the techniques used in GpI

are often independent of the input model, we are free to focus on the abstract structure of the groups in question,
and the choice of input model is then essentially just a choice of how we measure and report the running time.
For example, if GI is in P, then GpI can be solved in poly( |� |) time [75]; if GpI for groups given by a generating
set of� matrices of size � ×� over F� can be solved in �� (�+�) time, then GI is in P [59] (see [37] for a simpliied
reduction).
For GI, a wide variety of algorithmic and structural complexity results are known (see, e.g., [4, 36, 47]). In

particular, there are polynomial-time search-to-decision and counting-to-decision reductions [56], so search,
counting, and decision are all equivalent for GI. (This was an early piece of evidence that GI was not likely to be
NP-complete, since for NP-complete problems, their counting variants are typically #P-complete, hence at least
as hard as all of PH [70].) For GpI, no such reductions are known, even in restricted classes of groups; Arvind and
Torán [3, Problem 16] explicitly asked for such reductions. Additionally, for GI, there are many classes of graphs
for which the isomorphism problem remains GI-completeÐsuch as graphs of diameter 2 and radius 1, directed
acyclic graphs, regular graphs, line graphs, polytopal graphs [75]Ðbut no such analogous results are known for
GpI.

In this paper, we make progress on all three of these questions, within the class of groups widely believed to be
hardest cases of GpI, namely the �-groups of nilpotency class 2 and exponent � ; these are groups of order a power
of the prime � , such that � modulo its center is abelian, and such that �� = 1 for all � ∈ � . (Throughout most of
this paper we assume � is an odd prime.) For each of our three main results, we now give further motivation
before stating it formally.

1.1 Main results

Search-to-decision reductions. The łdecision versus searchž question is a classical one in complexity theory,
having attracted the attention of researchers since the introduction of NP. Eicient search-to-decision reductions
for SAT and GI are now standard. Valiant irst showed the existence of an NP relation for which search does not
reduce to decision in polynomial time [71]. A celebrated result of Bellare and Goldwasser shows that, assuming

DTIME(22
� (�)

) ≠ NTIME(22
� (�)

), there exists an NP language for which search does not reduce to decision in
polynomial time [9]. However, as usual for such statements based on complexity-theoretic assumptions, the
problems constructed by such a proof are considered somewhat unnatural, and natural problems for which
search seems not reducible to decision are rare. The most famous candidate may be Factoring (with the decision
version being Primality)2 and Nash Eqilibrium [19] (the decision version is trivial).

Theorem A. Let � be an odd prime, and let GpIso2Exp(�) denote the isomorphism problem for �-groups of class 2

and exponent � in the model of matrix groups over F� . For groups of order �
� , there is a search-to-decision reduction

for GpIso2Exp(�) running in time �� (�)
= poly( |� |).

1Miller [60] attributes this algorithm to Tarjan.
2Here we are thinking of Factoring as the search problem corresponding to the relation { (�,� ) : � is a proper divisor of �} ⊆ N × N, so

that the existence problem is then precisely Primality.
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We note that this improves over the łbrute-forcež generator-enumerator technique, which runs in time

�Θ(�2 )
= |� |Θ(log |� | ) .

Remark 1.1. Nearly all our results about groups require � to be an odd prime (many of our results on tensors
or matrix spaces should still work when � = 2). There are (at least) two crucial diferences in the � = 2 case
for groups. The irst is that for 2-groups, the Baer correspondence no longer works in the form presented here
(rather, there is a diferent correspondence involving 2-cocycles and quadratic maps rather than bilinear maps).
The second issue is that groups of exponent 2 are all Abelian; the smallest-exponent non-Abelian 2-groups are of
exponent 4. If one then translates between groups and tensors, one would get tensors over the ring Z/4Z. As
Z/4Z is no longer a ield, compared to our setting where we get to work over Z/�Z, this introduces signiicant
additional complications. We leave working with such groups and tensors to future work.

We note that GpIso2Exp(�) seems diferent from all the problems listed above in terms of search-to-decision
reductions, in the following ways. First, unlike SAT (propositional Boolean satisiability) andGI, a polynomial-time
search-to-decision reduction has been open for decades, whereas those for SAT and GI are straightforward. Note
that a polynomial-time reduction would need to run in time poly(�, log�), and we ind it unlikely that the time
complexity of our reduction can be brought down this far with current techniques. Second, unlike Factoring
and Nash Eqilibrium, whose decision versions are computationally easy (Primality is easily seen to be in
RP ∩ coNP, even if the proof it is in P [1] is quite nontrivial, and the decision version of Nash Eqilibrium has a
trivial łyesž answer by Nash’s Theorem), its decision version also seems to require deeper techniques. Indeed, it
is a long-standing open problem to test isomorphism of �-groups of class 2 and exponent � in time polynomial in
the group order, which already can be exponential in the input size if the input is given by a generating set of
matrices.

Counting-to-decision reductions. Counting-to-decision reductions are also of great interest in complexity
theory. An eicient counting-to-decision reduction for GI is also a well-known result [56]. In contrast, for SAT, a
polynomial-time counting-to-decision reduction would imply that PH collapses [70].

Theorem B. For � an odd prime, � ≥ �Ω (1) , there is a randomized counting-to-decision reduction for GpIso2Exp(�)

for groups of order �� , running in time �� (�)
= poly( |� |).

As with Theorem A, this improves the previous-best łbrute-forcež �� (�2 )
= |� |� (log |� | ) .

Also as in the case of search-to-decision, GpIso2Exp(�) seems diferent from the problems listed above in
terms of reducing counting to decision. First, a polynomial-time counting-to-decision reduction for GpIso2Exp(�)
remains open after 40 years of studying GpI (going back at least to [29, 60]), whereas the reduction for GI was
found within the irst decade of the rise of computational complexity theory. Second, unlike SAT, for which there
have been no non-trivial algorithms to reduce exact counting to decision, we show a moderately exponential-time
algorithm for GpIso2Exp(�). As RyanWilliams pointed out to us, asking for the existence of a subexponential-time
counting-to-decision reduction for SAT seems to lead to asking for the relation between the decision [38] and the
counting [25] versions of the Exponential Time Hypothesis.

Nilpotency class reduction. Unlike the case of Graph Isomorphism, for GpI essentially the only class of groups
for which isomorphism is known to be as hard as the general case are those which are directly indecomposable,
that is, they cannot be written as a direct product�×� with both�, � nontrivial [45, 73, 74]. However, this result
is the group analogue of saying that isomorphism of connected graphs is GI-complete, so although useful (and
much less trivial than in the case of graphs vs connected graphs), from a structural perspective it is more like a
zero-th step.

For a variety of reasons (e.g., [32]), �-groups of nilpotency class 2 and exponent � are widely believed to be the
hardest cases of GpI, but to date there is no known reduction from isomorphism in any larger class of groups to
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this class. The Tensor Isomorphism-completeness of testing isomorphism in this class of groups (when given
by generating matrices over F� ) suggests an additional reason for hardness [35] (see also Section 6.1). Here, we
leverage that completeness result to give a reduction within GpI itself. While it falls short of being GpI-complete
(equivalent to GpI), this is the irst such reduction that we are aware of.

To state our result, we need to irst recall the deinition of nilpotency class. We will give an inductive deinition:
a group � is nilpotent of class 1 if it is abelian, and nilpotent of class � > 1 if �/� (�) (� modulo its center) is
nilpotent of class � − 1. Recall that a inite group is nilpotent if it is the direct product of its Sylow �-subgroups,
so from the comment above, isomorphism of nilpotent groups is polynomial-time equivalent to isomorphism of
�-groups (for varying �).

Theorem P. Let � be an odd prime. For groups given by generating sets of� matrices of size � × � over F�� , Group

Isomorphism for �-groups of exponent � and class � < � reduces to Group Isomorphism for �-groups of exponent �

and class 2 in time poly(�,�, � log�).

In fact, because the Lazard correspondence works whenever all subgroups generated by 3 elements have
nilpotency class < � , our reduction also works in this more general setting. For example, as a consequence of
Thm. P, testing isomorphism of 5-groups in which every 3-generated subgroup has class 4 (the groups themselves
may have larger class) reduces to testing isomorphism of 5-groups of class 2 in the matrix group model over
ields of characteristic 5.

Remark 1.2. Two additional results would suice to get the analogous result in the Cayley table model. The irst
is to compute the Lazard correspondence in the Cayley table model in time poly( |� |); we thank an anonymous
ITCS reviewer for pointing out that this can be achieved by applying the matrix Lazard correspondence (see
Proposition 6.4) to the left regular representation of the group on itself. The second is to improve the blow-up in
the reduction from (Lie) Algebra Isomorphism to 3TI from [31]. Currently this reduction increases the dimension
quadratically, which means the size of the group becomes |� |� (log |� | ) after the reduction; instead, we would
need a reduction that increases the dimension only linearly.

Remark 1.3. One may also ask whether our theorems can be combined, in order to get search-to-decision and
counting-to-decision reductions for �-groups of class � < � instead of only class 2. We believe this should be
approachable, but again the quadratic increase in dimension in reductions, mentioned in the previous remark,
gets in the way. The quadratic increase makes the square-root exponential reductions into ordinary exponential
reductions, negating any gains.

1.2 Main techniques and proof strategies

All our results are based on the connection with Tensor Isomorphism (TI) [35]. Let Λ(�, F) denote the space of
� × � skew-symmetric (alternating) matrices over F. Then the Baer Correspondence [8] gives an equivalence
between

{
�-groups of class 2, exponent � ,
�/� (�) � Z�� , � (�) � Z

�
�

}
←→

{
A ≤ Λ(�, F� )
dimA =�

}
←→




Nilpotent F�-Lie algebras of
class 2, �/� (�) � F�� , � (�) �
F
�
�




in such a way that two such groups are isomorphic if the corresponding Lie algebras are isomorphic if the
corresponding matrix spaces A,B ≤ Λ(�, F� ) are isometric. Here, we say that two such linear subspaces are
isometric if there is an invertible matrix � ∈ GL(�, F� ) such thatB = ��A� := {���� : � ∈ A}. The corresponding
computational problem is:

Deinition 1.4 (The Alternating Matrix Space Isometry problem).

ACM Trans. Comput. Theory
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Input: �1, . . . , �� and �1, . . . , �� , � × � alternating3 matrices over a ield F,
Decide: Is there a � ∈ GL(�, F), such that the linear span of {�� : � ∈ [�]} is equal to the linear span of
{����� : � ∈ [�]}?

Our search- and counting-to-decision reductions (Thms. A and B) actually follow from analogous results on
AlternatingMatrix Space Isometry (Thms. A′ and B′), using a constructive version of the Baer Correspondence
communicated to us by James B. Wilson (Lem. 6.2). The viewpoint of alternating matrix spaces made the
constructions much easier to ind and reason about.
Our nilpotency class reduction uses a constructive version of the Lazard Correspondence (Prop. 6.4), which

generalizes the Baer correpsondence to nilpotency class � < � ; the TI-completeness of Lie Algebra Isomorphism

for nilpotent Lie algebras of class 2 (a combination of reductions from [31] and [35]); and inally the aforementioned
constructive Baer Correspondence to go back to �-groups of class 2.
In the remainder of this section we give more details of the techniques involved.

1.2.1 Linear algebraic coloring gadgets. Our most novel technique is to devise linear algebraic analogues for
Alternating Matrix Space Isometry of the graph coloring gadget, a key technique in the structural complexity
study of Graph Isomorphism (see, e. g., [47]). This technique is crucial in the following theorems, used to prove
Thms. A and B, respectively.

Theorem A′. Let � be a prime power. There is a search-to-decision reduction for Alternating Matrix Space

Isometry which, given � ×� alternating matrix spaces A,B over F� of dimension�, computes an isometry between

them if they are isometric, in time ��̃ (�) or in time �� (�+�) . The reduction queries the decision oracle with inputs of

dimension at most � (�2).

Theorem B′. For � a prime power with � = �Ω (1) , there is a randomized counting-to-decision reduction for

Alternating Matrix Space Isometry which, given � × � alternating matrix spaces A,B over F� of dimension�,

computes the number of isometries from A to B in time �� (�) . The reduction queries the decision oracle with inputs

of dimension at most � (�2).

Let us irst briely review the graph coloring gadgets. Suppose we have a graph� = (� , �) with the vertices
colored, i. e., there is a map � : � → {1, . . . , �} =: [�], where we view [�] as the set of colors. Let � = |� |. Suppose

we want to construct an uncolored graph �̃ , in which the color information carried by � is encoded. One way
to achieve this is the following. (See [47] for other more eicient constructions.) For every � ∈ � , if � ∈ � is
assigned color � ∈ [�], then attach a łstarž of size �� to � , that is add �� new vertices to � and attach them all to

� . We then get a graph �̃ with� (��2) vertices, and we see that an automorphism of �̃ , when restricting to� , has
to map � ∈ � to another � ′ ∈ � of the same color, as degrees need to be preserved under automorphisms.

Such an idea can be carried out in the 3-tensor context as in [31], but with a signiicant loss of eiciency, which
prevents its use for search- and counting-to-decision reductions and indicates the needs for new techniques. To
illustrate the situation, we consider a toy problem. To ease the presentation, we adopt a perspective on 3-tensors
that we hope is clear on its own; the analogy with the graph case is fairly close, but not immediately obvious,
and we present it in full detail in Sec. 3. Note that by slicing a 3-tensor along one direction, we get a tuple of
matrices (see also Section 2); in the following of this subsection we shall mostly work with matrix tuples.
Let A = (�1, . . . , ��) ∈ M(�, F)� be a tuple of matrices, where �� ’s are linearly independent, and M(�, F)

denotes the space of � × � matrices over F. There are two natural actions on A. The irst action is � = (��, � ) ∈

GL(�, F) on A by sending � � to
∑

�∈[�] ��, ��� . Denote the resulting matrix tuple by A� . The second action is

(�, �) ∈ GL(�, F) × GL(�, F) on A by sending � � to �� ��
� for � = 1, . . . ,�. Denote the resulting matrix tuple

3An � × � matrix � over F is alternating if for every � ∈ F� , ���� = 0. When F is not of characteristic 2, this is equivalent to being

skew-symmetric ��
= −�.
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by �A�� . For two tuples A,B, and for the purposes of this illustration, let us deine the set of isomorphisms as
Iso(A,B) = {� ∈ GL(�, F) : ∃�, � ∈ GL(�, F), �A�� = B� }.
In the counting-to-decision reduction we will need to test isomorphism of such tuples under the action by

diagonal matrices. Let diag(�, F) denote the subgroup of GL(�, F) consisting of diagonal matrices. Our goal then

is to construct Ã = (�̃1, �̃2, �̃3) ∈ M(�, F)3 and B̃, such that Iso(Ã, B̃) = Iso(A,B) ∩ diag(3, F). The construction
we use, from [31], is as follows. Let � = 23 · � = 8�, and let

�̃1 =



�1 0 0 0

0 �� 0 0

0 0 0 0

0 0 0 0



, �̃2 =



�2 0 0 0

0 0 0 0

0 0 �2� 0

0 0 0 0



, �̃3 =



�3 0 0 0

0 0 0 0

0 0 0 0

0 0 0 �4�



, (1)

where �� denotes the identity matrix of size � , and 0’s denote all-zero matrices of appropriate sizes, and deine B̃

similarly. By [31, Lemma 2.2], we have Iso(Ã, B̃) = Iso(A,B) ∩ diag(3, F). The proof, while not diicult, relies on
certain algebraic machineries like the KrullśSchmidt Theorem for quiver representations. For our purpose, we

only point out that a key in the proof is that Iso(Ã, B̃) ⊆ diag(3, F), which can be easily checked by comparing

the ranks of the �̃� , �̃� .

The preceding gadget construction can be generalized to handle subgroups of GL(�, F) of the form {



�1 0 . . . 0

0 �2 . . . 0

.

.

.
.
.
.

. . .
.
.
.

0 0 . . . ��



:

�� ∈ GL(�� , F) }, where � = � (log�). We shall refer to this gadget as the FutornyśGrochowśSergeichuk gadget, or
FGS gadget for short.
However, the FGS gadget cannot be used for search- and counting-to-decision reductions in Thms. A and B.

The key bottleneck is the restriction that � = � (log�). To check why this is so reveals an interesting distinction
between the combinatorial and the linear algebraic worlds. Recall that in the graph setting, if there are � colors,
we need stars of size at most ��. While in the linear algebraic setting, if there are � components, the biggest
identity matrix needs to be of size 2� · � × 2� · �. The reason is that we can do non-trivial linear combinations of

the matrices �̃� , so several matrices of small ranks might be combined to get a matrix of large rank. Indeed, in

Eq. 1, if �̃3 was accompanied with �3� instead of �4� , then a non-trivial linear combination of �̃1 and �̃2 could

be of rank the same as �̃3, and the argument that Iso(Ã, B̃) ⊆ diag(�, F) would not go through. That’s why we
need such exponential growth as the number of components grow.

To address this challenge, we devise two new gadgets, which restrict to the monomial group and the diagonal
group, respectively.
The monomial group of GL(�, F), denoted as Mon(�, F), consists of monomial matrices, i.e. a matrix with

exactly one non-zero entry in each row and each column. We design a gadget that restricts to Mon(�, F), which
is the key in the search-to-decision reduction (Theorem A′).
In the case of F = F� and � = �Ω (1) , we design a gadget that restricts to diag(�, �), which is the key in the

counting-to-decision reduction (Theorem B′). The gadget for restricting to monomial groups cannot be used in
the counting-to-decision reduction. Its construction is already delicate, and the analysis is involved, relying on a
celebrated result of Kantor and Lubotzky regarding random generation of classical groups [44].

1.2.2 Constructive Lazard correspondence. In light of the TI-completeness of isomorphism of class 2 �-groups
given by matrices over inite ields of characteristic � [35], the key idea here is how to reduce isomorphism for
other classes of groups to some tensor problem. For groups in general this seems quite diicult, as tensors are
multilinear and groups are fundamentally not. But for �-groups of nilpotency class < � , the Lazard correspondence
gives an equivalence between the category of such groups and a corresponding category of Lie algebras (over
the same ield, nilpotent of the same class). If we could make this correspondence computationally eicient, we
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would then be in the fortunate setting in which Lie Algebra Isomorphism is multilinear, and is in TI [31], so we
can then reduce back to isomorphism of class 2 �-groups. We observe (Proposition 6.4) that when the groups are
given by matrices in characteristic � , the Lazard correspondence can be eiciently computed using the usual
matrix logarithm and exponential.
The restriction to groups of nilpotency class � < � comes entirely from the Lazard correspondence, which is

also known only to work under this same assumption (see [62] for details, and what can be said when � = � , but
unfortunately already when � = � one no longer gets an equivalence up to isomorphism). Despite this restriction,
we note that we know of no prior reductions from any class of groups to �-groups of class 2.

In Rmk. 1.2 we discuss the ingredients necessary to get the same result for GpI in the Cayley table model,
which seems approachable.

1.3 Organization of the paper

In Section 2 we present preliminaries and notation. In Section 3 we present more details of the analogy with
individualizing vertices in graphs by attaching stars, using the example of reducingMonomial Code Eqivalence

to Tensor Isomorphism. In Section 4 we present our gadget to restrict to the monomial subgroup, an example
use of this to reduce GI to Alternating Matrix Space Isometry, and Thm. A′. In Section 5 we prove Thm. B′.
In Section 6 we present the constructive Baer and Lazard Correspondences, and use them to derive Thms. A and
B from Thms. A′ and B′, respectively, as well as proving Thm. P. Finally, in Section 7 we conclude with open
questions and discuss the relationship between this work and the authors’ line of work on Tensor Isomorphism.

2 PRELIMINARIES

Font Object Space of objects

�, �, . . . matrix M(�, F) or M(ℓ × �, F)
A,B, . . . matrix tuple M(�, F)� or M(ℓ × �, F)�

A,B, . . . matrix space [Subspaces of M(�, F) or Λ(�, F)]
A, B, . . . 3-way array T(ℓ × � ×�, F)

Table 1. Summary of notation related to 3-way arrays and tensors.

Vector spaces. Let F be a ield. In this paper we only consider inite-dimensional vector spaces over F. We
use F� to denote the vector space of length-� column vectors. The �th standard basis vector of F� is denoted ®�� .
Depending on the context, 0 may denote the zero vector space, a zero vector, or an all-zero matrix. For � a set of
vectors, we use ⟨�⟩ to denote the subspace spanned by elements in � .

Some groups. The general linear group of degree � over a ield F is denoted by GL(�, F). The symmetric group of
degree � is denoted by S� . The natural embedding of S� into GL(�, F) is to represent permutations by permutation
matrices. The subgroup of GL(�, F) consisting of diagonal matrices is called the diagonal subgroup, denoted by
diag(�, F). Amonomial matrix is a product of a diagonal and a permutationmatrix; equivalently, each row and each
column has exactly one non-zero entry. The collection of monomial matrices forms a subgroup of GL(�, F), which
we call themonomial subgroup and denote by Mon(�, F). It is the semi-direct product diag(�, F) ⋊�� � (F∗)� ⋊�� .

Nilpotent groups. If �, � are two subsets of a group � , then [�, �] denotes the subgroup generated by all
elements of the form [�, �] = ���−1�−1, for � ∈ �,� ∈ �. The lower central series of a group� is deined as follows:
�1 (�) = � , ��+1(�) = [�� (�),�]. A group is nilpotent if there is some � such that ��+1 (�) = 1; the smallest such
� is called the nilpotency class of � , or sometimes just łclassž when it is understood from context. A inite group
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is nilpotent if and only if it is the product of its Sylow subgroups; in particular, all groups of prime power order
are nilpotent.

Matrices. Let M(ℓ × �, F) be the linear space of ℓ × � matrices over F, and M(�, F) := M(� × �, F). Given
� ∈ M(ℓ × �, F), �� denotes the transpose of �.

A matrix � ∈ M(�, F) is alternating, if for any � ∈ F� , ���� = 0. That is, � represents an alternating bilinear
form. Note that in characteristic ≠ 2, alternating is the same as skew-symmetric, but in characteristic 2 they difer
(in characteristic 2, skew-symmetric=symmetric). The linear space of � ×� alternating matrices over F is denoted
by Λ(�, F).
The � × � identity matrix is denoted by �� , and when � is clear from the context, we may just write � . The

elementary matrix ��, � is the matrix with the (�, �)th entry being 1, and other entries being 0. The (�, �)-th
elementary alternating matrix is the matrix ��, � − � �,� .

Matrix tuples. We use M(ℓ × �, F)� to denote the linear space of�-tuples of ℓ × � matrices. Boldface letters
like A and B denote matrix tuples. Let A = (�1, . . . , ��),B = (�1, . . . , ��) ∈ M(ℓ ×�, F)� . Given � ∈ M(ℓ, F) and
� ∈ M(�, F), �A� := (��1�, . . . , ����) ∈ M(ℓ ×�, F)� . Given � = (��, � )�, �∈[�] ∈ M(�, F), A� := (�′

1, . . . , �
′
�) ∈

M(ℓ × �, F) where �′
� =

∑
�∈[�] � �,�� � .

Remark 2.1. In particular, note that the coeicients in the formula of deining �′
� correspond to the entries in

the �th column of �. While this choice is immaterial (we could have chosen the opposite convention), all of our
later calculations are consistent with this convention.

Given A,B ∈ M(� × �, F)� , we say that A and B are isometric, if there exists � ∈ GL(�, F), such that ��A� = B.
Finally, A and B are pseudo-isometric if there exist � ∈ GL(�, F) and � ∈ GL(�, F), such that ��A� = B� .

Matrix spaces. Linear subspaces of M(ℓ ×�, F) are called matrix spaces. Calligraphic letters likeA and B denote
matrix spaces. By a slight abuse of notation, for A ∈ M(ℓ × �, F)� , we use ⟨A⟩ to denote the subspace spanned
by those matrices in A. For A,B ∈ M(�, F)� , we say that the spaces ⟨A⟩, ⟨B⟩ are isometric if the tuples A,B are
pseudo-isometric.

3-way arrays. Let T(ℓ × � ×�, F) be the linear space of ℓ × � ×� 3-way arrays over F. We use the ixed-width
teletypefont for 3-way arrays, like A, B, etc..
Given A ∈ T(ℓ × � ×�, F), we can think of A as a 3-dimensional table, where the (�, �, �)th entry is denoted

as A(�, �, �) ∈ F. We can slice A along one direction and obtain several matrices, which are then called slices.
For example, slicing along the irst coordinate, we obtain the horizontal slices, namely ℓ matrices �1, . . . , �ℓ ∈
M(� ×�, F), where �� ( �, �) = A(�, �, �). Similarly, we also obtain the lateral slices by slicing along the second
coordinate, and the frontal slices by slicing along the third coordinate.

We will often represent a 3-way array as a matrix whose entries are vectors. That is, given A ∈ T(ℓ × � ×�, F),
we can write

A =



�1,1 �1,2 . . . �1,�

�2,1 �2,2 . . . �2,�

...
. . .

. . .
...

�ℓ,1 �ℓ,2 . . . �ℓ,�



,

where ��, � ∈ F� , so that ��, � (�) = A(�, �, �). Note that, while ��, � ∈ F� are column vectors, in the above
representation of A, we should think of them as along the direction łorthogonal to the paper.ž Following [48], we
call��, � the tube ibers of A. Similarly, we can have the row ibers ��,� ∈ F� such that ��,� ( �) = A(�, �, �), and the
column ibers � �,� ∈ Fℓ such that � �,� (�) = A(�, �, �).
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Given � ∈ M(ℓ, F) and � ∈ M(�, F), let �A� be the ℓ × � ×� 3-way array whose �th frontal slice is ���� . For
� = (��, � ) ∈ GL(�, F), let A� be the ℓ × � ×� 3-way array whose �th frontal slice is

∑
� ′∈[�] �� ′,��� ′ . Note that

these notations are consistent with the notations for matrix tuples above, when we consider the matrix tuple
A = (�1, . . . , ��) of frontal slices of A.

3 WARM UP: REDUCING MONOMIAL CODE EQUIVALENCE TO TENSOR ISOMORPHISM

The purpose of this section is to present a concrete example that illustrates what we mean by a gadget restricting
to monomial subgroups. We also explain why the gadget would be viewed as a linear algebraic analogue of
attaching stars in the graph setting as mentioned in Section 1.2.1.

We will give a reduction here to the Tensor Isomorphism (TI) problem, so we begin by recalling its deinition:

Deinition 3.1 (The �-Tensor Isomorphism problem). �-Tensor Isomorphism over a ield F is the problem:
given two �-way arrays A = (��1,...,�� ) and B = (��1,...,�� ), where �� ∈ [�� ] for � ∈ [�], and ��1,...,�� , ��1,...,�� ∈ F,
decide whether there are �� ∈ GL(�� , F) for � ∈ [�], such that for all �1, . . . , �� ,

��1,...,�� =

︁

�1,..., ��

� �1,..., �� (�1)�1, �1 (�2)�2, �2 · · · (�� )�� , �� .

Let A be an ℓ × � ×� 3-way array, with lateral slices �1, �2, . . . , �� (each an ℓ ×� matrix). For any vector
� ∈ F� , we get an associated lateral matrix �� , which is a linear combination of the lateral slices as given, namely
�� :=

∑�
�=1 � �� � (note that when � = ®� � is the �-th standard basis vector, the associated lateral matrix is indeed

� � ). By analogy with adjacency matrices of graphs, �� is a natural analogue of the neighborhood of a vertex in a
graph. Correspondingly, we get a notion of łdegree,ž which we may deine as

deg
A
(�) := rk�� = rk(

�︁

�=1

� �� � ) = dim span{��� : � ∈ F�} = dim span{���� : � ∈ Fℓ }.

The last two characterizations are analogous to the fact that the degree of a vertex � in a graph� may be deined
as the number of łin-neighborsž (nonzero entries the corresponding row of the adjacency matrix) or the number
of łout-neighborsž (nonzero entries in the corresponding column).
To łindividualizež � , we can enlarge A with a gadget to increase deg

A
(�), as in the graph case. Note that

deg
A
(�) ≤ min{ℓ,�} because the lateral matrices are all of size ℓ×�. For notational simplicity, let us individualize

� = ®�1 = (1, 0, . . . , 0)� . To individualize � , we will increase its degree by � = min{ℓ,�} + 1 > max�∈F� degA (�).
Extend A to a new 3-way array A� of size (ℓ + �) × � × (� + �); in the łirstž ℓ × � ×� łcornerž, we will have the
original array A, and then we will append to it an identity matrix in one slice to increase deg(�). More speciically,
the lateral slices of A� will be

�′1 =

[
�1 0
0 ��

]
and �′� =

[
� � 0
0 0

]
(for � > 1).

Now we have that deg
A�
(�) ≥ � . This almost does what we want, but now note that any vector� = (�1, . . . ,��)

with�1 ≠ 0 has deg
A�
(�) = rk(�1�

′
1+

∑
�≥2� �� � ) ≥ � . We can nonetheless consider this a sort of linear-algebraic

individualization.
Leveraging this trick, we can then individualize an entire basis of F� simultaneously, so that � ≤ deg(�) < 2�

for any vector � in our basis, and deg(� ′) ≥ 2� for any nonzero � ′ outside the basis (not a scalar multiple of one
of the basis vectors), as we do in the following result. This is also a 3-dimensional analogue of the reduction from
GI to CodeEq [54, 61, 64] (where they use Hamming weight instead of rank).
We now come to the concrete result. Given two � × � matrices �, � over F of rank � , the Monomial Code

Eqivalence problem is to decide whether there exist � ∈ GL(�, F) and a monomial matrix � ∈ Mon(�, F) ≤
GL(�, F) (product of a diagonal matrix and a permutation matrix) such that ��� = �. Monomial equivalence of
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linear codes is a basic notion in coding theory [12], and Monomial Code Eqivalence was recently studied in
the context of post-quantum cryptography [69].
Mostly for notational convenience, we make use of the following observation in the proof below:

Observation 3.2. Two 3-tensors A, B are isomorphic if there exists invertible matrices �, �, � such that �A� = B
� .

Proof. With this notation, the deinition of tensor isomorphism given above says that A, B are isomorphic if
there exist invertible � ′, � ′, � such that A = (� ′

B� ′)� . Let � = (� ′)−1, � = (� ′)−1. Since the three actions (on the
left, on the right, and in the third direction) commute, we have

A = (� ′
B� ′)�

�A = (B� ′)�

�A� = B
� .

□

Proposition 3.3. Monomial Code Eqivalence reduces to 3-Tensor Isomorphism.

Proof. Without loss of generality we assume � > 1, as the problem is easily solvable when � = 1. We treat a
� ×� matrix� as a 3-way array of size � ×�×1, and then follow the outline proposed above, of individualizing the
entire standard basis ®�1, . . . , ®�� . Since the third direction only has length 1, the maximum degree of any column is
1, so it suices to use gadgets of rank 2. More speciically, (see Figure 1) we build a (� + 2�) × � × (1 + 2�) 3-way
array A whose lateral slices are

� � =



�1, � 01×2 01×2 · · · 01×2 · · · 01×2
...

...
...

. . .
...

. . .
...

��,� 01×2 01×2 · · · 01×2 · · · 01×2
02×1 02×2 02×2 · · · 02×2 · · · 02×2
...

...
...

. . .
...

. . .
...

02×1 02×2 02×2 · · · �2 · · · 02×2
...

...
...

. . .
...

. . .
...

02×1 02×2 02×2 · · · 02×2 · · · 02×2


where the �2 block is in the �-th block of size 2 (that is, rows � + 2( � − 1) + {1, 2} and columns 1 + 2( � − 1) + {1, 2}).

It will also be useful to visualize the frontal slices of A, as follows. Here each entry of the łmatrixž below is
actually a (1 + 2�)-dimensional vector, łcoming out of the pagež:

A =



�̃1,1 �̃1,2 . . . �̃1,�
...

...
. . .

...

�̃�,1 �̃�,2 . . . �̃�,�
�1,1 0 . . . 0

�1,2 0 . . . 0

0 �2,1 . . . 0

0 �2,2 . . . 0
...

...
. . .

...

0 0 . . . ��,1
0 0 . . . ��,2



,

where

�̃�, � =

[
��, �
02�×1

]
∈ F1+2�

��, � = ®�1+2(�−1)+� ∈ F
1+2� for � ∈ [�], � ∈ [2]

and the frontal slices are

�1 =

[
�

02�×�

]

�1+2(�−1)+� = ��+2(�−1)+�,� for � ∈ [�], � ∈ [2]
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(In A we turn the vectors �̃�, � and ��, � łon their sidež so they become perpendicular to the page. )

�

�2

�2

Fig. 1. Pictorial representation of the reduction for Proposition 3.3.

We claim that � and � are monomially equivalent as codes if and only if A and B are isomorphic as 3-tensors.
(⇒) Suppose ���� = � where � ∈ GL(�, F), � ∈ diag(�, F) and � ∈ �� ≤ GL(�, F). Then by examining the

frontal slices it is not hard to see that for � ′
=

[
� 0
0 (��)−1 ⊗ �2

]
(where (��)−1 ⊗ �2 denotes a 2� × 2� block

matrix, where the pattern of the nonzero blocks and the scalars are governed by (��)−1, and each 2 × 2 block is
either zero or a scalar multiple of �2) we have �

′�1�� = �1 and �
′�1+2(�−1)+��� = �1+2(� (� )−1)+� , where � is the

permutation corresponding to � . Thus A and B are isomorphic tensors, via the isomorphism (� ′, ��, �1 ⊕ (� ⊗ �2)),

where �1 ⊕ (� ⊗ �2) denotes the block-diagonal matrix

[
1 0
0 � ⊗ �2

]
.

(⇐) Suppose there exist � ∈ GL(� + 2�, F), � ∈ GL(�, F), and � ∈ GL(1 + 2�, F), such that �A� = B
� . First,

note that every lateral slice of A is of rank either 2 or 3, and the actions of � and � do not change the ranks of
the lateral slices. Furthermore, any non-trivial linear combination of more than 1 lateral slice results in a lateral
matrix of rank ≥ 4. It follows that � cannot take nontrivial linear combinations of the lateral slices, hence it must
be monomial.

Now consider the frontal slices. Note that, as we assume � > 1, every frontal slice of �A� , except the irst one,

is of rank 1. Therefore, � must be of the form

[
�1,1 01×(�−1)

®� ′ �′

]
where �′ is (� − 1) × (� − 1). Since � is invertible,

we must have �1,1 ≠ 0, and the irst frontal slice of B� contains all the rows of � scaled by �1,1 in its irst � rows.
The irst frontal slice of �A� is a matrix that generates, by deinition (and since we’ve shown � is monomial), a
code monomially equivalent to �. Since the irst frontal slices of �A� and B

� are equal, and the latter is just a
scalar multiple of �1, we have that � and � are monomially equivalent as codes as well. □
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4 SEARCH-TO-DECISION REDUCTION BY RESTRICTING TO MONOMIAL GROUPS

4.1 The gadget restricting to the monomial group

In this section, we present the gadget that restricts to the monomial group in the setting of Alternating Matrix

Space Isometry. To show this, we will need the concept of monomial isometry; see Some Groups above. Recall
that a matrix is monomial if, equivalently, it can be written as �� where � is a nonsingular diagonal matrix and �
is a permutation matrix. We say two matrix spacesA,B aremonomially isometric if there is some� ∈ Mon(�, F)
such that��A� = B.

Lemma 4.1. Alternating Matrix Space Monomial Isometry reduces to Alternating Matrix Space Isome-

try.

More speciically, there is a poly(�,�)-time algorithm � taking alternating matrix tuples to alternating matrix

tuples, such that for A,B ∈ Λ(�, F)� , the matrix spaces A = ⟨A⟩ and B = ⟨B⟩ are monomially isometric if and only

if the matrix spaces ⟨� (A)⟩ and ⟨� (B)⟩ are isometric.

The gadget used in Lemma 4.1 is essentially applying the gadget in Proposition 3.3 łin two directions.ž Still, to
prove the correctness requires some work.

Proof. For A = (�1, . . . , ��) ∈ Λ(�, F)� , deine � (A) to be the alternating matrix tuple Ã = (�̃1, . . . , �̃�+�2 ) ∈

Λ(� + �2, F)�+�2
, where

(1) For � = 1, . . . ,�, �̃� =

[
�� 0

0 0

]
.

(2) For � =� + (� − 1)� + � , � ∈ [�], � ∈ [�], �̃� is the elementary alternating matrix ��,��+� − ���+�,� .

At this point, some readers may wish to look at the large matrix in Equation 2 and/or at Figure 2.

It is clear that � can be computed in time �̃ ((� + �2) (�2 + �)) = poly(�,�). Given alternating matrix tuples

A,B, let A,B be the corresponding matrix spaces they span, and let Ã = ⟨� (A)⟩ and B̃ = ⟨� (B)⟩. We claim that

A and B are monomially isometric if and only if Ã and B̃ are isometric.

To prove this, it will help to think of our matrix tuples A, Ã, etc. as (corresponding to) 3-way arrays, and to
view these 3-way arrays from two diferent directions. Towards this end, write the 3-way array corresponding to
A as

A =



0 �1,2 �1,3 . . . �1,�
−�1,2 0 �2,3 . . . �2,�
−�1,3 −�2,3 0 . . . �3,�
...

. . .
. . .

. . .
...

−�1,� −�2,� −�3,� . . . 0



,

where ��, � are vectors in F
� (łcoming out of the pagež), namely ��, � (�) = �� (�, �). The frontal slices of this array

are precisely the matrices �1, . . . , �� .
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The 3-way array corresponding to Ã = � (A) is then the (� + 1)� × (� + 1)� × (� + �2) array:

Ã =



0 �̃1,2 �̃1,3 . . . �̃1,� �1,1 . . . �1,� 0 . . . 0 . . . 0 . . . 0

−�̃1,2 0 �̃2,3 . . . �̃2,� 0 . . . 0 �2,1 . . . �2,� . . . 0 . . . 0
...

. . .
. . .

. . .
...

. . .
. . .

. . .
. . .

. . .
. . . . . .

. . .
. . .

...

−�̃1,� −�̃2,� −�̃3,� . . . 0 0 . . . 0 0 . . . 0 . . . ��,1 . . . ��,�
−�1,1 0 0 . . . 0 0 . . . 0 0 . . . 0 . . . 0 . . . 0
...

...
... . . .

...
... . . .

...
... . . .

... . . .
... . . .

...

−�1,� 0 0 . . . 0 0 . . . 0 0 . . . 0 . . . 0 . . . 0

0 −�2,1 0 . . . 0 0 . . . 0 0 . . . 0 . . . 0 . . . 0
...

...
... . . .

...
... . . .

...
... . . .

... . . .
... . . .

...

0 −�2,� 0 . . . 0 0 . . . 0 0 . . . 0 . . . 0 . . . 0
...

...
... . . .

...
... . . .

...
... . . .

... . . .
... . . .

...

0 0 0 . . . −��,1 0 . . . 0 0 . . . 0 . . . 0 . . . 0
...

...
... . . .

...
... . . .

...
... . . .

... . . .
... . . .

...

0 0 0 . . . −��,� 0 . . . 0 0 . . . 0 . . . 0 . . . 0



, (2)

where �̃�, � =

[
��, �
0

]
∈ F�+�2

(here think of the vector ��, � as a column vector, not coming out of the page; in

the above array we then lay the column vector �̃�, � łon its sidež so that it is coming out of the page), and

��, � := ��+(�−1)�+� ∈ F
�+�2

, which we can equivalently write as

[
0�

�� ⊗ � �

]
, where we think of �� ⊗ � � here as a

vector of length �2. Note that all the nonzero blocks besides upper-left łAž block only have nonzero entries that
are strictly further back than the nonzero entries in the upper-left block.

The second viewpoint, which we will also use below, is to consider the lateral slices of Ã, or equivalently, to
view Ã from the side. When viewing Ã from the side, we see the (� + 1)� × (� + �2) × (� + 1)� 3-way array:

Ã
���

=



ℓ1,1 ℓ1,2 . . . ℓ1,� ��+1 . . . �2� . . . 0 . . . 0
...

. . .
. . .

...
...

. . .
...

. . .
...

. . .
...

ℓ�,1 ℓ�,2 . . . ℓ�,� 0 . . . 0 . . . ��2+1 . . . ��2+�

0 0 . . . 0 −�1 . . . 0 . . . 0 . . . 0
...

...
. . .

...
...

. . .
... . . .

...
. . .

...

0 0 . . . 0 0 . . . −�1 . . . 0 . . . 0
...

. . .
. . .

...
...

. . .
...

. . .
...

. . .
...

0 0 . . . 0 0 . . . 0 . . . −�� . . . 0
...

...
. . .

...
...

. . .
... . . .

...
. . .

...

0 0 . . . 0 0 . . . 0 . . . 0 . . . −��



, (3)

where every ℓ�,� ∈ F�
2+� has only the irst � components being possibly non-zero, namely, ℓ�,� ( �) = �� (�, �) for

� ∈ [�], � ∈ [�], � ∈ [�] and ℓ�,� ( �) = 0 for any � > �.

(Monomial isometry of input implies isometry of output) Suppose there exist � ∈ Mon(�, F) such that
⟨��A�⟩ = ⟨�⟩. This happens if and only if there is an invertible matrix � ∈ GL(�, F) such that, for all � ,
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�
��

��

-��

-��

Fig. 2. Pictorial representation of the reduction for Lemma 4.1.

����� =
∑

� � ��� � , or, using our shorthand notation, ��A� = B� . We can construct �̃ ∈ Mon(� + �2, F) and

�̃ ∈ GL(�+�2, F) such that �̃� Ã�̃ = B̃�̃ . In fact, wewill show that we can take �̃ =

[
� 0

0 � ′

]
where � ′ ∈ Mon(�2, F),

and �̃ =

[
� 0

0 � ′

]
where � ′ ∈ Mon(�2, F). It is not hard to see that this form already ensures that the irst�

matrices in the vector �̃� Ã�̃ and those of B̃�̃ are the same, since when �̃, �̃ are of this form, those irst� matrices

are controlled entirely by the � (resp., �) in the upper-left block of �̃ (resp., �̃).
The remaining question is then how to design appropriate � ′ and � ′ to take care of the last �2 matrices in

Ã, B̃. This actually boils down to applying the following simple identity, but łin 3 dimensions:ž Let � be the
permutation matrix corresponding to � ∈ S� , so that ��� = �� (� ) , and �

�
� � = ��

�−1 (� )
. Let � = diag(�1, . . . , ��) be a

diagonal matrix. Then

���� = diag(��−1 (1) , . . . , ��−1 (�) ). (4)

To see how Equation 4 helps in our setting, it is easier to focus attention on the lower right �2 × �2 sub-array

of Ã��� , namely:

� = −



�1 . . . 0 . . . 0 . . . 0
...

. . .
... . . .

...
. . .

...

0 . . . �1 . . . 0 . . . 0
...

. . .
...

. . .
...

. . .
...

0 . . . 0 . . . �� . . . 0
...

. . .
... . . .

...
. . .

...

0 . . . 0 . . . 0 . . . ��



, (5)
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The corresponding parts of the corresponding lateral slices of (�̃� Ã�̃)�̃ are then of the form (� ′��� ′)� . Here
the � in the łexponentž acts by sending the �� entries in � to �� (� )�� (� ) entries, where � is the permutation
supporting � and �� is the value of the unique nonzero entry in the �-th row of � . That is, we have

��
= −



�� (1)�� (1) . . . 0 . . . 0 . . . 0
...

. . .
... . . .

...
. . .

...

0 . . . �� (1)�� (1) . . . 0 . . . 0
...

. . .
...

. . .
...

. . .
...

0 . . . 0 . . . �� (�)�� (�) . . . 0
...

. . .
... . . .

...
. . .

...

0 . . . 0 . . . 0 . . . �� (�)�� (�)



,

So setting � ′
= �⊗�� ,�

′ the monomial matrix supported by �⊗�� with scalars being 1/�� ’s, we have �
′���� ′

= �

by Equation 4.

(Isometry of output implies monomial isometry of input) Suppose there exist �̃ ∈ GL(� + �2, F) and

�̃ ∈ GL(� + �2, F), such that �̃� Ã�̃ = B̃�̃ . The key feature of these gadgets now comes into play: consider the

lateral slices of Ã, which are the frontal slices of A��� (which may be easier to visualize by looking at Equation 3
and Figure 2). The irst � lateral slices of Ã and B̃ are of rank ≥ � and < 2�, while the other lateral slices are of
rank < � (in fact, they are of rank 1; note that without loss of generality we may assume � > 1, for the only

1 × 1 alternating matrix space is the zero space). Furthermore, left multiplying a lateral slice by �̃� and right

multiplying it by �̃ does not change its rank. However, the action of �̃ here is by �̃� Ã�̃ , and while the �̃� here

corresponds to left multiplication on the lateral slices (=frontal slices of A��� ), the �̃ on the right here corresponds

to taking linear combinations of the lateral slices. In other words, just as A��� is the łside viewž of Ã, (�̃�A����̃)�̃ is

the side view of (�̃� Ã�̃)�̃ . Taking linear combinations of the lateral slices could, in principle, alter their rank; we

will use the latter possibility to show that �̃ must be of a constrained form.

Write �̃ =

[
�1,1 �1,2
�2,1 �2,2

]
where �1,1 is of size � × �. We irst claim that �1,2 = 0. For if not, then in (A��� )�̃ (the

side view), one of the last �2 frontal slices receives a nonzero contribution from one of the irst � frontal slices of
A
��� . Looking at the form of these slices from Equation 3, we see that any such nonzero combination will have
rank ≥ �, but this is a contradiction since the corresponding slice in B

��� has rank 1. Thus �1,2 = 0, and therefore

�1,1 must be invertible, since �̃ is.

Finally, we claim that �1,1 has to be a monomial matrix. If not, then some frontal slice of (A��� )�̃ among the irst
� would have a contribution from more than one of these � slices. Considering the lower-right �2 ×�2 sub-matrix
of such a slice, we see that it would have rank exactly �� for some � ≥ 2, which is again a contradiction since
the irst � slices of B��� all have rank < 2�. It follows that ��1,1���1,1, � ∈ [�], are in B, and thus A and B are
monomially isometric via �1,1. □

4.1.1 Application: reducing Graph Isomorphism to Alternating Matrix Space Isometry. An application of
the monomial-restricting gadget is to give an immediate reduction from Graph Isomorphism to Alternating

Matrix Space Isometry. While a reduction between these two problems is already known (cf. [35] for details),
we choose to present it as an illustration of using this gadget.

Proposition 4.2. Graph Isomorphism reduces to Alternating Matrix Space Isometry.

Proof. For a graph� = ( [�], �), letA� be the alternating matrix tupleA� = (�1, . . . , � |� | ) with�� = ��, � −� �,�

where � = {�, �} ∈ �, and letA� = ⟨A� ⟩ be the alternatingmatrix space spanned by that tuple. If � is a permutation
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matrix giving an isomorphism between two graphs � and � , then it is easy to see that ��A�� = A� , and thus
the corresponding matrix spaces are isometric. The converse direction is not clear, though it is recently shown to
be true in [37] with a rather intricate proof. Instead, we will provide a conceptually simpler proof, by showing
that this construction gives a reduction to monomial isometry, and then using Lemma 4.1 to reduce to ordinary
Alternating Matrix Space Isometry.

Let us thus establish that the preceding construction gives a reduction from GI to Alternating Matrix

Space Monomial Isometry. We will show that� � � if and only if A� and A� are monomially isometric. The
forward direction was handled above. For the converse, suppose ����A��� = A� where � is diagonal and � is
a permutation matrix. We claim that in this case, � in fact gives an isomorphism from� to � . First let us establish
that � alone gives an isometry between A� and A� . Note that for any diagonal matrix � = diag(�1, . . . , ��) and
any elementary alternating matrix ��, � − � �,� , we have �

� (��, � − � �,� )� = ��� � (��, � − � �,� ). Since A� has a basis
of elementary alternating matrices, the action of � on this basis is just to re-scale each basis element, and thus
��A�� = A� . Thus, we have �

�A�� = A� .
Finally, note that �� (��, �−� �,� )� = �� (� ),� ( � )−�� ( � ),� (� ) = �� (� ) , where � ∈ S� is the permutation corresponding

to � , and by abuse of notation we write � (�) = � ({�, �}) = {� (�), � ( �)} as well. Since the elementary alternating
matrices are linearly independent, and A� has a basis of elementary alternating matrices, the only way for �� (� )

to be in A� is for it to be equal to one of the basis elements (one of the matrices in A� ) or its negative. Since the
edges are undirected, either of these two possibilities means that � (�) must be an edge of � . In other words, � (�)
must be an edge of � . As � is invertible, we thus have that � gives an isomorphism � � � . □

4.2 Search-to-decision reduction for Alternating Matrix Space Isometry

Theorem A′. Given an oracle deciding Alternating Matrix Space Isometry, the task of inding an isometry

between two alternating matrix spaces A,B ∈ Λ(�, F�), if it exists, can be solved using at most �� (�) oracle queries

each of size at most � (�2), and in time either �� (�) · �! = ��̃ (�) , or �� (�+�) , where� = dimA.

Proof idea. The high level outline here is as follows. We proceed by induction to reduce to monomial isometry.
Monomial isometry can be brute forced in time �!(� − 1)� , and in Prop 4.4 we show how to solve it in �� (�+�)

time, giving the stated time bounds.
The induction is along the following lines, reminiscent of the individualization paradigm from Graph Iso-

morphism. Suppose we have guessed vectors �1, . . . , �� and a subspace �� complementary to ⟨�1, . . . , ��⟩ such that
there is an isometry A → B that sends �1 ↦→ �1, . . . , �� ↦→ �� and ⟨��+1, . . . , ��⟩ ↦→ �� . Now we want to guess
��+1 ∈ �� and a complement to ��+1 in �� (that is, �� = ⟨��+1⟩ ⊕ ��+1) preserving this property. Note there are at
most �dim�� ≤ �� choices for ��+1 and at most �dim�� ≤ �� choices for��+1 (since it is a codimension-1 subspace of
�� ). For each such choice of ��+1,��+1, let � be an arbitrary map that sends �1 ↦→ �1, . . . , �� ↦→ �� , ��+1 ↦→ ��+1, and
� (⟨��+2, . . . , ��⟩) = ��+1. Then ��+1,��+1 are valid choices if, after replacing A by ��A� , the new A and B are
isometric by an isometry that is monomial in the irst � coordinates and general linear in the remaining � − � .

To check whether this is indeed the case, we add gadgets to get 3-way arrays Ã� , B̃� such that the latter two are
pseudo-isometric if A and B are isometric by an isometry that is monomial in the irst � coordinates. We then

feed Ã� , B̃� to the decision oracle to check whether this is the case.
One of the key tricks here is guessing the complementary subspace at the same time we guess ��+1. If we did

not do that, at some point we would be guessing complementary subspaces of half codimension, of which there

are �Θ(�2 ) , which would have negated any asymptotic gain over a brute-force algorithm. □

Proof. We irst present the gadget construction. Then based on this gadget, we present the search-to-decision
reduction.
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Gadget construction. Let A = (�1, . . . , ��) be an ordered linear basis of A, and let A ∈ M(� × � ×�, F�) be the
3-way array constructed from A, so we can write

A =



0 �1,2 �1,3 . . . �1,�
−�1,2 0 �2,3 . . . �2,�
−�1,3 −�2,3 0 . . . �3,�
...

. . .
. . .

. . .
...

−�1,� −�2,� −�3,� . . . 0



,

where ��, � ∈ F
� , 1 ≤ � < � ≤ � thought of as a vector coming out of the page.

We irst consider a 3-way array Ã� constructed from A, for any 1 ≤ � ≤ � − 1, as Ã� =



0 �1,2 . . . �1,� �1,�+1 . . . �1,� −�1,1 . . . −�1,2� 0 . . . 0 0 . . . 0 0 . . . 0

−�1,2 0 . . . �2,� �2,�+1 . . . �2,� 0 . . . 0 −�2,1 . . . −�2,2� 0 . . . 0 0 . . . 0

.

.

.
.
.
.

. . .
.
.
.

.

.

.
. . .

.

.

.
.
.
.

. . .
.
.
.

.

.

.
. . .

.

.

.
.
.
.

. . .
.
.
.

.

.

.
. . .

.

.

.

−�1,� −�2,� . . . 0 ��,�+1 . . . ��,� 0 . . . 0 0 . . . 0 −��,1 . . . −��,2� 0 . . . 0

−�1,�+1 −�2,�+1 . . . −��,�+1 0 . . . ��+1,� 0 . . . 0 0 . . . 0 0 . . . 0 −�1,1 . . . −�1,�
.
.
.

.

.

.
. . .

.

.

.
.
.
.

. . .
.
.
.

.

.

.
. . .

.

.

.
.
.
.

. . .
.
.
.

.

.

.
. . .

.

.

.
.
.
.

. . .
.
.
.

−�1,� −�2,� . . . −��,� −��+1,� . . . 0 0 . . . 0 0 . . . 0 0 . . . 0 −��−�,1 . . . −��−�,�
�1,1 0 . . . 0 0 . . . 0 0 . . . 0 0 . . . 0 0 . . . 0 0 . . . 0

.

.

.
.
.
.

. . .
.
.
.

.

.

.
. . .

.

.

.
.
.
.

. . .
.
.
.

.

.

.
. . .

.

.

.
.
.
.

. . .
.
.
.

.

.

.
. . .

.

.

.

�1,2� 0 . . . 0 0 . . . 0 0 . . . 0 0 . . . 0 0 . . . 0 0 . . . 0

0 �2,1 . . . 0 0 . . . 0 0 . . . 0 0 . . . 0 0 . . . 0 0 . . . 0

.

.

.
.
.
.

. . .
.
.
.

.

.

.
. . .

.

.

.
.
.
.

. . .
.
.
.

.

.

.
. . .

.

.

.
.
.
.

. . .
.
.
.

.

.

.
. . .

.

.

.

0 �2,2� . . . 0 0 . . . 0 0 . . . 0 0 . . . 0 0 . . . 0 0 . . . 0

0 0 . . . ��,1 0 . . . 0 0 . . . 0 0 . . . 0 0 . . . 0 0 . . . 0

.

.

.
.
.
.

. . .
.
.
.

.

.

.
. . .

.

.

.
.
.
.

. . .
.
.
.

.

.

.
. . .

.

.

.
.
.
.

. . .
.
.
.

.

.

.
. . .

.

.

.

0 0 . . . ��,2� 0 . . . 0 0 . . . 0 0 . . . 0 0 . . . 0 0 . . . 0

0 0 . . . 0 �1,1 . . . ��−�,1 0 . . . 0 0 . . . 0 0 . . . 0 0 . . . 0

.

.

.
.
.
.

. . .
.
.
.

.

.

.
. . .

.

.

.
.
.
.

. . .
.
.
.

.

.

.
. . .

.

.

.
.
.
.

. . .
.
.
.

.

.

.
. . .

.

.

.

0 0 . . . 0 �1,� . . . ��−�,� 0 . . . 0 0 . . . 0 0 . . . 0 0 . . . 0



,

where � �,� is the (� + 2�( � − 1) +�)th standard basis vector, and ��,� is the (� + 2�� +�( � − 1) +�)th standard basis
vector. A pictorial description can be seen by combining Figure 2 (for the � �,� ) and [35, Figure 3] (for the ��,� ).
We claim the following.

Claim 4.3. If there exist invertible matrices � and � to satisfy (�� Ã��)
�

= B̃� , then � must be in the form


�1,1 0 0

0 �2,2 0

�3,1 �3,2 �3,3


, where �1,1 is a monomial matrix of size � × � , �2,2 is of size (� − �) × (� − �), and �3,3 is of size

(2�� + �) × (2�� + �).

Furthermore, there exist such � and � if and only if A and B are isometric by a matrix of the form

[
�1,1 0

0 �2,2

]

where �1,1 is a monomial matrix of size � × � .

Proof of claim. The idea here is to combine the arguments for the FGS gadget [31] as used in [35], and the
monomial-restricting gadget introduced in Section 4.1. In fact, we will see that these two gadgets can be combined
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seamlessly into the above construction, and the claim follows immediately from the aforementioned arguments.
Nonetheless, for completeness, we spell out the details.
Write

� =



�1,1 �1,2 �1,3
�2,1 �2,2 �2,3
�3,1 �3,2 �3,3



where �1,1 is � × � , �2,2 is (� − �) × (� − �) and �3,3 is (2�� + �) × (2�� + �).

First, we focus on the lateral slices. Note that the lateral slice of (��A��)
� are the frontal slices of (��A���� �)� .

Thus, the � in the łexponentž here is taking a (monomial) linear combination of the lateral slices. As the ranks of
the frontal slices of (��A���� �) are the same as the ranks of the frontal slices of Ã���� (=the lateral slices of Ã� ), we
now consider their ranks. We have:

• The irst � lateral slices have rank in [2�, 3�). They are at least rank 2� because of the identity gadgets in
the lower blocks. There is at most an additional rank � − 1 because of the entries in the irst � rows. Note
that this is � − 1 rather than � because the tube ibers (coming out of the page) along the diagonal are 0 in
the upper-left � × � sub-array, giving an entire row of zeros in the lateral slice.

• The next � − � lateral slices have rank in [�, 2�). The lower bound of � comes from the identity gadget in
the bottom-most block, and the additional ≤ � − 1 comes from the irst � rows, as in the previous case.

• Of the remaining lateral slices, the irst 2�� of these have rank 1 (coming from the −��, � in the upper-most
block), and the remaining � lateral slices have rank exactly � − � ≤ � − 1 (since � ≥ 1) coming from the
identity gadgets in the rightmost block of Ã� . However, all we will need is that these remaining 2�� + �

slices have rank in [1, �).

Next we consider what happens when we take linear combinations of the lateral slices. Recall from above that
� governs the linear combination of the lateral slices of (��A���� �)� . When we say a linear combination łinvolvesž
a slice, we mean that slice occurs in the linear combination with nonzero coeicient.

• If a linear combination involves 1 or more of the irst � lateral slices, it has rank at least 2� because of the
identity block coming from the ��, � . Since the only lateral slices of B� that have rank ≥ 2� are the irst � , this
tells us that �1,2 = �1,3 = 0. Since � is invertible, this further implies that �1,1 must be invertible.

• If a linear combination involves 2 or more of the irst � lateral slices, it has rank at least 4�, because of the
identity blocks coming from the ��, � in the description of A� above. Since there are no lateral slices of rank
≥ 3� in B� , this tells us that �1,1 has at most one nonzero entry per column. Since �1,1 is invertible by the
above, we have that �1,1 is a monomial matrix.

• If a linear combination involves at least one of the irst � lateral slices and at least one of the next �− � lateral
slices, it has rank at least 3�: 2� coming from the identity gadget among the ��, � , and another � coming
from the identity gadget among the ��, � . These two add because they are identity matrices on disjoint sets
of columns in the lateral slice. Since all lateral slices of B� have rank strictly less than 3�, this tells us that
�2,1 = 0.

• Finally, because the last 2�� + � lateral slices have rank strictly less than �, but any linear combination
involving at least one of the lateral slices � + 1, � + 2, . . . , � has rank ≥ �, we have that �2,3 = 0 as well.

This completes the proof of the irst part of the claim.
For the łfurthermore,ž the (⇒) direction is straightforward: after observing that � has to be of the above form,

we can easily verify that

[
�1,1 0

0 �2,2

]
is an isometry from A to B, where �1,1 is monomial.
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For (⇐) direction of the łfurthermore,ž starting from

[
�1,1 0

0 �2,2

]
and �1,1 ∈ GL(�, F), we need to design

�3,3 ∈ GL(2�� +�, F) and�2,2 ∈ GL(2�� +�(�−�), F) such that letting � =



�1,1 0 0

0 �2,2 0

0 0 �3,3


and� =

[
�1,1 0
0 �2,2

]
,

we have �� Ã�� = B̃
�
� . For this part of the argument, we can treat the ��, � gadgets and the ��, � gadgets independently.

That is, we take �3,3 =

[
�3,3,1 0

0 �3,3,2

]
and�2,2 =

[
�2,2,1 0

0 �2,2,2

]
, where �3,3,1 and�2,2,1 are 2�� × 2�� , �3,3,2 is � ×�

and�2,2,2 is �(� − �) ×�(� − �). Then �3,3,1 and�2,2,1 are the same as in the łMonomial isometry implies isometryž
part of the proof of Lemma 4.1 (where the same ł��, � ž gadgets are used), and �3,3,2 and �2,2,2 are the matrices that
come from the łonly ifž direction of [35, Proposition 3.3] (where the same ł��, � ž gadgets are used). □

The search-to-decision reduction. Given these preparations, we now present the search-to-decision reduction
for Alternating Matrix Space Isometry. Recall that this requires us to use the decision oracle O to compute
an explicit isometry transformation � ∈ GL(�, �), if A and B are indeed isometric. Think of � as sending the
standard basis ( ®�1, . . . , ®��) to another basis (�1, . . . , ��), where ®�� and �� are in F

�
� .

In the irst step, we guess �1, the image of ®�1, and a complement subspace of ⟨�1⟩, at the cost of �
� (�) . For

each such guess, let �1 be the matrix which sends ®�1 ↦→ �1 and sends ⟨ ®�2, . . . , ®��⟩ to the chosen complementary
subspace arbitrarily. We apply �1 to A, and still call the resulting 3-way array A in the following. Then construct
Ã1 and B̃1, and feed these two instances to the oracle O. Note that, since �1,1 (using notation as above) must be

monomial, any equivalence between Ã1 and B̃1 must preserve our choice of �1 up to scale. Thus, clearly, if A and B
are indeed isometric and we guess the correct image of �1, then the oracle O will return yes (and conversely).

In the second step, we guess �2, the image of ®�2, and a complement subspace of ⟨�2⟩ within ⟨ ®�2, . . . , ®��⟩, at the
cost of �� (�) . Note here that the previous step guarantees that there is an isometry respecting the direct sum
decomposition ⟨�1⟩ ⊕ ⟨ ®�2, . . . , ®��⟩, so we need only search for a complement of �2 within ⟨ ®�2, . . . , ®��⟩, and not

a more general complement of ⟨�1, �2⟩ in all of F�� . This is crucial for the runtime, as at the �/2 step, the latter

strategy would result in searching through �Θ(�2 ) possibilities.
For each such guess, we apply the corresponding transformation to A (and again call the resulting 3-way

array A). Then construct Ã2 and B̃2, and feed these two instances to the oracle O. Clearly, if A and B are indeed
isometric and we guess the correct image of ®�2 (and ®�1 from the previous step), then the oracle O will return yes.
However, there is a small caveat here, namely we may guess some image of �2, such that A and B are actually

isometric by some matrix � of the form

[
�1,1 0

0 �2,2

]
where �1,1 is a monomial matrix of size 2 (instead of the

more desired diagonal matrix). But this is ine, as it still ensures �1,1 to be monomial, which is the key property to
keep. This means that our choices of {�1, �2} is correct as a set up to scaling, so we proceed.

In general, in the �th step, we maintain the property that A and B are isometric by some � =

[
�1,1 0

0 �2,2

]

where �1,1 is a monomial matrix of size (� − 1) × (� − 1). We guess �� , the image of ®�� in ⟨®�� , . . . , ®��⟩, and a

complement subspace of ⟨��⟩within ⟨®�� , . . . , ®��⟩. This cost is�
� (�) . For each such guess, we apply the corresponding

transformation to A (and call the resulting 3-way array A). Then construct Ã� and B̃� , and feed these two instances

to the oracle O. Once we guess correctly, we ensure that A and B are isometric by � =

[
�1,1 0

0 �2,2

]
where �1,1 is

a monomial matrix of size � × � .
So after the (� − 1)th step, we know that A and B are isometric by a monomial transformation. As the

number of all monomial transformations is (� − 1)� · �! ≤ �� · 2� log�
= ��̃ (�) , we can enumerate all monomial
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transformations and check correspondingly. This gives an algorithm in time ��̃ (�) . By resorting to Prop. 4.4
which solves Alternating Matrix Space Monomial Isometry in time �� (�+�) , we have an algorithm in time
�� (�+�) .

Note that all the instances we feed into the oracle O are of size � (�2). This concludes the proof. □

4.3 A simply-exponential algorithm for monomial isometry of alternating matrix spaces

We now state the algorithm for monomial isometry used in Theorem A′.

Proposition 4.4. Let A,B ≤ Λ(�, �) be�-dimensional. Then there exists a �� (�+�) -time algorithm that decides

whether A and B are monomially isometric, and if so, computes an explicit monomial isometry.

Proof. Let A,B ≤ Λ(�, �) be two�-dimensional alternating matrix spaces. Clearly, by incurring a multiplica-
tive factor of �� , we can reduce to the problem of testing whether A and B are permutationally isometric, i.e.
whether there exists a permutation matrix� ∈ GL(�, �), such that� �A� = B. We will solve this problem in time
2� (�) · �� (�) . This would give an algorithm with total running time �� · 2� (�) · �� (�)

= �� (�+�) . The basic idea
of the algorithm comes from Luks’s dynamic programming technique for Hypergraph Isomorphism [55].

Reducing to a generalized linear code equivalence problem. Suppose A = ⟨�1, . . . , ��⟩, and B =

⟨�1, . . . , ��⟩. Let A and B be the � × � ×� 3-way arrays formed by the given bases of A and B. The group
S� × GL(�,�) acts naturally on the set of such 3-way arrays as follows: (�,�) · A = (��A�

�
� )

� , where �� is the
permutation matrix corresponding to � . The action of GL(�,�) here corresponds to changing basis within a
subspace, and thus one sees that two such 3-way arrays are in the same orbit of this action if and only if the corre-
sponding matrix spaces are permutationally isometric. For this proof, we introduce the notation PermIsom(A, B)
for the coset in S� × GL(�,�) that sends A to B under this action.
For � ⊆ [�] let A� denote the � × � ×� 3-way array that agrees with A on indices (�, �, �) whenever both �

and � are in � , and is zero outside of this region (in particular, if |� | = � , then the nonzero region in A� has size
� × � ×�). Similarly for B� . For two sets �,� ⊆ [�], let PermIsom�→� (A, B) denote the coset in S� × GL(�,�) of
permutational isometries (�,�) that send A� to B� and such that � (�) = � .
Our goal is to compute PermIsom(A, B). Note that PermIsom(A, B) = PermIsom[�]→[�] (A, B). We will show

how to compute PermIsom(A, B) by inductively computing PermIsom�→� (A, B) for all subsets �,� ⊆ [�]. (If we
wanted, we could save a factor of 2� in the runtime by only computing this PermIsom[� ]→� for all � = 0, . . . , �
and all subsets � , but as this is not the dominant term in the runtime, we compute PermIsom�→� for all subsets
�,� , which makes the presentation more symmetric in terms of A and B.)

Our base case is � = � = ∅. In this case we have that both A� and B� are the all-zeros arrays, and since all
permutations map the empty set to itself, we have PermIsom�→� (A, B) = S� × GL(�,�).

Now inductively suppose we have computed PermIsom�→� (A, B) for all sets � and� of size |� | = |� | = �−1 ≥ 0.
We show how to compute the same for all sets of size � . Let �,� ⊆ [�] be two sets of size � . Let � = {�1, . . . , �� }
and � ′ = {�1, . . . , ��−1} = �\{�� }. Any (�,�) ∈ PermIsom�→� (A, B) must send � ′ to some � ′ ⊂ � of size � − 1, so
we must have (�,�) ∈ PermIsom� ′→� ′ (A, B), which has already been computed. Let �� = � (�� ). On the other
hand, for (�,�) ∈ PermIsom� ′→� ′ (A, B) to be in PermIsom�→� (A, B), (�,�) needs to send the �� -th horizontal
slice of A� to the �� -th horizontal slice of B� . (The same is required of the lateral slices, but this will follow
automatically because frontal slices are alternating matrices.)
Let �������� ,�� (A, B) denote the set of (�,�) that send the �� -th horizontal slice of A to the �� -th horizontal

slice of B, that is, � (�� ) = �� and B(�� , � (�), ℓ) =
∑

ℓ ′ �ℓ ′,ℓA(�� , �, ℓ
′) for all � ∈ [�], ℓ ∈ [�]. Then the previous

paragraph can be summarized in the following equation

PermIsom�→� (A, B) =
⋃

�� ∈�

(
PermIsom� ′→(� \{�� }) (A, B) ∩�������� ,�� (A� , B� )

)
.
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If we treat GL(�,�) as a permutation group on�� elements, then the entire group S�×GL(�,�) is a permutation
group on domain size ��� . With this view, if we could compute PermIsom� ′→(� \{�� }) (A, B) ∩�������� ,�� (A� , B� )

in time �� (�+�) , then the above equation can be computed in its entirety in time �� (�+�) . Since the number of
entries in the dynamic programming table is 22� , the total runtime will be �� (�+�) , as claimed. The remainder of
the proof shows how to compute PermIsom� ′→(� \{�� }) (A, B) ∩�������� ,�� (A� , B� ) in time �� (�+�) .

Solving the generalized linear code equivalence problem. In fact, we will show that the following slightly
more general problem can be solved in the desired time bound.

Problem 4.4, a generalization of Linear Code Eqivalence

Input: Elements �0, �1, . . . , �� ∈ S� ×GL(�,�), two �×� matrices�, � over F� , and two indices
�, � ∈ [�]

Output: Let � = ⟨�1, . . . , �� . The output is the subcoset of S� × GL(�,�) consisting of pairs
(�,�) ∈ �0� such that � (�) = � and ���� = �.

Here the subcoset in the output is speciied by a single element together with a generating set of the corre-
sponding subgroup (the same way the subcoset is represented in the input). In the application above, we apply
this problem with � being the �� -th slice of A� , � being the �� -th slice of B� , � = �� , � = �� , and the subcoset
�0� = PermIsom� ′→(� \{�� }) (A, B).
We solve Problem 4.4 again by a dynamic programming algorithm as follows. For �, �′ ⊆ [�] of size � , ��

denotes the � ×� matrix that agrees with � in rows indexed by �, and is zero in all other rows; similarly for

��′ . Let������
�→�,�0�

�→�′ (�, �) denote the subcoset of �0� consisting of those (�,�) such that � (�) = � , � (�) = �′,
and ����� = ��′ . Here the information in the superscript is part of the input and will not change throughout
the recursion, whereas the information the subscript will be inducted on.

The base case is � = �′
= ∅, for which we have ������

�→�,�0�

∅→∅
(�, �) = {(�,�) ∈ �0� : � (�) = �}. As above, if

we view S� × GL(�,�) as a permutation group on a set of size ��� , then this is simply computing an element
transporter inside a subcoset of a permutation group, which can be done in time (���)� (1) [54].

Suppose inductively we have computed ������
�→�,�0�

�→�′ (�, �) for all sets �, �′ of size � − 1 ≥ 0. We will show
how to compute the same for all sets �, �′ of size � . Fix �0 ∈ �. For �0, �

′
0 ∈ [�] let ��0,�

′
0
be the subcoset of S� that

sends �0 to �
′
0, and for �, � ∈ F�� let ��,� be the subcoset of GL(�,�) that sends � to � . By slight abuse of notation,

let ��0 denote the �0-th row of � and �� ′0 denote the �
′
0-th row of �.

Then, similar to the reasoning above, we have that any (�,�) we seek must send �0 to an element of �′, say � ′0,

and we seek the pairs (�,�) ∈ ������
�→�,�0�

(�\{�0 })→(�′\{� ′0 })
(�, �) such that � (�0) = � ′0 and ��0�

�
= �� ′0 . Taking the

union over all choices of � ′0 ∈ �′, we thus get the equation:

������
�→�,�0�

�→�′ (�, �) =
⋃

� ′0∈�
′

(
������

�→�,�0�

(�\{�0 })→(�′\{� ′0 })
(�, �) ∩ (��0,�

′
0
× ���0 ,�� ′0

)
)
. (6)

Finally, we show how to eiciently compute the intersection in parentheses in the preceding equation. Let

�� = ������
�→�,�0�

(�\{�0 })→(�′\{� ′0 })
(�, �). We have that (�,�) ∈ (�� ) ∩ (��0,�

′
0
× ���0 ,�� ′0

) if

� (�0) = � ′0 and ��0�
�
= �� ′0 .

Write � = (�0, �0). Then we have � = �0�
′ and � = �0�

′ for some � ′ ∈ S�, �
′ ∈ GL(�,�), and the preceding

condition is the same as

� ′ (�0) = �−1
0 (� ′0) and ��0 (�

′)� = �� ′0 (�
′
0)
� . (7)

Since �0, �
′
0, �0, �0 are all ixed, the subcoset of � consisting of (� ′, � ′) satisfying (7) is a pointwise transporter in

the permutation group � ≤ S� × GL(�,�) acting on a domain of size ��� , which can thus be computed in time
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(���)� (1) . Thus the intersection in parentheses in (6) can be computed in the same time bound. The union of
subcosets can similarly be computed in time (���)� (1) with standard permutation group machinery, and thus all
of (6) can be. Again, the dynamic programming table here has size 22� , so the total runtime of this procedure is
22� (���)� (1)

= 2� (�)�� (�) ≤ �� (�+�) , as claimed. This completes the proof. □

5 COUNTING-TO-DECISION REDUCTION BY RESTRICTING TO DIAGONAL GROUPS

In this section, we devise a gadget to achieve the restriction to the group of diagonal matrices, and use it to do
the counting to decision reduction for Alternating Matrix Space Isometry.

5.1 Describing the gadget

Let A ≤ Λ(�, �) be an alternating matrix space, and let A = (�1, . . . , ��) ∈ Λ(�, �)� be an ordered linear basis
of A. Let A ∈ T(� × � ×�, F�) be the 3-way array constructed from A, i.e. the �th frontal slice of A is �� .

We shall assume � is larger than some constant, and � = �Ω (1) throughout the remainder of this section.

The form of the gadget. To describe the gadget, it is easier to view A from the lateral viewpoint. That is,
for � ∈ [�], let �� = [�1�� , . . . , ���� ] ∈ M(� ×�,�). Let C = (�1, . . . ,��) ∈ M(� ×�,�)� . Then construct

C′
= (�′

1, . . . ,�
′
�), �

′
� =

[
�� 0
0 ��

]
, where �� is of size 6� × 4�2. For � ∈ [�], �� =

[
0 . . . 0 �� 0 . . . 0

]
,

where �� is of size 6� × 4� in the �th block, and 0 denotes an all-zero matrix of size 6� × 4�. The �� will be
described below.

After the above step, we obtain a 3-way array C ∈ T(7� × � × (� + 4�2), F). The frontal slices of C are matrices
of size 7�×�. To preserve the alternating structure, we need to do the following. Let the irst � horizontal slices of
C them be B = (�1, . . . , ��) ∈ M(� × (� + 4�2), F). Note that �� = [�� , 0], where �� ∈ M(� ×�, F) was deined in

the paragraph above. Then set B′
= (�′

1, . . . , �
′
�), �

′
� =

[
�� 0
0 −��

]
, where −�� is of size 6� × 4�2 as deined in the

above paragraph. Let � be one of the rest 6� horizontal slices of C. Then we set � ′
=

[
�

0

]
where 0 denotes a size

6� × (� + 4�2) all-zero matrix. After the above operations, we obtain a 3-way array Ã of size 7� × 7� × (� + 4�2),
whose frontal slices are alternating matrices.

To summarise, from the frontal viewpoint of looking at A, �� ’s are inserted, vertically, below and behind A. So
to preserve the alternating structure, −�� ’s also need to be inserted, horizontally, on the right and behind A. We

therefore get Ã, which is of size 7� × 7� × (� + 4�2).

Fact 5.1. Every lateral slice of Ã is of rank ≤ 5�.

Proof. The irst � lateral slices of Ã are of the following form: �′
� =

[
�� 0
0 ��

]
, where �� is of size 6� × 4�2.

For � ∈ [�], �� =

[
0 . . . 0 �� 0 . . . 0

]
, where �� is of size 6� × 4� in the �th block. So rank(�′

� ) =

rank(�� ) + rank(�� ) ≤ � + 4� = 5�.

The last 6� lateral slices of Ã are of the form�� =

[
0 ��

0 0

]
where�� is of size �×4�2. So rank(�� ) = rank(�� ) ≤

�. □

Remark 5.2. In the above, we attached �� , � ∈ [�], to each vertical slice. (And therefore, we attached −�� to
each horizontal slice.) Sometimes, we may only attach�� to the irst � vertical slices. (And therefore, we only
attach −�� to the irst � horizontal slice.) In this case, the resulting Ã is of size 7� × 7� × (� + 4��).

Conditions imposed on the �� ’s. Of course, the key to the construction above lies in the properties of the �� ’s.
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Deinition 5.3. Let �1, . . . , �� ∈ M(6� × 4�, �), and let �� ≤ F
6�
� be the subspace spanned by the columns of �� .

We say that the tuple (�1, . . . , ��) is rigid, if the following conditions are satisied.

(1) For any � ∈ [�], rk(�� ) = dim(�� ) = 4�.
(2) For any �, � ∈ [�], � ≠ � , rk( [��� � ]) = dim(�� ∪�� ) = 6�.
(3) For any (�1, �2, �3, �4, �5, �6) ∈ [�]6 and ( �1, �2, �3, �4, �5, �6) ∈ [�]6, such that |{�1, . . . �6} ∪ { �1, . . . , �6}| = 12, i.e.

�� and �ℓ all diferent, the coset � = {� ∈ GL(6�, �) : ∀� ∈ [6],� (��� ) = ��� } is empty. Note that for any
� ∈ [�], � (�� ) is spanned by the columns of ��� .

(4) For any (�1, �2, �3, �4, �5, �6) ∈ [�]6, �� all diferent, the group � = {� ∈ GL(6�, �) : ∀� ∈ [6],� (��� ) = ��� }
consists of only of scalar matrices.

Remark 5.4. Given �1, . . . , �� ∈ M(6� × 4�, �), whether (�1, . . . , ��) is rigid can be veriied in polynomial time
as follows.
Conditions (1) and (2) are easily veriied in deterministic polynomial time.
For condition (3), it can be formulated as a linear algebraic problem as follows. Let � be a 6� × 6� variable

matrix, so its entries are formal variables. Similarly deine �� , � ∈ [6], to be 4� × 4� variable matrices. Then
the entries of the matrix ���� are linear forms in the variables in � . Similarly, the entries of the matrix � ����
are linear forms in the variables in �� . Equating ���� = � ���� , we get 4� · 6� linear equations. Solving these

linear equations, we get a linear subspace of F
(6�)2+6· (4�)2

� . The question is then whether this subspace contains
(�, �1, . . . , �6) where � ∈ GL(6�, �) and �� ∈ GL(4�, �). This is an instance of the symbolic determinant identity
testing (SDIT) problem, so it admits a randomized eicient algorithm when � = �Ω (1) .
In fact, this instance of SDIT problem can be solved in deterministic polynomial time. For this let us also

check out condition (4). Here, let � and �� be from above, and set up the equations ���� = ����� . Solve the

linear equations to get a subspace of F
(6�)2+6· (4�)2

� . This subspace turns out to be an algebra under the natural
multiplications. Indeed, if ���� = ����� and �′��� = ����

′
�
, then ��′��� = ������

′
�
. Computing the unit group

in a matrix algebra can be solved by a polynomial-time Las Vegas algorithm by [17]. Given the unit group,
whether it consists of only scalar matrices can be veriied easily in deterministic polynomial time.

Then the linear space in condition (3) is a module over the algebra deined in the last paragraph. Because of
this structure, the SDIT problem for such instances can be solved in deterministic polynomial time [15, 20, 40].

5.2 Construction and properties of the gadget

The following three propositions reveal the construction and functions of the gadget described above.
First about the construction. Instead of constructing the above �� ’s explicitly in a deterministic way, we shall

show that random choices suice.

Proposition 5.5. Suppose the entries of �� ∈ M(6� × 4�, �), � ∈ [�], are sampled uniformly and independently at

random from F� . Then (�1, . . . , ��) is rigid as deined in Deinition 5.3 with probability ≥ 1 − �� (1)

�Ω (1) .

Second about the functionality. The following proposition formally explains this.

Proposition 5.6. Suppose A and B are two 3-tensors constructed from ordered bases of�-dimensional alternating

matrix spacesA,B ≤ Λ(�, �). Let Ã and B̃ be constructed as above, and let Ã and B̃ be the alternating matrix spaces

spanned by the frontal slices of Ã and B̃, respectively. Then A and B are isometric via a diagonal matrix if and only

if Ã and B̃ are isometric.

Finally we shall use this gadget to achieve a counting-to-decision reduction for Alternating Matrix Space

Isometry. Formally, we have the following.
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Proposition 5.7. Suppose we are given A,B ≤ Λ(�, �) and a decision oracle for Alternating Matrix Space

Isometry. Then there exists a Las Vegas randomized algorithm that computes the number of isometries from A to B

in time �� (�) .

The next three subsections are devoted to the proofs of Propositions 5.5 (Section 5.2.3), 5.6 (Section 5.2.1),
and 5.7 (Section 5.2.2). Note that, because the proof of Proposition 5.5 is more complicated compared to the other
two, we postpone it to the last.

Remark 5.8. In fact, we expect that this construction works even for small inite ields. The bottleneck lies in

Proposition 5.5. If the probability �� (1)

�Ω (1) could be improved to �� (1)

�Ω (�) , then we would be done. We believe it possible

to utilize the structure of invariant subspaces under matrix actions over F� to achieve this. However, we expect
that the calculations will be tedious and heavy, so we hope to leave this to a future work.

5.2.1 Restricting to the diagonal group. Briely speaking, conditions 1 and 2 ensure that we irst restrict to
monomial matrices. Conditions 3 and 4 prevent non-trivial permutations due to the following. As we assume � is
larger than some constant, by Observation 5.9, � ∈ S� either ixes 6 elements in [�], or moves a set of 6 elements
to another, disjoint, set of 6 elements. Condition 3 ensures that the second case could not happen. Condition 4
ensures that in the irst case, the only possible invertible matrices that łpreservesž the matrices�� for � ∈ � when
multiplying from the left are scalar matrices.
We now prove Proposition 5.6, and this requires the following observation.

Observation 5.9. Let � ≥ 23. Then any permutation � ∈ S� either ixes a set of 6 points � ⊆ [�], or moves a set of

6 points � ⊆ [�] to another set of 6 points � ⊆ [�] such that these two sets are disjoint.

Proof. Suppose � ixes at most 5 points. Then there are at least 18 points that are not ixed by � . Suppose � has
� non-trivial cycles of length �1, . . . , �� , such that

∑
� �� ≥ 18. For a cycle (�1, . . . , �� ), we can choose those points

with odd indices, namely �1, �3, . . . , �2· ⌊�/2⌋−1 and put them in � , and those points with even indices, namely
�2, �4, . . . , �2· ⌊�/2⌋ in � . Do this for every cycle, we obtain the desired � and � . The worst case is when every
cycle is of length 3. Since there are at least 18 points not ixed by � , � is of size ≥ 6. □

Proof of Proposition 5.6. Recall that we construct such Ã and B̃ from A and B, respectively, using the method

in Section 5.1. Let Ã and B̃ be alternating matrix spaces in Λ(7�, �), spanned by the frontal slices of Ã and B̃,
respectively.

We want to show that Ã and B̃ are isometric if and only if A and B are isometric via diagonal matrices. The
if direction is straightforward. Suppose there exist � = diag(�1, . . . , ��) ∈ diag(�, �) and � ∈ GL(�,�) such that

��A� = B
� . Let �̃ =

[
� 0
0 �6�

]
∈ GL(7�, �). Let �̃ =

[
� 0
0 � ′

]
∈ GL(� + 4�2), where � ′

= diag(�1�4�, . . . , ���4�).

Then it is easy to verify that �̃� Ã�̃ = B̃
�̃ .

Now we turn to the only if direction. If Ã and B̃ are isometric, then there exists �̃ ∈ GL(7�, �) and �̃ ∈

GL(� + 4�2, �), such that �̃� Ã�̃ = B̃
�̃ . Let �̃ =

[
�1,1 �1,2
�2,1 �2,2

]
, where �1,1 is of size � × �. It can be checked easily,

from the lateral viewpoint, that �1,2 = 0. As if not, then some �� would appear in one of the last 6� lateral slices

in Ã�̃ . This would set this slice to be of rank ≥ 4� by condition (1), which contradicts that the corresponding

lateral slice of B̃�̃ is of rank ≤ �. It follows that �1,1 ∈ GL(�, �) and �2,2 ∈ GL(6�, �).
We irst claim that �1,1 has to be a monomial matrix. If not, suppose the �1,1 (�, �) and �1,1 (�, �) are non-zero,

� ≠ � . Then the �th lateral slice of Ã�̃ contains two distinct � � and �� as submatrices. By condition (2), this slice is

of rank ≥ 6�. On the other hand, each lateral slice of B̃�̃ is of the same rank as B̃ (as �̃ does not change the ranks
of lateral slices), which by Fact 5.1 is ≤ 5�. This is a contradiction, showing that �1,1 must be a monomial matrix.
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We further claim that �1,1 has to be a diagonal matrix. If not, then suppose the non-trivial permutation
underlying �1,1 is � ∈ S� . Since we assumed � is larger than some constant, by Observation 5.9, one of the
following two cases has to happen.

• ∃{�1, . . . , �6} ⊆ [�], { �1, . . . , �6} ⊆ [�], |{�1, . . . , �6} ∪ { �1, . . . , �6}| = 12, such that � (�� ) = �� for � ∈ [6]. We
then claim the following.

Claim 5.10. For �̃� Ã�̃ = B̃
�̃ to hold, a necessary condition is that ∀� ∈ [6], �2,2� �� and ��� have the same

linear span.

Proof. To see this, note that the �� th lateral slice of �̃� Ã�̃ is the �� th lateral slice of �̃� Ã (up to a scalar

multiple). It is equal to the �� th lateral slice of B̃
�̃ . Then �̃� acts on the left on the �� th lateral slice of Ã. Noting

that �� =

[
��1,1 ��2,1
0 ��2,2

]
and the �� th lateral slice of Ã is �′

��
=

[
� �� 0
0 � ��

]
, we see that ���′

��
=

[
∗ ∗
0 ��2,2� ��

]
.

(Here, �� and �� are deined in Section 5.1.) On the other hand, we see that the �� th lateral slice of B̃�̃ is
the �� th lateral slice of B̃ multiplied from the right by �̃ . Our claim follows then by comparing the last 6�
rows. □

But the condition (3) excludes the existence of such �2,2, so this cannot happen.

• ∃{�1, . . . , �6} ⊆ [�], �� all diferent, such that � (�� ) = �� . In this case, for �̃� Ã�̃ = B̃
�̃ to hold, by the same

argument as in the proof of Claim 5.10, a necessary condition is that �2,2��� and ��� have the same linear
span. Then the condition (4) ensures that �2,2 = ��6� for some � ≠ 0 ∈ F in this setting. Then because �

is non-trivial, � moves some � ∈ [�] to � ∈ [�], � ≠ � . By comparing the �th lateral slice of �̃� Ã and the

�th lateral slice of B̃�̃ , �2,2�� = ��� and � � have the same linear span, which is not possible because the
condition (2) ensures that �� and � � span diferent subspaces.

We then have shown that �1,1 must be a diagonal matrix. By comparing the top-left-front sub-tensors of size

� ×� ×� of �̃� Ã�̃ and B̃�̃ , we arrive at the desired conclusion that A and B are isometric via the diagonal matrix
�1,1. □

Remark 5.11. If we only attach the diagonal restriction gadget to the irst � slices (see Remark 5.2), then the

above proof can be adapted to show that: Ã and B̃ are isometric, if and only if, A and B are isometric via

� =

[
� 0
� �

]
where � is a � × � diagonal matrix.

5.2.2 Using the gadget for counting-to-decision reduction. The strategy follows closely the counting to decision
reduction for graph isomorphism.
We irst review the strategy for counting to decision reduction for graph isomorphism [56]. Suppose we are

given two graphs with the vertex set being [�], i.e.�,� ⊆
([�]
2

)
. We irst use the decision oracle to decide whether

� and � are isomorphic. If not, the number of isomorphisms is 0. If so, we turn to compute the order of Aut(�).
Let � = Aut(�). For � ∈ [�], let �� = {� ∈ � : ∀1 ≤ � ≤ �, � ( �) = �}. Set �0 = �. We then have the tower of
subgroups �0 ≥ �1 ≥ · · · ≥ �� = {id}. The order of �0 is then the product of [�� : ��+1], the index of ��+1 in
�� , for � = 0, 1, . . . , � − 1. Let �� be the graph with the irst � vertices in � individualized. Then Aut(�� ) � �� . To
compute [�� : ��+1], we note that it is equal to the size of the orbit of the vertex � + 1 under �� . For each � ≥ � + 1,
construct from �� two graphs � ′

� and �
′′
� as follows. In � ′

� , individualize � + 1, and in � ′′
� , individualize � . Then �

is in the orbit of � + 1 under �� if and only if � ′
� and �

′′
� are isomorphic. Enumerating over � ≥ � + 1 gives us the

size of the orbit of � + 1 under �� . This inishes an overview of the idea for counting to decision reduction for
graph isomorphism.
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We then apply the above strategy to get a counting to decision reduction for alternating matrix space isometry
to prove Proposition 5.7.

Proof of Proposition 5.7. Our goal is to compute the number of isometries from A to B, where A,B ≤
Λ(�, �) are of dimension�. First, we use the decision oracle irst to decide whether A and B are isometric. If not,
the number of isometries is 0. If so, we need to caculate the order of the autometry group of A, Aut(A), that
is, the set of self-isometries A → A as a subgroup of GL(�, �). To do that, we irst randomly sample � 6� × 4�
matrices �1, . . . , �� over F� , and verify whether they form a rigid matrix tuple using Remark 5.4. Note that this
is where the algorithm needs to be a Las Vegas algorithm.
Let � = Aut(A). Recall that �� denotes the �th standard basis vector in F�� . For � ∈ [�], let �� = {� ∈ � : ∀1 ≤

� ≤ �,� (�� ) = ���� , �� ≠ 0 ∈ F�}. Note that �� = � ∩ diag(�, �). We can calculate the order of �� in time �� (�) by
brute-force, i.e., enumerating all invertible diagonal matrices. Set �0 = �. We then have the tower of subgroups
�0 ≥ �1 ≥ · · · ≥ �� .
To compute the order of �0, it is enough to compute [�� : ��+1]. Note that for �,�

′ ∈ �� , ���+1 = � ′��+1 as
left cosets in �� if and only if � (��+1) = �� ′ (��+1) for some � ≠ 0 ∈ F� . So [�� : ��+1] is equal to the size of the
orbit of ��+1 under �� in the projective space. Let � ∈ F�� . To test whether � is in the orbit of ��+1 under �� in the

projective space, we transform A by �� · � , where � ∈ GL(�, �) sends ��+1 to � and � � to � � for � ≠ � + 1, to get A′.
We then add the diagonal restriction gadget to the irst � + 1 lateral slices and the irst � + 1 horizontal slices of A

and A′ (see Remark 5.2), to obtain Ã and Ã′ respectively. Then feed A and A′ to the decision oracle. By the
functionality of the diagonal restriction gadget (Proposition 5.6 and Remark 5.11), � is in the orbit of ��+1 in the

projective space if and only if Ã and Ã′ are isometric. Enumerating � ∈ F�� up to scalar multiples gives us the
size of the orbit of ��+1 under �� in the projective space. This inishes the description of the algorithm.
A small caveat in the above is that our gadget requires � is larger than some constant, so we cannot start

from �0 at the beginning. This issue can be revolved by noting that the order of �� , for any constant � , can
be computed in time �� (�) , by enumerating all possible images of �1, . . . , �� in time �� (�) , adding the diagonal
restriction gadget, and utilizing the decision oracle. □

5.2.3 Random �� ’s satisfy the requirements when � = �Ω (1) . We now prove Proposition 5.5, and for this we need
the following facts.

Fact 5.12. (1) Given �� ∈ R, 0 ≤ �� ≤ 1, � ∈ [�],
∏

�∈[�] (1 − �� ) ≥ 1 −
∑

�∈[�] �� .

(2) Let�, � ∈ N and 1 ≤ � ≤ � . A randommatrix� ∈ M(�×�,�) is of rank� with probability ≥ 1−2/��−�+1.

(3) For � ≤ N, 0 ≤ � ≤ �, the number of dimension-� subspaces of F�� is equal to the Gaussian binomial coeicient

(
�

�

)

�

:=
(�� − 1) · (�� − �) · . . . · (�� − ��−1)

(�� − 1) · (�� − �) · . . . · (�� − ��−1)
.

(4) The Gaussian binomial coeicient satisies:

� (�−� )� ≤

(
�

�

)

�

≤ � (�−� )�+� .

(5) For � ∈ N, the number of complement subspaces of a ixed dimension-� subspace of F�� is �� (�−� ) .

Proof. (1) is clear. For (2), Pr[rk(�) =�] = (1 − 1
��

) · (1 −
�

��
) · . . . · (1 −

��−1

��
). By (1), we have Pr[rk(�) =

�] ≥ 1−
∑�

�=�−�+1
1
��

= 1− 1
�� −�+1 −

∑�
�=�−�+2

1
��

≥ 1− 2
�� −�+1 . (3) is classical; see e.g. [22]. For (4), it is because

��−� ≤
��−��

��−��
≤ ��−�+1. (5) is not hard to derive; see e.g. [23]. □
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In the following we will encounter random matrices over F� as well as random subspaces in F�� . There is a

subtle point which we want to clarify now. Let� ≤ �. Note that there are
(�
�

)
�
subspaces of F�� of dimension

�, and there are �1 = (�� − 1) · . . . · (�� − ��−1) rank-� matrices of size � ×�. It can be seen easily that each
�-dimensional subspace � of F�� has �2 = (�� − 1) · . . . · (�� − ��−1) many representations as rank-� matrices
of size � ×�, i.e. the columns of the matrix span � . It follows that we can work with random rank-� matrices of
size � ×� as if we are working with random�-dimensional subspaces of F�� . Such correspondences will be used
implicitly for other structures, including direct sum decompositions.
Now let us get back to our question. We shall show that a random choice of �� , � ∈ [�], would form a rigid

tuple. We will prove that for conditions � = 1, 2, 3,

Pr[random �� not satisfy condition �] ≤
�� (1)

�Ω (�)
.

Once these hold, by a union bound, we have

Pr[∃� ∈ [3], random �� not satisfy condition �] ≤
�� (1)

�Ω (�)
.

For condition (4), we will prove that

Pr[random �� not satisfy condition 4 | �� satisfy conditions 1, 2, 3] ≤
�� (1)

�Ω (1)
.

This then would allow us to conclude that when � = �Ω (1) , random �� ’s form a rigid matrix tuple.
We examine the irst three conditions one by one.

(1) For condition (1), by Fact 5.12 (2), we have Pr[∃� ∈ [�], rk(�� ) < 4�] ≤ � · Pr[rk(�� ) < 4�] ≤ 2�
�2�+1

.

(2) For condition (2), noting that the block matrix (��� � ) is a random 6� × 8� matrix over F� , by Fact 5.12 (2),

we have Pr[∃� ≠ � ∈ [�], rk((��� � )) < 6�] ≤
(�
2

)
· 2
�8�−6�+1

≤ �2

�2�+1
.

(3) For condition (3), let � = (��1 . . . ��6 ), and � = (� �1 . . . � �6 ). We see that � is non-empty if and only if there
exists � ∈ GL(6�, �) and �� ∈ GL(4�, �), � ∈ [6], such that ������ = � �� . Note that the orbit of � under

this group action is of size at most � (6�)2+6· (4�)2
= �132�

2
. Since �� and �ℓ are all diferent, the probability of

� belonging to this orbit is ≤
�132�

2

�144�
2 =

1

�12�
2 . We then have Pr[∃�� , �� ∈ [�], � ∈ [6], �� , �� all diferent,� ≠

∅] ≤
(�
12

)
2

�12�
2 ≤ �12

�12�
2 .

We now focus on condition (4). For condition (4), we irst assume that the conditions (1) and (2) as above hold.
Then �� ’s are random 4�-dimensional subspaces of F6�� . Note that

Pr[∃�� ∈ [�], � ∈ [6], �� all diferent, � non-scalar] ≤ �6 · Pr[� non-scalar stabilizer for �1, . . . ,�6] .

So we turn to study Pr[� non-scalar stabilizer for �1, . . . ,�6], and will show that it is ≤ 1
�Ω (1) .

Let�1 = �1∩�2,�2 = �2∩�3, and�3 = �1∩�3. Let�1 = �4∩�5,�2 = �5∩�6, and�3 = �4∩�6. Since conditions
(1) and (2) hold, we have dim(�� ) = dim(�� ) = 2�. We claim that with probability ≥ 1 − 2/�, F6�� = �1 ⊕�2 ⊕�3,

i.e.,�1 ∪�2 ∪�3 span F
6�
� . This can be seen as follows. Since we assumed conditions (1) and (2), this happens if
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and only if �1 ∩�2 and �3 together span F
6�
� . Therefore we calculate, using Fact 5.12 (1), (3), and (5), that

Pr[�3 is a complement subspace of �1 ∩�2]

= �2�·4�/

(
6�

4�

)

�

=
(�6� − �2�) (�6� − �2�+1) . . . (�6� − �6�−1)

(�6� − 1) (�6� − �) . . . (�6� − �4�−1)

≥
(�6� − �2�) (�6� − �2�+1) . . . (�6� − �6�−1)

�6� · �6� · · · · · �6�
= (1 − 1/�4�) (1 − 1/�4�−1) . . . (1 − 1/�)

≥ 1 −

4�︁

�=1

1/�� ≥ 1 − 2/�.

It follows that with probability ≥ 1 − 4/�, we can assume in addition that�� form a direct sum decomposition of
F
6�
� .
Therefore, we turn to bound the probability that there exists a non-scalar invertible matrix stabilizing these two

direct sum decompositions of F6�� . By showing that, under suitable conditions, this probability is at most 1/�Ω (1) ,

we conclude that a random choice of subspaces works as our gadget with probability 1−1/�Ω (1) , which suices for
a Las Vegas algorithm. Since �� are all diferent, the two direct sum decompositions�1 ⊕�2 ⊕�3 and�1 ⊕�2 ⊕�3

are independent. So we can assume that�� is spanned by those standard basis vectors ®�2� (�−1)+1, . . . , ®�2�� , � = 1, 2, 3.

The group that stabilizes this direct sum decomposition �1 ⊕ �2 ⊕ �3 consists of



�1 0 0
0 �2 0
0 0 �3


∈ GL(6�, F�)

where �� is of size 2� × 2�.
The question then becomes to bound the probability for a random�1 ⊕�2 ⊕�3 to be stabilized by a non-

scalar matrix of the above form. This can be formulated as the following linear algebraic problem. (Recall the
correspondence between random�-dimensional subspaces and random rank-� matrices as discussed at the

beginning of the subsection.) Let� =



�11 �12 �13

�21 �22 �23

�31 �32 �33


∈ GL(6�, �) be a block matrix where�� � is of size

2� × 2�. Suppose the columns of



�1�

�2�

�3�


span�� . Then � = diag(�1, �2, �3) stabilizes�1 ⊕�2 ⊕�3 if and only if

there exists a block diagonal matrix � = diag(�1, �2, �3), �� ∈ GL(2�, �), such that



�1 0 0
0 �2 0
0 0 �3





�11 �12 �13

�21 �22 �23

�31 �32 �33


=



�11 �12 �13

�21 �22 �23

�31 �32 �33





�1 0 0
0 �2 0
0 0 �3


. (8)

Note that each direct sum decomposition�1 ⊕�2 ⊕�3, dim(�� ) = 2�, has 6 · |GL(2�, �) |3 such matrix represen-
tations. (The factor 6 takes care of the orders of the three summands.) So the question becomes to bound the
probability for a random invertible matrix to have a non-scalar � and � satisfying Equation 8.
First, note that Equation 8 holds if and only if ����, � =��, �� � for �, � ∈ [3].

Claim 5.13. When � = Ω(1), we have Pr[∀�, � ∈ [3], rk(��, � ) = 2�] ≥ 1 − 20
�
.

Proof. Let us work in the setting when� is a random matrix, not necessarily invertible. Then Pr[rk(� ) =
6�] ≥ 1 − 2

�
. For any �, � ∈ [3], Pr[rk(��, � ) < 2�] ≤ 2

�
, so Pr[∃�, � ∈ [3], rk(��, � ) < 2�] ≤ 18

�
. It follows that

Pr[∃�, � ∈ [3], rk(��, � ) < 2� | rk(� ) = 6�] = Pr[∃�, � ∈ [3], rk(��, � ) < 2� ∧ rk(� ) = 6�]/Pr[rk(� ) = 6�] ≤
18/�
1−2/� =

18
�−2 ≤ 20

�
, where the last inequality uses that � = Ω(1). □
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So we assume that rk(��, � ) = 2� for all �, � ∈ [3] in the following, with a loss of probability ≤ 20
�
.

For � ∈ [3], by ����� = ����� , we have �� = ������
−1
�� . For � ≠ � , by (�� �� ��

−1
� � )��� = � ���� = ����� , we

have � � =� −1
� � ������

−1
�� �� � . Again for � ≠ � , we have������

−1
�� �� � = ���� � =�� �� � =�� ��

−1
� � ������

−1
�� �� � .

It follows that

∀�, � ∈ [3], � ≠ �, ���
−1
�� �� ��

−1
� � ��� =� −1

�� �� ��
−1
� � ����� .

In particular, �3 commutes with � = � −1
33 �32�

−1
22 �23 and � = � −1

33 �31�
−1
11 �13. Since�� � are independent

random invertible matrices, � and � are independent random invertible matrices. We now resort to the following
classical result.

Theorem 5.14 ([44], cf. also [43, Theorem 3.3] and [26, The paragraph after Theorem 1.1]). Let � and � be two

random matrices in GL(�, �). Then the probability of � and � not generating a group containing SL(�, �) is ≤ 1
�Ω (�) .

It follows that �3 belongs to the centralizer of � , so �3 must be a scalar matrix. Then note that �� ’s and other
�� ’s are all conjugates of �3. So we have ∀� ∈ [3], �� = �� = ��2� for some � ≠ 0 ∈ F� .

Summarizing the above, we have

Pr[� non-scalar for �1, . . . ,�6]

≤ Pr[� non-scalar for �� ∧ F
6�
� = �1 ⊕ �2 ⊕ �3 =�1 ⊕�2 ⊕�3] +

4

�

≤ Pr[� non-scalar for �� | F
6�
� = �1 ⊕ �2 ⊕ �3 =�1 ⊕�2 ⊕�3] +

4

�

≤ Pr[� non-scalar for� ∧ ∀�, � ∈ [3], rk(�� � ) = 2�] +
20

�
+
4

�

≤ Pr[� non-scalar for� | ∀�, � ∈ [3], rk(�� � ) = 2�] +
24

�

≤
1

�Ω (�)
+
24

�

≤
1

�Ω (1)
.

This concludes the proof of Proposition 5.5. □

6 APPLICATION TO �-GROUP ISOMORPHISM, USING CONSTRUCTIVE BAER AND LAZARD

CORRESPONDENCES

The applications to �-Group Isomorphism rely on the following well-known connections between alternating
bilinear maps and Lie algebras on the one hand, and �-groups of łsmallž class on the other. We present these
connections here, partly for audiences not from computational group theory, and partly because we will need to
address some computational aspects of these procedures. We begin with some preliminaries.

6.1 Preliminaries

TI-completeness. As the proof of Thm. P in Section 6.3.1 uses a result on TI-completeness from [35], here we
recall the deinition of TI; see Deinition 3.1 for the �-Tensor Isomorphism problem.

Deinition 6.1 (�TI, TI). For any ield F, �TIF denotes the class of problems that are polynomial-time Turing
(Cook) reducible to �-Tensor Isomorphism over F. Also let TIF =

⋃
�≥1 �TIF.
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The relationship between TI over diferent ields remains an intriguing open question [35], but here we will
only need TI over F� . One of the main results of [35] is that TI = �TI for any ixed � ≥ 3.

Algebras and their algorithmic representations. A Lie algebra A consists of a vector space � and a bilinear
map [, ] : � × � → � that is alternating ([�, �] = 0 for all � ∈ � ; this is equivalent to skew-symmetry
[�, �] = −[�,�] in characteristic not 2) and satisies the Jacobi identity [�, [�, �]] + [�, [�,�]] + [�, [�, �]] = 0. The
Jacobi identity is essentially the łderivativež of associativity.

After choosing an ordered basis (�1, . . . , ��) where �� ∈ F
� of � � F� , this bilinear map [, ] can be represented

by an �×�×� 3-way array A, such that [�� , � � ] =
∑

�∈[�] A(�, �, �)�� . This is the structure constant representation
of A. Algorithms for Lie algebras have been studied intensively in this model, e. g., [24, 41].

It is also natural to consider matrix spaces that are closed under commutator. More speciically, letA ≤ M(�, F)
be a matrix space. If A is closed under commutator, that is, for any �, � ∈ A, [�, �] = �� − �� ∈ A, then A is a
matrix Lie algebra with the product being the commutator. (Protip: one way to remember the Jacobi identity
is to derive it as the natural identity among nested commutators of three matrices.) Algorithms for matrix Lie
algebras have also been studied, e. g., [27, 39, 41].

6.2 Constructive Baer Correspondence and Theorems A and B

Let us review Baer’s correspondence [8], which connects alternating bilinear maps with �-groups of class 2 and
exponent � . Let � be a �-group of class 2 and exponent � , � > 2. Suppose the commutator subgroup [�, �] � Z��
and �/[�, �] � Z�� . Then the commutator map [, ] : �/[�, �] × �/[�, �] → [�, �] is an alternating bilinear map.

Conversely, let � : Z�� × Z�� → Z�� be an alternating bilinear map. Then a �-group of class 2 and exponent � ,
denoted as �� can be deined as follows. The group elements are from Z�� ×Z

�
� , and the group product · is deined

as

(�, �) · (�′, � ′) = (� + �′, � + � ′ +
1

2
� (�,�′)).

We say that (�, �) ∈ GL(�, �) × GL(�, �) is a pseudo-autometry of � , if � (�, �) = �� (��,��) for all �, � ∈ Z�� .

Clearly, there is a one-to-one correspondence between automorphisms of �� and pseudo-autometries of � .
We then state a lemma which can be viewed as a constructive version of Baer’s correspondence, communicated

to us by James B. Wilson.

Lemma 6.2 (Constructive version of Baer’s correspondence for matrix groups). Let � be an odd prime. Over

the inite ield F = F�� , Alternating Matrix Space Isometry is equivalent to Group Isomorphism for matrix

groups over F that are �-groups of class 2 and exponent � . More precisely, there are functions computable in time

poly(�,�, log |F|):

• � : Λ(�, F)� → M(� +� + 1, F)�+� and

• Alt : M(�, F)� → Λ(�, F)� (�2 )

such that: (1) for an alternating bilinear map A, the group generated by � (A) is the Baer group corresponding to A,
(2) � and Alt are mutually inverse, in the sense that the group generated by � (Alt(�1, . . . , ��)) is isomorphic to

the group generated by�1, . . . , �� , and conversely Alt(� (A)) is pseudo-isometric to A.

Proof. First, let � be a �-group of class 2 and exponent � given by� generating matrices of size � × � over F.
Then from the generating matrices of � , we irst compute a generating set of [�,�], by just computing all the
commutators of the given generators. We can then remove those redundant elements from this generating set in
time poly(log | [�,�] |, log |F|), using Luks’ result on computingwith solvablematrix groups[53].We then compute
a set of representatives of a non-redundant generating set of�/[�,�], again using Luks’s aforementioned result.
From these data we can compute an alternating bilinear map representing the commutator map of � in time
poly(�,�, log |F|).
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Conversely, let an alternating bilinear map be given by A = (�1, . . . , ��) ∈ Λ(�, F)� . From A, for � ∈ [�],
construct �� = [�1�� , . . . , ���� ] ∈ M(� ×�, F), where �� is the �th standard basis vector of F� . That is, the �th
column of �� is the �th column of � � . Then for � ∈ [�], construct

�̃� =



1 ��� 0
0 �� ��
0 0 ��


∈ GL(1 + � +�, F),

where �� ∈ F
� , and for � ∈ [�], construct

�̃ � =



1 0 ���
0 �� 0
0 0 ��


∈ GL(1 + � +�, F),

where � � ∈ F
� . Let� (A) be the tuple consisting of the �̃� and the �̃ � , and let Γ be the group they generate. Then

it can be veriied easily that, Γ is isomorphic to the Baer group corresponding to the alternating bilinear map
deined by A. In particular, [Γ, Γ] � F� � Z��� (isomorphism of abelian groups), and Γ/[Γ, Γ] � F� � Z��� . This

construction can be done in time poly(�,�, log |F|). □

Given the above lemma, we can present search- and counting-to-decision reductions for testing isomorphism
of a class of �-groups, proving Theorems A and B.

Proof of Theorem A. The search-to-decision reduction follows from Theorem A′, using the �� (�+�) -time
algorithm, with the constructive version of Baer’s Correspondence in the model of matrix groups over inite
ields (Lemma 6.2).
In more detail, given Lemma 6.2 we can follow the procedure in the proof of Theorem A′. For the given

�-groups, we compute their commutator maps. Then whenever we need to feed the decision oracle, we transform
from the alternating bilinear map to a generating set of a �-group of class 2 and exponent � with this bilinear
map as the commutator map. After getting the desired pseudo-isometry for the alternating bilinear maps, we can
easily recover an isomorphism between the originally given �-groups. □

Proof of Theorem B. For the counting-to-decision reduction, we basically follow the above routine, but
with a twist, because of the minor distinction between alternating matrix space isometry, and alternating
bilinear map pseudo-isometry. Let us briely explain this issue. Suppose from an alternating bilinear map
� : Z�� ×Z

�
� → Z�� we constructed a �-group of class 2 and exponent � �� , and there is a �-to-one correspondence

between automorphisms of �� and pseudo-autometries of � (we explain the value of � below). Let (�1, . . . ,��) ∈
Λ(�, �) be a matrix representation of � . If �� ’s are linearly independent, then for a pseudo-autometry (�, �) ∈
GL(�, �) × GL(�, �), given � there exists a unique � that makes (�, �) a pseudo-autometry. If �� ’s are not
linearly independent, say the linear span of �� ’s is of dimension�′, then the number of � such that (�, �) is
a pseudo-autometry is |GL(� −�′, �) |. The counting to decision reduction for Alternating Matrix Space

Isometry computes the number of � ∈ GL(�, �) so that there exists some � ∈ GL(�, �) such that (�, �) is a
pseudo-autometry. So it needs to be multiplied by a factor of |GL(� −�′, �) |.
Furthermore, there are automorphisms of �� that act trivially on both � (�� ) and ��/� (�� ), and hence

correspond to the trivial pseudo-autometry of � . Such automorphisms are in bijective correspondence with
Hom(Z�� ,Z

�
� ), hence there are precisely ��� of themÐthis is the factor of � mentioned above. For similar

reasons, if the �� span a space of dimension�′, we multiply by another factor of ��
′ (�−�′ ) to get the number of

automorphisms of �� . □
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6.3 Constructive Lazard’s correspondence and Thm. P

The Lazard correspondence [49] is a correspondence between certain classes of groups and Lie algebras, which
extends the usual correspondence between Lie groups and Lie algebras (say, over R) to some groups and Lie
algebras in positive characteristic. Here we state just enough to give a sense of it; for further details and exposition
we refer to Khukhro’s book [46] and Naik’s thesis [62]. While Naik’s thesis is quite long, it also includes a reader’s
guide, and collects many results scattered across the literature or well-known to the experts in one place, building
the theory from the ground up and with many examples.

Recall that a Lie ring is an abelian group � equipped with a bilinear map [, ], called the Lie bracket, which is (1)
alternating ([�, �] = 0 for all � ∈ �) and (2) satisies the Jacobi identity [�, [�, �]] + [�, [�, �]] + [�, [�,�]] = 0 for
all �,�, � ∈ � (in some sense the łderivativež of the associativity equation). Let �1 = �, and ��+1 = [�, �� ], which is
the subgroup (of the underlying additive group) generated by all elements of the form [�,�] for � ∈ �,� ∈ �� .
Then � is nilpotent if ��+1 = 0 for some inite �; the smallest such � is the nilpotency class. (Lie algebras are just
Lie rings over a ield.)

The correspondence between Lie algebras and Lie groups over R uses the BakerśCampbellśHausdorf (BCH)
formula to convert between a Lie algebra and a Lie group, so we start there. For non-commuting matrices �,� ,
���� ≠ ��+� in general (where the matrix exponential here is deined using the power series for �� ). Rather,
using commutators [�, �] = �� − ��, we have

exp(� ) exp(� ) = exp

(
� + � +

1

2
[�,� ] +

1

12
( [�, [�,� ]] − [�, [�,� ]]) −

1

24
[�, [�, [�,� ]]] + · · ·

)
,

where the remaining terms are iterated commutators that all involve at least 5 � s and � s, and successive terms
involve more and more. The BCH formula is a function of �,� , that is given by the ininite summation inside
the exponential on the RHS of the preceding equation. Applying the exponential function to a Lie algebra in
characteristic zero yields a Lie group. The BCH formula can be inverted, giving the correspondence in the other
direction.
In a nilpotent Lie algebra, the BCH formula has only initely many nonzero terms, so issues of convergence

disappear and we may consider applying the correspondence over inite ields or rings; the only remaining
obstacle is that the denominators appearing in the formula must be units in the ring. It turns out that the
correspondence continues to work in characteristic � so long as one does not need to use the �-th term of the
BCH formula (which includes division by �), and the latter is avoided whenever a nilpotent group has class
strictly less than � , or even when all subgroups generated by at most 3 elements have class strictly less than � .
While the correspondence does apply more generally, here we only state the version for inite groups. For any
ixed nilpotency class � , computing the Lazard correspondence is eicient in theory; for how to compute it in
practice when the groups are given by polycyclic presentations, see [21].
Let Grp�,�,� denote the set of inite groups of order �

� and class � , and let Lie�,�,� denote the set of Lie rings

of order �� and class � . We note that for nilpotency class 2, the Baer correspondence is the same as the Lazard
correspondence.

Theorem 6.3 (Lazard Correspondence for inite groups [49], see, e. g., [46, Ch. 9 & 10] or [62, Ch. 6]). For any
prime � and any 1 ≤ � < � , there are functions log : Grp�,�,� ↔ Lie�,�,� : exp such that (1) log and exp are inverses

of one another, (2) two groups �,� ∈ Grp�,�,� are isomorphic if and only if log(�) and log(� ) are isomorphic,

and (3) if � has exponent � , then the underlying abelian group of log(�) has exponent � . More strongly, log is an

isomorphism of categories Grp�,�,� � Lie�,�,� .

Part (3) can be found as a special case of [62, Lemma 6.1.2].
For �-groups given by � × � matrices over the inite ield F�� , we will need one additional fact about the

correspondence, namely that it also results in a Lie algebra of � × � matrices. (Being able to bound the dimension
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of the Lie algebra and work with it in a simple linear-algebraic way seems crucial for our reduction to work
eiciently.) In fact, the BCH correspondence is easier to see for matrix groups using the matrix exponential and
matrix logarithm; most of the work for BCH and Lazard is to get the correspondence to work even without the
matrices. In some sense, this is thus the łoriginalž setting of this correspondence. Though it is surely not new, we
could not ind a convenient reference for this fact about matrix groups over inite ields, so we state it formally
here.

Proposition 6.4 (cf. [46, Exercise 10.6]). Let � ≤ GL(�, F�� ) be a inite �-subgroup of exponent � , consisting of
� ×� matrices over a inite ield of characteristic � . Then log(�) (from the Lazard correspondence) can be realized as

a inite Lie subalgebra of �� × �� matrices over F� . Given a generating set for � of� matrices, a generating set for

log(�) can be constructed in poly(�, �, � log�) time.

Khukhro [46] gives the characteristic zero analogue of this result (minus the straightforward complexity
analysis) for the full group of upper unitriangular matrices as Exercise 10.6. One way to see Proposition 6.4 is to
use the characteristic zero result, apply the fact that these isomorphism are in fact equivalence of categories (and
thus hold for subgroups/subalgebras as well), and note that the same formulae in characteristic zero apply in
characteristic � so long as one never needs to divide by � . We now sketch the argument.

Proof sketch. First we use the standard embedding of GL(�, F�� ) into GL(��, F� ) (replace each element by
an � × � block which is the left regular representation of F�� acting on itself as an �-dimensional F� -vector space),
to realize � as a subgroup of GL(��, F� ). � is conjugate in GL(��, F� ) to a group of upper unitriangular matrices
(upper triangular with all 1s on the diagonal); this is a standard fact that can be seen in several ways, for example,
by noting that the group� of all upper unitriangular matrices in GL(��, F� ) is a Sylow �-subgroup, and applying
Sylow’s Theorem. (Note that we do not need to do this conjugation algorithmically, though it is possible to do
so [30, 39, 66]; this is only for the proof.) Thus we may write every � ∈ � as 1 + �, where the sum here is the
ordinary sum of matrices, 1 denotes the identity matrix, and � is strictly upper triangular. To see that we can
truncate the Taylor series for logarithm before the �-th term (thus avoiding needing to divide by �), note that
(1 + �)� = 1 since � is exponent � . We have (1 + �)� = 1� +

(�
1

)
� +

(�
2

)
�2 + · · · +

( �
�−1

)
��−1 + �� . Since these are

matrices over a ield of characteristic � , and � |
(�
�

)
for all 1 ≤ � ≤ � − 1, all the intermediate terms vanish and we

have that (1 + �)� = 1� + �� . Thus 1 = (1 + �)� = 1 + �� , so we get that �� = 0. Thus, in the the Taylor series for
the logarithm

log(1 + �) = � −
�2

2
+
�3

3
− · · ·

the last nonzero term is ��−1/(� − 1), so we may use this Taylor series even over F�� .
The main things to check are that the set log(�) := {log(1+�) : 1+� ∈ �} is closed under scalar multiplication,

matrix addition, and matrix commutator [�,� ] = �� − �� . Suppose �1, �2 are matrices in � , and write them
as �� = 1 + �� (� = 1, 2), as above. We recall that, because �

�
� = 0 from above, the power series for both log and

exp work to compute the matrix logarithm and exponential over F�� , respectively, and that the usual rules of
logarithms are satisied for a single matrix �: whenever � ∈ ��� (F� ) satisies �

�
= 0, we have log exp� = �,

exp log(1 +�) = 1 +�, exp(��) = (exp�)� for � ∈ Z, and log((1 +�)�) = � log(1 +�).

• Scalar multiplication: For � ∈ F� , we show that � log(1 +�1) is in log(�). This is easy to show, as it follows
directly from the rules of logarithms just mentioned: � log(1+�1) = log((1+�1)

� ) where on the right-hand
side we treat � as an integer in the range [0, � − 1].

• Addition: Let �� = log(1 + �� ) for � = 1, 2. We want to show that �1 + �2 is in log(�), or equivalently
that exp(�1 + �2) ∈ � . This follows from the irst inverse BCH formula ℎ1, which satisies exp(�̂1 + �̂2) =
ℎ1 (exp(�̂1), exp(�̂2)) for �̂� in the free nilpotent-of-class-� F�� -Lie algebra, and then we may apply the
homomorphism from the latter algebra to the subalgebra of M� (F�� ) generated by the �� to see that the
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same formula works. (We note, because a reviewer asked, that here we do not need this entire subalgebra to
be in {�−1 : � ∈ �}; the use of that subalgebra is just convenient for talking about algebra homomorphisms
in the proof. Rather, it suices that the preceding equation holds for these particular elements �� , which are
by deinition of the form �� − 1 for some matrices �� ∈ � .)

• Commutator: [log(1 +�1), log(1 +�2)]. A similar argument as in the previous case works, using the second
inverse BCH formula ℎ2, which satisies exp( [�̂1, �̂2]) = ℎ2 (exp(�̂1), exp(�̂2)).

Equivalently, we may note that the derivation of the inverse BCH formula in [46, 62] uses a free nilpotent
associative algebra as an ambient setting in which both the group (or rather, � such that 1 +� is in the group) and
the corresponding Lie algebra live; in our case, we may replace the ambient free nilpotent associative algebra
with the algebra of �� × �� strictly upper-triangular matrices over F� , and all the derivations remain the same,
mutatis mutandis. See, for example, [46, p. 105, łAnother remark...ž]. □

6.3.1 Class reduction in �-group isomorphism testing. Proposition 6.4 now allows us to prove Thm. P.

Proof of Thm. P. By the Lazard correspondence (reproduced as Theorem 6.3) two �-groups of exponent �
and class � < � are isomorphic if and only if their corresponding F� -Lie algebras are. By Proposition 6.4, we can
construct a generating set for the corresponding F� -Lie algebra by applying the power series for logarithm to the
generating matrices of � . This Lie algebra is thus a subalgebra of �� × �� matrices over F� , so we can generate a

basis for the entire Lie algebra (using the linear-algebra version of breadth-irst search; its dimension is ≤ (��)2)
and compute its structure constants in time polynomial in �,�, and � log� . Then use [31] to reduce isomorphism
of Lie algebras to 3-Tensor Isomorphism, and then use the fact that isomorphism of �-groups of exponent � and
class 2 given by a matrix generating set over F� is TI-complete [35] to reduce to the latter problem. □

7 CONCLUSION

In this paper, we gave irst-of-their-kind results around search-to-decision, counting-to-decision, and reductions
to hard instances in the context of Group Isomorphism. We focused on �-groups of class 2 (or more generally
small class) and exponent � , as these are widely believed to be the hardest cases of GpI. They also have the closest
connection with tensors.

We view this paper as the second in a planned series, focusing on isomorphism problems for tensors, groups,
polynomials, and related structures. Although Graph Isomorphism (GI) is perhaps the most well-studied iso-
morphism problem in computational complexityÐeven going back to Cook’s and Levin’s initial investigations
into NP (see [2, Sec. 1])Ðit has long been considered to be solvable in practice [57, 58], and Babai’s recent
quasi-polynomial-time breakthrough is one of the theoretical gems of the last several decades [4]. However,
several isomorphism problems for tensors, groups, and polynomials seem to be much harder to solve, both
in practiceÐthey’ve been suggested as diicult enough to support cryptography [42, 63]Ðand in theory: the
best known worst-case upper bounds are barely improved from brute force (e. g., [52, 68]). As these problems
arise in a variety of areas, from multivariate cryptography and machine learning, to quantum information
and computational algebra, getting a better understanding of their complexity is an important goal with many
potential applications.

In the irst paper in this series [35], we showed that numerous such isomorphism problems from many research
areas are equivalent under polynomial-time reductions, creating bridges between diferent disciplines. The Tensor
Isomorphism (TI) problem turns out to occupy a central position among these problems, leading us to deine
the complexity class TI, consisting of those problems polynomial-time reducible to the Tensor Isomorphism

problem. The gadgets and TI-completeness result from that irst paper in some cases opened the door, and in
other cases are used as subroutines, in the main results of the current paper.
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Finally, we list here some additional questions that we ind interesting and approachable. One question is
whether our tensor-based methods here can be extended or combined with other methods to get analogous
results in wider classes of groups; for isomorphism algorithms, something along these lines was proposed by
Brooksbank, Grochow, Li, Wilson, & Qiao [13], but there are many interesting open questions in this direction.
Getting the results of this paper to work in the Cayley table model would also be interesting from the

complexity-theoretic perspective; the necessary ingredients are discussed in Remark 1.2.
Lastly, we mention that extending the results of the present paper, [31], and [35] to rings beyond ields would

be very interesting. In particular, working with tensors over Z/��Z is an important step towards extending the
results of this paper to �-groups of class 2 without restricting them to exponent � . (This is particularly important
when � = 2, as groups of exponent 2 are abelian, so the hardest instances of 2-groups, rather than ł�-groups of
class 2 and exponent �ž with � = 2, are often taken to be 2-groups of class 2 and exponent four.)

It seems conceivable that many of our arguments could extend to tensors over local ringsÐthose with a unique
maximal idealÐas many of our arguments are rank-based, and rank still has nice properties over local rings (e.g.
Nakayama’s Lemma). In particular, if � is a ring and � a maximal ideal, then �/� is a ield; in a local ring, there
is a unique maximal ideal, so the ield �/� is canonically associated to �, and one can talk cleanly about rank
and dimension of �-modules considered over the ield �/�. Besides Z/��Z, another local ring of interest is the
ring F[[�]] of power series in one variable over a ield F; a tensor over F[[�]] is essentially a 1-parameter family
of tensors over F, so studying tensor problems over F[[�]] could have applications to border rank and geometric
complexity theory.
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