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Abstract
Advances in information technologies and vehicle automation have birthed new
transportation services, including shared autonomous vehicles (SAVs). Shared au-
tonomous vehicles are on-demand self-driving taxis, with flexible routes and schedules,
able to replace personal vehicles for many trips in the near future. The siting and density
of pick-up and drop-off (PUDO) points for SAVs, much like bus stops, can be key in
planning SAV fleet operations, since PUDOs impact SAV demand, route choices,
passenger wait times, and network congestion. Unlike traditional human-driven taxis
and ride-hailing vehicles like Lyft and Uber, SAVs are unlikely to engage in quasi-legal
procedures, like double parking or fire hydrant pick-ups. In congested settings, like
central business districts (CBD) or airport curbs, SAVs and others will not be allowed
to pick up and drop off passengers wherever they like. This paper uses an agent-based
simulation to model the impact of different PUDO locations and densities in the Austin,
Texas CBD, where land values are highest and curb spaces are coveted. In this paper
18 scenarios were tested, varying PUDO density, fleet size and fare price. The results
show that for a given fare price and fleet size, PUDO spacing (e.g., one block vs. three
blocks) has significant impact on ridership, vehicle-miles travelled, vehicle occupancy,
and revenue. A good fleet size to serve the region’s 80 core square miles is 4000 SAVs,
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charging a $1 fare per mile of travel distance, and with PUDOs spaced three blocks of
distance apart from each other in the CBD.
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Introduction

Cities are facing increasing demands for curb access from diverse users, like on-
demand micromobility, transportation network companies (TNCs - like Uber, DiDi,
and Lyft), and urban freight delivery, such that dedicating curb space for parking in
dense urban centers is becoming less tenable (Marsden and Docherty, 2020). Agencies
in charge of parking management have responded to new users by increasing staffing
for greater enforcement and by piloting new mobility zones, particularly for TNCs in
nightlife and entertainment districts (Butrina et al., 2020). Małecki’s (2018) review of
pick-up and drop-off zones (PUDOs) for TNCs estimated that they reduce operational
failures that arise when demand for curb space exceeds capacity, thereby reducing
issues of pedestrian safety, traffic congestion, conflicts with bike lane users, and
emergency vehicle access. The transition to a sharing economy with the expected
arrival of shared autonomous vehicles (SAVs), which do not require a driver, do not
have to look for off-street parking, and can carry dozens of different users per day,
warrants further exploratory analysis on the operational performance of PUDOs.

The demand for SAVs will vary over time and space, day of week, and month of
year, as a function of many factors. A key factor in SAV mode choice is the use of
PUDOs (rather than door to door service) and their locations, which affect traveler access
costs, wait times, and vehicle occupancy levels. As such, it is important to capture the
interaction between demand and supply and impact of PUDO locations on SAV demand
and fleet operations. While self-driving vehicles contribute to urban sprawl – by making
“driving” easier, curb protections, road pricing, and shared rides (in SAV fleets) can
counter those tendencies (Brueckner, 2000; Zhang and Kockelman 2016).

City centers typically have expensive, scarce parking supply and complex rules
governing curb use. Parking along some roads may allow for unlimited free parking,
others have time limits, while others require a permit or charge by the hour. Many have
bus stops or bike storage, loading zones for commercial use, and paid parking stalls – all
in the curb space on one side of a single block of land. Expensive parking, traffic
congestion, and curb restrictions tend to reduce vehicle ownership, making SAVs more
popular in the future (Ostermeijer et al. 2019). Setting aside designated PUDO zones
can simplify the search for loading and unloading sites for SAVs.

This paper simulates SAV fleet activities across the Austin, Texas region. It expands
existing programs in POLARIS (an agent-based model) to evaluate the effects of
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different PUDO configurations on fleet performance metrics, including traveler wait
times and walk distances, average SAV seat occupancies, and vehicle-miles traveled
(VMT) in an integrated supply and demand context (where demand is endogenous, and
impacted by added wait times and longer walk distances). By varying the presence and
spacing of PUDOs (taking into account curb access limitations) and SAV fleet size,
simulation results for 18 scenarios provide valuable insights for municipalities con-
sidering how to accommodate the coming curb demands of SAV fleets and for fleet
managers seeking to anticipate demand and cost, while optimizing fleet size and fare/
pricing decisions.

This paper tackles the following questions:

· How does PUDO density impact demand for trips, response time to trip calls,
empty vehicle-miles traveled (eVMT), the number of trips served, and other
performance metrics?

· What demands will SAVs place on curb space, and what is the appropriate
number of spots to provide at each PUDO location?

This paper’s literature review synthesizes research and results on SAV modeling
efforts and system evaluation. The methodology section explains modeling assump-
tions used, including program code details. It also explains the data sources used for
estimating parking supply and demand, in order to choose PUDO sites. Case study
results for Austin, Texas are then presented, followed by conclusions and suggestions
for future work.

Literature Review

Shared autonomous vehicles differ from personal autonomous vehicles in that they are
not owned by an individual but rather by a fleet operator. Instead of sitting in a parking
lot once a trip is completed, they can drive themselves to begin another person’s trip. In
addition, SAVs can carry unrelated riders who share similar destinations and departure
times. The lack of a driver can significantly lower operating costs (Becker et al., 2020;
Fagnant and Kockelman, 2015a; Loeb and Kockelman, 2019). When modelling SAV
services, it is very important to carefully design curb allocation strategies, pickup and
drop-off locations, vehicle assignment (to trip requests/travelers) decisions, and single
versus shared ride strategies in order to provide a high-quality but cost-effective
service. Relevant work on these four service-design strategies is summarized in this
section.

Curb Allocation

Shared autonomous vehicles may congest already busy curbs, in downtowns, at air-
ports, convention centers, and other popular sites. They may not be allowed to idle at
any location, and may be charged a fee for every minute they linger. Since they are
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self-driving, they can be sent somewhere where parking is permitted and/or less expensive.
Fleet managers will be expected to not stop SAVs in travel lanes to pick up or drop off
passengers as human drivers often do. In areas where on-street parking is at a premium, like
central business districts (CBDs) and airport terminal curbs, dedicated spaces for PUDO
with very short idling limits of one or 2minmay be implemented to provide an easy-to-find
open parking space and reduce SAVs cruising to find open curb space.

Predictions of the effects of SAVs on parking spaces and curb usage depend on
scenario formulations of future vehicle ownership (privately-owned or fleet operator-
owner), SAV saturation rate, and the share of people willing to share rides with
strangers (Stead and Vaddadi, 2019). In a world of well-received SAVs, high utilization
rates and vehicle occupancies in a near continuous operation could eliminate the need
for off-street parking.

In the short term, lessons taken from managing curb space arising from TNCs and
the emergent SAVs will inform policies to manage traffic at inter-/multi-modal
transportation facilities and major destinations (e.g., office parks, universities, concert
venues, nightlife districts). Cities should anticipate a large demand for passenger
loading/unloading at destinations of TNC and future SAV trips and manage on-street
parking to increase turnover or designated PUDO locations to meet demand (Marsden
and Docherty, 2020).

Pick-Up and Drop-Off Modeling Techniques

In order to accommodate passengers beginning and ending their trips at different
locations without adding to the trip length of all users of the shared vehicle, riders can
be picked up and dropped off at designated locations. Riders walk to or from these sites
instead of forcing the vehicle to make the trip all the way to each trip end (Li et al.,
2016). When combined with dynamic ridesharing (DRS), which enables SAVs that are
already carrying passengers to pick up additional riders who are not far off the SAV’s
current path, greater vehicle occupancy and or lower fleet sizes could theoretically be
achieved. An example of DRS and PUDOs leading to reduced SAV trip length is shown
below in Figure 1.

In Figure 1A, where there are no PUDOs, an SAV fulfilling two trips near the Austin
CDBmust leave the arterial it is traveling on several times to pick up a passenger at their
exact origin point (see blue line), as well as take a convoluted path along several one-way
streets at the end of the journey.With PUDOs (Figure 1B), the two riders walk tomeet the
SAV (path shown in green dots) without it having to make a detour onto side streets, then
both are dropped off at the same PUDO and walk a few blocks to their final destination.
This yields a reduced trip distance and reduced wait time for all riders involved.

Modeling PUDO stop aggregation for SAVs is more complex than matching a single
user to an SAV vehicle which then picks up the passenger. Rather, Fielbaum et al.
(2021) suggest one must consider vehicles passing near the origin and choose not only
which vehicle to assign but also to what point to send the user on foot to meet the SAV.
They expand on their previous framework (Fielbaum et al., 2021) by minimizing the
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combined costs to riders requesting a trip and those already traveling. The model results
show that adding walking to the process reduces vehicle-hours traveled (VHT) by
10 percent, while riders in the highest demand areas also have to walk the farthest. The
authors conclude by stating that further research is needed, such as determining the
optimal vehicle fleet, how it is affected by PUDO points, and how demand further
responds to these two variables.

Dynamic Ridesharing

Algorithms for approximately solving DRS problems have been extensively studied
because of the difficulty of obtaining an optimal solution. In most cases particularly in
agent-based simulation research, this challenge leads authors to pursue simplistic
heuristics for matching vehicles with trips, often placing the traveler with the closest
available vehicle. It is easy to imagine scenarios where a DRS opportunity barely
fulfills those constraints but is selected over another opportunity that might be a better
match for the current trip, because the opportunities are not being ranked or ordered.

Alonso-Mora et al. (2017) proposed a solution that is fast enough to dispatch
vehicles in real time. In this example, only vehicles deviated from their current paths to

Figure 1. Path taken by shared autonomous vehicle using dynamic ridesharing with PUDOs
disabled (A) and enabled (B).
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meet users and users walking to a designated meeting point was not considered. Rather,
they would wait at the exact location where they started their trip, such as in front of
their home or workplace. The algorithm was formulated to minimize the wait time for
passengers to be picked up. It also included a penalty for requests that went unassigned,
that is, no vehicle picked up the individual who made the request. Every 30 sec a new
set of requests were analyzed, and a graph of feasible paths and vehicles that could
serve them was created. If a request was not assigned during a given batch of trip
matching, the penalty for not serving that request would increase. Using a fleet of
2000 shared vehicles with a capacity of 10, wait time decreased more than in-vehicle
travel time (IVTT) when compared with the base scenario of current single-occupant
taxi service. Nighty percent of rides were shared and the algorithm was light enough to
analyze trips in real time, finishing assignment of each batch in less than the 30 sec
spacing between them. However, they also fail to adequately benchmark the algorithm
against knownmethodologies. This makes it impossible to fully understand the model’s
performance and determine the validity of the model results.

Farhan and Chen (2018) estimated that 13 privately owned vehicles can be replaced
by a single shared autonomous electric vehicle (SAEV) using their Capacitated Vehicle
Routing Problem formulation for Austin, Texas, with a wait time of about 6 min.
However, their solution requires advance knowledge of the trip schedules, which - in a
practical context - requires a reservation-based system. Liu et al. (2019) described a
quadratic formulation of the SAV routing problem that can solve small subsets of the
problem and may be viable in real time adjacent to a traffic simulation. This approach is
unique in that it solves subsets of the problem to optimality. This quadratic formulation
is unique and probably the fastest solution available. The challenge in implementing
this in an agent-based transportation simulation is generating problem subsets that are
small enough to solve in real time.

Shared Autonomous Vehicle Assignment

Vehicle dispatching has been studied closely, across many contexts, with conclusions
that are relevant for SAV research and applications. For example, Levin et al. (2017)
examined event-based logic for dispatching SAVs in an agent-based simulation of the
Austin CBD with congestion feedbacks. In this simulation, all trips within this small
region were assumed to be served by SAVs, Bösch et al. (2016) simulated low SAV
penetration rates around Zurich to estimate fleet sizes required to meet different demand
levels, though all demand levels represented less than 10 percent of the city’s total travel
passenger-trip demand. The study found that dynamic traffic assignment models, like
POLARIS, are needed to appreciate the congestion impacts of SAVs (since this new
model can congest networks) and strong use of dynamic ride-sharing (between
strangers) can abate such issues.

Fagnant et al. (2015b) described algorithms for distributed ridesharing including
heuristics for reallocating idle SAVs that are frequently cited. Both are accomplished
with some abstraction of the network as well as trip sampling. Hörl (2017) simulated an
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SAV service demonstrated on a toy model loosely based on Sioux Falls, in North
Dakota. Bischoff andMaciejewski (2016) simulated SAVuse in Berlin usingMATSim,
but only 10 percent of trips were simulated due to computational limitations. For SAV
assignment to travelers, they used the common heuristic (shortcut) of assigning the
closest vehicle to each trip request. Since they were not simulating shared rides, they
avoid the complexity of the multiple-vehicle pickup-and-delivery problem (MVPDP).

Methodology

This section presents the methodology used to design simulation experiments to
evaluate the impact of PUDO locations and densities on SAV fleet operation (e.g., wait
time and VMT) and demand under different fare prices and fleet sizes.

POLARIS

POLARIS, an agent-based model developed by Argonne National labs, which can
model the operation of SAVs in a region (de Souza et al., 2020) was used to analyze
PUDOs. Similar to MATSim and other agent-based models, POLARIS lets its users
track individual vehicles through a region and the road, walk, and bike links within it to
individual destinations. This gives far more granular results than the aggregate zone-to-
zone estimates of travel produced by trip-based models. POLARIS goes beyond
traditional four-step travel demand modeling and provides an activity-based model
(Miller, 2021) by tracking individual agents and vehicles throughout a network using
dynamic traffic assignment. Agents choose their departure time and destination for
individual trips, plan their day as a whole, and reschedule and re-route depending on the
constantly changing conditions they experience. Instead of being aggregated into traffic
analysis zones (TAZs) representing a neighborhood or block of land, trips can begin
and end at individual addresses, referred to as “locations” in POLARIS.

In addition, every personal vehicle, freight vehicle, SAV, and so forth on the road is
of a specific vehicle type. Links are modeled using a mesoscopic flow model that
captures vehicles’ movements throughout various “cells” that subdivide each link (de
Souza et al., 2019). This allows for detailed tracking of vehicle movements future
expansions of SAV modeling such as the effect of SAVs pulling into the curb, un-
loading, and merging back into traffic has on vehicles in that cell of roadway.

Data Description

To analyze PUDOs, the entire population of the 6-county Austin metropolitan area was
simulated. In the model, there were 16,059 road links, 10,435 nodes, and
39,638 possible destinations created using the Capital Area Metropolitan Planning
Organization’s (CAMPO) 2015 roadway network. The synthetic population of
1,885,993 persons was generated using the US Census Bureau’s 2018 American
Community Survey (ACS) Public UseMicrodata Sample (PUMS) estimates. The mode
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choice model was previously calibrated using a 2016–2017 Austin-area household
travel survey with n = 27,940 person-trips as an add-on to the National Household
Travel Survey (NHTS). The mode choice parameters for the Austin implementation of
POLARIS had been previously calibrated by others using POLARIS at the University
of Texas at Austin. This paper therefore uses the same mode choice equations as in
other similar work with POLARIS, such as Dean et al. (2021). There are three trip types
modeled in the 6-county region: home-based work (HBW), home-based other (HBO),
and non-home-based (NHB) trips. In addition, five modes are available for agents to
use: single-occupancy vehicle (SOV), high-occupancy vehicle (HOV), taxi (including
all TNCs, whether using SAVs or traditional vehicles), transit, walk, and bike. The
HBW mode choice utility equations will be given below in Table 1.

As shown in the mode choice parameters, there are less parameters to describe the
Taxi/SAV mode. For instance, there is no breakdown of in-versus out-of-vehicle travel
time or a walk access time component as there is in the transit mode. This lack of
separation between walking, waiting, and riding limits the responsiveness of potential
SAV users to parameters such as response time or spacing of PUDO locations. The
travel survey did not capture enough TNC/Taxi users to give significant values for these
parameters (and others such as gender, student status, etc.), and future work must be
done to provide more detailed mode choice estimates for this mode.

Pick-Up and Drop-Off Modeling in POLARIS

This section presents the steps taken to identify and model PUDO locations in PO-
LARIS, namely parking supply estimation, PUDO demand and siting, DRS, and
PUDO aggregation.

Parking supply estimation. For PUDOs to be modeled, it was necessary to gain an
understanding of where demand for curb space most challenged supply in the Austin
area. When an SAV picks up or drops off a passenger, it must pull over to the curb or
into a garage. Unlike some taxis or TNCs in real-world operation, an SAV will almost
certainly not make stops in the middle of the roadway, no matter how brief the boarding
or alighting, so as to minimize safety risks and therefore the potential liability of its
owners. To calculate where this safe space was available, parking demand to supply
ratios had to be calculated. Parking supply included on-street free and paid parking, and
publicly available garage or lot parking (both privately and publicly owned). Three
sources of data were used.

First, the City of Austin maintains a GIS database of on-street parking locations
(Austin Transportation Department, 2021). This data was corrected, and Google Street
View and on-location observations were performed to fill in the gaps in on-street
parking in the CBD. An example of several downtown blocks of land is shown in
Figure 2.

Next, an index of off-street lots and parking garages with their respective capacities
geographic locations was compiled. Finally, as an exact accounting of parking on all
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Table 1. Home-Based-Work Mode Choice Utility Equation Parameters for Austin Region’s
Household Travel Survey Data (2016–2017 NHTS Add-On).

Parameter Mode Value

ASC (utils) SOV �2.932
HOV �0.594
SAV/TNC �2.450
Transit 0.220
Walk 4.540
Bike 1.215

IVTT (minutes) SOV �0.037
HOV �0.057
SAV/TNC �0.002
Transit �0.028

Cost (dollars HOV �0.00089
divided by log of SOV �0.0015
HH income) Taxi �0.00023

Transit �0.044
Total Travel Time Transit 0.00055
Wait Time Transit 0.001
Walk Access Time Transit 0.220
Transfer Penalty Transit �0.00042
Distance (miles) Walk �1.062

Bike �0.257
Is Female SOV 0.333

HOV 0.284
Transit �0.496
Walk �1.425
Bike �1.121

Is Part-Time SOV �0.080
Worker HOV 0.074

Transit �0.202
Walk 0.179
Bike �0.023

Household SOV �0.246
Size Transit �0.369

Walk �0.552
Bike �0.191

Household HOV 0.522
Size = 2 Taxi 1.209
Household HOV 0.287
Size = 3 Taxi 1.301
Household HOV 0.085
Size > 3 Taxi �0.955

(continued)
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streets in the region would be impractical and unnecessary, OpenStreetMap data was
downloaded to provide a rough estimate of on-street parking in the rest of the six-
county Austin metro area. Every road classified as tertiary or residential on the site was
divided into 5-m segments to conservatively calculate the supply of parking provided
about every 10 m on each side of the road on local streets.

Pick-Up and Drop-Off demand and siting. Next, demand for PUDOs was estimated. This
was done using a simulation of 25 percent of the population of the Austin region
generated by using POLARIS. Trip ends for single occupant, carpool, and TNC trips
were gathered, as these modes are the greatest competitors for PUDO space against
SAVs. Based on zones with the greatest observed demand, a geofence was created to
focus SAVoperation in the busiest areas, as shown in Figure 3. These zones would be
the focus of the first group of scenarios, as discussed in the Model Scenarios section
below.

The total population within these TAZs is 326,597 persons, while total employment
is 320,262 jobs, providing a good balance between trip generators and attractors. A grid
was overlaid on the data to show the relationship of trip ends to parking supply, which is
a proxy for the number of trips per parking space per 24-h weekday. The result is
displayed below in Figure 4.

Areas with more than five trips per space per day in the 25 percent simulation, or
20 trips in a theoretical 100 percent simulation, are shown in red above and are a focus
for this paper. With such a high number of trips per space, it is likely that supply will
exceed demand along the curbs in that area, and SAVs will need designated PUDOs in
order to find a predictably empty space to pull over in. Some of the areas in red

Table 1. (continued)

Parameter Mode Value

#Household HOV 0.127
Workers Walk �0.0059

Bike 0.117
#Household HOV �0.185
Vehicles Taxi �0.126

Transit �0.878
Bike �0.256
Walk �0.564

#HH Veh = 1 SOV 5.497
#HH Veh = 2 SOV 6.784
#HH Veh > 2 SOV 7.515
Is Student SOV �1.004

HOV �0.502
Transit 0.423
Walk �1.463
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extending from the center of the Figure 4, such as along the North Lamar, I-35, East
Riverside, and Bee Cave corridors, are a false positive for high parking utilization. This
is because free off-street parking provided by businesses or apartment complexes was
not surveyed. Compared to the few dozen lots and garages in the Austin CBD, hundreds
of small lots would need to be cataloged to obtain an accurate measure of parking
supply along these and other similar corridors. To give context to streets, North Lamar
and I-35 run north-south and are shown in Figure 1. East Riverside and Bee Cave run
east-west. All are major arterials for the City of Austin. North Lamar and Bee Cave
have four lanes each, in those red sections [Figure 4], with left-turn bays at inter-
sections. East Riverside is six lanes, with raised medians, typically, and I-35 is a
multi-lane freeway bounded by one-way multi-lane frontage roads. All are flanked by
strip commercial development, with large parking lots on either side.

In the future, the three sources of parking mentioned earlier could be augmented
through OpenStreetMap parking catalogs or using satellite data (Hawkins, 2021). For
the purposes of this simulation and as confirmed through observation of these parking
lots, there is nearly always ample parking in these areas and the need for PUDOs on
these stretches of road can be disregarded. Therefore, PUDO sites are focusing in the
Austin CBD (Figures 2 and 6), as bounded by Lamar Boulevard (on the west side),
Martin Luther King Jr Boulevard (north side), Interstate Highway 35 (east side), and the
Colorado River (south side) (DAA, 2021).

Figure 2. Curb use designations in part of downtown Austin.
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Dynamic Ridesharing and PUDO aggregation. POLARIS includes DRS and PUDO ag-
gregation. The first feature involves searching among currently occupied SAVs when a
trip request is first made to the SAVoperator. If a vehicle is traveling nearby and making
a small diversion to pick up additional riders that would not lead to significant delays
for existing riders (a maximum of 5 min for the simulations performed in this analysis),
the vehicle will be rerouted to pick up the new request. If such a vehicle is not found, the
user will instead be matched to a nearby empty vehicle (Gurumurthy et al., 2020).
Unlike in branded commercial implementations such as UberPool, in this simulation
there is no discount for sharing a ride with others as it was assumed that sharing a
vehicle would be an inherent feature of the service with no option to be the guaranteed
lone occupant of a vehicle.

Pick-Up and Drop-Off aggregation builds on this by directing riders to walk to
designated locations to be picked up and dropped off instead of waiting at or alighting at
the curb directly in front of their origin or destination. The purpose of this is threefold.

Figure 3. Initial SAV service area, in central Austin.
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First, it helps avoid the previously mentioned safety concerns and lack of curb space.
Second, if stops are spaced sufficiently apart or there is enough demand in a given area,
there could be enough riders boarding and getting off at a single stop to gain some of the
functionality of a traditional transit system where riders are grouped together for
increased efficiency. Lastly, having users walk to a convenient spot to meet their SAV
can avoid the need for the vehicle to pull off the most efficient route for existing riders,
such as leaving a major thoroughfare and diverting to a side street where a new rider
initiated the pick-up process, and then rejoin that route again. This could lead to time
savings and perhaps even pay safety dividends through reducing turn movements,
though this second aspect is outside the scope of this analysis.

Finally, geofences were used in the simulations. This restricted SAV service to a
smaller region of the Austin area, while still allowing all other modes to serve the entire
6-county Austin area. Gurumurthy et al. (2021) studied four different SAV geofences in
the Chicago area, each serving an increasingly larger area and all also including DRS.
By focusing on a small slice of the region and excluding sprawling development while
still covering a large enough area to provide a balance between trip generators and
attractors, fleet efficiency increased. More specifically, SAV eVMT was decreased
somewhat by using DRS but decreased even further when combined with a limited
geofence. Shared autonomous vehicle idle time did increase with smaller geofences as

Figure 4. Weekday parking trips per parking space near the Austin CBD, simulating 25 percent
of population.
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the vehicles served shorter trips and did not have to spend as long carrying passengers
or going to pick them up, but the percentage of VMTwhile empty decreased by almost
half when only operating within the City of Chicago instead of the entire metropolitan
region. Therefore, to maximize operational efficiency in the Austin SAV network, an
initial geofence focused on the Austin CBD and inner suburbs was chosen, as shown
above in Figure 3. This was expanded in later runs to serve a larger area, as described
later in the Model Scenarios section.

Model Scenarios

Multiple variables such as fares and fleet size were adjusted to evaluate their impact on
the performance of a hypothetical SAV network operating in the Austin region

Pick-Up and Drop-Off Configuration

Whenever a trip begins or ends within 0.25 miles of a PUDO (about 3.5 downtown
Austin blocks of distance) the rider is instructed to walk to one of the sites to meet their
assigned SAV. Otherwise the SAV serves the passenger exactly at his/her origin or
destination address. Therefore, SAV trips can involve either door-to-door service,
walking to a PUDO at the start of a trip only, being dropped off at a PUDO and walking
a block or two to one’s final destination, or using PUDOs at both ends of a trip. Three
PUDO setups were tested: no PUDOs used (so all trips are door to door), one PUDO
site for nearly every block of land in the Austin CBD, or PUDOs sited to create 3 x
3 gridded of blocks of land, as shown below in Figure 5.

This approach led to 145 PUDO sites in the scenarios where PUDOs are spaced one
block of distance apart and just 40 PUDO sites, each three blocks apart. This includes a
small number of PUDOs at the Domain Shopping Center (in northwest Austin) and the
Austin Bergstrom International Airport (in southeast Austin) – both of which lie far
outside the bounds of Figure 5Aa and 5B. As can be seen in Figure 5A, even in the
“one-block” spacing there are not PUDOs on every single block of land. This is because
in POLARIS PUDOs have to be tied to one of the 39,638 trip-end “locations” (ad-
dresses, essentially) in the Austin network, which are places that a trip may begin or
end. In some areas there is only a single location per block of land or a group of blocks
of land, while in other areas, especially in the CBD, there is a location for every address.
Due to data limitations, there are some blocks of land in the CBD that do not contain a
location, but since no trips can be made to these blocks of land the absence of PUDOs
there does not have any consequences. The maximum walking distance for an agent to
reach a PUDO is 1/4 mile (400 m) in the less-dense configuration (Figure 5B) and only
1/12 mile (133 m) when the PUDOs are placed more closely together (Figure 5a), so the
average walking distance is expected to be about half (just 200 m and 67 m) of the
maximum.

Currently, POLARIS does not model curb occupancy for all vehicles. Therefore, in
the scenarios with no PUDOs (door to door service), the SAVs were able to instantly
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find a place to pull over and make their pick-up or drop-off. In the real world, SAVs
must compete with other vehicles for curb areas designated as paid parking, com-
mercial drop-off, and other designations open to SAVuse. It can be assumed that the no-
PUDO scenario represents a variable parking pricing policy that aims to always leave at
least one space vacant on each side of a block of land.

Taxis and private vehicle owners (and, more recently, TNC operators) have been
meeting their passengers curbside for decades, sometimes in long queues (at airports,
convention centers, and other popular destinations or origins). When demand for curb
space exceeds supply, private cars and trucks may seek to double-park, creating serious
issues for exiting vehicles and pedestrian safety. This paper extends PUDO sites (by
increasing space count) to enable peak demand, as simulated here. Fleet managers can
also re-assign passengers to other SAVs, if some SAV callers are late to their rides.
Managers can require that users be present before assigning a vehicle, and they can hold
SAVs back, away from PUDO sites, if SAV spillbacks emerge. Pick-Up and Drop-Off
site management is likely to be far more efficient than private curb management, thanks
to connected-vehicle coordination, and single algorithms controlling large fleets
(versus hundreds or thousands of independent actors trying to access the curb, without
any coordination).

Fleet Size

Various fleet sizes were initially tested without PUDOs enabled, ranging from
400 vehicles to 10,000. Based on the tradeoff between ridership and the percent of time

Figure 5. Spacing PUDOS one block (A) vs. three blocks (B) of distance apart in the Austin
CBD.
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that SAVs sat idle, fleet sizes of 1,000, 2,000, and 4000 SAVs were found to have the
best balance between the two and were selected for further investigation with varying
PUDO policies and fare prices.

Shared Autonomous Vehicle Fares

Finally, two pricing schemes for the service were implemented in the Central Austin
scenarios. First, a 50¢/mile fee, which is competitive or even slightly lower than the
average cost per mile to operate a personal vehicle in the United States when all costs of
ownership are considered (Bureau of Transportation Statistics, 2019). The purpose of
this was to see how many individuals could be enticed to use an SAV instead of their
own car if the cost was almost the same. Second, a $1/mile fee, which was hypothesized
to reduce ridership but not to reduce revenue per SAV.

Shared Autonomous Vehicle Service Area

While the entire 6-county CAMPO region (shown in blue in Figure 6) was modeled in
all scenarios, SAVs only served a subset of the region. One service area for the Austin
SAV fleet was created: a Central Austin region shown in orange located within the
greater Travis County region, shown in red (Figure 5). This service area was selected
due to its high concentrated demand as discussed in the PUDO Demand and Siting
section.

Central Austin SAV Geofence and Scenarios. This geofence including only the central
areas of Austin and some other high-demand areas such as the Domain shopping center
and the Austin-Bergstrom International Airport was created, shown in Figure 6 in
orange. The entire 6-county CAMPO region was simulated, but SAVs could only
operate within this restricted area. As shown in Table 2, the primary purpose of
evaluating this region was to evaluate the impact of fares and PUDOs on SAV ridership
in an area closely surrounding where the PUDOs would be implemented.

Results

All combinations of fleet sizes, fare prices, PUDO densities, and SAV geofences were
run, for a total of 18 scenarios. As outlined above in Table 2, various combinations of
SAV fleet sizes and fares were simulated for an SAV fleet serving the central region of
Austin. The primary purpose of these simulations was to see how the presence and
spacing of PUDOs affects SAV operations, while fleet size and pricing were also
analyzed to determine the ideal SAV configuration. Results for the SAV fleet serving
this geofenced area are summarized below in Tables 3 and 4.

As expected, increasing the fleet size always leads to increased ridership no matter
the combination of the SAV fares or PUDO locations. Figure 7 shows the trips per hour
for a Central Austin SAV network with no PUDOs, a 50¢ fare, and different SAV fleet
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sizes (1000, 2000 and 4000), which showed the greatest variation of ridership among
the Central Austin scenarios.

Figure 7 shows that both the 2000-vehicle and 4000-vehicle fleets manage to
accommodate demand during the middle of the day, while the 1000-vehicle fleet peaks
at about 2500 trips per half hour. The 4000-vehicle fleet is especially able to ac-
commodate additional demand as the PM peak goes on while the smaller fleets are
unable to keep up, due to lower SAV and SAV-seat availability and longer wait times
discouraging others from choosing the SAV mode, or other means. The exact operating
statistics of the SAVs and the Austin city core, such as vehicle occupancy at each hour

Figure 6. Central Austin, Travis county, and 6-county CAMPO region.
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and delays along CBD links, are interesting factors that should be explored in the future
to better explain ridership losses.

Vehicle-miles traveled and eVMT did fall slightly as fleet size rose. More SAVs
means easier access/shorter distances between travelers requesting an SAV and the
assigned SAV, thereby reducing distances traveled empty. In addition, Tables 3 and 4
suggest how introduction of PUDOs lowered average trip distances, thanks to fewer
and shorter detours, as shown in Figure 2. This decline in VMTand eVMT underscores
the potential value of ride-sharing/pooling in right-sized (and potentially all electric)
SAVs in the battle against climate change, by lowering travel emissions from those
wanting mortised door-to-door service.

From Tables 3 and 4, average occupancy (AVO) did not always increase by in-
creasing the fleet size, and there was no general pattern for average vehicle occupancy,
which was maintained at about two passengers per SAV during revenue trips. The
ridership and subsequently the AVO of a shared mobility service can be affected by
several factors: fare price, PUDO location/density, the capacity of vehicles, spatio-
temporal distribution of demand, matching algorithm, characteristics of travelers and
their willingness to share rides, and incentives provided for sharing rides (e.g., dis-
counts), etc. If occupancy could be increased to approach the SAVs’ 4-passenger
capacity, the lower average costs per passenger-mile may enable lower fares and
thereby higher demand. However, more ridesharing or “ridesplitting” can lead to longer
trip times for users (due to more circuitous routing between more parties’ origins and
destinations), so any fare savings versus added travel-time costs is important to ap-
preciate. On the service provider side, optimal design and policies should be im-
plemented to increase ridership and AVO. For example, riders can receive a discount
when sharing a ride with two or more people. Alternatively, a service can be localized,
minimizing spatio-temporal distribution, reducing detour time and promoting ride-
sharing. In addition, service providers can utilize matching algorithms that promote
ridesharing while optimizing travel time and cost. Looking at Tables 3 and 4, a service
with PUDO resulted in higher AVO than the service without PUDO since the existence
of PUDO results in ride aggregation promoting ridesharing. From the regional planning

Table 2. Summary of Scenario Parameters, Central Austin SAV Geofence.

Parameter Values Tested

SAV fare 50¢/mi
$1/mi

SAV fleet size 1000 SAVs
2000 SAVs
4000 SAVs

PUDO Configuration No PUDOs
PUDOs one block of distance apart in CBD
PUDOs three blocks of distance apart in CBD
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perspective, incentives can promote ridesharing and shared mobility services such as
designated PUDOs, high-occupancy lanes, discounts for public transit, etc.

Impact of Pricing Analysis. Daily trips per SAV, daily revenue per SAV, and the SAV
mode share within the operating region are especially relevant for the commercial or
financial feasibility of operating an SAV fleet. Fleet operators must ensure that their
investment in SAVs is being put to good use through high vehicle occupancies, since
idle vehicles means money going to waste. Using data from Tables 3 and 4, the two
pricing models in the Central Austin geofence can be compared.

Daily trips per SAV begin with quite high values for low fleet sizes, about
100 person-trips per day per SAV in the $1/mile fare with 1000 SAVs scenario and
200 per day per SAV in the 50¢/mile pricing and 1000 SAVs scenario. These high
use numbers fall to just 30 trips per day per SAVas the fleet size grows (under both
fare levels). Shared autonomous vehicle mode share can exceed 25 percent, but it
may not be cost effective to operate a larger fleet. The point where marginal costs
begin to exceed marginal revenues is an important factor in sizing one’s SAV
fleet.

Shared autonomous vehicle fleet owners may seek to maximize profits (when
privately maintained), community welfare or ridership (when publicly provided).
Cities and regions may elect to subsidize private-fleet operations (for shared rides

Figure 7. Weekday SAV trips per hour for varying fleet size for a central Austin geofence, No
PUDOs and 50¢ fare.
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and/or by those with disabilities, for example) or operate their own fleets in order
to increase consumer welfare, helping lower community transportation costs, re-
lieving congestion, and/or lowering parking demand. More travelers select the SAV
mode as fares fall here, but per-vehicle revenues are notably higher in the higher-fare
settings.

Impact of PUDO Spacing Analysis. When PUDOs were implemented (for the 2000- and
4000-SAV fleet sizes across Austin), a sharp drop in ridership is observed (with
PUDOs spaced just one block of distance apart). A lesser demand drop emerges
when shifting to inter-PUDO distances of three blocks, as seen in Tables 3 and 4.
This shows that in an ideal world where SAVs could always make door-to-door
trips, they would achieve a greater mode share and reduce private vehicle traffic.
However, for the smallest fleet size of 1000 SAVs, spacing PUDOs three blocks of
distance apart actually performed better than running SAVs with no PUDOs. A
logical explanation for this is that with vehicles stretched so thin, serving trips
grouping riders together at PUDOs helped improve the use of DRS and the overall
efficiency of the system.

To estimate the required amount of curb space to be set aside for PUDOs, the peak
demand on curbs by SAVs was measured. First, an assumption must be made on the
maximum capacity of a PUDO per hour. Using a dwell time of 30 sec (Goodchild et al.,
2019) to pick up or drop off a passenger, the theoretical hourly capacity of a PUDO
would be 120 SAVs. Hence, a PUDO location with 135 trip ends during its busiest hour
would require two spaces to handle peak trips. This ignores the fact that trips are not
perfectly spaced throughout the hour but will suffice for the illustrative purposes of the
next table. Also, as discussed earlier, one of the limitations of POLARIS being a
mesoscopic model is that each PUDO actually represents a pair of PUDOs on each side
of a link, so PUDOsmust exist as a multiple of 2. In Table 5, the distribution of required
SAV spaces at each PUDO site is shown for the two PUDO spacings of the $1/mile,
4000-vehicle fleet.

As shown in Table 5, almost 20 percent of PUDO site would need three or more
SAV spaces when there is a PUDO on every block of land. This jumps to 60 percent
when PUDOs are spaced out to three blocks of distance. The estimate also shows one
of the advantages of increased spacing between PUDOs: the total number of spaces
needed at peak period falls by 54 percent, from 382 to 176 spaces. There is always a
tradeoff between SAV ridership and curb space available for other CBD users. If there
is only a PUDO location every three blocks of distance, curb space is freed up on other
blocks of land for paid parking, transit, bicycle parking, sidewalk extensions, and
other uses.

A possible explanation suggested by Figure 7 is that this is caused by 1000 SAVs not
being enough to meet potential demand, 4000 being more than enough for most hours
of the day, and 2000 SAVs striking a good balance between the two that also works best
with grouping riders into fewer stops, but deeper investigation is required to explain this
anomaly. The table also shows that since 92 percent of blocks of land need four or fewer
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PUDO spaces in the one PUDO (per block of land) scenario, one space could be placed
on each side of the block of land to achieve service levels similar to the door-to-door
service scenario (where no PUDOs are used).

Conclusions

This paper simulated the effects of various fleet sizes, fares, and PUDO spacing
decisions on SAV fleet performance (in serving endogenous demand for rides). As
expected, greater fleet sizes accommodate more passengers, especially at peak-demand
hours. They also lower %eVMT (by enabling closer SAVassignments to trip calls that
emerge) but result in lower revenues per SAV per day. When PUDOs are spaced three
blocks of distance apart in the Austin CBD, instead of being placed at every block of
land, the total number of curb spaces required for CBD PUDOs fell by almost
40 percent. Greater per-mile pricing also reduced SAV ridership, though per-vehicle
revenue rose. Overall, aggregating trip ends lowers wait times for SAV users and total
fleet VMT, helping increasing AVOs, reducing network and CBD congestion, and
keeping SAV user costs down.

This analysis had some limitations, such as imperfect mode choice and pedestrian
walking distance models. POLARIS’ current mode-choice logit model was estimated
using a small number of taxi/TNC trips in a recent Austin travel survey, leading to a
large alternative-specific constant for the SAV mode and few statistically significant
parameters. Due to this, it is difficult to determine a realistic mode share and SAV
demand on the network, and some of the results of the simulation may have been due to
random noise. In addition, loading and unloading SAVs do not take up any space on the
curb. A better simulation of the real world would not allow SAVs to stop at a PUDO
occupied by an SAV that is empty or performing pick-up/drop-off, and/or force all
empty SAVs to wait outside the CBD on local streets with low curb occupancy. Overall,
it is clear that POLARIS provides a powerful modeling framework with many pa-
rameters that can be adjusted to appreciate their effects on travel behavior and fleet
operations. Future work will involve leveraging this framework to mitigate the lim-
itations expressed above.

Table 5. Distribution of Required Curb Spaces at Each PUDO Site in Central AustinWith 4000
SAVs and $1/Mile Fares.

Number of
Spaces

Spacing PUDOs One Block of
Distance Apart

Spacing PUDOs Three Blocks of
Distance Apart

2 81.9% 39.5%
4 10.1% 28.9%
6 3.6% 10.5%
8+ 4.4% 18.4%
Total spaces 382 176
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As cities evolve and integrate new means of transportation, such as micromobility
and SAVs, their curb usage must also evolve. SAVs do require dedicated PUDOs,
whether on-street or lay-by, to provide service to customers. The location of the PUDOs
for SAVs, the operational speed of the streets, SAV dwell time, congestion level on the
streets, the number of spaces available at each PUDO location, parking prices and
several other factors affect the smooth operation of SAV services and their subsequent
impact on safety and traffic conditions. The optimal solution would be to design
infrastructures and set policies for SAVs to make SAVs run efficiently, provide a high
level of service, and minimize their impact on traffic. However, modifying infra-
structure for SAV PUDO locations is a long-term plan; in the meantime, to safely
accommodate these new modes, some space must be reclaimed from existing uses such
as paid on-street parking, and some changes in existing policies must be made. When
planning an SAV network, the density of PUDO locations may have a significant
impact on mode share and the amount of curb space and real estate required for them.
Not using dedicated PUDO locations may deliver higher SAVmode shares, but PUDOs
will be needed in many congested settings and can be very valuable in facilitating ride-
sharing (DRS) inside SAVs. The spacing of PUDO sites affects both SAV ridership and
the amount of curb space that must be taken away from other uses. Certain policies
should also be implemented in order to minimize the impact on traffic. For example,
SAVs should be required to dwell a certain amount of time at each location to prevent
congestion. Alternatively, PUDOs should not be placed on busy streets with one or two
lanes.

It is worth noting that, while this study focused on the benefits of designated PUDO
sittings for SAVs, the same benefits apply to all TNCs, regardless of vehicle automation
or private payment. For example, the results showed that designated (PUDOs) can
reduce deadheading (empty travel) from drivers circling blocks (as they wait for a
traveler to arrive, for example), thereby reducing traffic, emissions, delays, and ag-
gravation for all travelers, which is applicable to both TNCs and SAVs. As a result, it is
advised to consider designated PUDO settings when planning human driven TNCs.

Appendix

Glossary

ACS American Community Survey
ASC Alternative-Specific Constant

CAMPO Capital Area Metropolitan Planning Agency
CBD Central Business District
DRS Dynamic Ridesharing
DTA Dynamic Traffic Assignment

eVMT Empty Vehicle-Miles Traveled
HBO Home-Based Other
HBW Home-Based Work
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IVTT In-Vehicle Travel Time
MVPDP Multiple Vehicle Pick-Up and Delivery Problem

NHB Non-Home-Based Trip
PUDO Pick-Up Drop-Off Zone
PUMS Public Use Microdata Sample
SAEV Shared Autonomous Electric Vehicle
SAV Shared Autonomous Vehicle
TAZ Traffic Analysis Zone
TNC Transportation Network Company
VHT Vehicle-Hours Traveled
VMT Vehicle-Miles Traveled
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