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Homotopy Method for Optimal Motion Planning
With Homotopy Class Constraints

Wenbo He , Yunshen Huang , Jie Wang , and Shen Zeng

Abstract—Optimal motion planning is an essential task
within the field of control theory. Therein, the key task is to
synthesize optimal system trajectories that pass through
cluttered environments while respecting given homotopy
class constraints, which is critical in many topology-
restricted applications such as search and rescue. In this
letter, we introduce a novel optimal motion planning tech-
nique with 2-dimensional homotopy class constraints for
general dynamical systems. We first initialize an optimal
system trajectory regardless of obstacles and homotopy
class constraints, and design an auxiliary obstacle tra-
jectory for each obstacle such that the system trajectory
belongs to the desired homotopy class regarding these
auxiliary obstacle trajectories. During the procedure of
deforming the auxiliary obstacle trajectory to the origi-
nal counterparts, we propose a homotopy method based
on nonlinear programming (NLP) such that the synthe-
sized optimal system trajectories fulfill the aforementioned
homotopy class constraints. The proposed method is val-
idated with numerical results on two classic nonlinear
systems with planar static and moving obstacles.

Index Terms—Optimal motion planning, homotopy class
constraints, nonholonomic systems.

I. INTRODUCTION

MOTION planning aims to provide a motion strategy that
drives a dynamic system from a given starting state to

a desired target state without colliding with obstacles. It has
attracted significant research interest in the past few decades
and is still actively studied in the robotics field. In this letter,
we additionally consider the minimum energy consumption
during the movements for optimal control.

For simple holonomic systems whose feasible moving
dimension is equal to the work space’s dimension, many
sampling-based motion planning algorithms can be deployed
even in a nonconvex environment, such as probabilistic
roadmaps (PRM) [1] and rapidly-exploring random trees
(RRT) [2]. When systems are nonholonomic, methods such as
iterative method [3] and sequential homotopy quadratic pro-
gramming (SHQP) [4] can be leveraged to address the motion
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planning problems. However, these algorithms lack the consid-
eration of possible topological constraints that are commonly
seen. For instance, in a drone surveillance task, a quadcopter is
commanded to patrol a building by encircling it twice before
reaching the landing spot. Such two encirclements in a spec-
ified direction, which are critical for this surveillance task, is
formally defined as a homotopy class constraint. Moreover,
homotopy class constraints can be leveraged to find the global
optimal trajectory in a cluttered environment [5].

Several pioneering works have shown promising results
in dealing with motion planning problems with homotopy
class constraints. Geometric methods [6] are capable of clas-
sifying homotopy classes in two-dimensional environments.
Furthermore, the search-based method [7] improves the clas-
sification in higher-dimensional space and synthesizes feasi-
ble trajectories fulfilling the homotopy class constraints. In
addition, a PRM-based method [8] and Mixed integer pro-
gramming (MIP) algorithms [5], [9] are proposed. The authors
of [7] leverage h-signature to generate optimal trajectories that
fulfill the homotopy class constraints. However, the applica-
tion of these pioneering algorithms is limited to linear systems
or extremely simplified nonlinear systems, which may hinder
their practicality. In [10], we proposed the auxiliary energy
reduction technique for addressing motion planning problems
with homotopy class constraints, which is applicable to general
nonlinear systems. However, it only focuses on the feasibility
of the trajectory, whereas no optimality is considered.

In this letter, we propose a novel direction that addresses
the optimal motion planning task with 2-dimensional homo-
topy class constraints for general nonlinear nonholonomic
dynamical systems with both static and moving obstacles. We
first initialize an optimal trajectory of the dynamical system
without considering obstacles, then we design the auxiliary
trajectories of obstacles such that the initial system trajectory
is collision-free and belongs to the desired homotopy class
regarding the auxiliary obstacle trajectories. Next, we iter-
atively deform auxiliary obstacle trajectories to the original
ones and determine the optimal system trajectory accord-
ingly. Having done so, the resulting trajectory is feasible
and satisfies homotopy class constraints regarding the original
obstacles.

This letter is organized as follows. Section II introduces the
problem setup and mathematical preliminaries. We then pro-
vide the method of auxiliary obstacle trajectory synthesizing
in Section III. The overall algorithm is given in Section IV.
We present the numerical results in Section V and conclude
this letter in Section VI.
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Fig. 1. One obstacle approximation with (zx , zy ) = (0, 0), rx = ry =
R = 1. As k increases, the obstacle turns more toward a rounded
square.

II. MATHEMATICAL PRELIMINARIES AND

PROBLEM STATEMENT

A. Differentiable Obstacle Representations
Consider M number of moving obstacles which can be of

any shape or size, in a 2-dimensional cluttered environment.
An often-faced challenge is non-differentiable shapes such as
a square and triangle that can not be directly handled by non-
linear programming. To address this issue, we approximate
non-differentiable obstacles using super-ellipses [4], which in
turn yields the collision avoidance constraints(

x(t) − zix(t)

rix

)ki

+
(

y(t) − ziy(t)

riy

)ki

− Ri
ki ≥ 0, (1)

where z(t) = [zix(t), ziy(t)] denotes the center of the ith

obstacle at time t. rix, riy ≥ 1 represent the object’s spatial
extensions, and [x(t), y(t)] is the trajectory of the dynamical
system. Ri > 0 is a size constant and the exponent ki is a
positive even number. If ki = 2, the obstacle is a circle or an
ellipse, otherwise a rounded square, as shown in Figure 1.

B. Optimal Motion Planning
The basic task of motion planning is to find a dynamically

feasible trajectory that connects the given starting and target
points while satisfying some obstacle constraints imposed by
the environment. The task of optimal motion planning further
requires the synthesized trajectory to be optimal, or locally
optimal, with respect to a certain metric such as energy con-
sumption. Generally, the optimal trajectory can be obtained by
solving the following nonlinear program:

minimize
(x(·),u(·))

�(x(·), u(·))
subject to x(0) = xstart, x(T) = xtarget

ẋ(t) = f (x(t), u(t))

G(x(t)) ≥ 0, ∀t ∈ [0, T], (2)

where x(t) ∈ R
n, u(t) ∈ R

m are the state and control input
respectively. � is the loss function, f : R

n × R
m → R

n

describes the system dynamics, and G(x(t)) ≥ 0 is the con-
trol barrier function which defines a collision-free space. In
this letter, we focus on energy-optimal motion planning such
that �(x(·), u(·)) = ∫ T

0 ‖u(t)‖2dt while the total time T is pre-
given, but it is straightforward to modify the nonlinear program
to further accommodate the time-optimal requirement.

C. Homotopy Class Constraints for Movable Obstacles
Collision avoidance of movable obstacles is critical in

some topology-restricted tasks, e.g., a vehicle properly avoids

Fig. 2. The three curves are the trajectories connecting identical start-
ing and target points, and grey rectangles are obstacles. According to
the definition of the homotopy class, the two blue trajectories are homo-
topy equivalent, but the green one belongs to a different homotopy
class.

other cars while merging off a highway. In this example, an
appropriate route fulfilling the homotopy class constraints for
movable obstacles, i.e., other in-moving cars, is desired.

Definition 1: Two trajectories belong to the same homotopy
class if and only if they have identical start and target points
and they can be smoothly deformed into one another without
intersecting any obstacles.

Definition 1 is schematically shown in Figure 2.
Given a nominal 2-dimensional trajectory, one homotopy

class is specified and such a constraint should be preserved
throughout the iterative optimization process. However, obsta-
cles being movable imposes more challenges to the homotopy
class constraint guarantee as both obstacles and the trajec-
tory of the given dynamical system are changing over time.
We hence first define the homotopy class constraints under
movable obstacle scenarios here and further prove that the
proposed approach can preserve the desired homotopy class
in Section III.

By virtue of the Residue Theorem [11], if the analytic func-
tion F : C → C does not have poles, and c(t) is a continuous
and closed curve on the complex plane that never intersects a
point z0 ∈ C, then the following line integral holds,∮

c

F(z)

z − z0
dz = 2π jF(z0)n(c, z0), (3)

where j is the imaginary unit, n(c, z0) is the winding num-
ber representing the total number of times that the curve c
encircles counterclockwise around z0. Therefore we have the
followings.

Lemma 1: Two continuous trajectories c1 and c2 in the
complex plane with identical start and target points belong
to the same homotopy class regarding the obstacle at z0, if
and only if ∮

c1�c−
2

F(z)

z − z0
dz = 0,

where c1 � c−
2 is a closed trajectory concatenating c1 and

inverse c2, which starts from the start point of c1 to the end
point of c1 along the trajectory c1 and then travel from it to
the start point along the trajectory c2.

The proof can be seen in [7, Lemma 1]. Note that for
any trajectory c(t), we have

∮
c

F(z)
z−z0

dz = ∮
c′

F(z+z0)
z dz, where

c′(t) = c(t)− z0. In addition, we are able to heuristically gen-
eralize the criterion to a moving obstacle. More specifically,
trajectories c1(t) and c2(t) belong to the same homotopy class
regarding a obstacle trajectory z0(t), if and only if∮

c′
1�c′

2
−

1

z
dz = 0,
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where c′
1(t) = c1(t) − z0(t), c′

2(t) = c2(t) − z0(t) and F(z) is
simply chosen as a constant map to 1. Note that if the obstacle
trajectory is time-invariant, i.e., z0(t) ≡ z0(0), this criterion
also degenerates to the form of Lemma 1. Moreover, in a
cluttered environment with multiple obstacles, this criterion
becomes ⎡

⎢⎢⎣

∮
c′

1,1�c
′−
2,1

1
z dz

...∮
c′

1,M�c
′−
2,M

1
z dz

⎤
⎥⎥⎦ = 0M×1, (4)

where c′
1,i(t) = c1(t) − zi(t) and c′

2,i(t) = c2(t) − zi(t), and
zi(t) is the trajectory of the i-th obstacle.

III. AUXILIARY OBSTACLE TRAJECTORY SYNTHESIS

In this section, we propose a method of auxiliary obsta-
cle trajectory synthesizing that guarantees the satisfaction of
homotopy class constraints of the initial system trajectory
towards these modified obstacles. In addition, we provide the
condition under which this homotopy property holds while
trajectories are deforming. All trajectories in this section
are discussed on the complex plane for concise proof, but
the results can be directly adopted in the R

2 space. Let
zi(t) = zix(t) + j · ziy(t) be the known trajectory of the center
of the i-th movable obstacle and r(t) be another given trajec-
tory to specify the desired homotopy class. r(t) is designed to
never intersect the obstacles, i.e., ‖r(t) − zi(t)‖ > 0 holds for
all i = 1, 2, . . . , M and t ∈ [0, T]. A system trajectory p(t) is
acquired without concerning homotopy class constraints and
obstacles but has the same start and target points as the ones of
r(t). Based on the notations, we define the auxiliary obstacle
trajectory parameterized by s as

ẑi(t; s) = zi(t) + s
zi(t) − r(t)

‖zi(t) − r(t)‖ , (5)

where s ∈ [0,∞) is called the push distance. As ‖r(t) −
zi(t)‖2 ≥ Ri > 0, ∀t ∈ [0, T] because r(t) is collision-free,
we can choose a large-enough s0 so that the conditions hold

min
t

‖ẑi(t; s0)‖ > maxt ‖r(t)‖
min

t
‖ẑi(t; s0)‖ > maxt ‖p(t)‖. (6)

A graphical example is demonstrated in Figure 3. We now
show, according to (6), the sufficient condition that p(t) and
r(t) belong to the same homotopy class with respect to ẑi.

Lemma 2: Given two continuous and closed trajectories
c0(t) and c1(t) in the complex plane which never intersect
the origin for t ∈ [0, T], if there exists a continuous func-
tion H(v, t) such that H(0, t) = c0(t), H(1, t) = c1(t),
‖H(v, t)‖ �= 0,∀v ∈ [0, 1],∀t ∈ [0, T], and H(v, t) is the con-
tinuous and closed trajectory with any fixed v ∈ [0, 1], then∮

c0

1
z dz = ∮

c1

1
z dz.

Proof: Because H(v, t) is continuous and never intersects
the origin, θ(v) := ∮

H(v,·)
1
z dz, v ∈ [0, 1] is also continu-

ous. According to the Residue Theorem [11], θ(v) = 2π j ·
n(H(v, ·), 0) where n(H(v, ·), 0) ∈ Z is the winding number.
Therefore the function θ(v) has to be both continuous and
discrete, which implies θ(v) is constant, so that θ(0) = θ(1).

Corollary 1: Given three trajectories c0(t), c1(t) and ẑ(t)
on the complex plane, where c0(0) = c1(0), c0(T) = c1(T),

Fig. 3. Orange curve represents the auxiliary obstacle trajectory ẑ(t).
Trajectories c0(t) and c1(t) in blue and green, respectively, have the
same start and target point. As the conditions mint ‖ẑ(t)‖ > maxt ‖c0(t)‖
and mint ‖ẑ(t)‖ > maxt ‖c1(t)‖ hold, they belong to the same homotopy
class regarding the orange obstacle.

if mint ‖ẑ(t)‖ > maxt ‖c0(t)‖ and mint ‖ẑ(t)‖ > maxt ‖c1(t)‖,
then

∮
c

1
z dz = 0, where c = (c0 − ẑ) � (c1 − ẑ)−.

Proof: We define the continuous function

H1(v, t) =
{

v · c0(t) − ẑ(t), 0 ≤ t ≤ T
v · c1(2T − t) − ẑ(2T − t), T < t ≤ 2T

where v ∈ [0, 1], t ∈ [0, 2T]. Therefore, H1(v, t) is the closed
trajectory with any fixed v ∈ [0, 1]. For v = 0, H1(0, t) is
a trivial trajectory that moves forth and back along −ẑ such
that

∮
H1(0,·)

1
z dz = 0. ‖H1(v, t)‖ ≥ ‖ẑ(t)‖−s‖c0(t)‖ ≥ ‖ẑ(t)‖−

‖c0(t)‖ > 0 for t ∈ [0, T], and similarly ‖H1(v, t)‖ > 0 for t ∈
[T, 2T]. Therefore H1(v, t) never intersects the original point.
Hence according to Lemma 2,

∮
H(1,·)

1
z dz = ∮

H(0,·)
1
z dz = 0,

where H(1, ·) is actually the closed curve concatenating c0 − ẑ
and inverse c1 − ẑ.

By virtue of Lemma 1 and Corollary 1, with a large s0
that pushes the obstacle far enough so as to satisfy the con-
ditions in (6), p(t) and r(t) are within the same homotopy
class concerning the auxiliary obstacle trajectory ẑi(t; s0). The
same idea can be directly generalized to the environment
with multiple obstacles {z1(t), . . . , zM(t)}, where a suitable
s0 is chosen for all obstacles. More specifically, the initial-
ized system trajectory p(t) and the pre-defined r(t) belong to
the same homotopy class with respect to a set of auxiliary
obstacles trajectories {ẑ1(t; s0), . . . , ẑM(t; s0)} as long as the
conditions in (6) holds for every obstacle.

In the following, we aim to show how to obtain the
trajectory that belongs to the same homotopy class of the
given trajectory r(t) towards original obstacle trajectories by
deforming p(t) and ẑi(t; s) continuously.

Corollary 2: Given three trajectories c0(t; 0), c1(t; 0) and
ẑ(t; 0) on the complex plane that continuously deform to
c0(t; 1), c1(t; 1) and ẑ(t; 1) for t ∈ [0, T], respectively. If
c0(t; 0) and c1(t; 0) are homotopy equivalent towards ẑ(t; 0),
c0(0; v) = c1(0; v), c0(T; v) = c1(T; v),∀v ∈ [0, 1], and
c0(t; v) �= ẑ(t; v), c1(t; v) �= ẑ(t; v),∀v ∈ [0, 1],∀t ∈ [0, T]
then c0(t; 1) and c1(t; 1) are homotopy equivalent towards
ẑ(t; 1).

Proof: We define the continuous function

H2(v, t) =
{

c0(t; v) − ẑ(t; v), 0 ≤ t ≤ T
c1(2T − t; v) − ẑ(2T − t; v), T < t ≤ 2T

where v ∈ [0, 1], t ∈ [0, 2T], then H2(v, t) is the closed trajec-
tory with any fixed v ∈ [0, 1]. H2(v, t) never reaches the origin
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because c0(t; v) �= ẑ(t; v) and c1(t; v) �= ẑ(t; v) always hold.
Therefore according to the Lemma 2, c0(t; 1) and c1(t; 1) are
homotopy equivalent towards ẑ(t; 1).

According to Corollary 2, during the continuous deforma-
tion of the auxiliary obstacle trajectories ẑi(t; s) and the system
trajectory p(t), p(t) remains within the same homotopy class
of r(t) if ẑi(t; s) never intersects p(t) and r(t). Based on the
definition (5), the deformation of ẑi(t; s) can be controlled by
s ∈ [0,∞). Therefore, by gradually decreasing s from s0 to
zero, i.e., ẑi(t; s0) is deformed to ẑi(t; 0) = zi(t), and deforming
p(t) accordingly with no intersection, the resulting p(t) also
satisfies the homotopy class constraints regarding the original
obstacles zi(t). It is noted that ẑi(t; s) never intersects the pre-
defined trajectory r(t) in this deformation, which can be seen
below:

‖ẑi(t; s) − r(t)‖ =
(

1 + s

‖zi(t) − r(t)‖
)

‖zi(t) − r(t)‖ > 0.

IV. IMPLEMENTION WITH OPTIMAL

CONTROL CRITERION

In this section, we propose an algorithm to solve the
problem of preserving the homotopy property from the last
section by reformulating it into a sequence of nonlinear
programming problems (NLP). The resulting NLP can be
efficiently addressed by mature and off-the-shelf solvers and
toolboxes such as CasADi [12]. In the following, we first
describe a process of achieving optimal motion planning tasks
with known obstacles using NLP. We next show how to
prevent the system trajectories from intersecting the obsta-
cles by transferring this task into sequential optimal motion
planning problems.

A. Nonlinear Programming
To use the multiple shooting method, a continuous-time

nonlinear dynamical system is discretized to the form

x(k + 1) = F(x(k), u(k)),

p(k) = g(x(k)), (7)

where x(k) := x(k�T), u(k) := u(k�T). The obstacle trajec-
tories are also discretized as ẑi(k; s) := ẑi(k�T; s). Although
the full state trajectory x(k) can be high-dimensional, homo-
topy class constraints are only applied to p(k), which is
a 2-dimensional system trajectory. Therefore, the optimal
motion planning problem can then be framed as the NLP

minimize
(U,X)

‖U‖2

subject to x(0) = xstart, x(N) = xtarget

x(k + 1) = F(x(k), u(k))

G(g(x(k)), ẑi(k; s)) ≥ 0

∀k ∈ {0, . . . , N}, i ∈ {1, . . . , M}, (8)

where X = [x(0), . . . , x(N)], U = [u(0), . . . , u(N − 1)], and
G(g(x(k)), ẑi(k; s)) is the control barrier function described
in constraint (1). In our following experiments, the interior
point optimizer is utilized to address such NLP (8). And the
convergence analysis of the solver can be seen in [13].

Fig. 4. Orange circles represent the obstacles and blue curves repre-
sent the synthesized shortest path in each iteration. In each iteration,
the computed optimal trajectory is seen to stay on the right side of the
obstacle, which fulfills the control barrier constraints.

B. Homotopy Method
As mentioned in Section III, resolving the motion planning

problems with non-differentiable homotopy class constraints
is equivalent to resolving the sequential differentiable motion
planning problems. The auxiliary obstacle trajectory initializa-
tion can be simply achieved by choosing a large enough s0,
and the challenging task is to ensure that the system trajectory
and obstacles remain untouched during the continuous defor-
mation of the auxiliary obstacle trajectory by decreasing the
push distance s, as specified in Corollary 2.

To address the challenge, we adopt the idea of the homo-
topy method [14] which first solves the simpler problems that
are deformed from the original and complicated problem, and
then gradually leverages the intermediate results to solve the
ones all the way back to the original problem. In this pro-
cess, we take advantage of the fact that if the local optimal
trajectory is already synthesized, then obstacles are moved by
a small distance and the solver uses the last result as initial
values, the solver tends to provide the nearest local optimal
solution. To illustrate the adapted homotopy method to our
problem, we utilize a simple motion planning problem shown
in Figure 4. In this example, we attempt to solve an energy-
optimal motion planning problem concerning a simple system
ẋ = u and a circle obstacle that is centered at (4.5, 0) with
the radius of 0.5, such that the system starts from (0,−1.5) to
(0, 1.5) and bypasses the obstacle on its right side. Instead of
directly solving this hard-to-address problem, we first solve
an easier problem that places the obstacle center at (0, 0).
Based on this intermediate result, we then solve the problem
that moves the obstacle a bit right to (0.1, 0). By iterating
this procedure, the problem will be gradually deformed to the
original one that can be easily solved based on results from
the previous iteration.

The proposed approach is summarized in Algorithm 1. To
choose the initial value of s, we first set it as zero and grad-
ually increase it until no collision happens and the initial
system trajectory p(t) and the given trajectory r(t) are in the
same homotopy class towards auxiliary obstacle trajectories
by checking whether the criterion (4) is satisfied. Corollary 1
guarantees the existence of such s, while it is worth noting that
a small value of s will decrease the efficiency of the method.
To find a suitable value of �s, we may start from a large
value of it and update obstacle trajectories and the system
trajectory. If the homotopy class constraints are not satisfied
with the updated trajectory, we can return to the last step and
try a smaller �s. But setting �s = mini Ri/5 is found to be
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Algorithm 1 Homotopy Method for Homotopy Class
Constraints
Require: Obstacle trajectories {z1(k), ..., zM(k)} and pre-established
trajectory r(k) which defines the required homotopy class.
1: Initialize inputs U0 and state trajectory X0 by solving (8) without
considering obstacles.
2: Synthesis trajectories for obstacles {ẑ1(k; s), ..., ẑM(k; s)} accord-
ing to (5) with s large enough.
3: Set iteration step m = 0.
4: Set s = max(s − �s, 0), m = m + 1
5: Solve optimal motion planning problem (8) with obstacles and
initial (U, X) = (Um−1, Xm−1), and the solution of it is noted as
(Um, Xm).
6: Repeat step 4 − 5 until s = 0.

Fig. 5. The optimal trajectory is synthesized for a unicycle system with
two stationary obstacles centered at (2, −1) and (2, 1) with R = 0.5
and k = 4. The initial and target points of the system are set to
(0, 0) and (4, 0), respectively. The left figure shows the stationary obsta-
cles (orange) and the given trajectory (green) in the x − y plane. The
right figure illustrates how the initial system trajectory (yellow) gradually
deforms into the optimal trajectory (blue) that obeys the homotopy class
constraints.

good in practice. To prevent obstacles from passing through
the discrete trajectory and moving to another homotopy class,
sample points of the system trajectory should be dense enough
by choosing suitable �T .

V. NUMERICAL RESULTS

We present numerical results on two classic dynamical
systems: the unicycle and the quadcopter. The results demon-
strate that the proposed approach can iteratively synthesize
optimal trajectories with homotopy class constraints for non-
holonomic unicycle systems and highly nonlinear quadcopter
systems.

A. Unicycle
We first adopt the unicycle model

d

dt

⎛
⎝x

y
φ

⎞
⎠ =

⎛
⎝v cos φ

v sin φ

ω

⎞
⎠,

as a classical nonholonomic system to illustrate optimal trajec-
tory generation under homotopy class constraints. Here x and
y indicate the position of the unicycle, and φ denotes the fac-
ing angle of the unicycle. Moreover, v and ω are control inputs
that stand for the moving and steering velocity, respectively.

In the following demonstrations, the homotopy class con-
straints are applied to the position states. The facing angle
φ is set to zero at both the start and target points. Figure 5
shows the results of the advocated approach that addresses

Fig. 6. The optimal trajectory is synthesized for a unicycle system with
one stationary obstacle centered at (1.5, 0) with R = 0.5 and k = 4. The
start and target point of the system are (0, 0) and (3, 0), respectively.
The upper row shows the given trajectory (green), the system trajectory
(blue) and an obstacle (orange) in the x − y plane, while the lower row
presents the corresponding trajectory in the x − y − t space. The middle
column indicates the initial trajectories with s = 1.0, and the right column
shows the final results.

Fig. 7. Comparison of the computation time between two methods. The
error distribution at each number of sample points is estimated based
on 5 simulations. The computation time of MIP is not increase monoton-
ically because the Branch-and-Bound method is leveraged to solve MIP
problems.

the energy-optimal motion planning problems for a unicycle
system, where the unicycle is requested to encircle two sta-
tionary obstacles before reaching the target. The total time is
10 seconds and the discrete time interval is set as �T = 0.05
second. In addition, the push distance s is decreased from
2.5 to 0 with a step of �s = 0.1. Another simulation with
one obstacle and a different homotopy class is carried out on
the same system and setups except that s is initialized as 1.0,
whose results are presented in Figure 6.

We additionally compare the computational efficiency of
our proposed method with the MIP-based method, which is
shown in Figure 7. We attempt to leverage both methods on
the same motion planning problems shown in Figure 6 but with
varying sample points number, N = T/�T , by changing �T .
Because of the larger gap between each adjacent sample points
of the trajectory, smaller N tends to result in a trajectory that
violates the obstacle constraints. Due to the exponentially-like
growing computation complexity of the MIP-based method,
our method enjoys the fulfillment of the obstacle constraints
with reasonable computation time.

B. Quadcopter
Here we consider a holonomic but highly-nonlinear quad-

copter model that is described by the nonlinear dynamics with
12 states and 4 control inputs denoting the rotating speed of
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Fig. 8. The optimal trajectory is synthesized for a quadcopter system
with four stationary obstacles centered at ( ± 1, ±1) with R = 0.5 and
k = 4. The start and target point of the system trajectory are set at
(0, 0). The layout and explanation of the figure are identical to Figure 6,
except that the push distance is initialized as s = 2.5.

Fig. 9. The optimal trajectory is synthesized for a quadcopter system
with two moving obstacles, which are originally centered at (1, −1) and
(3, 1) with R = 0.5 and k = 4 with a constant moving speed at 0.1 m/s,
and the moving direction is indicated by the orange arrow. The start and
target point of the system are set at (0, 0) and (4, 0), respectively. The
layout and explanation of the figure are identical to Figure 6, except that
the push distance is initialized as s = 2.5.

four motors in rotation per minute and takes the form

d

dt
x = fd(x) +

4∑
i=1

fi(x)(ui + ueq)
2,

where u = [u1, u2, u3, u4]T are control inputs, fd and fi are dif-
ferentiable functions. ueq is the hovering motor speed, such
that (x, u) = (012×1, 04×1) is the equilibrium point of the
dynamical system. Readers are referred to [15] for the detailed
dynamics structure. According to the definition of the homo-
topy class in Section II-C, the constraints considered here are
only applied to the x − y plane, which means the altitude of
the quadcopter is not concerned. As for the initial and target
points, all states besides x1 and x2 are set to zero.

Figure 8 presents the numerical results for a quadcopter
flight in a cluttered environment with four stationary obstacles.
The total time needed is set as T = 10s and the time interval
as �T = 0.05s. In addition, the push distance is gradually
decreased from s = 2.5 to s = 0 with �s = 0.05. In Figure 9,
the algorithm is applied to the same system with the same

experimental setups, whereas two moving obstacles are con-
sidered instead. The results suggest that the proposed method
is further capable of addressing the homotopy-constrained
optimal motion planning problems with moving obstacles.

VI. CONCLUSION

In this letter, we introduced a novel optimal motion plan-
ning technique with 2-dimensional homotopy class constraints.
It first initializes the dynamical system trajectory such that
it belongs to the desired homotopy class regarding the aux-
iliary obstacle trajectories rather than the original obstacles.
By gradually deforming the auxiliary ones to their original
counterparts, the dynamical system trajectory fulfilling the
homotopy property and the corresponding inputs are even-
tually synthesized. We have demonstrated the practicability
of the proposed method on nonholonomic systems with both
static and moving obstacles. However, the current method
is limited to the planer homotopy class constraints, which
remains to be addressed in the future.
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