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Abstract— Optimal motion planning that simultaneously con-
siders energy and time efficiency is crucial for a wide range
of applications from industrial manufacturing to autonomous
vehicle navigation. This paper introduces a novel perspective
on discrete-time systems which recognizes the time interval
size as an additional aspect of the control variable that is
conventionally sought to be determined. By incorporating ideas
from Dynamic Differential Programming (DDP), our method,
called BO-DDP (Balancing energy and time Optimality via
DDP), enables an adjustable trade-off between energy and
time optimality. DDP leverages quadratic approximation of
dynamics and cost function, ensuring accurate information
capture and a high convergence rate. To address the challenge of
high computational complexity in obtaining related derivatives,
we introduce a Taylor series-based numerical scheme for
simultaneous forward integration and differentiation. Extensive
simulation experiments on two scenarios, including autonomous
car navigation and quadcopter flight, demonstrate the practi-
cality and effectiveness of our algorithm.

I. INTRODUCTION

Optimal motion planning plays a critical role in var-
ious fields, including robotics, autonomous systems, and
aerospace engineering, to name a few. It is concerned with
the task of steering a dynamical system from a source to
a destination while achieving a specific optimality criterion.
Over the decades, various techniques have been developed
to solve optimal control problems. These include indirect
methods, which transform the problem into a boundary
value challenge, capitalizing, for instance, on Pontryagin’s
Maximum Principle [1]. Conversely, direct methods, like
direct collocation [2] and shooting methods [3], reformulate
the problem into nonlinear programs. Modern numerical
techniques and strategies for nonlinear systems have also
been explored, see [4]-[6]. On the other hand, to reach the
target with minimum time, the controller tends to utilize
all available resources within the given constraints, which
is referred to as the bang-bang principle [7]. Time-optimal
problems have been addressed through approaches such
as reformulating to convex optimization [8], considering
minimal time steps while satisfying dynamic and target con-
straints [9], and leveraging Pontryagin’s Maximum Principle
for analytical expressions of time-optimal trajectories [10].
However, these methods are limited to linear or second-order
nonlinear systems, thereby restricting their applicability.

Differential Dynamic Programming (DDP) [11] is a well-
established and widely-applied approach to addressing non-
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linear trajectory optimization. It iteratively refines control
policies based on dynamic programming principles. The re-
cursive nature is commonly shared with other optimal motion
planning techniques, see [12] [13]. DDP and its variants have
achieved success in various applications, showcasing their
effectiveness and versatility, see [14] [15].

Traditionally, motion planning has focused on optimiz-
ing a single objective, whether it is maximizing energy
efficiency or minimizing time to reach a target. However,
in many real-world scenarios, a sweet spot between these
two optimal criteria is a crucial consideration. For example,
battery-powered systems require striking a balance between
minimizing energy usage and achieving the shortest possible
duration. Surprisingly, to the best of our knowledge, no ex-
isting algorithm addresses the challenge of combined energy
and time optimality for general nonlinear systems.

In this paper, we introduce a novel approach to address
motion planning problems in discrete-time nonlinear dy-
namical systems, allowing for adjustable priority between
energy and time efficiency. Unlike the conventional as-
sumption of fixed and equal time intervals, we propose
considering the time interval size as an additional control
aspect. By incorporating the interval size alongside the input
signal, the system is simultaneously actuated, enabling us
to optimize both energy and time efficiency. Having done
so, given an appropriate cost function, the standard DDP
algorithm can be directly applied to the augmented system
to address motion planning problems with combined energy
and time optimality. To tackle the computational complexity
arising from the quadratic approximations in DDP, we intro-
duce a Taylor series-based numerical method. This method
efficiently computes the forward integration of Ordinary
Differential Equations (ODEs) and their associated linear
and quadratic approximations. Importantly, the derivatives
required for optimization are computed as by-products during
the integration process, reducing computational overhead.

This paper is organized as follows. Section II briefly
reviews DDP. Then Section III develops and discusses our
method, which is followed by a numerical approach on
efficient integration and differentiation in Section IV. The
applicability of the advocated technique is presented in
Section V. Finally, the paper is concluded in Section VI.

II. PRELIMINARIES

This section first provides a short review of the standard
DDP framework, which is widely adapted to find an optimal
control sequence for motion planning. Readers are referred
to [11] for a detailed description. We additionally use this



section to formally define the mathematical notations used
throughout this paper.

A. Optimal Motion Problem Formulation

Consider a discretized-time dynamical system
Xp+1 = F(xp, up), (D

where x; € R",u; € R™ are the state and input of

the system at the time step k, respectively, and the flow

F governs the state transition based on the current state

and input. By steering the system (1) with a sequence

of inputs U := {ug, -+ ,un_1}, the corresponding state

trajectory can be found as X := {xg, -+ ,xy}. The total

cost associated with X and U can be further defined as
N-1

J(X,U) = Zl(xk,uk)+lf(x1v), 2)

k=0

where {(x,u) : R” x R™ — R is known as the running cost

and [y : R™ — R is called the final cost.

We aim to find a control input U that drives the system
(1) from a predefined start state X to the target Xiger in
N time steps, minimizing the total cost (2). One can apply
dynamic programming to break down the minimization over
the entire sequence of inputs to a sequence of minimizations
over a single control, which is achieved backward in time.
To facilitate this approach, we introduce the optimal value
function at time step ¢ to represent the optimal cost-to-go
starting from a particular state x

N-1
Vi(x) = min Z L, 05) + L (xn).-
j=t
Hereby, the associated Bellman equation is expressed as
Vi(x) = min [(x;, u;) + Vig1 (F(x, u;)), 3)

with the boundary condition Vy(xn) = lf(xn). For con-
ciseness, in the subsequent sections, we adopt the notation
V' for V;,1 and drop the time index subscript when it does
not cause ambiguity.

B. Differential Dynamic Programming

The DDP algorithm tackles the aforementioned optimal
control problem through consecutive backward and forward
passes. In the backward pass, DDP employs quadratic Taylor
expansion to approximate the value function along the nomi-
nal state-action trajectory (X, U). Subsequently, the forward
pass updates the nominal trajectory by incorporating the
locally optimal feedback law derived from the approximated
value function. This iterative process continues until the
desired level of convergence is achieved.

1) Backward Pass: Exciting (1) with a control input
starting from a given state, we can examine the value of
the cost-to-go function by defining an action-value function
Q@ : R” x R™ — R. Following the convention, we define
perturbed () around nominal (x,u) at an arbitrary step

Q(6x,6u) = l(x + 6x,u+ du) + VT (F(x + dx,u + fu)),
“)

which is a discrete-time analogue of the Hamiltonian. We
further approximate () using the second-order Taylor expan-
sion around (0, 0), and arrive at

Q(dx,0u) = Q(0,0) + [Qx  Qu] {gﬂ
5x] ' [Qxx

. %)
*3 {6u Qxu

qu o0x
Quu dul’
where

Q(0,0) = I(x,u) + V*(x),
Qx =Ilx +F VT,
Qu =l +F VT,
Qxx = lxx + FIVAF, + VI Fyy,

qu = lux + FIVXJ;FX + Vx+Fuxv
Quu = luu + FIVXJ;Fu + Vx+Fuua

which can be found by applying the chain rule on (4).
Having done so, the Bellman equation (3) can be given
by optimizing its quadratic approximation (5) function over
control deviation du. The solution is expressed as a locally-
feedback law as

ou = rglin Q(d%,0u) = Kéx + k, (6)

where K = —Q;Qux and k = —Q; Q. representing the
feedback gain matrix and feed-forward term, respectively.
By substituting the feedback law into the () function (5), the
value function (3) can be evaluated in a quadratic form. With
simplification, we arrive at

1
V(x +0x) = 5csxTvx,((sx + Vidx 4+ AV,

where

Vxx = Qxx + KTQuuK + QIXK + KTQuua

Ve =Qx + I<TQuuk + szk + KTQu- @
are the Hessian matrix and gradient evaluated at the nominal
state x, respectively. Note that the drifting term AV is
irrelevant to the algorithm and thus ignored. Given the system
(1) and a nominal state-action pair (X, U), the backward
pass is processed by initializing the value function with
the terminal cost and its derivatives as Vy = [l¢(xn),
then recursively solves (6) and (7) all the way back to the
beginning of the trajectory.

2) Forward Pass: The forward pass simply updates
(X, U) in the new iteration by propagating the input derived
from the feedback law (6). By starting from the given initial
state, i.e. X" = xo, the forward pass is expressed as

ut =uy + Kk(Xr]lcw — Xk;) + kg

new __ new new
Xk+1_F(Xk ™).



III. BALANCING ENERGY AND TIME OPTIMALITY
via DDP

In this section, we present an unconventional perspective
on the analysis of discrete-time flow, enabling the utilization
of the standard DDP method for solving motion planning
problems in nonlinear dynamical systems with balanced
energy and time optimality.

A. Proposed Approach

Discrete-time systems are practically advantageous for
physical platform implementation. Conventionally, when
dealing with such systems, the entire time horizon is evenly
divided into a fixed number of time steps for the sake of
computational convenience and notation simplicity. As a
result, the explicit representation of the time interval is often
omitted, as observed in the commonly used expression (1).
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Fig. 1: Schematic diagram of the intuition behind our ap-
proach that varies the time interval size to achieve optimality

By contrast, we emphasize the significance of the time
interval size, as it plays a crucial role in determining the
state transition. Hereby, we slightly abuse the notation and
rewrite the discrete-time system (1) as follows:

X1 = F(Xp, up, 7)), ¥

where 7, € RT is the interval size at time step k. The key
points are illustrated in Figure 1. By adopting this idea, we
can formulate the motion planning problem with adjustable
priority between energy and time optimality as the following
optimization problem

N—-1
minimize Z weu;—uka + w Tk + wy||xN — xmrgetH?

’ k=0

subject to  xgy1 = F(xg, ug, %),

X0 = Xstart

u<u; <7,

0<Th+or <7 <7f+07 <7,

9
where T = {79, -+ ,7n_1} represents the time step trajec-
tory, we,w;, wy determine the weights associated with the
energy and time consumption, and target steering progress,
respectively, 7; denotes the nominal value of 75 from the
previous iteration, and -, are boxed boundary. The last
constraint regulates the allowable variation of 7 for each
iteration which will be discussed in detail in Section III-
B. This optimization problem is well-suited for the DDP

framework, because the weighted summation of consumed
energy and time can be defined as the running cost, and the
steering progress as the final cost.

Furthermore, we augment the control variable by incorpo-
rating it with the time interval through stacking, i.e. Gy =
[uk Tk] € R™*1, Having done so, we not only simplify the
notation but, more importantly, recognize the time window
size 7 as an additional dimension of the control variable. By
doing so, the augmented system (8) is naturally compatible
with the DDP algorithm, allowing for seamless integration
into the optimization framework.

Remark: This work focuses on emphasizing the perspec-
tive of treating the time interval as an additional control as-
pect. Therefore, for (9) we simply enforce boxed constraints
on U and 7, which can be easily solved by, e.g. logarithmic
barrier method and projected Newton method [16]. For more
sophisticated constraints, alternative approaches, e.g. [17]
[18], can be explored.

Warm Start: We have observed that in DDP, simultane-
ously finding optimal control and time interval sequences
while satisfying the terminal requirement can be challenging
compared to finding only the feasible control. To address this
challenge, we utilize DDP to first obtain a feasible control
sequence that guides the system towards the target. This is
achieved by considering a modified value function

N-1
-
Jus(X,U) = > weruf wg + wy [ Xy — Xearger| %, (10)
k=0
where w1 and wy; are weight coefficients. By incorporating
this modified value function, we can warm-start DDP to
reach the combined optimality with a feasible initialization.

B. Further Discussions

1) High Nonlinearity Regarding Time Interval: We have
found that the augmented dynamics (8) exhibit higher nonlin-
earity with respect to 7 compared to u. Figure 2 summarizes
the magnitude of the Taylor expansion coefficients of (8) up
to the second order of u and 7. Specifically, we examine the
¢?-norm of Fy, F,, Fyy, and F., by applying 40 randomly
initialized inputs sequence to a cart pendulum model [19]
with fixed 7, = 50ms and N = 100. Note that the input
of the cart pendulum is a scalar force acting horizontally on
the system. Therefore, the /?-norm can be safely applied to
the associated second derivatives.
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Fig. 2: Histogram of £%>-norm of each derivative term. | F.||
is seen to have much larger value compared to ||Fuu||.



Given the higher nonlinearity observed in terms of 7 in our
method, it becomes crucial to provide a well-initialized U
to enhance the performance. A warm-started DDP is partic-
ularly advantageous in this regard, as it improves subsequent
iterations based on the results from the previous one.

2) Updating Time Interval: Being aware of the high
sensitivity of 7, we should limit its variation for each iteration
such that it is small enough to ensure the valid approximation
in (5). Therefore, we enforce an element-wise trust region on
7 as shown in the last constraint of (9). In addition, to avoid
numerical issues during the state propagation, we examine
the entire T after each forward pass, and then rule out 7y
that is too close to 0, where we consider the following rule

(11)
Our proposed BO-DDP is summarized in Algorithm 1.

7 =0, if . <71

Algorithm 1 Optimal Motion Planning via BO-DDP

Require: Ty, Tuarger, initialized Uy, Ty, weight coefficients,
constrained boundary
1) Start from Uy, apply DDP to obtain a warm-starting
control U,, by minimizing (10).
2) Start from Uy, 7y, apply DDP on optimization (9).
3) During Step 2, examine and update 7 by applying
rule (11) after each forward pass.

IV. EFFICIENT INTEGRATION AND DIFFERENTIATION

The quadratic terms in DDP are crucial for accurately
depicting dynamics and cost function. However, obtaining
second-order approximations is computationally expensive.
Consequently, optimization techniques like iLQR [12] often
omit the Hessians of F'. However, as discussed in Section III-
B, the rich information conveyed by F,, highlights the
necessity of Hessians in achieving time-optimal results. To
address this dilemma, we introduce a fundamental yet novel
approach for the numerical solution of the ODE by examin-
ing the Taylor series of its solution. This process allows us
to obtain Jacobians and Hessians as by-products.

A. Numerical Integrator

We start with a continuous-time autonomous system
£(t) = F(E@), €cR™
Then we expand ¢ around a particular time point ¢

B3 ...
3!

to some desired order p € N, for which a larger value
gives a more accurate approximation of £(t + h). Now, we

examine each derivative by starting from the first order, i.e.
&= F(&(t)). As for the second order, we have

d . d
£@t) = %f = J(F)e) %5 = J(E)ewy Fle -

(12)

E(t+ h) = £(t) + hé(t) + %25"(:5) + )+ ...

If we continue to apply the chain rule to obtain the third and
any higher-order derivatives, the computational complexity

will be sharply increased, as these procedures involve the
composition of different multilinear forms.

To confront this dilemma, adopting a slightly relaxed
notation, let’s define a vector field

Vi(8) =€ =F(6).
It can be immediately followed by

Wy(€) =é= Lé= Luy() = W),

which can be easily recognized as another vector field just
like ;. Moreover, we can keep on repeating this definition
indefinitely to any W,, and will find they are all vector
fields. By carefully inspecting their patterns, we conclude
the following functional recursion

U1 = J(U)F, Uy =1d, (13)
where Id : £ — £ denotes the identity operator. In doing so,
instead of working with composited functions, any higher-
order derivative can be easily obtained via sequentially
computing the Jacobian of a vector field by following (13).
Hereby, the numerical integration for ODE (12) to any
desired order p is achieved

h4
q

Ve (E(®).  (14)

eem =% gwq@(t)) ~3
q=0 % q=0

B. Calculation of Derivatives

Another great feature of the proposed integrator is that the
procedure for computing the Taylor expansion components
also directly carries out the derivatives of the flow as a by-
product. To show this, we first define a flow ¢ of (12) over
the time step & and state £, i.e. ¢ : R x R” — R"™.

1) First Derivative: Given (14), we can express the ap-
proximation

hP

p(h, &) = Uo(&) +h¥y(§) + -+ o

\Ilp(é-)v

whose first derivative over h can be immediately carried out

P

0 ha-1
PR ;—(q_ 1 Za(6)-

While the derivative over ¢ can be expressed as

hP
a% ~ J(Ug) + hJ(Wy) + -+ -

By recognizing the terms
J(Og) =1, J(¥y)=J(F), J(Ug)=J(J(F)F), ...,

we can see that these components have already been com-
puted as intermediate products during the integration (14).



2) Second Derivative: Based on the results found above,
computing the second derivatives is straightforward

>
¢> (&),
3h2 = (g —2)!

P pa
agw Z PRACUL

P ha— 1
8h3§ — q—l T(Wq).

Note that the term J(J(¥,)) is viewed as a tensor involving
additional yet mild computations. On the other hand, the
remaining components are by-products of (14) as well.
Remark: Despite our study being on autonomous sys-
tem (12), our approach can be readily extended to controlled
systems. To see this, one can simply stack the state with a
zero-order-hold control signal, and then truncate the dynam-
ics related to the control, as the input remains unchanged
throughout the entire time step. The subsequent analysis and
computation remain identical to those presented above.

C. Comparison of Computational Time

To demonstrate the efficiency of the proposed numerical
approach, we compare its computation time against the
finite difference approach and, a widely-used Python library
for differentiation, JAX [20]. The task is to compute state
trajectory, as well as the first and second derivatives at each
time step by propagating a control sequence on a full-scale
nonlinear quadcopter system, whose model will be shown
in Section V-B. For the other two differential approaches,
the fourth-order Runge-Kutta method is applied for forward
integration. The test is run on a desktop with a 3.8 GHz Intel
Core 17 processor and 64 GB of RAM. Table I summarizes
the results of 10 independent simulations with fixed 7, =
50ms, N = 200, and approximation order p = 4. Our
method demonstrates a significant advantage over the other
two methods in terms of computational time. This enhanced
efficiency greatly improves the practicality of BO-DDP for
handling complex systems.

TABLE I: Computational Time of Three Methods

Our Method RK4 + JAX | RK4 + Finite Difference
Mean [sec] 2.81 45.26 126.89
Var 6.72 x 1073 0.58 3.60

V. NUMERICAL SIMULATIONS

We demonstrate the effectiveness of the proposed BO-
DDP by applying it to two different platforms: a car model
that operates on a planer space, and a more complex and
highly nonlinear model of the quadcopter in 3-D space. For
each example, we will vary the weighting pair (w,,w;) for
different optimality criteria, i.e. one has more budget on
control effort than that on time consumption or vice versa.

A. Car in Planer Space

The corresponding vehicle dynamics are described by the
following system of nonlinear differential equations

T vsin ¢
d [y]|] |vcoso
dalol| | wo |
v u?

where ¢ represents the facing angle, v stands for the for-
ward moving velocity, the control variables [u? u"] are to
change steering angle and forward velocity, respectively.

For this test, we command a motionless car drive from
the origin by facing north to stop at the spot (2,3) by
facing east, i.e. the initial and target states are set to be
Xqat = [0 0 0 0] and Xgee = [2 3 5 0]. With
this simple system, we directly apply a cold-started BO-DDP.
More specifically, the optimization problem (9) is considered,
where we set the terminal cost weight w; = 5000, controls
are bounded by [u?|| < % and [[u’| < 2, maximum
interval length is set to be 7 = 100 ms, and largest allowable
variation of 7 between each iteration is limited as —d7 =
67 = 5ms. To start with, we set Uy = 0, and form 7q
by evenly distributing 5 second into 100 time intervals, i.e.
T, = H0ms, N = 100.

With the other settings unchanged, we gradually raise the
value of ;°* in order to investigate the capability of BO-
DDP in ad(iressing problems with increasingly limited time
budgets. The results of five experiments are summarized in
Table II, revealing a clear trend of increasing energy usage
and decreasing time consumption as the weights ratio rises.
In situations where a car needs to be parked as quickly as
possible, a large w; dominating w, should be picked.

TABLE II: Used Energy and Time with Different Weights

Wi [We 033 1 3 00
Energy Used 1 45 1.80 256 450 13.13
Time Used (sec) || 9.88 6.04 4.78 3.68 3.07

Furthermore, the results of the three most representative
experiments are depicted in Figure 3a. When operating under
a stringent energy budget, uy strives to minimize its value
at each step of k, while simultaneously maximizing 7.
Conversely, when prioritizing time efficiency, uy optimally
utilizes all available resources to steer the system towards the
target, resembling the characteristics of a bang-bang control
strategy. Additionally, Figure 3b illustrates the corresponding
trajectories. With increasingly limited timeframes, the car
tends to take a more direct path toward the target instead
of following a rounder curve.

B. Quadcopter

A more challenging model is considered here to show-
case the effectiveness of the proposed method on motion
planning problems. The dynamic model employed for the
quadcopter system comprises a set of nonlinear ordinary
differential equations (ODEs) with 12 states and 4 control
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(b) Driven by different U, the corresponding trajectories of the car
start from the red point to the target (blue dot).

Fig. 3: Results of three experiments with 2t € {0, 1, oo}
by deploying the BO-DDP on the 2D car model

inputs representing the rotational speed of the four motors
in rotations per minute (rpm). It can be expressed as:

%x— +Zf1 yu;,

where f; and f; are nonlinear differentiable functions. For
a detailed dynamics structure, readers are referred to [21].

For this particular test, our objective is to navigate a
standing-still quadcopter from the origin to a hovering posi-
tion at coordinates (1, 3, 2). Given the intricacy of the system,
we employed the warm-starting strategy outlined in (10) to
initially synthesize a feasible Uy. The hyperparameters used
in this test were identical to those in Section V-A, with
the exception of the following adjustments: we enforced a
restriction on the rpm values for each motor, limiting them
to the range 600 < u < 650, and set —67 = 07 = 2ms.
To exclude the impact of gravity, we customize the energy
consumed at step k as (ur — ul®) T (u, — ul®)7y, where

hOV equals the rpm enabling the quadcopter to hover.

Once again, we explore the role of >+ on the consumption
of energy and time, which is summarlzed in Table III. As
expected, the results reveal that a narrower time budget
leads to quicker attainment of the target, at the expense
of increased energy consumption. We additionally show the
resulting sequences of U, 7, X in Figure 4, where one can
observe that the quadcopter picks a more aggressive control
strategy to reach the target quicker.

TABLE III: Used Energy and Time with Different Weights

Wt [We 199 999 00
Energy Used 106 147 402 1381 8310
Time Used (sec) || 990 9.70 6.60 4.52 292
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(a) The resulting action-horizon pair from the warm start is shown
on the first row. The following two rows demonstrate the ones by
setting 2t = 0, co, respectively. The left column shows Us, while
distributions of T's over the horizon are shown on the right.
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(b) Driven by different U, the corresponding trajectories of the
quadcopter start from the red point to the target (blue dot).

Fig. 4: Results of the warm start and two other experiments
with £ € {0, oo} by deploying the BO-DDP on the 3D
quadcopter model.

VI. CONCLUSION

In this study, we introduced a novel perspective on
discrete-time systems, wherein the time interval size is
considered as an additional dimension of the control variable.
By incorporating Differential Dynamic Programming (DDP)
and a numerical method for integration and differentiation,
we developed the BO-DDP method for Balancing energy and
time Optimalility in motion planning. Various experiments
showcased the practicality and effectiveness of our approach.

However, we also identified two areas for future im-
provement. Firstly, in dealing with complex systems, we
currently provide a warm-starting strategy only for the con-
trol sequence. A warm-started time horizon would further
enhance the overall performance of our method. Secondly,
the resulting optimal time horizon tends to be unevenly
distributed over the time steps, which may pose challenges
for certain digital platforms operating at fixed frequencies.
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