
A Differential Dynamic Programming-based Approach

for Balancing Energy and Time Optimality in Motion Planning

Yunshen Huang, Wenbo He, and Shen Zeng

AbstractÐ Optimal motion planning that simultaneously con-
siders energy and time efficiency is crucial for a wide range
of applications from industrial manufacturing to autonomous
vehicle navigation. This paper introduces a novel perspective
on discrete-time systems which recognizes the time interval
size as an additional aspect of the control variable that is
conventionally sought to be determined. By incorporating ideas
from Dynamic Differential Programming (DDP), our method,
called BO-DDP (Balancing energy and time Optimality via
DDP), enables an adjustable trade-off between energy and
time optimality. DDP leverages quadratic approximation of
dynamics and cost function, ensuring accurate information
capture and a high convergence rate. To address the challenge of
high computational complexity in obtaining related derivatives,
we introduce a Taylor series-based numerical scheme for
simultaneous forward integration and differentiation. Extensive
simulation experiments on two scenarios, including autonomous
car navigation and quadcopter flight, demonstrate the practi-
cality and effectiveness of our algorithm.

I. INTRODUCTION

Optimal motion planning plays a critical role in var-

ious fields, including robotics, autonomous systems, and

aerospace engineering, to name a few. It is concerned with

the task of steering a dynamical system from a source to

a destination while achieving a specific optimality criterion.

Over the decades, various techniques have been developed

to solve optimal control problems. These include indirect

methods, which transform the problem into a boundary

value challenge, capitalizing, for instance, on Pontryagin’s

Maximum Principle [1]. Conversely, direct methods, like

direct collocation [2] and shooting methods [3], reformulate

the problem into nonlinear programs. Modern numerical

techniques and strategies for nonlinear systems have also

been explored, see [4]±[6]. On the other hand, to reach the

target with minimum time, the controller tends to utilize

all available resources within the given constraints, which

is referred to as the bang-bang principle [7]. Time-optimal

problems have been addressed through approaches such

as reformulating to convex optimization [8], considering

minimal time steps while satisfying dynamic and target con-

straints [9], and leveraging Pontryagin’s Maximum Principle

for analytical expressions of time-optimal trajectories [10].

However, these methods are limited to linear or second-order

nonlinear systems, thereby restricting their applicability.

Differential Dynamic Programming (DDP) [11] is a well-

established and widely-applied approach to addressing non-

Authors are with Department of Electrical and System Engineering,
Washington University, St. Louis, MO 63130, USA. Email:
{yunshen.huang,wenbo.he,s.zeng}@wustl.edu. This work
was supported by the NSF grant CMMI-1933976.

linear trajectory optimization. It iteratively refines control

policies based on dynamic programming principles. The re-

cursive nature is commonly shared with other optimal motion

planning techniques, see [12] [13]. DDP and its variants have

achieved success in various applications, showcasing their

effectiveness and versatility, see [14] [15].

Traditionally, motion planning has focused on optimiz-

ing a single objective, whether it is maximizing energy

efficiency or minimizing time to reach a target. However,

in many real-world scenarios, a sweet spot between these

two optimal criteria is a crucial consideration. For example,

battery-powered systems require striking a balance between

minimizing energy usage and achieving the shortest possible

duration. Surprisingly, to the best of our knowledge, no ex-

isting algorithm addresses the challenge of combined energy

and time optimality for general nonlinear systems.

In this paper, we introduce a novel approach to address

motion planning problems in discrete-time nonlinear dy-

namical systems, allowing for adjustable priority between

energy and time efficiency. Unlike the conventional as-

sumption of fixed and equal time intervals, we propose

considering the time interval size as an additional control

aspect. By incorporating the interval size alongside the input

signal, the system is simultaneously actuated, enabling us

to optimize both energy and time efficiency. Having done

so, given an appropriate cost function, the standard DDP

algorithm can be directly applied to the augmented system

to address motion planning problems with combined energy

and time optimality. To tackle the computational complexity

arising from the quadratic approximations in DDP, we intro-

duce a Taylor series-based numerical method. This method

efficiently computes the forward integration of Ordinary

Differential Equations (ODEs) and their associated linear

and quadratic approximations. Importantly, the derivatives

required for optimization are computed as by-products during

the integration process, reducing computational overhead.

This paper is organized as follows. Section II briefly

reviews DDP. Then Section III develops and discusses our

method, which is followed by a numerical approach on

efficient integration and differentiation in Section IV. The

applicability of the advocated technique is presented in

Section V. Finally, the paper is concluded in Section VI.

II. PRELIMINARIES

This section first provides a short review of the standard

DDP framework, which is widely adapted to find an optimal

control sequence for motion planning. Readers are referred

to [11] for a detailed description. We additionally use this

section to formally define the mathematical notations used

throughout this paper.

A. Optimal Motion Problem Formulation

Consider a discretized-time dynamical system

xk+1 = F(xk,uk), (1)

where xk ∈ R
n,uk ∈ R

m are the state and input of

the system at the time step k, respectively, and the flow

F governs the state transition based on the current state

and input. By steering the system (1) with a sequence

of inputs U := {u0, · · · ,uN−1}, the corresponding state

trajectory can be found as X := {x0, · · · ,xN}. The total

cost associated with X and U can be further defined as

J(X,U) =

N−1
∑

k=0

l(xk,uk) + lf (xN), (2)

where l(x,u) : Rn ×R
m → R is known as the running cost

and lf : Rn → R is called the final cost.

We aim to find a control input U that drives the system

(1) from a predefined start state x0 to the target xtarget in

N time steps, minimizing the total cost (2). One can apply

dynamic programming to break down the minimization over

the entire sequence of inputs to a sequence of minimizations

over a single control, which is achieved backward in time.

To facilitate this approach, we introduce the optimal value

function at time step i to represent the optimal cost-to-go

starting from a particular state x

Vi(x) = min
U

N−1
∑

j=i

l(xj ,uj) + lf (xN).

Hereby, the associated Bellman equation is expressed as

Vi(x) = min
u

l(xi,ui) + Vi+1(F(xi,ui)), (3)

with the boundary condition VN (xN) = lf (xN). For con-

ciseness, in the subsequent sections, we adopt the notation

V + for Vi+1 and drop the time index subscript when it does

not cause ambiguity.

B. Differential Dynamic Programming

The DDP algorithm tackles the aforementioned optimal

control problem through consecutive backward and forward

passes. In the backward pass, DDP employs quadratic Taylor

expansion to approximate the value function along the nomi-

nal state-action trajectory (X,U). Subsequently, the forward

pass updates the nominal trajectory by incorporating the

locally optimal feedback law derived from the approximated

value function. This iterative process continues until the

desired level of convergence is achieved.

1) Backward Pass: Exciting (1) with a control input

starting from a given state, we can examine the value of

the cost-to-go function by defining an action-value function

Q : Rn × R
m → R. Following the convention, we define

perturbed Q around nominal (x,u) at an arbitrary step

Q(δx, δu) = l(x+ δx,u+ δu) + V +(F(x+ δx,u+ δu)),
(4)

which is a discrete-time analogue of the Hamiltonian. We

further approximate Q using the second-order Taylor expan-

sion around (0,0), and arrive at

Q(δx, δu) = Q(0,0) +
[

Qx Qu

]

[

δx

δu

]

+
1

2

[

δx

δu

]⊤ [

Qxx Qux

Qxu Quu

] [

δx

δu

]

,

(5)

where

Q(0,0) = l(x,u) + V +(x),

Qx = lx + F
⊤

x
V +
x
,

Qu = lu + F
⊤

u
V +
x
,

Qxx = lxx + F
⊤

x
V +
xx

Fx + V +
x
Fxx,

Qux = lux + F
⊤

u
V +
xx

Fx + V +
x
Fux,

Quu = luu + F
⊤

u
V +
xx

Fu + V +
x
Fuu,

which can be found by applying the chain rule on (4).

Having done so, the Bellman equation (3) can be given

by optimizing its quadratic approximation (5) function over

control deviation δu. The solution is expressed as a locally-

feedback law as

δu = min
δu

Q(δx, δu) = Kδx+ k, (6)

where K = −Q−1
uu

Qux and k = −Q−1
uu

Qu representing the

feedback gain matrix and feed-forward term, respectively.

By substituting the feedback law into the Q function (5), the

value function (3) can be evaluated in a quadratic form. With

simplification, we arrive at

V (x+ δx) =
1

2
δx⊤Vxxδx+ Vxδx+∆V,

where

Vxx = Qxx +K
⊤QuuK+Q⊤

ux
K+K

⊤Quu,

Vx = Qx +K
⊤Quuk+Q⊤

ux
k+K

⊤Qu.
(7)

are the Hessian matrix and gradient evaluated at the nominal

state x, respectively. Note that the drifting term ∆V is

irrelevant to the algorithm and thus ignored. Given the system

(1) and a nominal state-action pair (X,U), the backward

pass is processed by initializing the value function with

the terminal cost and its derivatives as VN = lf (xN),
then recursively solves (6) and (7) all the way back to the

beginning of the trajectory.

2) Forward Pass: The forward pass simply updates

(X,U) in the new iteration by propagating the input derived

from the feedback law (6). By starting from the given initial

state, i.e. xnew
0 = x0, the forward pass is expressed as

u
new
k = uk +Kk(x

new
k − xk) + kk

x
new
k+1 = F(xnew

k ,unew
k).

III. BALANCING ENERGY AND TIME OPTIMALITY

VIA DDP

In this section, we present an unconventional perspective

on the analysis of discrete-time flow, enabling the utilization

of the standard DDP method for solving motion planning

problems in nonlinear dynamical systems with balanced

energy and time optimality.

A. Proposed Approach

Discrete-time systems are practically advantageous for

physical platform implementation. Conventionally, when

dealing with such systems, the entire time horizon is evenly

divided into a fixed number of time steps for the sake of

computational convenience and notation simplicity. As a

result, the explicit representation of the time interval is often

omitted, as observed in the commonly used expression (1).

x0

x1

x2 x3

x4

τ0 τ1 τ2 τ3 τ0 τ1 τ2 τ3BO-DDP

xtarget

x0

x1

x2
x3

x4

xtarget

Time step trajectory

State trajectory

Fig. 1: Schematic diagram of the intuition behind our ap-

proach that varies the time interval size to achieve optimality

By contrast, we emphasize the significance of the time

interval size, as it plays a crucial role in determining the

state transition. Hereby, we slightly abuse the notation and

rewrite the discrete-time system (1) as follows:

xk+1 = F(xk,uk, τk), (8)

where τk ∈ R
+ is the interval size at time step k. The key

points are illustrated in Figure 1. By adopting this idea, we

can formulate the motion planning problem with adjustable

priority between energy and time optimality as the following

optimization problem

minimize
U, T

N−1
∑

k=0

weu
⊤

k ukτk + wtτk + wf∥xN − xtarget∥
2

subject to xk+1 = F(xk,uk, τk),

x0 = xstart,

u ≤ uk ≤ u,

0 ≤ τ n
k + δτ ≤ τk ≤ τ n

k + δτ ≤ τ ,
(9)

where T = {τ0, · · · , τN−1} represents the time step trajec-

tory, we, wt, wf determine the weights associated with the

energy and time consumption, and target steering progress,

respectively, τ n
k denotes the nominal value of τk from the

previous iteration, and · , · are boxed boundary. The last

constraint regulates the allowable variation of τ for each

iteration which will be discussed in detail in Section III-

B. This optimization problem is well-suited for the DDP

framework, because the weighted summation of consumed

energy and time can be defined as the running cost, and the

steering progress as the final cost.

Furthermore, we augment the control variable by incorpo-

rating it with the time interval through stacking, i.e. ûk =
[

uk τk
]

∈ R
m+1. Having done so, we not only simplify the

notation but, more importantly, recognize the time window

size τ as an additional dimension of the control variable. By

doing so, the augmented system (8) is naturally compatible

with the DDP algorithm, allowing for seamless integration

into the optimization framework.

Remark: This work focuses on emphasizing the perspec-

tive of treating the time interval as an additional control as-

pect. Therefore, for (9) we simply enforce boxed constraints

on U and T , which can be easily solved by, e.g. logarithmic

barrier method and projected Newton method [16]. For more

sophisticated constraints, alternative approaches, e.g. [17]

[18], can be explored.

Warm Start: We have observed that in DDP, simultane-

ously finding optimal control and time interval sequences

while satisfying the terminal requirement can be challenging

compared to finding only the feasible control. To address this

challenge, we utilize DDP to first obtain a feasible control

sequence that guides the system towards the target. This is

achieved by considering a modified value function

Jws(X,U) =
N−1
∑

k=0

we1u
⊤

k uk + wf1∥xN − xtarget∥
2, (10)

where we1 and wf1 are weight coefficients. By incorporating

this modified value function, we can warm-start DDP to

reach the combined optimality with a feasible initialization.

B. Further Discussions

1) High Nonlinearity Regarding Time Interval: We have

found that the augmented dynamics (8) exhibit higher nonlin-

earity with respect to τ compared to u. Figure 2 summarizes

the magnitude of the Taylor expansion coefficients of (8) up

to the second order of u and τ . Specifically, we examine the

ℓ2-norm of Fu, Fτ , Fuu, and Fττ , by applying 40 randomly

initialized inputs sequence to a cart pendulum model [19]

with fixed τk ≡ 50ms and N = 100. Note that the input

of the cart pendulum is a scalar force acting horizontally on

the system. Therefore, the ℓ2-norm can be safely applied to

the associated second derivatives.

Fig. 2: Histogram of ℓ2-norm of each derivative term. ∥Fττ∥
is seen to have much larger value compared to ∥Fuu∥.

Given the higher nonlinearity observed in terms of τ in our

method, it becomes crucial to provide a well-initialized U

to enhance the performance. A warm-started DDP is partic-

ularly advantageous in this regard, as it improves subsequent

iterations based on the results from the previous one.

2) Updating Time Interval: Being aware of the high

sensitivity of τ , we should limit its variation for each iteration

such that it is small enough to ensure the valid approximation

in (5). Therefore, we enforce an element-wise trust region on

τ as shown in the last constraint of (9). In addition, to avoid

numerical issues during the state propagation, we examine

the entire T after each forward pass, and then rule out τk
that is too close to 0, where we consider the following rule

τk = 0, if τk ≤ τ . (11)

Our proposed BO-DDP is summarized in Algorithm 1.

Algorithm 1 Optimal Motion Planning via BO-DDP

Require: xstart, xtarget, initialized U0, T0, weight coefficients,

constrained boundary

1) Start from U0, apply DDP to obtain a warm-starting

control Uw by minimizing (10).

2) Start from Uw, T0, apply DDP on optimization (9).

3) During Step 2, examine and update T by applying

rule (11) after each forward pass.

IV. EFFICIENT INTEGRATION AND DIFFERENTIATION

The quadratic terms in DDP are crucial for accurately

depicting dynamics and cost function. However, obtaining

second-order approximations is computationally expensive.

Consequently, optimization techniques like iLQR [12] often

omit the Hessians of F. However, as discussed in Section III-

B, the rich information conveyed by Fττ highlights the

necessity of Hessians in achieving time-optimal results. To

address this dilemma, we introduce a fundamental yet novel

approach for the numerical solution of the ODE by examin-

ing the Taylor series of its solution. This process allows us

to obtain Jacobians and Hessians as by-products.

A. Numerical Integrator

We start with a continuous-time autonomous system

ξ̇(t) = F (ξ(t)), ξ ∈ R
n. (12)

Then we expand ξ around a particular time point t

ξ(t+ h) = ξ(t) + hξ̇(t) +
h2

2
ξ̈(t) +

h3

3!

...
ξ (t) + . . .

to some desired order p ∈ N, for which a larger value

gives a more accurate approximation of ξ(t + h). Now, we

examine each derivative by starting from the first order, i.e.

ξ̇ = F (ξ(t)). As for the second order, we have

ξ̈(t) =
d

dt
ξ̇

∣

∣

∣

∣

t

= J(F)|ξ(t)
d

dt
ξ

∣

∣

∣

∣

t

= J(F)|ξ(t) F |ξ(t) .

If we continue to apply the chain rule to obtain the third and

any higher-order derivatives, the computational complexity

will be sharply increased, as these procedures involve the

composition of different multilinear forms.

To confront this dilemma, adopting a slightly relaxed

notation, let’s define a vector field

Ψ1(ξ) = ξ̇ = F (ξ).

It can be immediately followed by

Ψ2(ξ) = ξ̈ =
d

dt
ξ̇ =

d

dt
Ψ1(ξ) = J(Ψ1)F (ξ),

which can be easily recognized as another vector field just

like Ψ1. Moreover, we can keep on repeating this definition

indefinitely to any Ψp, and will find they are all vector

fields. By carefully inspecting their patterns, we conclude

the following functional recursion

Ψk+1 = J(Ψk)F, Ψ0 = Id, (13)

where Id : ξ 7→ ξ denotes the identity operator. In doing so,

instead of working with composited functions, any higher-

order derivative can be easily obtained via sequentially

computing the Jacobian of a vector field by following (13).

Hereby, the numerical integration for ODE (12) to any

desired order p is achieved

ξ(t+ h) =

∞
∑

q=0

hq

q!
Ψq(ξ(t)) ≈

p
∑

q=0

hq

q!
Ψq(ξ(t)). (14)

B. Calculation of Derivatives

Another great feature of the proposed integrator is that the

procedure for computing the Taylor expansion components

also directly carries out the derivatives of the flow as a by-

product. To show this, we first define a flow ϕ of (12) over

the time step h and state ξ, i.e. ϕ : R× R
n → R

n.

1) First Derivative: Given (14), we can express the ap-

proximation

ϕ(h, ξ) ≈ Ψ0(ξ) + hΨ1(ξ) + · · ·+
hp

p!
Ψp(ξ),

whose first derivative over h can be immediately carried out

∂

∂h
ϕ ≈

p
∑

q=1

hq−1

(q − 1)!
Ψq(ξ).

While the derivative over ξ can be expressed as

∂

∂ξ
ϕ ≈ J(Ψ0) + hJ(Ψ1) + · · ·+

hp

p!
J(Ψp).

By recognizing the terms

J(Ψ0) = I, J(Ψ1) = J(F), J(Ψ2) = J(J(F)F), . . . ,

we can see that these components have already been com-

puted as intermediate products during the integration (14).

2) Second Derivative: Based on the results found above,

computing the second derivatives is straightforward

∂2

∂h2
ϕ ≈

p
∑

q=2

hq−2

(q − 2)!
Ψq(ξ),

∂2

∂ξ2
ϕ ≈

p
∑

q=0

hq

q!
J(J(Ψq)),

∂2

∂h∂ξ
ϕ ≈

p
∑

q=1

hq−1

(q − 1)!
J(Ψq).

Note that the term J(J(Ψq)) is viewed as a tensor involving

additional yet mild computations. On the other hand, the

remaining components are by-products of (14) as well.

Remark: Despite our study being on autonomous sys-

tem (12), our approach can be readily extended to controlled

systems. To see this, one can simply stack the state with a

zero-order-hold control signal, and then truncate the dynam-

ics related to the control, as the input remains unchanged

throughout the entire time step. The subsequent analysis and

computation remain identical to those presented above.

C. Comparison of Computational Time

To demonstrate the efficiency of the proposed numerical

approach, we compare its computation time against the

finite difference approach and, a widely-used Python library

for differentiation, JAX [20]. The task is to compute state

trajectory, as well as the first and second derivatives at each

time step by propagating a control sequence on a full-scale

nonlinear quadcopter system, whose model will be shown

in Section V-B. For the other two differential approaches,

the fourth-order Runge-Kutta method is applied for forward

integration. The test is run on a desktop with a 3.8 GHz Intel

Core i7 processor and 64 GB of RAM. Table I summarizes

the results of 10 independent simulations with fixed τk ≡
50ms, N = 200, and approximation order p = 4. Our

method demonstrates a significant advantage over the other

two methods in terms of computational time. This enhanced

efficiency greatly improves the practicality of BO-DDP for

handling complex systems.

TABLE I: Computational Time of Three Methods

Our Method RK4 + JAX RK4 + Finite Difference

Mean [sec] 2.81 45.26 126.89

Var 6.72× 10
−3 0.58 3.60

V. NUMERICAL SIMULATIONS

We demonstrate the effectiveness of the proposed BO-

DDP by applying it to two different platforms: a car model

that operates on a planer space, and a more complex and

highly nonlinear model of the quadcopter in 3-D space. For

each example, we will vary the weighting pair (we, wt) for

different optimality criteria, i.e. one has more budget on

control effort than that on time consumption or vice versa.

A. Car in Planer Space

The corresponding vehicle dynamics are described by the

following system of nonlinear differential equations

d

dt









x

y

ϕ

v









=









v sinϕ
v cosϕ
uϕv

uv









,

where ϕ represents the facing angle, v stands for the for-

ward moving velocity, the control variables
[

uϕ uv
]

are to

change steering angle and forward velocity, respectively.

For this test, we command a motionless car drive from

the origin by facing north to stop at the spot (2, 3) by

facing east, i.e. the initial and target states are set to be

xstart =
[

0 0 0 0
]

and xtarget =
[

2 3 π
2 0

]

. With

this simple system, we directly apply a cold-started BO-DDP.

More specifically, the optimization problem (9) is considered,

where we set the terminal cost weight wf = 5000, controls

are bounded by ∥uϕ∥ ≤ π
2 and ∥uv∥ ≤ 2, maximum

interval length is set to be τ = 100ms, and largest allowable

variation of τ between each iteration is limited as −δτ =
δτ = 5ms. To start with, we set U0 = 0, and form T0
by evenly distributing 5 second into 100 time intervals, i.e.

τk = 50ms,N = 100.

With the other settings unchanged, we gradually raise the

value of wt

we

in order to investigate the capability of BO-

DDP in addressing problems with increasingly limited time

budgets. The results of five experiments are summarized in

Table II, revealing a clear trend of increasing energy usage

and decreasing time consumption as the weights ratio rises.

In situations where a car needs to be parked as quickly as

possible, a large wt dominating we should be picked.

TABLE II: Used Energy and Time with Different Weights

wt/we 0 0.33 1 3 ∞

Energy Used 1.45 1.80 2.56 4.50 13.13
Time Used (sec) 9.88 6.04 4.78 3.68 3.07

Furthermore, the results of the three most representative

experiments are depicted in Figure 3a. When operating under

a stringent energy budget, uk strives to minimize its value

at each step of k, while simultaneously maximizing τk.

Conversely, when prioritizing time efficiency, uk optimally

utilizes all available resources to steer the system towards the

target, resembling the characteristics of a bang-bang control

strategy. Additionally, Figure 3b illustrates the corresponding

trajectories. With increasingly limited timeframes, the car

tends to take a more direct path toward the target instead

of following a rounder curve.

B. Quadcopter

A more challenging model is considered here to show-

case the effectiveness of the proposed method on motion

planning problems. The dynamic model employed for the

quadcopter system comprises a set of nonlinear ordinary

differential equations (ODEs) with 12 states and 4 control

0 2 4 6 8 10
−2
−1

0
1
2 uv

uϕ

0 20 40 60 80 100
0.000
0.025
0.050
0.075
0.100

τk

0 1 2 3 4 5
−2
−1

0
1
2

uv

uϕ

0 20 40 60 80 100
0.000
0.025
0.050
0.075
0.100 τk

0.0 0.5 1.0 1.5 2.0 2.5 3.0
Time (sec)

−2
−1

0
1
2

uv

uϕ

0 20 40 60 80 100
Time step

0.000
0.025
0.050
0.075
0.100

τk

(a) From top to bottom, each row represents the resulting action-
horizon pair with increasing wt

we

. The left column shows U, while

distributions of T over the horizon are shown on the right.

−1.0 −0.5 0.0 0.5 1.0 1.5 2.0 2.5 3.0

X

0.0

0.5

1.0

1.5

2.0

2.5

3.0

Y

wt/we=0

wt/we=1

wt/we=∞

(b) Driven by different U, the corresponding trajectories of the car
start from the red point to the target (blue dot).

Fig. 3: Results of three experiments with wt

we

∈ {0, 1, ∞}
by deploying the BO-DDP on the 2D car model.

inputs representing the rotational speed of the four motors

in rotations per minute (rpm). It can be expressed as:

d

dt
x = fd(x) +

4
∑

i=1

fi(x)u
2
i ,

where fd and fi are nonlinear differentiable functions. For

a detailed dynamics structure, readers are referred to [21].

For this particular test, our objective is to navigate a

standing-still quadcopter from the origin to a hovering posi-

tion at coordinates (1, 3, 2). Given the intricacy of the system,

we employed the warm-starting strategy outlined in (10) to

initially synthesize a feasible U0. The hyperparameters used

in this test were identical to those in Section V-A, with

the exception of the following adjustments: we enforced a

restriction on the rpm values for each motor, limiting them

to the range 600 ≤ u ≤ 650, and set −δτ = δτ = 2ms.

To exclude the impact of gravity, we customize the energy

consumed at step k as (uk − u
hov
k)⊤(uk − u

hov
k)τk, where

u
hov
k equals the rpm enabling the quadcopter to hover.

Once again, we explore the role of wt

we

on the consumption

of energy and time, which is summarized in Table III. As

expected, the results reveal that a narrower time budget

leads to quicker attainment of the target, at the expense

of increased energy consumption. We additionally show the

resulting sequences of U, T ,X in Figure 4, where one can

observe that the quadcopter picks a more aggressive control

strategy to reach the target quicker.

TABLE III: Used Energy and Time with Different Weights

wt/we 0 9 199 999 ∞

Energy Used 106 147 402 1381 8310
Time Used (sec) 9.90 9.70 6.60 4.52 2.92

0 1 2 3 4 5

600

620

640

660
u1
u2
u3
u4

0 20 40 60 80 100
0.00

0.05

0.10 τk

0 2 4 6 8 10

600

620

640

660
u1
u2
u3
u4

0 20 40 60 80 100
0.00

0.05

0.10

τk

0.0 0.5 1.0 1.5 2.0 2.5 3.0
Time (sec)

600

620

640

660

rp
m

u1
u2
u3
u4

0 20 40 60 80 100
Time step

0.00

0.05

0.10

τk

(a) The resulting action-horizon pair from the warm start is shown
on the first row. The following two rows demonstrate the ones by
setting wt

we

= 0,∞, respectively. The left column shows Us, while

distributions of T s over the horizon are shown on the right.

X

−0.2

0.0

0.2

0.4

0.6

0.8

1.0

Y

−0.5
0.0

0.5
1.0

1.5
2.0

2.5
3.0

Z

0.00

0.25

0.50

0.75

1.00

1.25

1.50

1.75

2.00

Warm start

wt/we = 0

wt/we = ∞

(b) Driven by different U, the corresponding trajectories of the
quadcopter start from the red point to the target (blue dot).

Fig. 4: Results of the warm start and two other experiments

with wt

we

∈ {0, ∞} by deploying the BO-DDP on the 3D

quadcopter model.

VI. CONCLUSION

In this study, we introduced a novel perspective on

discrete-time systems, wherein the time interval size is

considered as an additional dimension of the control variable.

By incorporating Differential Dynamic Programming (DDP)

and a numerical method for integration and differentiation,

we developed the BO-DDP method for Balancing energy and

time Optimalility in motion planning. Various experiments

showcased the practicality and effectiveness of our approach.

However, we also identified two areas for future im-

provement. Firstly, in dealing with complex systems, we

currently provide a warm-starting strategy only for the con-

trol sequence. A warm-started time horizon would further

enhance the overall performance of our method. Secondly,

the resulting optimal time horizon tends to be unevenly

distributed over the time steps, which may pose challenges

for certain digital platforms operating at fixed frequencies.

REFERENCES

[1] I. M. Ross, A Primer on Pontryagin’s Principle in Optimal Control,
2nd ed. Collegiate Publishers, 3 2015.

[2] C. R. Hargraves and S. W. Paris, ªDirect trajectory optimization using
nonlinear programming and collocation,º Journal of guidance, control,

and dynamics, vol. 10, no. 4, pp. 338±342, 1987.
[3] M. R. Osborne, ªOn shooting methods for boundary value problems,º

Journal of mathematical analysis and applications, vol. 27, no. 2, pp.
417±433, 1969.

[4] Y. Li, T. Yang, and S. Tong, ªAdaptive neural networks finite-time
optimal control for a class of nonlinear systems,º IEEE Transactions

on Neural Networks and Learning Systems, vol. 31, no. 11, pp. 4451±
4460, 2019.

[5] W. He, Y. Huang, J. Wang, and S. Zeng, ªHomotopy method for
optimal motion planning with homotopy class constraints,º IEEE

Control Systems Letters, vol. 7, pp. 1045±1050, 2022.
[6] M. Giftthaler, M. Neunert, M. StÃ¨uble, J. Buchli, and M. Diehl,

ªA family of iterative gauss-newton shooting methods for nonlinear
optimal control,º in 2018 IEEE/RSJ International Conference on

Intelligent Robots and Systems (IROS), 2018, pp. 1±9.
[7] J. P. LaSalle et al., ªThe time optimal control problem,º Contributions

to the theory of nonlinear oscillations, vol. 5, pp. 1±24, 2016.
[8] D. Verscheure, B. Demeulenaere, J. Swevers, J. De Schutter, and

M. Diehl, ªTime-optimal path tracking for robots: A convex opti-
mization approach,º IEEE Transactions on Automatic Control, vol. 54,
no. 10, pp. 2318±2327, 2009.

[9] S. Al Homsi, A. Sherikov, D. Dimitrov, and P.-B. Wieber, ªA hierar-
chical approach to minimum-time control of industrial robots,º in 2016

IEEE International Conference on Robotics and Automation (ICRA).
IEEE, 2016, pp. 2368±2374.

[10] A. Taitler, I. Ioslovich, E. Karpas, and P.-O. Gutman, ªMinimum time
optimal control of second order system with quadratic drag and state
constraints,º in 2019 IEEE 58th Conference on Decision and Control

(CDC). IEEE, 2019, pp. 523±528.
[11] D. Mayne, ªA second-order gradient method for determining optimal

trajectories of non-linear discrete-time systems,º International Journal

of Control, vol. 3, no. 1, pp. 85±95, 1966.
[12] W. Li and E. Todorov, ªIterative linear quadratic regulator design for

nonlinear biological movement systems,º in Proc. 1st International

Conference on Informatics in Control, Automation and Robotics, 2004,
pp. 222±229.

[13] W. He, Y. Huang, and S. Zeng, ªMotion planning with homotopy
class constraints via the auxiliary energy reduction technique,º in 2022

American Control Conference (ACC). IEEE, 2022, pp. 4933±4938.
[14] Y. Tassa, T. Erez, and E. Todorov, ªSynthesis and stabilization of

complex behaviors through online trajectory optimization,º in 2012

IEEE/RSJ International Conference on Intelligent Robots and Systems.
IEEE, 2012, pp. 4906±4913.

[15] H. Li and P. M. Wensing, ªHybrid systems differential dynamic
programming for whole-body motion planning of legged robots,º IEEE

Robotics and Automation Letters, vol. 5, no. 4, pp. 5448±5455, 2020.
[16] Y. Tassa, N. Mansard, and E. Todorov, ªControl-limited differential

dynamic programming,º in 2014 IEEE International Conference on

Robotics and Automation (ICRA). IEEE, 2014, pp. 1168±1175.
[17] Z. Xie, C. K. Liu, and K. Hauser, ªDifferential dynamic programming

with nonlinear constraints,º in 2017 IEEE International Conference

on Robotics and Automation (ICRA). IEEE, 2017, pp. 695±702.
[18] H. Almubarak, K. Stachowicz, N. Sadegh, and E. A. Theodorou,

ªSafety embedded differential dynamic programming using discrete
barrier states,º IEEE Robotics and Automation Letters, vol. 7, no. 2,
pp. 2755±2762, 2022.

[19] F. Mazenc and S. Bowong, ªTracking trajectories of the cart-pendulum
system,º Automatica, vol. 39, no. 4, pp. 677±684, 2003.

[20] J. Bradbury, R. Frostig, P. Hawkins, M. J. Johnson, C. Leary,
D. Maclaurin, G. Necula, A. Paszke, J. VanderPlas, S. Wanderman-
Milne, and Q. Zhang, ªJAX: composable transformations of
Python+NumPy programs,º 2018. [Online]. Available: http://github.
com/google/jax

[21] F. Sabatino, ªQuadrotor control: modeling, nonlinear control design,
and simulation,º (Masters Degree Project, KTH Royal Institute of
Technology), 2015.

	Introduction
	Preliminaries
	Optimal Motion Problem Formulation
	Differential Dynamic Programming
	Backward Pass
	Forward Pass

	Balancing Energy and Time Optimality via DDP
	Proposed Approach
	Further Discussions
	High Nonlinearity Regarding Time Interval
	Updating Time Interval

	Efficient Integration and Differentiation
	Numerical Integrator
	Calculation of Derivatives
	First Derivative
	Second Derivative

	Comparison of Computational Time

	Numerical Simulations
	Car in Planer Space
	Quadcopter

	Conclusion
	References

