
Value Iteration Algorithm for Solving Shortest Path Problems with
Homology Class Constraints

Wenbo He, Yunshen Huang, Jinran Qie, and Shen Zeng

Abstract—Path planning is a fundamental problem in robotics
that aims to find an optimal path for a system to move on while
avoiding obstacles in the environment. Often, a feasible path
connecting the start and target point with the shortest length is
highly desirable. Additionally, in scenarios such as drone racing
or surveillance, topology constraints may arise. In this paper,
we propose a novel method to address the shortest path problem
with homology class constraints in both 2D and 3D environments.
We first define the phase change of the path with respect to
2D obstacles and then apply the same technique to a class of
super-toroid obstacles compressed by an embedding map. To
synthesize the shortest path, we leverage the visibility graph and
the Value Iteration Algorithm (VIA). Finally, we demonstrate the
effectiveness of our approach with various simulation examples.

I. INTRODUCTION

Path planning problems consider synthesizing a collision-
free path within which to navigate a moving object in a
cluttered environment. This type of problem is crucial for
controlling mobile robots and autonomous systems and has
been intensively studied [1]. Given a system with very simple
dynamics, various sample-based methods can be deployed
for handling nonconvex environments, such as probabilis-
tic roadmaps (PRM) [2] and rapidly-exploring random trees
(RRT) [3]. Some variations further take optimality into ac-
count, such as RRT∗ [4]. When system dynamics become
more complicated, some optimization-based methods, which
include iterative (LQR) [5] and sequential homotopy quadratic
programming (SHQP) [6], can be leveraged. Despite the suc-
cessful applications, they are unable to handle the cases where
topological constraints are imposed, such as homotopy class
constraints and homology class constraints.

Two trajectories belong to the same homotopy class if
they share the same initial and target state, and they can
continuously deform to each other without intersecting any
obstacles. Homotopy class constraints can be encountered in,
for instance, drone racing, where agents are required to fly
through gates in a particular order. Multiple works are designed
for solving such planning problems with homotopy class con-
straints. For instance, search-based methods [7] [8] are able to
classify homotopy classes and synthesize feasible trajectories
fulfilling the topological requirements. For non-trivial system
dynamics, effective approaches like Mixed-Integer Quadratic
Program (MIQP)-based method [8], Auxiliary Energy Reduc-
tion (AER) [9], and Homotopy Method for Homotopy Class
Constraints (HMHCC) [10] are proposed.

Generally speaking, two trajectories belong to the same ho-
mology class if they are homotopy equivalent regarding every

Department of Electrical and System Engineering, Washington Uni-
versity, St. Louis, MO 63130, USA, {wenbo.he, yunshen.huang,
jinran.qie, s.zeng}@wustl.edu. This work was supported by the
NSF grant CMMI-1933976.

single obstacle. Again, in drone racing, trajectories that connect
the same initial and target locations and pass through every
gate in arbitrary order constitute a homology class. Although
homology class constraints can be considered as the loose
representation of homotopy class constraints, the correspond-
ing optimization is much harder to address, as the feasible
solution set is no longer compact. Therefore, the global search-
based algorithm is preferable. Pioneering methods based on H-
signature are proposed to generate optimal trajectories under
homology class constraints for both 2D [11] and 3D [12] envi-
ronments. Despite the capability of dealing with obstacles with
general shapes, H-signature-based methods have to be defined
differently depending on the environmental dimensionality,
which hinders efficiency. In this paper, we proposed a novel
approach that solves the constrained shortest path problem for
both 2D and 3D environments in a unified manner. For 3D
cases, we first compress the super-toroid-shaped obstacles into
a 2D counterpart. We then classify the homology class of the
2D trajectory by adopting the idea of phase change. Having
done so, we are able to compute the shortest path fulfilling the
topological requirement using a visibility graph and VIA. The
analysis of our method suggests the potential generalization
to higher dimensional environments with obstacles that are
properly described.

This paper is organized as follows. Section II defines the
homotopy and homology class, as well as obstacles in different
dimensions. Then we introduce the proposed method in both
2D and 3D environments and Value Iteration Algorithm in
Section III. Numerical Results are shown in Section IV and
we conclude the paper in Section V.

II. MATHEMATICAL PRELIMINARIES AND
PROBLEM STATEMENT

A. Homotopy Class and Homology Class for Static Obstacles

In this section, we begin with the definition of homotopy
class for trajectories and depict the connection between ho-
motopy and homology. Two continuous trajectories belong to
the same homotopy class if and only if they have identical
start and target points and they can be smoothly deformed
into one another without intersecting any obstacles, as shown
in Figure 1. The formal definition is shown below.

Definition 1. Two continuous trajectories r1(t) : [0, 1]→ Rn

and r2(t) : [0, 1] → Rn belong to the same homotopy class
if and only if r1(0) = r2(0), r1(1) = r2(1), and there exists
a continuous function H(s, t) : [0, 1] × [0, 1] → Rn which
satisfies H(0, t) = r1(t), H(1, t) = r2(t) and H(s, t) never
intersects any obstacles for all s ∈ [0, 1] and t ∈ [0, 1].

Considering a 2-dimensional space with a single obstacle,
the homotopy class of a trajectory can be quantified from the
perspective of phase change. Given a trajectory r(t) : [0, 1]→
R2 and a fixed point oi representing the center point of the
obstacle, the responding phase change regarding the obstacle
is defined as

p(r) = θ(r(1)− oi)− θ(r(0)− oi), (1)

where θ : R2 → R is the unwrapped angle. It implies that two
trajectories with identical start and target points belong to the
same homotopy class if and only if they own the same phase
change.

Fig. 1. The three curves are the trajectories connecting identical starting and
target points, and grey rectangles are obstacles. According to the definition
of the homotopy class, the two blue trajectories are homotopy equivalent, but
the green one belongs to a different homotopy class.

In a cluttered environment, the phase change with respect
to n obstacles is given by p(r) = [p1(r), . . . , pn(r)]

T , where
pi(r) is the phase change regarding the ith obstacle. Generally,
for an arbitrary dimensional space with multiple obstacles,
trajectories belong to the same homology class if they have
the same p(r), i.e., they belong to the same homotopy class
regarding every individual obstacle. However, having the same
phase change is only a necessary condition for homolopy as
shown in Figure 2, and the formal definition is given below.

Definition 2. Two continuous trajectories r1(t) : [0, 1]→ Rn

and r2(t) : [0, 1]→ Rn belong to the same homology class if
and only if r1(0) = r2(0), r1(1) = r2(1), and r1(t) together
with r2(t) with the opposite orientation forms the complete
boundary of a 2-dimensional manifold embedded in Rn not
containing any obstacles.

Although homology is a loose representation of homotopy
in many applications, finding the optimal trajectory belonging
to a specified homology class is even more challenging than
that of the homotopy counterpart. It can be seen from the
fact that a homopoty class can be treated as a compact set,
as every element can continuously deform to one another.
Therefore, starting from a random feasible trajectory, one can
reach the local or even global optimum of such homopoty
class by leveraging the gradient information. Nevertheless, a
homology class is usually a disconnected set that contains
various homotopy classes, which prevents the implementation
of the gradient method, and thus a global searching mechanism
is needed. The objective of this paper is to design the shortest
trajectory that is obstacle-free and belongs to a particular
homology class in both 2D and 3D space.

B. Static Obstacle Representations

For practical purposes, we consider M numbers of static ob-
stacles in i) a 2-dimensional (2D) and ii) a 3-dimensional (3D)

Fig. 2. The two curves are the trajectories connecting identical starting and
target points. They belong to the same homology class but different homotopy
classes.

cluttered environment. In case i), though the proposed method
can handle obstacles with arbitrary shapes, we approximate
them using super-ellipse [6] that is aligned with the case of
the 3D environment. In case ii), we consider a type of obstacle
with a hole connecting the two opposite facets, which emulates
the obstacle that a moving object needs to pass through.

In 2D environments, the collision avoidance constraints
regarding the ith obstacle can be written as[

x̂
ŷ

]
:= Mi diag(eix, eiy)

[
x
y

]
+ bi, (2)

x̂ki + ŷki −Ri
ki ≥ 0, (3)

where [x, y] denotes the allowed spatial trajectory of the
dynamical system, Mi is the rotation matrix, eix, eiy ≥ 1
represent the spatial expansion factor along each axis, bi is
the offset of the center of the obstacle, Ri > 0 is a size
constant and the exponent ki is a positive even number, which
regulates the shape of the obstacle. Particularly, when ki = 2,
the obstacle is a circle or ellipse, otherwise, it would be a
rounded square, as shown in Figure 3.

Fig. 3. One obstacle approximation with bi = (0, 0), eix = eiy = Ri = 1
and Mi be the identical matrix. As k increases, the obstacle looks more like
a rounded square.

In 3D environments, we consider a group of obstacles with
super-toroid shapes, where the ith obstacle is described byx̂ŷ

ẑ

 := Mi diag(eix, eiy, eiz)

xy
z

+ bi, (4)

ẑmi + (Ri − (x̂ni + ŷni)
1
ni)mi − ri

mi ≥ 0, (5)

where Ri is the distance from the center of the tube to the
center of the obstacle, ri is the radius of the tube, and the rest
of the parameters are defined in a similar way to that in (2).
It is noted that mi and ni have to be positive even numbers.
Some examples of the obstacle are shown in Figure 4

Fig. 4. 3-dimensional obstacles with (n,m) = (2, 2), (2, 8), (8, 8) from left
to right, respectively.

III. METHODS

In this section, we describe our strategy to synthesize the
shortest obstacle-free path within a specific homology class.
Our method relies on the phase change representation of the
homology class that is well-defined in 2D space, which will
be illustrated in Section III-A. In Section III-B, we prove that
the interested type of 3D obstacles can be simply compressed
into a 2D space. In both cases, we transform feasible paths
into a graph and find the shortest one using the value iteration
shown in Section III-C.

A. 2D Environment

To better present the corresponding homotopy class of a
path, we associate a phase change with each point of the
path. More specifically, given a path and M obstacles, we
define a node of the path as a vector (x, y, p1, . . . , pM), where
(x, y) represents the position of the node and pi ∈ R denotes
the corresponding phase change regarding the ith obstacle.
Because of the conservation of the phase change, given a
specified path, the phase change regarding an obstacle only
relies on the number of the encirclement around it that must
be an integer. Therefore, the difference in the phase change of
the two paths with the same ending points has to be an integral
multiple of 2π. As a result, we are able to define a straight
line, which connects the given start point xstart and (x, y), as a
base path with a base phase change defined as (p̄1, . . . , p̄M).
It is noted that such a base path does not have to be feasible in
terms of obstacles. According to the base path, the node located
at (x, y) of any feasible path, which starts from xstart, can can
be expressed as (x, y, p̄1 + s12π, . . . , p̄M + sM2π), si ∈ Z.
For simplicity, we use (x, y, s1, . . . , sM) to define the state in
the rest of the paper and (s1, . . . , sM) is the homology class
label, where an example is shown in Figure 5. Likewise, if the
line connects (xa, ya, sa1 , . . . , s

a
M) and (xb, yb, sb1, . . . , s

b
M),

we define the label-wise phase change as (∆s1, . . . ,∆sM) =
(sa1 − sb1, . . . , s

a
M − sbM).

(0,0,0)

(x,y,1)
(x,y,0)

(x,y,-1)

Fig. 5. Three different paths connecting (0, 0) and (x, y) belong to different
homology classes, where the corresponding nodes at (x, y) are marked as
well.

Equipped with the definition above, we proposed a graph
search-based method to find the shortest path for moving an
agent from the start point to the target, where the agent is
assumed to be holonomic, i.e., any path is dynamically feasible
to the agent. Specifically, we consider a visibility graph that is
denoted as G = (V, E), where V is the set of sampled states
and E contains obstacle-free connections between these states.
Given an interested point (x, y), we obtain (x, y, s1, . . . , sM)
as sampled states with si ∈ {−Γ,−Γ+1, . . . ,Γ} and Γ ∈ Z+

is the hyper-parameter that determines the size of the sample
space. Likewise, we say a state is legal iff −Γ ≤ si ≤ Γ
for all i ∈ {1, . . . ,M}. As such, given N interested points,
the cardinality of the sample space is |V| = N(2Γ + 1)M ,
whose value significantly impacts the time complexity of graph
search-based algorithms. To reduce the number of interested
points without highly degenerating the performance of the
proposed method, we sample locations around obstacles rather
than discretize the space into a grid. Around the obstacles
described in Section II-B, we adopt the sampling strategy
depicted in the following way[

x
y

]
sample

=diag(1/eix, 1/eiy)M−1
i(

Ri + δ

(cos(θ)ki + sin(θ)k1)1/ki

[
cos(θ)
sin(θ)

]
− bi

)
,

(6)
where θ ∈ {0, 2π/Ni, . . . , 2(Ni − 1)π/Ni} is the sampling
angle, Ni is the number of samples around the obstacle, and
δ > 0 is a hyper-parameter that ensures the sampled points
residing outside the obstacle. The algorithm for building the
visible graph is summarized in Algorithm 1. Note that the
graph assumes that each state is self-connected. Given the
graph G, the shortest path can be obtained by value iteration
that will be described in Section III-C.

Algorithm 1 Construct Visibility Graph
Require: Obstacle description and hyper-parameter Γ
1: Initialize an empty graph G = (V, E) and a potions set L
2: Sampled points according to (6), and store them in L
3: Push the start and target points into L
4: for each pair of points ((xa, ya), (xb, yb)) from L
5: if the straight line connecting the pair is infeasible
6: continue
7: Get phase change (∆s1, . . . ,∆sM) of the straight line
8: for each legal (s1, . . . , sM)
9: if (s1 +∆s1, . . . , sM +∆sM) is also legal
10: Add the edge between (xa, ya, s1, . . . , sM)

and (xb, yb, s1 +∆s1, . . . , sM +∆sM) to G
11:return G

B. 3D Environment

It is noted that the graph-based method proposed above
depends on the phase change for classifying homology classes.
Hereby, it is severely restricted and thus only applicable to
planar systems. To generalize the method to 3-dimensional, as
defined in Section II-B, we consider a certain type of 3D ob-
stacle equipped with a hole, where the agent can pass through.

Because the coordinate transformation between (x̂, ŷ, ŷ)⊤ and
(x, y, z)⊤ is invertible in (4), in this section and without loss
of generality, we only discuss normalized obstacles

zmi + (Ri − (xni + yni)
1
ni)mi − ri

mi ≥ 0. (7)

We consider an embedding mapping fi : R3 → R2

fi

xy
z

 =

[
(xni + yni)

1
ni

z

]
:=

[
xe
i

yei

]
, (8)

which compresses the ith 3D obstacle to a super-ellipse
centered at (Ri, 0) with the radius ri and the exponent mi. As
a result, the phase change technique proposed in Section III-A
can be safely applied.

Lemma 1. Given a trajectory r(t) : [0, 1]→ R3 and the super-
toroid obstacle, the trajectory is obstacle-free iff the embedded
trajectory (xe

i (t), y
e
i (t))

⊤
= fi (r(t)) is obstacle-free for all

t ∈ [0, 1] in the embedding space:

(Ri − xe
i (t))

mi + yei (t)
mi − rmi

i ≥ 0.

Proof. Replacing xe
i (t) and yei (t) by (x(t)ni + y(t)ni)

1
ni and

z(t) in (2), respectively, the obstacle-free condition for 2D
super-ellipse is identical to the one of that in 3D space.

0.0 0.5 1.0 1.5 2.0 2.5 3.0

(xm+ ym)1/m

−2.0

−1.5

−1.0

−0.5

0.0

0.5

1.0

1.5

2.0

z

Fig. 6. A super-toroid obstacle and three trajectories are shown in the left
figure and their shapes in the embedding space are shown in the right figure,
where the homotopy property of three trajectories still holds.

As such, one can easily evaluate the phase change of a
trajectory and further the homotopy relationship of multiple
trajectories in the embedding space, which is shown in Fig-
ure 6. Having the same phase change in the embedding space is
the necessary and sufficient condition for two trajectories to be
within the same homotopy class when only one obstacle exists
as shown in the corollaries below. If trajectories are homotopy
equivalent towards every single obstacle, then they belong to
the same homology class.

Corollary 1.1. If two continuous trajectories r1(t) : [0, 1] →
R3 and r2(t) : [0, 1] → R3 belong to the same homotopy
class regarding the super-toroid obstacle, then their embedding
trajectories re1(t) and re2(t) are also homotopy equivalent
regarding the embedded obstacle.

Proof. There exist a continuous function H(s, t) : [0, 1] ×
[0, 1] → R3 that H(s, t) never inside the obstacle, H(0, t) =
r1(t) and H(1, t) = r2(t) because r1 and r2 are homotopy
equivalent. We define He(s, t) = fi (H(s, t)), then He(0, t) =

re1(t) and He(1, t) = re2(t). According to Lemma 1, He(s, t)
is obstacle-free, and the function He(s, t) is still continuous
because the embedding function fi is continuous. Therefore
re1(t) and re2(t) are also homotopy equivalent.

Corollary 1.2. If two continuous trajectories r1(t) : [0, 1] →
R3 and r2(t) : [0, 1]→ R3 have the same initial and terminal
points, and their embedded trajectories re1(t) and re2(t) are
homotopy equivalent regarding the compressed obstacle, then
r1(t) and r2(t) belong to the same homotopy class towards
the original 3-dimensional super-toroid obstacle.

Proof. We define the complementary embedding mapping

f c
i

xy
z

 =

(xni + yni)
1
ni

z
arctan(y, x)

 :=

xe
i

yei
zci

 ,

then f c
i is the generalized cylindrical coordinate transforma-

tion. We kindly assume r1(t) and r2(t) never attach the z-
axis, then their complementary trajectories rc1(t) = f c

i (r1(t))
and rc2(t) = f c

i (r2(t)) are also continuous and well-defined.
Because re1(t) and re2(t) are homotopy equivalent, there exists
a continuous function H(s, t) that is obstacle-free and connects
re1(t) and re2(t). Then we define

Hc(s, t) = f̄ c
i

 H(s, t)1
H(s, t)2

(1− s) · zci (r1(t)) + s · zci (r2(t))

 ,

where f̄ c
i : R3 → R3 is the mapping from the generalized

cylindrical coordinate to the original Cartesian coordinate,
thus Hc(0, t) = r1(t) and Hc(1, t) = r2(t). According to
Lemma 1, Hc(s, t) is obstacle-free. Because f̄ c

i is continu-
ous, Hc(s, t) is also continuous. Hence r1(t) and r2(t) are
homotopy equivalent.

Similar to the 2D case, the state in a 3D environment is
defined as (x, y, z, s1, . . . , sM), where (x, y, z) is the space
location and (s1, . . . , sM) is the homology class label calcu-
lated in the 2-dimensional embedding space. To decrease the
number of sampled states, we uniformly sample nodes around
the obstacle as shown in Algorithm 2, and then construct the
graph in the same way as Algorithm 1 except that the trajectory
and obstacles need to the transformed to the embedding space
according to (8) to calculate the phase change.

C. Optimization Method: Value Iteration

Given an undirected graph built in the previous sections,
the Value Iteration Algorithm (VIA) will then be implemented
to yield the shortest path. Although VIA has been widely
applied in stochastic shortest path problems, it is less efficient
compared with Dijkstra algorithm in deterministic situations.
But we will show that the format of VIA can be embarrassingly
paralleled and therefore outperform the Dijkstra algorithm on
multi-core CPU or GPU.

Shortest path problems based on a graph G = (V, E) can
be converted to reinforcement learning (RL) problems, which
are infinite-horizon Markov decision processes (MDP) with a
terminal state. To begin with, we use the vertex set G(V) to
represent the state set of RL, and A(si) to denote the feasible

Algorithm 2 Sample locations around the 3D obstacle
Require: obstacle parameters, hyper-parameter δ
1: Initialize empty set S
2: for θ ∈ {θ1, . . . , θn} and s ∈ {s1, . . . , sn}
3: λ← (ri + δ)/((cos(s)mi + sin(s)mi)1/mi

4: µ← ((cos(θ)ni + sin(θ)ni)1/ni

5:

x̂ŷ
ẑ

←
(Ri + λ sin(s)) cos(θ)/µ
(Ri + λ sin(s)) sin(θ)/µ

λ cos(s)


6:

xy
z

← diag(1/eix, 1/eiy, 1/eiz)M
−1
i

x̂ŷ
ẑ

− bi


7: Put (x, y, z)T to S
8:return S

actions set of the state si. An action ai,j ∈ A(si) will transfer
the state from si to sj . Moreover, the return function of the
state transfer is defined as

R(si, ai,j) =

{
Λ− E(si, sj), if sj is sT
−E(si, sj), else

(9)

where sT is the terminal state, Λ ∈ R is a large enough
value and E(si, sj) is the Euclidean distance of two states’
locations. A policy π(a|s) describes a deterministic desired
action for each state. Starting from an initial state s1, the
policy π provides an infinite state sequence {s1, s2, . . . } with
return value sequence {r1, r2, . . . }. We define γ ∈ (0, 1) as
the discount factor, then the value function is defined as

V π(s1) = r1 + γr2 + γ2r3 + · · · = r1 + γV π(s2) (10)

Under the optimal policy π′ which maximize the value function
V π′

for every states, we have V π′
(sT) = Λ/(1 − γ) and

V π′
(s0) =

∑n
i=0 γ

iE(si, si+1)+γn+1V π′
(sT), where {si}ni=0

forms a feasible trajectory from s0 to sT for any s0 ∈ V . If
we choose γ close enough to 1, then {si}ni=0 is the shortest
path, and V π′

(s0) approaches V π′
(sT) minus the length of

the shortest path from s0 to xT . Note that Λ should be larger
than the longest shortest path from every state, otherwise the
optimal state sequence of some states would trivially stay in
place. The optimal trajectory is hereby given by

si+1 = argmax
sj

(
−E(si, sj) + γV π′

(sj)
)
, (11)

where si and sj should be connected directly in the graph and
therefore ai,j ∈ A(si).

To obtain the optimal value function V π′
, we start from a

initial estimated value function V π
0 and update it iteratively:

V π
n+1(si) = max

ai,j∈A(si)
(R(si, ai,j) + γV π

n (sj)) , (12)

which is referred to as Value Iteration as Algorithm 3. Al-
though it’s proven that V π

n will converge to V π′
for any

initial estimate, the reasonable initial value will dramatically
reduce the iterations it needs. In practice, we choose V π

0 (sT) =
Λ/(1−γ) and V π

0 (s) = 0 for other states. Within each iteration,
the updating processes of states are independent, therefore
there is no effort needed to separate the updating process into
a number of parallel tasks and reaches linear speedup.

Algorithm 3 Value Iteration Algorithm (VIA)
Require: a small number θ
1: Initialize V π

0 , n← 0
2: do
3: ∆← 0
4: for each si ∈ V:
5: Update V π

n+1(si) according to (12)
6: ∆← ∆+ |V π

n+1(si)− V π
n (si)|

7: n← n+ 1
8: while ∆ > θ
9: return V π

n

IV. NUMERICAL RESULTS

We evaluate the performance of the proposed method on
various 2D and 3D cases, and compare the efficiency with
cutting-edge algorithms [12]. For all simulations, we set the
sample distance δ = 0.5 in (6) and Algorithm 2, Γ = 1
for sampling candidate states, and Λ = 1000, γ = 0.999
in Algorithm 3. Figure 7 demonstrates the resulting shortest
trajectories with respect to the given homology class. The 3-
dimensional case is shown in Figure 8 with two obstacles.

0 50 100

(0, 0, 0)

0

25

50

75

100

1

2
3

0 50 100

(0, 1, 1)

0

25

50

75

100

1

2
3

0 50 100

(0, 1, -1)

0

25

50

75

100

1

2
3

0 50 100

(1, -1, -1)

0

25

50

75

100

1

2
3

Fig. 7. Shortest path with respect to the given homology class. The labels
of obstacles are marked on it and the target homology label (s1, s2, s3) is
shown below each figure.

The proposed method can be separated into two steps: graph
building and then finding the shortest path using VIA. Given
the graph, one can assign different states as the final states
and then design the shortest path accordingly. Therefore, we
demonstrate the efficiency of these two steps separately. During
building the graph, there exists a trade-off between precision
and efficiency. Although, given a fixed number of obstacles, the
number of G(V) will be squared with an increased number of
sampled points. Fortunately, Algorithm 1 can also be paralleled
and, hereby, dramatically decrease the computational time.

Figure 9 demonstrates the cost time of getting homology
labels in 3D environments. H-signature methods are required
to discretize the skeleton of obstacles to line segments, and
the low number of segments may lead to inaccurate modeling
and wrong labels. The proposed method can achieve fast

Fig. 8. Four trajectories start from (0, 0, 0) to (100, 100, 100) with the
terminal homology class label (s1, s2) = (±1,±1), respectively.

100 101 102 103

Number of Obstacles

10−1

100

101

102

C
o
m

p
u
ta

ti
o
n
 T

im
e
 [

m
s
]

H-signature(segments=5)

H-signature(segments=10)

H-signature(segments=20)

Phase Change

Fig. 9. Comparison of the computation time of getting the homology class
label in a 3D environment with random obstacles between H-signature and
the proposed phase-change-based method.

labeling without discretizing obstacles. Figure 10 illustrates the
computation time of the proposed method to find the shortest
path from (0, 0, 0) to (1, 1, 1) with the homology class label
(1, . . . , 1). Obstacles are randomly generated in the 3D space,
and 100 locations are sampled for each obstacle. For parallel
computing VIA using OpenMP, the 6-core Intel 9400F CPU is
used. For the case using CUDA, the NVIDIA GTX 1660 GPU
is leveraged. As the number of sampled locations increases
linearly, the number of possible homology classes and the
number of sampled states increase exponentially, therefore the
calculation time also increase exponentially.

V. CONCLUSION

In this paper, we introduced a novel path-planning method
with homology class constraints that can handle 2-dimensional
and 3-dimensional environments in a unified manner. The
idea of the proposed method is to first sample states around
obstacles and connect them according to the phase change to
build the graph. For 3-dimensional super-toroid obstacles, we
defined the embedding space in which the phase change can
be calculated in a manner similar to the case of 2-dimensional
obstacles. Then Value Iteration Algorithm is leveraged to find
the shortest path in the synthesized graph. The analysis of the
embedding function suggests that even higher dimensional ob-

1 2 3 4 5 6

Number of Obstacles

101

102

103

104

C
o
m

p
u
ta

ti
o
n
 T

im
e
 [

m
s
]

Graph Building

Dijkstra Algorithm

VIA(OpenMP)

VIA(CUDA)

Fig. 10. Comparison of the computation time in a 3D environment with
random obstacles between Dijkstra Algorithm and VIA. The complete com-
putation time is the sum of the graph-building time and the searching time.

stacles can also be mapped to 2-dimensional embedding space
and therefore be processed by the proposed method if it has a
proper formulation. This is planned to be investigated in future
work. On the other hand, the proposed global searching method
lacks efficiency when the number of possible homology classes
increases, which is also planned to be addressed in the future.

REFERENCES

[1] A. Gasparetto, P. Boscariol, A. Lanzutti, and R. Vidoni, “Path planning
and trajectory planning algorithms: A general overview,” Motion and
Operation Planning of Robotic Systems: Background and Practical
Approaches, pp. 3–27, 2015.

[2] L. E. Kavraki, P. Svestka, J.-C. Latombe, and M. H. Overmars, “Prob-
abilistic roadmaps for path planning in high-dimensional configuration
spaces,” IEEE transactions on Robotics and Automation, vol. 12, no. 4,
pp. 566–580, 1996.

[3] J. J. Kuffner and S. M. LaValle, “RRT-connect: An efficient approach
to single-query path planning,” in Proceedings 2000 ICRA. Millennium
Conference. IEEE International Conference on Robotics and Automation.
Symposia Proceedings (Cat. No. 00CH37065), vol. 2. IEEE, 2000, pp.
995–1001.

[4] D. J. Webb and J. Van Den Berg, “Kinodynamic RRT*: Asymptotically
optimal motion planning for robots with linear dynamics,” in 2013 IEEE
international conference on robotics and automation. IEEE, 2013, pp.
5054–5061.

[5] J. Chen, W. Zhan, and M. Tomizuka, “Autonomous driving motion plan-
ning with constrained iterative LQR,” IEEE Transactions on Intelligent
Vehicles, vol. 4, no. 2, pp. 244–254, 2019.

[6] K. Bergman and D. Axehill, “Combining homotopy methods and numer-
ical optimal control to solve motion planning problems,” in 2018 IEEE
Intelligent Vehicles Symposium (IV). IEEE, 2018, pp. 347–354.

[7] Y. Guo and L. E. Parker, “A distributed and optimal motion planning
approach for multiple mobile robots,” in Proceedings 2002 IEEE Inter-
national Conference on Robotics and Automation (Cat. No. 02CH37292),
vol. 3. IEEE, 2002, pp. 2612–2619.

[8] S. Bhattacharya, “Search-based path planning with homotopy class con-
straints,” in Proceedings of the AAAI conference on artificial intelligence,
vol. 24, no. 1, 2010, pp. 1230–1237.

[9] W. He, Y. Huang, and S. Zeng, “Motion planning with homotopy
class constraints via the auxiliary energy reduction technique,” in 2022
American Control Conference, ACC 2022, Atlanta, GA, USA, June 8-10,
2022. IEEE, 2022, pp. 4933–4938.

[10] W. He, Y. Huang, J. Wang, and S. Zeng, “Homotopy method for optimal
motion planning with homotopy class constraints,” IEEE Control Systems
Letters, vol. 7, pp. 1045–1050, 2022.

[11] S. Kim, K. Sreenath, S. Bhattacharya, and V. Kumar, “Optimal trajectory
generation under homology class constraints,” in 2012 IEEE 51st IEEE
Conference on Decision and Control (CDC). IEEE, 2012, pp. 3157–
3164.

[12] S. Bhattacharya, M. Likhachev, and V. Kumar, “Topological constraints
in search-based robot path planning,” Autonomous Robots, vol. 33, no. 3,
pp. 273–290, 2012.

