GMMap: Memory-Efficient Continuous Occupancy
Map Using Gaussian Mixture Model

Peter Zhi Xuan Li

, Student Member, IEEE, Sertac Karaman

, Member, IEEE, Vivienne Sze , Senior

Member, IEEE,

Abstract—Energy consumption of memory accesses dominates
the compute energy in energy-constrained robots which require a
compact 3D map of the environment to achieve autonomy. Recent
mapping frameworks only focused on reducing the map size while
incurring significant memory usage during map construction due
to the multi-pass processing of each depth image. In this work, we
present a memory-efficient continuous occupancy map, named
GMMap, that accurately models the 3D environment using a
Gaussian Mixture Model (GMM). Memory-efficient GMMap
construction is enabled by the single-pass compression of depth
images into local GMMs which are directly fused together
into a globally-consistent map. By extending Gaussian Mixture
Regression to model unexplored regions, occupancy probability
is directly computed from Gaussians. Using a low-power ARM
Cortex A57 CPU, GMMap can be constructed in real-time at up
to 60 images per second. Compared with prior works, GMMap
maintains high accuracy while reducing the map size by at least
56 %, memory overhead by at least 88 %, DRAM access by at least
78%, and energy consumption by at least 69%. Thus, GMMap
enables real-time 3D mapping on energy-constrained robots.

Index Terms—Mapping, RGB-D Perception, Sensor Fusion,
Memory Efficiency

I. INTRODUCTION

NERGY-constrained microrobots could enable a wide

variety of applications, from autonomous navigation,
search and rescue, and space exploration [1]. Due to the
limited battery capacity onboard these robots, the amount
of energy available for actuation (i.e., mechanical systems)
and computation (i.e., executing algorithms) is extremely
limited. For actuation, researchers of these robots showcased
mechanical systems that consume very low power (i.e., under
100 mW) [2]-[6]. Thus, a key remaining factor for enabling
autonomy is the lack of energy-efficient algorithms.

During the execution of algorithms, the energy consumption
of memory operations (e.g., reading and writing data stored
in cache and DRAM) could dominate the total compute
energy. For instance, the energy required for accessing on-
chip memory (e.g., cache) is more than an order-of-magnitude
higher than that when performing a 32-bit multiplication [7].
The energy consumption of memory access increases with the
size and distance of the memory from the processor. Within
the same chip, accessing a higher-level L2 cache (a few MBs)
requires up to an order-of-magnitude more energy than lower-
level LO and L1 caches (a few KBs). However, accessing data
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(a) Incremental construction of the
GMMap from a depth image Z; and
pose T% obtained at time ¢. Each
depth image is compressed into a
local GMMap G; which is then fused
with the global GMMap M_;.

(b) Visualization of the first floor of
the MIT Stata Center and its GMMap
representation consisting of GMMs
representing occupied (red) and free
(blue) regions. Each Gaussian is visu-
alized as an ellipsoid in 3D.

Fig. 1. Tllustration of GMMap’s (a) memory-efficient construction procedure
and (b) representation for the MIT’s Stata Center. Even though Gaussians are
continuous and unbounded, GMMs representing occupied and free regions
in the environment are represented by red and blue ellipsoids, respectively,
created at a Mahalanobis distance of two for ease of visualization. The
leaf nodes of the R-tree that store the GMMs are illustrated by dotted
rectangles. For the Stata Center, the GMMap models a continuous distribution
of occupancy while requiring only 296KB to store.

stored in a larger, off-chip memory such as DRAM (GBs of
storage) requires more than two orders-of-magnitude higher
energy than smaller, on-chip (local) CPU caches [7]. The
memory (capacity) usage of an algorithm not only consists of
output variables but also input and temporary variables allo-
cated during computation. Thus, algorithms designed for many
robotics applications, especially the ones involving energy-
constrained robots, should be memory efficient such that: i) the
number of memory accesses do not dominate; ii) amount of
memory (capacity) overhead for storing input and temporary
variables is small enough to remain in lower-level caches.
For mapping algorithms, both memory overhead and ac-
cesses could easily dominate. During map construction, the
multi-pass processing of sensor measurements requires them
to be stored (i.e., as input and temporary variables) entirely
in memory to support repeated accesses, which increases
overhead and reduces the remaining memory for map storage.
Incrementally updating/reconstructing a previously-observed
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region in the map is typically performed by casting sensor
measurement rays into the map. Since these rays diverge away
from the sensor origin, memory accesses along these rays
often lack spatial and temporal locality required for effective
cache usage, and thus require a significant number of memory
accesses to DRAM. Thus, achieving memory efficiency is both
crucial and challenging for mapping algorithms.

In addition to achieving memory efficiency, the resulting
map should satisfy the following requirements to enable
memory-efficient, real-time processing of a variety of down-
stream applications that enable autonomy.

1) Compactness: A compact map can represent a larger
portion of the environment in both on-chip (cache) and
off-chip memory (DRAM). When accessing a region
of the environment that does not reside in the cache,
a compact map also reduces the number of energy-
intensive DRAM accesses required to update the cache.

2) Modeling unexplored regions: In autonomous explo-
ration, the robot seeks to minimize the number of
unexplored regions while traversing in obstacle-free re-
gions. Thus, the ability to model unexplored regions en-
ables state-of-the-art autonomous exploration algorithms
based on frontier [8] or mutual information [9], [10].

3) Query compute efficiency: During path planning and
autonomous exploration, the robot needs to query mul-
tiple locations in the map to determine the current state
of the environment [11]. The results of these queries are
often used to make decisions, such as the next location
to travel, in real time. Thus, the state of the environment
should be efficiently computed from the map.

Current state-of-the-art mapping frameworks require the
probabilistic modeling of occupancy (i.e., whether or not an
obstacle exists) at every location in the 3D environment.
These frameworks can be classified based on their underlying
probabilistic models used to infer occupancy. For instance,
the well-known framework, OctoMap [12], contains a set of
Bernoulli random variables for modeling the occupancy at
a discrete set of homogeneous regions in the environment.
Even though OctoMap could model unexplored regions and
achieve query efficiency, OctoMap is not compact enough for
storage on energy-constrained robots. By using more compact
models (e.g., set of Gaussians or kernels), recent frameworks
(e.g., NDT-OM [13], Hilbert Map [14], HGMM [15]) mostly
focused on reducing the map size while incurring significant
memory overhead and accesses for multi-pass processing
of raw sensor measurements in nearly every stage of the
mapping pipeline. In addition, the resulting maps produced
by these frameworks cannot satisfy all of the above-mentioned
requirements for enabling efficient downstream applications.

In this paper, we propose a continuous occupancy map
comprised of a compact Gaussian Mixture Model (GMM),
named GMMap, that is efficiently and accurately constructed
from a sequence of depth images and poses of a robot.
To achieve significantly higher memory efficiency than prior
works, our GMMap accurately compresses each depth image
into a compact GMM in a single pass, and directly operates
on Gaussians in the GMM (i.e., without other intermediate

representations) for all remaining mapping operations. Our
contributions are summarized as follows:

1) Single-pass compression: A single-pass procedure that
accurately compresses a depth image into a local GMM
for both free and occupied regions. Prior works [14]-
[19] require significant overhead for storing the entire
image in memory due to multi-pass processing.

2) Gaussian-direct map construction: A novel procedure
that directly fuses the local GMMs across multiple
images into a globally-consistent GMM without casting
sensor rays (i.e., one ray for each pixel in the depth
image) into the map. Prior works [12], [13], [15], [20]
require a significant number of memory accesses during
ray casting in order to update the previously-observed
region that intersects with all sensor rays.

3) Gaussian-direct occupancy query: An extension of
Gaussian Mixture Regression to directly compute oc-
cupancy from GMM while accounting for unexplored
regions. Prior works require constructing and storing
intermediate representations for modeling unexplored
regions [14], [17] or do not model them at all [15].

In our previous work [21], we proposed the Single-Pass
Gaussian Fitting (SPGF) algorithm that enables single-pass
compression of depth image into a GMM representing only
the occupied region (i.e., a part of the first contribution) but
not the obstacle-free region. In this work, we not only extend
our previous work to also construct a GMM representing the
free region (i.e., the first contribution) but also illustrate how
to directly operate on Gaussians during map construction and
occupancy query (i.e., the second and third contribution). An
overview of the GMMap and its representation for the first
floor of MIT’s Stata Center is illustrated in Fig. 1.

This paper is organized as follows. After analyzing existing
works in Section II, we describe how the occupancy is com-
pactly represented and efficiently estimated from our GMMap
in Section III. Memory-efficient algorithms that incrementally
and accurately construct the GMMap given a sequence of
depth images are presented in Section I'V. Finally, we validate
GMMap against existing works in terms of mapping accuracy,
memory footprint, throughput, and energy consumption across
multiple environments in Section V.

II. RELATED WORK

Constructing an accurate and compact representation of
the 3D environment is crucial for enabling many downstream
robotics applications such as path planning and autonomous
exploration. During the past few decades, many frameworks
proposed different models to represent the distribution of
the occupancy probability (i.e., the likelihood that a region
contains an obstacle) across the 3D environment. These mod-
els exhibit different trade-offs in memory and computational
efficiency during the construction and querying of the map.

Discrete representations: Some of the most popular map-
ping frameworks discretize the environment into cubic regions
(i.e., grids in 2D and voxels in 3D) such that each region con-
tains a Bernoulli random variable representing the occupancy
probability and is assumed to be spatially independent of each



other. One of the earliest 2D mapping frameworks, the occu-
pancy grid map [22], discretizes the environments into equally-
sized grids. However, the map size is prohibitively large in
3D because the size scales cubically with the dimensions of
the voxels and the environment. To reduce map size in 3D,
OctoMap [12] and other voxel-based methods (e.g., [23], [24])
store the occupancy probabilities in voxels whose sizes can
adapt to homogeneous regions in the environment. However,
OctoMap and other voxel-based methods suffer from artifacts
associated with voxelization and require a large amount of
memory accesses during construction. To incrementally con-
struct the map given a set of sensor rays (more than 300,000
in each 640x480 depth image), each ray is cast into the map
to update the subset of voxels such rays intersect. Since these
rays diverge away from the sensor origin, memory accesses
along these rays often lack spatial and temporal locality for
effective cache usage (especially if the map is too large to fit
in caches). Since voxel-based methods are often not compact,
updating the map requires a significant amount of memory
accesses (more than 300,000 per image) to off-chip DRAM.
Non-parametric representations: To relax the spatial in-
dependence assumption in discrete map representations, Gaus-
sian Process (GP) was proposed to estimate a continuous
distribution of occupancy [25] using a covariance function
that captures the spatial correlation among all sensor mea-
surements. Since GP requires the storage of all sensor mea-
surements (since the beginning of the robotics experiment) to
update the covariance function, the memory overhead scales
with the total number of measurements N. During a map
query, the covariance function generates a large matrix that
requires O(N?) to invert, which greatly reduces the query
efficiency. To enable faster map construction and query, re-
cent non-parametric methods such as GPOctoMap [26] and
BGKOctoMap-L [20] discretize the environment into blocks of
octrees (i.e., a test-data octree). For subsets of measurements
(i.e., training data) that lie within each block, GPOctoMap
and BGKOctoMap-L. update the octrees in each block and
its neighbors (i.e., extended blocks) using GP and Bayesian
Generalized Kernel (BGK) inference, respectively. Similar
to OctoMap, both GPOctoMap and BGKOctoMap-L directly
operate on sensor rays that are cast into the map during incre-
mental construction and require significant memory accesses
to DRAM. In addition, both frameworks require the storage
of training data for each block during map construction which
incurs significantly larger memory overhead than OctoMap.
Semi-parametric representations: To create an extremely
compact representation of the environment, several frame-
works compress the sensor measurements using a set of
parametric functions (e.g., Gaussians or other kernels) which
are then used to infer occupancy. One of the well-known
semi-parametric representations is the Normal Distribution
Transform Occupancy Map (NDT-OM) [13] that partitions the
environment into large voxels such that measurements within
each voxel are represented by a Gaussian. Since measurements
within a voxel could belong to multiple objects, representing
them with a single Gaussian often leads to a loss of accuracy
in the resulting map. Due to the ineffective cache usage during
the casting all sensor rays (i.e., more than 300,000) from each

depth image into the map, NDT-OM also requires significant
memory access to DRAM during map construction.

To further reduce map size, recent frameworks, such as
Hilbert Map (HM) [14], Fast Bayesian Hilbert Map (Fast-
BHM) [27], Variable Resolution GMM (VRGMM) map [17],
Hierarchical GMM (HGMM) map [15], compress sensor rays
into special kernels (in HM) or Gaussians (in VRGMM and
HGMM). Such compression is performed using techniques
such as Quick-Means (QM) [14], Hierarchical Expectation-
Maximization (H-EM) [16], Region Growing (RG) [18], Self-
Organizing GMMs (SOGMM) [19], and Integrated Hierar-
chical GMMs (IH-GMM) [28]. However, these techniques
require significant memory overhead to store all sensor mea-
surements (more than 300,000 pixels in a 640x480 depth
image) due to their multi-pass processing. Even though the
resulting maps are compact after compression, they either
could not model unexplored regions (in HGMM), or require
online training (for a logistic regression classifier in HM)
and intermediate representations to model these regions (using
Monte Carlo sampling to create an intermediate grid map in
VRGMM). Even though our GMMap is also classified as a
semi-parametric representation, we can accurately construct
and query the map directly using Gaussians (while preserving
unexplored regions) to reduce memory overhead and accesses.

III. OCCUPANCY REPRESENTATION & ESTIMATION

In this section, we describe how to compactly model a
continuous distribution of occupancy using a Gaussian Mixture
Model (GMM) in the proposed GMMap. In addition, we illus-
trate how to directly estimate the occupancy probability from
Gaussians using Gaussian Mixture Regression (GMR) while
accounting for the initial unknown state of the environment
so that the unexplored regions are preserved. Unless stated
otherwise, matrices are denoted using regular uppercase letters,
random variables are denoted using bold uppercase letters, and
vectors/scalars are denoted using regular lowercase letters. In
addition, a lower or upper calligraphic letter represents an indi-
vidual Gaussian (i.e., parameterized by mean and covariance)
or a set of Gaussians in a GMM (i.e., parameterized by a set
of mean, covariance, and weights), respectively. Depending on
the context, we use these calligraphic letters to interchangeably
represent either general Gaussian (or GMM) distributions or
their instantiations with specific parameters.

Let X € R3 denote the 3D coordinate in the world frame.
Let O € R denote the occupancy value such that regions
with values greater than one are occupied with obstacles, and
regions with values less than zero are obstacle free. In addition,
unexplored regions have an occupancy value near 0.5. Let P
denote the joint random variable such that

X
r-13]-
The map M of the 3D environment is represented by the

following GMM which is an unnormalized distribution for the
joint variable P, i.e.,

)

K
Mp(p) ~ Y N (p | pi i), )
=1



where K is the number of Gaussians, and N (-) is a Gaussian
distribution. The weight 7;, mean pu;, and covariance X; are
the parameters of the ith Gaussian such that

g = |FX |y, = Yix  Yixo
o] T

Yiox Yio
Note that the GMM in Eqn. (2) can be compactly stored
because each Gaussian is parameterized by pu;, %;, and ;.
For the rest of the paper, we drop the index ¢ for all variables
when we refer to any Gaussian in the GMM.

During the experiment, the robot makes a sequence of range
measurements. Each range measurement consists of a ray that
originates from the robot, passes through a free region, and
ends at the surface of an obstacle (occupied region). Regions
that are traversed by all measurement rays are observed by the
robot. We determine the parameters of the GMM in Eqn. (2)
using range measurements such that it compactly models all
observed regions. Thus, regions that have not been observed
(i.e., unexplored) cannot be modeled by the GMM alone.

To compactly model the unexplored region, we use the
unexplored prior Qo|x Wwith its weight Ty to represent the
initial unknown state of the entire environment, i.e.,

Qoix(o|x) =

3)

N(o| po,a3), )

where
po = 0.5, of = 0.25. (5)

The weight my should be set to a large value such that
measurements from multiple timesteps are required to shift
the occupancy value of an unexplored region (i.e., 0.5) towards
zero (free region) or one (occupied region) during GMR.

Unlike prior semi-parametric representations that estimate
occupancy probability using either a classifier that requires
additional online training [14], [29] or intermediate represen-
tations that require additional memory overhead [17], we effi-
ciently preserve these regions by incorporating the unexplored
prior into the Gaussian Mixture Regression (GMR) [30]. We
describe the GMR procedure used to estimate occupancy
directly from Gaussians as follows.

Using the GMM in Eqn. (2) and the unexplored prior in
Eqn. (4), the occupancy O conditioned on the query location
X =z is computed as

Pox (o | x) sz (0| mi(x),07(x)),  (6)
1=0
where
T e
_ S mN (2l x Bix ) +mo ifi =0, 7
i) = i (zlpix Bix) otherwise @
S TN (@ xS )+ o ’
7 ifi=0,
mi(x) = " =0 g
pio + SioxEix (¢ — pix), otherwise,
o3, if i =0,
o (x) =4 7 . ) 9)
EiO — Zioxzixzixo, otherwise.

The expected occupancy value and its variance at location
x is regressed using GMR as

K
]:Zwi(x)m x
sz >+ o7 (2))

—m(l’)Q. (11)

m(z) =E[O|X == (10)

v(z) = Var[O| X = z]

The occupancy value can transition suddenly across the
boundaries separating occupied and free regions (e.g., at
surfaces of obstacles). To better capture such transitions, each
Gaussian in the GMMap models either an occupied or free
region, but not both. Thus, the set of Gaussians representing
occupied regions is defined as occupied Gaussians with an
occupancy value of one (ie., po = 1). In addition, the
set of Gaussians representing free regions is defined as free
Gaussians with an occupancy value of zero (i.e., uo = 0).

Representing occupied and free regions separately also
guarantees that the expectation m(x) in Eqn. (10) is bounded
within [0, 1]. Thus, the expectation m(z) becomes the occu-
pancy probability of the environment at the query location
x. In addition, the covariance terms X xo, Yox and Yo in
Eqn. (3) become zero for all Gaussians, which significantly
simplifies the entire GMR procedure and reduces the memory
required to store the Gaussians in our map.

Even though occupied and free regions are modeled sep-
arately, the occupancy probability predicted by GMR in
Eqn. (10) is dependent on the relative contribution of all Gaus-
sians because each Gaussian has no bound. In particular, the
relative contributions of occupied and free Gaussians in GMR
provide a probabilistic way to resolve inconsistencies/noise of
the sensor measurements, especially when obstacle and free
Gaussians overlap near the obstacle surfaces. Although each
Gaussian has no bound, its distribution tapers off from its
mean at an exponential rate. Thus, the entire GMR procedure
from Eqn. (6) to (11) can be accurately and efficiently approx-
imated using a small subset of Gaussians whose Mahalanobis
distances between their means to the query location x are less
than a threshold ay, i.e.,

V@ = 1) TSR (@ - px) < o,

where px and Y x are parameters of a Gaussian defined in
Eqn. (3). In our experiments, we chose ap; = 2 to ensure that
more than 95% of the Gaussian distribution is considered.
To efficiently obtain the subset of Gaussians that satisfies
Eqn. (12) in O(log(K)) time (where K is the total number
of Gaussians), we store the GMMap using an R-tree [31]
constructed with bounding boxes that are axis-aligned with
the world frame. Since the surface that satisfies the equality
in Eqn. (12) for each Gaussian can be visualized as an ellipsoid
in 3D, the bounding box at the leaf node of the R-tree for each
Gaussian is sized to enclose such ellipsoid. In most figures,
occupied and free Gaussians are represented by red and blue
ellipsoids, respectively. The occupied and free Gaussians in
GMMap with their corresponding bounding boxes (dotted
rectangles) are illustrated at the bottom of Fig. 1a.

(12)



IV. MEMORY-EFFICIENT MAP CONSTRUCTION

In this section, we present a memory-efficient framework
to construct the GMMap M (i.e., Eqn. (2)). At each timestep
t, we incrementally constructs the GMMap M by updating
the previous GMMap M;_; with current measurements from
the depth image Z; € RY*V obtained at pose Ty € SE(3). As
illustrated in Fig. 1a, our framework consists of the following
two procedures executed sequentially for each depth image:

1) Per-image GMM construction: The depth image Z,
with width U and height V' obtained at pose 7} is com-
pressed into a compact local GMMap G;. A memory-
efficient algorithm is proposed in Section IV-B to per-
form such compression one pixel at a time in a single
pass through the depth image. Memory overhead is
greatly reduced by avoiding the storage of the entire
depth image in memory which is required for prior
multi-pass approaches [14]-[19].

2) Globally-consistent GMM fusion: The local GMMap
G, is fused into the previous global GMMap M;_; to
obtain the updated GMMap M;. A memory-efficient
algorithm is proposed in Section IV-C to perform such
fusion directly using Gaussians. The amount of memory
accesses is greatly reduced by avoiding casting rays
(more than 300,000) from each 640x480 image into the
map as seen in prior works [12], [13], [15], [20].

To efficiently update Gaussian parameters during the above-
mentioned procedures with little memory overhead, we present
preliminaries that illustrate in-place construction of Gaussians
using the method of moments (MoM) [32] in Section IV-A.

A. Efficiently Updating Gaussian Parameters

We illustrate how to efficiently update the parameters
of Gaussians in-place given the correspondences between
measurements and Gaussians. In the method of moments
(MoM) [32], the first and second moments of a Gaussian
are intermediate representations of its mean and covariance,
respectively. Let P = [X, O] " denote the joint variable for
the 3D coordinate X (with respect to the current sensor origin)
and its occupancy O. The unnormalized first m(") € R* and
second M ¢ Si moments of each Gaussian are defined as

m = ¢E[P], M® = ¢E[P?, (13)
where ¢ is a normalization constant. Thus, the mean p and
covariance X of each Gaussian defined in Eqn. (3) can be
recovered in-place from the unnormalized moments as

p=tmm wolye T

3 3

Unnormalized moments can be incrementally updated with-
out relying on past measurements (which do not need to
be stored in memory). Thus, during map construction, the
moments for each Gaussian are stored instead of its mean and
covariance. Recall that from Section III, each measurement
(ray) consists of a point (i.e., end of a ray representing the
surface of an obstacle) and a line (i.e., from the sensor origin

(14)

to the end of the ray representing free region). Fusing a point

p=[z,1]7 € P into an occupied Gaussian is computed as
m® — m 4 p, (15a)
M® — M@ 4 ppT (15b)
€11 (15¢)

Fusing a line from the sensor origin to the endpoint p =

[,0]" into a free Gaussian is computed as
m® — m® 4 ”gnp, (162)
M® (2) HPH
— MY 4 —— 5 PP (16b)
£ &+ lpll- (16¢)

Note that the second term on the right side of Eqn. (16a)
and (16b) is the closed-from expression for the first and
second moments of the line, respectively. Our closed-form
expression is accurate and more computationally efficient than
prior works [14], [15] that approximate both moments by using
points sampled at a fixed interval along the line.

When regressing occupancy using GMR, the unnormalized
weight 7 of each occupied or free Gaussian should represent
the amount of occupied or free evidence in the region where
such Gaussian resides. For each free Gaussian, its weight m
equals to the total length of all line segments used during
construction. When a line from sensor origin to p = [z,0] "
is fused into a free Gaussian, its weight 7 is updated as

T+ 7+ ||pl|- (17)

To ensure that the occupancy regressed using GMR is mean-
ingful, the weights for occupied Gaussians should have the
same unit as those for the free Gaussians. Thus, when a new
endpoint p is fused into an occupied Gaussian, its weight is
also updated using Eqn. (17).

Lastly, the Gaussian containing the fusion of two occupied
or free Gaussians indexed by 7 and j is computed as

(€] )

m® — mi +mi), (18a)
M® « p® +M;2), (18b)
£ &+¢&;, (18¢)
T 4= + 75 (18d)

B. Per-Image GMM Construction

As illustrated in Fig. 2, we present a single-pass algorithm
that constructs a local GMMap G, given the depth image
Z, obtained at pose T;. From Section III, occupied and free
regions in the environment are separately modeled using occu-
pied (visualized using red ellipsoids) and free (visualized using
blue ellipsoids) Gaussians, respectively. Thus, our algorithm,
described in Alg. 1, creates both types of Gaussians in the local
map G, by executing the following procedures sequentially:

1) SPGF* (Line 2 in Alg. 1) : A memory-efficient algo-

rithm that constructs the occupied GMM Gy o and a
compact free GMM basis F; . in a single pass through
the image Z; using only the endpoints of the sensor rays.
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Fig. 2. Per-image GMM construction: Constructing a local GMMap G; that accurately represents both occupied and free regions from the current depth
image Z; obtained at pose T%. Rays associated with each pixel in the depth image are illustrated with dotted arrows. Occupied and free GMMs are illustrated
with red and blue ellipsoids, respectively. Dotted rectangles in the map G; represent the bounding boxes at the leaf nodes of the R-tree. The green rectangle
represents the bounding box at the root node of the R-tree that encloses the entire map Gi.

Algorithm 1: Per-Image GMM Construction

Input: Depth image Z;, pose T}
Output: Local GMMap G:
1 function constructLocalGMM(Z;, T})
gt,occ, ]:t,free — SPGF*(Zt)
Gt tree +— constructFreeGMM (F free )
gt <~ gt,free U gt,acc
G + transform(Gy, T%)
G < constructRtree(G)
return G;

subfunction SPGF*(Z,)
9 Q<+ I, Qprev — D
10 for (v=0; v<V;v=v+1){

N M R WN

®

11 L, + extractScanline(Zy, v)

12 S + scanlineSegmentation(L,)

13 if v = 0 then

1 | Qv S

15 else

16 Qprevs Qeomp — segmentFusion(Qprev, S)
17 Q < QU Qcomp

18 Q — Q U Qprev
19 gt,OCC7Ft,frcc — Q
20 return G: occ, Ft free

As illustrated in Fig. 3, operations within SPGF* are
extended from our prior work SPGF [21].

2) Construct Free GMM (Line 3 in Alg. 1): By only
considering the endpoints of the sensor rays in SPGF*,
Gaussians represented by the free GMM basis F free
cannot represent free region encoded within the camera
frustum very well (see Fig. 4a). Thus, the basis F fre. is
processed to construct the free GMM G, g that better
represents the free region (see Fig. 4b).

3) Construct Local Map (Lines 4 to 6 in Alg. 1): Occu-
pied G occ and free G; e GMMs are transformed to the
world frame using the pose 7;. Then, these GMMs are
inserted into the R-tree to create the local map G;.

SPGF* (Lines 8 to 20 in Alg. 1): The SPGF* algorithm
constructs an occupied GMM G; ... and a compact free GMM
basis F; free by processing one scanline (i.e., a row of pixels)
at a time in a single pass through the entire depth image
Z;, which avoids the storage of the entire depth image in
memory required for prior multi-pass approaches [14]-[19].
The SPGF* algorithm is a direct extension of our prior
work SPGF [21] which exploits the intrinsic properties of the

Depth image
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Fig. 3. Single-pass processing of the depth image in SPGF* for constructing
the set of Gaussians Q where each element ¢; € Q contains one occupied
Gaussian g; and a free Gaussian basis £;. In Scanline Segmentation, each row
(indexed by v) of the depth image is partitioned into a set of line segments
S = {%,z’}, which are fused across rows to form g; € Q in Segment Fusion.

depth camera to accurately infer the correspondences between
Gaussians and depth measurements. We briefly summarize
SPGF for creating obstacle Gaussians as follows.

Recall that each depth image contains a set of organized
depth measurements such that measurements that are neigh-
bors in the image are likely neighbors on the same planar
obstacle surface. In SPGF, we derive distance-based thresholds
to accurately determine which subset of neighboring measure-
ments belong to the same planar surface (and Gaussian) across
scanlines (i.e., rows) of each image. As illustrated in Fig. 3,
each scanline is denoted by L,, where v is the row index.
In Scanline Segmentation (SS, Line 12), pixels from each
scanline are partitioned into a set of line segments S such that
each segment s € S represents a locally planar surface with
distinct orientation. Specifically, neighboring pixels belong
to the same line segment if the distances among them fall
below an adaptive threshold derived from the orientation of
the surface and camera parameters. In Segment Fusion (SF,
Line 16), segments are fused across successive scanlines to
form a set of completed Gaussians Qcomp (appended to output
in Line 17) and incomplete Gaussians Qpr, (for fusion with
the next scanline). Specifically, segments across the neighbor
scanlines belong to the same surface (and Gaussian) if they
are sufficiently close and parallel with each other.

To create a free Gaussian basis for each obstacle Gaussian,
the implementation of SS and SF in SPGF* is almost identical
to those in SPGF except for the following differences. Recall
that each pixel in the depth image is a sensor ray that



(a) Visualization of the free Gaussian
basis f; = (¢4, 3;) associated with
each occupied Gaussian a;. These
bases cannot represent the free region
faithfully (e.g., near the obstacles).

(b) Visualization of the free Gaussian
b; ; that is recovered in subregion B;
from basis f; = (¢;,53;). The set
of all free Gaussians accurately rep-
resents the free region.

Fig. 4. Visualization of (a) the free Gaussian basis which can be used to
recover (b) a corresponding set of free Gaussians in subregion B; whose size
increases with the distance from the sensor origin.

originates from the robot. In SPGF, only occupied GMM Gy occ
is constructed using endpoints of the sensor rays from all
depth pixels in the image. In particular, Eqn. (15) and (18) are
used to construct each occupied Gaussian (say a;) in SS and
SF, respectively. Since we would like to construct Gaussians
associated with the free region as well, SPGF* constructs
two free Gaussians ¢; (using the entire sensor ray) and j3;
(using normalized sensor ray with depth z = 1) concurrently
with each occupied Gaussian a;. Those free Gaussians are
constructed using Eqn. (16) in SS and Eqn. (18) in SF. Thus,
for SPGF*, each element in the set S, Q, Qprey and Qeomp Of
Alg. 1 includes the occupied Gaussian g; with its associated
free Gaussians ¢; and f3;.

Fig. 4a illustrates the free Gaussians ¢; and §; associated
with each occupied Gaussian g;. Note that the free Gaussians
¢; and 3; do not represent the free space traversed by the
sensor rays very well. However, these free Gaussians can be
used to reconstruct a better representation of free space as
illustrated in Fig. 4b during the subsequent procedure. Thus,
we define each free Gaussian basis f; such that £; = (¢;, 5;).
The set of all free Gaussian bases generated at the output of
SPGF* forms the free GMM basis JF free.

Since the criteria for constructing and updating the Gaus-
sians in SPGF* is identical to SPGF, SPGF* inherits many de-
sirable properties from SPGF. Since SS in Line 12 dominates
SPGF* and can be executed independently for each scanline,
SPGF* can be parallelized by concurrently executing SS for
different scanlines across multiple CPU or GPU cores. Due
to single-pass pixel-per-pixel processing in SS, only one pixel
is stored in memory at any time. Thus, SPGF* is memory-
efficient and avoids the storage of the entire depth image in
memory as seen in most prior works.

Construct Free GMM (Alg. 2): In this section, we present
Alg. 2 that directly generates the set of free Gaussians Gy free
from their basis F sree. These Gaussians should accurately and
compactly model the free space traversed by the sensor rays
(i.e., within the viewing frustum). In prior works [14], [15],
the free Gaussians Gy fo are inefficiently constructed from a
large number of free-space points sampled at a fixed interval
along all sensor rays. In contrast, the free Gaussians Gy free in

GMMap are directly constructed from their basis Fy ree With
little computational and memory overhead.

The free space is contained within the viewing frustum
which is a pyramidal region with significantly different sym-
metries than each elliptical equipotential surface of the Gaus-
sian distribution. Thus, as illustrated in Fig. 4a, free Gaussians
(i.e., ¢ and [3) from the basis F e cannot faithfully represent
the free region (especially near the obstacles). To achieve a
more accurate representation, we partition the viewing frustum
into subregions {By, B, ...} along the z-axis that is perpen-
dicular to the image plane of the camera. Each subregion
B; is enclosed between two partitioning planes z = d; max
and z = d;j min. As illustrated in Fig. 4b, free Gaussians are
constructed to model each subregion separately.

The free Gaussians in each subregion (Fig. 4b) can be
directly recovered from each basis f = (¢, 3). Let the index if
denote the minimum index across all subregions containing the
endpoints of rays used to construct Gaussian ¢. For instance,
the index iy = 2 for basis fy = (¢o,f0) in Fig. 4b. The
subregion B;  is the difference between the region from sensor
origin to the obstacle (represented by Gaussian ¢) and the
region from the sensor origin to the partitioning plane d;, min
(represented by Gaussian 3 scaled to d; f’min). Each remaining
subregion is the difference between regions from the sensor
origin to two enclosing partitioning planes di/,min and d; /- max
(represented by Gaussian (3 scaled to d; /,min and d; /,max)- For
each basis f = (¢, 5), the parameters of the free Gaussian g
(i.e., first moment m!gl), second moment M}Q), normalizing
constant £, and weight m;) in subregion B; are directly
recovered from the parameters of each basis as follows:

(1) 1) e
(1) m¢ - d?,minmﬁ ) lf 1= Zf’
SN e g )
mg (di,max - di,min) ’ if0<i< i,
(2) (2) e
M(Q) _ Mqﬁ - diminMﬁ ) if i = Uy 19
7 2) (13 3 . (19
Mﬁ (di,max - di,min) P if 0 <1< Zf7
§o — di min&p, if i = i,
gg = ’]Tg — { . ’ - (190)
5,8 (di7max - di7min) y if0<i< if.

See Fig. 4b for an illustration of the recovered free Gaussians
B;.; in subregion B; generated from basis f;.

To retain high mapping fidelity, each subregion is sized
according to its spatial resolution (i.e., the density of the sensor
rays) such that regions with higher resolution are modeled by
smaller Gaussians. Since the sensor rays emanate outwards
from the origin, the spatial resolution of each subregion B;
decreases as its index 7 increases (see Fig. 4b). To ensure that
the maximum size of each Gaussian is inversely proportional
to the spatial resolution, the distance between the partitioning
planes that enclose each subregion 3; should increase with
index ¢. Thus, given the maximum slope of the frustum’s
boundary 7gum along the z axis (see Fig. 4a) and the initial
distance d between partitioning planes, the locations of these



Algorithm 2: Free GMM Construction From Basis

Input: Free GMM basis Fi free
Output: Free GMM G free
1 function constructFreeGMM (F free )
2 B+ g, gt,free — 9
3 Tmax < 0
// Sort basis using its subregion index iy
foreach f € ]:t,free do
iy < region(f)
-Ft,frcc — -Ft,frcc \f
B ;o Bif Uf

Tmax ¢ max(imaXa Zf)

® N B

9 for (i =dma; 1>0; i=i—1){

// See Eqgn. (20)
10 d; min, di,max < computePartitioningPlanes ()
11 Q<+ o
// Recover free Gaussians from bases
12 foreach f € B3; do
// See Egn. (19)
13 g < recoverFreeGaussian(f, ds min, di,max)
14 87, <— 87, \ f
// Each tuple ¢ contains a Gaussian gy
generated from its basis 9y
15 g (g9« f)
16 Q+ QUyg
// Fuse free Gaussians in subregion B;
17 while notEmpty(Q) do
18 g < front(Q)
19 C « findNeighbors(Q, 7)
20 isFused < false
21 foreach ¢ € C do
// See Egn. (18)
2 r < fuseGaussianAndBasis(c, )
23 dp < unscentHellingerDistance(r;, ¢;, g;)
4 Sr < geometricSimilarity(c;, g;)
25 if di, < s - op fiee then
26 g r
27 Q+ Q9\¢
28 isFused < true
29 if isFused = false then
30 Q<+ 0Q\yg
31 gt,free <~ gt,free @] qg
// Propagate fusion decision to
subregion B;_1
32 if 7 > 0 then
33 L Bis1 +— B2 U qr
34 return G free

planes for each subregion B; are computed as

k=1 i
i dO 1 + A dVfrum i+l 1
di,max = dO E (1 + ad'Yfrum) = (< ) ) s
k=0 A dYfrum
(20a)
0 ifi=0
dimin = ) ’ 20b
omn {di_l,max, otherwise, (20b)

where a4 is a scaling parameter. We chose ag = 0.5 in all
our experiments.

Although free Gaussians recovered from the basis can
accurately model the free region, they are not as compact as
the occupied GMM G; ... Thus, after recovery, free Gaussians

are fused with each other in each subregion to further enhance
the compactness of the map. Alg. 2 efficiently performs
Gaussian recovery and fusion. After sorting each basis f into
its associated subregion based on index iy (Line 4 to 8), free
Gaussians are constructed within each subregion (from Line 9
onward) starting from the one that is furthermost away from
the sensor origin (see the green arrow in Fig. 4b). Using
the bases, free Gaussians in each subregion B; are initially
recovered (Line 12 to 16) and then fused with each other one
pair at a time in a region-growing approach (Line 17 to 33).

During region growing, we need to ensure that the fused
Gaussian can still accurately represent the free region within
each subregion B;. After fusing a free Gaussian g, with its
neighbor ¢, (determined by whether their bounding boxes
intersect in Line 19), we accept the fused Gaussian r; (in
Line 26) if it accurately represents its original components
(i.e., g, and ¢y). In prior works [14], the fused Gaussian
1, is accepted if the probabilistic distance dj between two
components ¢, and ¢; are below a pre-defined low threshold
o, free- Thus, only Gaussians that completely overlap the same
region can be fused (see Fig. 5a). However, there exist many
opportunities to fuse Gaussians that only partially overlap but
accurately represent neighboring parts of the same region (see
Fig. 5b). To also exploit these opportunities, our distance
measure dj, is computed between the fused Gaussians 7,
and its components {g;,c,} using the Unscented Hellinger
Distance [33] in Line 23. To maintain mapping accuracy,
we scale the distance threshold o, free using the geometric
similarity s, € [0, 1] between Gaussians ¢, and ¢, in Line 25.
The geometric similarity s, between the two components
is computed as the intersection over union ratio for the z
dimension of their bounding boxes in Line 24.

Even though free Gaussians are constructed to separately
represent each subregion B;, the fusion decision made between
Gaussians (Line 25) in the current subregion 3; can be prop-
agated to reduce the number of computations in subsequent
subregions. The Gaussians recovered by the same basis across
most subregions are almost relatively similar in shape (e.g.,
Gaussians b2 1, 11 and by ; in Fig. 4b). Thus, the successful
fusion between two Gaussians in the current subregion B; (e.g.,
between b1 and b, 2) implies the same for other subregions
Bi—la- .. ,BQ (E.g., between 5171 and 5172, 5071 and 50_’2). To
automatically propagate the fusion decision from the current
subregion B;, the fused basis gy is simply transferred into the
following subregions (B;_1, . .., Bp) at Line 33 across multiple
iterations of the outer loop (Line 9).

Construct Local Map (Lines 4 to 6 in Alg. 1): To enable
the fusion between the local GMMs (occupied Gy oc and free
Gt free) and the global map M, _; in Section IV-C, local GMMs
need to transform into the world frame as follows:

px < Ripx + €, Bx < Ri¥x R/, (21)

where R; and ¢; are the rotation and translation matrix
associated with pose T;. The mean px and covariance X x
for each Gaussian in the GMM are defined in Eqn. (3).
After the transformation, an R-tree is created for all Gaus-
sians in Line 6 to form the local map G;. First, a bounding
box is constructed for each Gaussian to enclose its ellipsoidal



(b) Fusion of two partially overlap-
ping Gaussians (blue) into a single
Gaussian (green).

(a) Fusion of two completely over-
lapping Gaussians (blue) into a sin-
gle Gaussian (green).

Fig. 5. Our fusion criteria using the Unscented Hellinger Distance [33] allows
for the creation of a single Gaussian (green) from two Gaussians (blue) when
they (a) completely overlap to represent the same region or (b) partially
overlap to represent neighboring parts of the same region in the environment.

bound as defined in Eqn. (12). Then, each Gaussian and its
bounding box are inserted into the R-tree as shown in Fig. 2.

C. Globally-Consistent GMM Fusion

In this section, we present a novel memory-efficient pro-
cedure in Alg. 3 to directly update the global GMMap M;_;
in place using Gaussians from the local GMMap G;. When
the robot obtains a new depth image Z;, rays associated with
a subset of pixels in the image traverse through a previously
observed region C; that is modeled in the global map M;_;.
To retain the compactness of the map, these rays should be
fused with the map to update the state of the region C;.

In prior works [12], [13], [15], [20], the ray associated
with each pixel in the image is cast into the global map to
determine and update the region C;. Since these rays emanate
outwards from the sensor origin, accessing the global map
in memory along these rays often lacks spatial and temporal
locality for effective cache usage. Thus, casting all rays
(more than 300,000 in each 640x480 depth image) requires
significant time and energy for accessing the DRAM where
the map is stored. In GMMap, the rays from the depth image
are accurately compressed into a local GMMap G; whose
geometric properties are exploited to i) quickly find the region
C; in the global map M;_; with little memory access, and ii)
directly update the region C, using Gaussians in G; to maintain
the compactness and accuracy of the resulting global map M.

Fig. 6 illustrates the entire procedure for fusing the lo-
cal map G; into the global map M;_;. Recall that from
Section IV-B, Gaussians in the local map G; are already
transformed in the world frame and organized using an R-
tree. Using the bounding box (at the root node of the R-tree)
that encloses G;, Gaussians in the previously observed region
C; can be extracted from the previous global map M;_; in a
single traversal through its R-tree (Line 2) without ray casting.
After extraction, Gaussians in the region C; are directly fused
with the local map G; (Lines 5 to 25). Since the Gaussians
in C; and G, are extremely compact for storage within the
on-chip cache, the entire fusion process is expected to require
little DRAM accesses. After completion, the fused local map
(i.e., G UCy) is simply appended to the previous global map
M;_1 in Line 26 to produce the updated global map M,.

Our fusion process (Lines 5 to 25) enhances the compact-
ness of the local map G; while maintaining its accuracy. For

Algorithm 3: Globally-Consistent GMM Fusion

Input: Local GMMap G;, previous global GMMap M;_1
Output: Updated global GMMap M
1 function updateGlobalMap(M_1, G:)

2 C; «+ findObservedRegion (G, M;_1)

3 Mg +— Mea \ Ce

4 M1+ updateRtree(M;_1)

5 foreach ¢ € C; do

6 if isFreeGaussian(c) then

7 Q « findIntersectingFreeGaussians(Gz, c)
8 Qap < Qp free

9 else

10 Q < findIntersectingObsGaussians(Gz, c)
11 Qp < Qpocc

12 isObserved < false

13 foreach 4 € Q do

14 r < fuseGaussians(c, q) // See Eqn. (18)
15 dp, < unscentHellingerDistance(r, ¢, q)
16 sr < geometricSimilarity(c, q)

17 if dn, < s, - ayp then

18 c 1

19 G+ G \ q

20 G: + updateRtree(G:)

21 isObserved < true

22 if isObserved then

23 Ct < Ct \ c

24 gt < gt Uec

25 G: + updateRtree(G:)

26 Mt < Mt—l U Ct U Qt

2 M < updateRtree(My)

28 return M,

each Gaussian ¢ € Cy, the R-tree in the local map G; is used to
efficiently search for the set of Gaussians O that intersects with
and represents the same type of region (i.e., free or occupied)
as ¢. In Line 14, the Gaussian ¢ is fused with each neighbor
g € Q into a fusion candidate r using Eqn. (18). Similar to
Alg. 2, the fusion candidate r is accepted in Line 18 if the
Unscented Hellinger Distance [33] between candidate r and
its components {c, g} is less than a distance threshold .
Recall that our fusion criteria can exploit a wide range of
scenarios (i.e., Fig. 5a and 5b) to enhance the compactness of
the map. To maintain accuracy, we scale the distance threshold
ayp, in Line 17 using the geometric similarity s, (computed in
Line 16) between components ¢ and 4. When ¢ and g are free
Gaussians that represent volumes, the similarity measure s,. is
the intersection over union ratio of their 3D bounding boxes.
When ¢ and g are obstacle Gaussians that represent surfaces,
the similarity measure s, is the intersection over union ratio
of the largest two dimensions of their 3D bounding boxes (i.e.,
surface coverage similarity) multiplies by the dot product of
their normal vectors (i.e., orientation similarity).

V. EXPERIMENTAL RESULTS & ANALYSIS

In this section, we compare our GMMap against current
state-of-the-art frameworks in terms of accuracy, throughput,
memory footprint, and energy consumption. Specifically, we
chose the following frameworks with open-source implemen-
tations and different types of occupancy representations: Oc-
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Fig. 6. Globally-consistent GMM fusion: Constructing the current global GMMap M by fusing the local GMMap G; into the previous global GMMap
M;_1. The bounding box (green rectangle) of local map G; is used to determine the Gaussians C; in the global map M;_1 that overlaps with G; . Occupied
and free GMMs are illustrated with red and blue ellipsoids, respectively. Dotted rectangles represent the bounding boxes at the leaf nodes of the R-tree.

toMap! [12] (discrete), NDT-OM? [13] (semi-parametric), and
BGKOctoMap-L? [20] (non-parametric). This comparison was
performed using four diverse indoor and outdoor environments
(i.e., Room, Warehouse, Soulcity, and Gascola) generated from
sequences of depth images and ground-truth poses.

Table I summarizes the characteristics of all four envi-
ronments. In particular, Room (from real-world TUM-RGBD
datasets [34]) is a small structured environment that models
crowded cubicles inside an office. Warehouse (from real-
world TUM-RGBD datasets [34]) is a larger structured indoor
environment captured using a longer and noisier range of the
Kinect camera. In contrast, Soulcity (from synthetic TartanAir
dataset [35]) is a large structured outdoor environment in
a city containing several multi-story buildings with intricate
sets of walkways. Finally, Gascola (from synthetic TartanAir
dataset) is a large unstructured outdoor environment in a forest
consisting of trees and a small hill.

To emulate an energy-constrained setting, all experiments
were performed on the low-power NVIDIA Jetson TX2 plat-
form in MAXP_CORE_ARM power mode [36]. All frame-
works, implemented in C++, were compiled using the same
settings. To reduce the memory overhead and map size, the
floating point variables (and their associated operations) across
all frameworks are stored as (and performed in) 32-bit single
precision. Our single-core, multi-core, and GPU-accelerated
GMMap implementations (visualized in Open3D [37]) can be
obtained at https://github.com/mit-lean/GMMap.

Prior works achieve high mapping accuracy but are nei-
ther as computationally nor memory efficient as GMMap.
After carefully selecting a set of hyperparameters for all
frameworks (Section V-A), GMMap is evaluated across a
diverse set of indoor and outdoor environments and achieves
comparable accuracy as prior works (Section V-B). In addition,

Thttps://github.com/OctoMap/octomap
Zhttps://github.com/OrebroUniversity/perception_oru/tree/port-kinetic
3https://github.com/RobustField AutonomyLab/la3dm

our GMMap is highly parallelizable and can be constructed
in real-time at up to 81 images per second, which is 4x
to 146x higher than prior works on the low-power Jetson
TX2 platform (Section V-C). Due to single-pass depth image
compression in SPGF* and directly operating on Gaussians
during map construction, our GMMap is extremely memory
efficient. Compared with prior works (in Section V-D), our
CPU implementation reduces i) the map size by at least 56%,
ii) the memory overhead for storing input and temporary
variables by at least 88%, and iii) the number of DRAM
accesses by at least 78% during map construction. Thus, in
Section V-E, the computational and memory efficiency of
our GMMap reduces energy consumption by at least 69%
compared with prior works.

A. Selection of Hyperparameters

In this section, we discuss the selection of hyperparameters
for the GMMap (Section V-Al). Then, we briefly summarize
the hyperparameters selected for prior frameworks (i.e., NDT-
OM, BGKOctoMap-L, and OctoMap, in Section V-A2). The
hyperparameters of all frameworks are presented in Table II
and are manually tuned to reduce the size of the maps without
significant deviation from their peak accuracy.

1) GMMap: For GMMap, the hyperparameters are the un-
explored prior weight 7 for the prior distribution in Eqn. (4),

TABLE 1
PROPERTIES OF ALL FOUR ENVIRONMENTS USED FOR EVALUATION.

. . . Depth Image  Avg. Sensor
Environment Dimensions (m) Images Resolution Range (m)
(freibllfr‘;mmm) 1128 x 12,05 x 345 1311 640x480 0.97
‘Warehouse
(freiburg2_ 23.52 x 17.90 x 4.29 2169 640x480 1.13
pioneer_slam)
Soulcity 73.90 x 62.41 x 42.69 1083 640x480 10.85
Gascola 59.04 x 52.93 x 33.71 382 640x480 4.06
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the initial distance d between partitioning planes in Eqn. (20),
and the distance thresholds (o free and iy, occ) for fusing
Gaussians in Alg. 2 and 3. These hyperparameters are mostly
dependent on the sensor itself (i.e., not on the environment).
Recall that the Gaussian fusion thresholds (o, free and aup, oec)
control the trade-off between compactness and the accuracy
of the map. For environments (i.e., Room and Warehouse)
captured using a noisy sensor (i.e., Kinect), we set both
thresholds lower to better capture the surface details and
the noise of the sensors at the expense of compactness,
as shown in Table II. For environments (i.e., Soulcity and
Gascola) captured using an ideal noiseless sensor, Gaussians
that represent the same region appear much more similar.
Thus, we set both fusion thresholds higher to achieve better
compactness without sacrificing accuracy.

Recall that from Eqn. (20), the (initial) partition plane
distance d affects the locations and number of free space
subregions in each local map. Since the field of views for our
cameras are quite similar across all environments, the distance
dp is almost constant in Table II. Finally, the unexplored prior
weight my controls the evidence of the unexplored region.
Thus, a larger myg would require i) more measurements for
the occupancy probability to converge from unexplored state
(i.e., 0.5) to free (i.e., 0) or occupied state (i.e., 1), and ii)
reduce the amount of free region spatially interpolated from
the frontier (i.e., the boundary between free and unexplored
region) into the unexplored region. Since the number of pixels
in the depth image is constant across all environments, the
unexplored prior weight 7 is unchanged in Table II to retain
the same convergence rate of occupancy across environments.

2) Existing Frameworks: For NDT-OM, BGKOctoMap-
L, and OctoMap, the environment is voxelized so that the
minimum voxel size is the hyperparameter. In our experiments,
we increase the voxel size with the size of the environment to
maintain a good trade-off between accuracy and the compact-
ness of the map in Table II. Since BGKOctoMap-L partitions
the environment into equally-sized cubic blocks such that
each block contains an octree (i.e., defined as the test-data
octrees [20]), the depth of the octree in each block is an
additional hyperparameter which is kept constant across all
environments. To generate compact training data representing
free regions, BGKOctoMap-L samples points along each sen-
sor ray at a free resolution interval. In Table II, we increase this
interval with the size of the environment to maintain a good
trade-off between accuracy and map construction throughput.

B. Accuracy of Occupancy Estimation

In this section, we compare the accuracy of the GMMap
against NDT-OM, BGKOctoMap-L, and OctoMap. Specifi-
cally, we are interested in the accuracy of occupancy esti-
mation in the occupied and free regions (Section V-B1) as
well as the characteristics of the obstacle surfaces (at the free-
to-occupied regions, in Section V-B2) and frontiers (at the
free-to-unexplored regions, in Section V-B3). Recall that the
hyperparameters in Table II are manually tuned to reduce the
size of the maps without significant deviation from their peak
accuracy for estimating occupancy probability. Depending on
the downstream applications, these hyperparameters are also
used to control two fundamental trade-offs within the GMMap,
as discussed in Sections V-B1 and V-B3. For our experiments,
we evaluated the occupancy probabilities at the end of all
sensor rays for validating occupied regions, and along all
sensor rays at 10 cm intervals for validating free regions. Fig. 7
and 8 illustrate each framework in Room (structured indoor)
and Gascola (unstructured outdoor) environment, respectively.

1) Occupied & Free Regions: We use the receiver oper-
ating characteristics (ROC) curve to compare the accuracy for
estimating occupancy in both occupied and free regions across
all frameworks. To generate the ROC curves, the occupancy
probability is queried from each map at the locations of
all sensor rays used to construct the map. By sweeping
the thresholds for classifying occupied or free regions from
each occupancy probability, the true positive rate (i.e., the
proportion of correct classifications during the prediction of
occupied regions) of each map varies with the false positive
rate (i.e., the proportion of incorrect classifications during the
prediction of the free regions). In addition, the area under the
curve (AUC) represents the probability that the map estimates
a higher occupancy for the occupied region than that of the free
region [38]. Thus, a map with high accuracy should generate
a ROC curve that tends towards the upper-left corner of the
plot to achieve a large AUC close to one.

Fig. 9 illustrates the ROC curve for each framework across
all environments. The (ROC) AUC for the GMMap is slightly
higher than other frameworks in structured indoor (i.e., Room
and Warehouse) and outdoor (i.e., Soulcity) environments. In
addition, the ROC curves of other frameworks are mostly
under the ROC curves of GMMap, which indicates Gaussians’
ability to accurately model both volumetric free regions and
thin obstacle surfaces with fewer false positives (i.e., mistak-
enly predicting free regions as occupied) without sacrificing
true positives (i.e., correctly predicting occupied regions).
In contrast, voxels in OctoMap and BGKOctoMap-L inflate
the obstacle surfaces with cubic artifacts whose thickness is

TABLE 11
HYPERPARAMETERS USED IN GMMAP, NDT-OM, BGKOCTOMAP-L, AND OCTOMAP ACROSS ALL FOUR ENVIRONMENTS.

GMMap NDT-OM BGKOctoMap-L OctoMap
Environment | Unexplored Prior  Partition Plane Free Gaussian Occupied Gaussian Voxel Voxel Free Block Octree Voxel
Weight (mg) Distance (dg) Fusion Threshold (a, free) ~ Fusion Threshold (ap, occ) Size Size Resolution Depth Size
Room 500,000 0.5m 0.26 0.70 0.4m 0.1m 0.3m 3 0.1m
Warehouse 500,000 0.5m 0.26 0.70 0.5m 0.1m 0.3m 3 0.2m
Soulcity 500,000 0.5m 0.63 141 1.2m 0.3m 3.0m 3 0.3m
Gascola 500,000 0.6m 0.63 141 1.2m 0.3m 3.0m 3 0.3m




(a) GMMap (Gaussians) (b) GMMap (Voxels) (c) NDT-OM (d) BGKOctoMap-L (e) OctoMap

Fig. 7. Visualization of the ground-truth Room (structured indoor) environment overlaid with the following mapping frameworks: (a) GMMap (obstacle
Gaussians), (b) GMMap (occupied voxels from uniform voxel-grid sampling), (¢) NDT-OM (obstacle Gaussians), (d) BGKOctoMap-L (occupied voxels), and
(e) OctoMap (occupied voxels). Free regions are not illustrated for ease of visualization. Even though Gaussians are unbounded and continuous, each obstacle
Gaussian is visualized at a Mahalanobis distance of two using an ellipsoidal wireframe in (a) and (c). For BGKOctoMap-L, OctoMap, and GMMap (from
uniform voxel-grid sampling), wireframes of occupied voxels with an occupancy probability greater than 0.9 are visualized. For both GMMap and NDT-OM,
the surface boundaries of the obstacles are smooth and often extend beyond their ellipsoidal wireframes (e.g., compare (a) and (b) for GMMap).

B @

(d) BGKOctoMap-L

N

(a) GMMap (Gaussians) (b) GMMap (Voxels) (c) NDT-OM (e) OctoMap

Fig. 8. Visualization of the ground-truth Gascola (unstructured outdoor) environment overlaid with the following mapping frameworks: (a) GMMap (obstacle
Gaussians), (b) GMMap (occupied voxels from uniform voxel-grid sampling), (¢) NDT-OM (obstacle Gaussians), (d) BGKOctoMap-L (occupied voxels), and
(e) OctoMap (occupied voxels). Free regions are not illustrated for ease of visualization. Even though Gaussians are unbounded and continuous, each obstacle
Gaussian is visualized at a Mahalanobis distance of two using an ellipsoidal wireframe in (a) and (c). For BGKOctoMap-L, OctoMap, and GMMap (from
uniform voxel-grid sampling), wireframes of occupied voxels with an occupancy probability greater than 0.9 are visualized. For both GMMap and NDT-OM,

the surface boundaries of the obstacles are smooth and often extend beyond their ellipsoidal wireframes (e.g., compare (a) and (b) for GMMap).

at least equal to the minimum voxel size, which leads to
higher false positives. Even though NDT-OM also utilizes
Gaussians to represent obstacle surfaces, these Gaussians are
constructed under the assumption that all measurements within
each voxel belong to the same surface, and thus also suffer
from voxelization artifacts when such assumption is invalid
(e.g., at corners of objects in Fig. 7c).

For unstructured outdoor environment (i.e., Gascola), the
(ROC) AUC of GMMap is comparable but slightly lower
than OctoMap as shown in Fig. 9d. To achieve a compact
representation and avoid modeling spurious measurements,
GMMap prunes away small occupied Gaussians containing
less than a certain number of measurements (i.e., 200 in our
experiments). While this pruning threshold does not affect the
modeling of objects closer to the camera (typically containing
more measurements), this threshold prunes away obstacle
Gaussians for small objects (i.e., leaves on the tree in Fig. 8a)
that are far away from the camera (and robot).

In fact, the Gaussian pruning threshold controls one of the
fundamental trade-offs between the ability to model small
distant objects and the compactness of the GMMap. For
applications that require the mapping of distant small objects,
the pruning threshold can be decreased to retain these objects
at the expense of a larger map size. However, pruning these
small occupied Gaussians does not degrade the safety of the

map. In SPGF*, both the occupied regions associated with
these pruned Gaussians and free regions near them will remain
unexplored because free Gaussian bases leading up to (and
associated with) these obstacle Gaussians are also pruned. This
is reflected in Fig. 9d where the ROC curve of GMMap shifts
to the right (i.e., higher false positives for free regions near
these pruned Gaussians) compared with other frameworks. If
the robot recaptures these previously-neglected small objects
at a closer distance later, these objects will be modeled by
more measurements and thus retained in GMMap.

2) Obstacle Surfaces (at Free-to-Occupied Regions): We
used the precision-recall curves to compare the modeling of
the obstacle surfaces among all frameworks at different occu-
pancy decision thresholds. In Fig. 10, no precision-recall curve
can reach the y-axis because precision becomes invalid when
the occupancy decision threshold equals or exceeds the maxi-
mum occupancy probability in the map (i.e., 0.97 for OctoMap
and 1.0 for others). In addition, no framework achieves 100%
precision due to the inflation/thickening of obstacle surfaces
from either voxelization (in OctoMap and BGKOctoMap-L)
or smooth decay of Gaussians (in GMMap and NDT-OM).
To ensure safe navigation, we are interested in the precision
of obstacle surfaces when the recall is high. In structured
environments (i.e., Room, Warehouse, and Soulcity), GMMap
often achieves higher precision at similar recall compared with
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to the thickness, location, and orientation of each surface, GMMap achieves higher precision at similar recall than other frameworks across most environments.

other frameworks because Gaussians in the GMMap overlap
and flexibly adapt to the thickness, location, and orientation of
each surface. In other frameworks, the precision is lower due
to higher false positives caused by i) using Gaussian to model
multiple distinct surfaces in each voxel (in NDT-OM) or ii)
thickening of surfaces induced by the minimum size of the
voxels (in OctoMap and BGKOctoMap-L). For unstructured
outdoor environment (i.e., Gascola in Fig. 10d), the precision
of GMMap is lower than other frameworks at higher recall due
to the pruning of Gaussians representing small distant objects
far away from the robot. As explained in Section V-B1, the
locations of these pruned Gaussians will remain unexplored
and thus do not affect the safety of navigation.

3) Frontiers (at Free-to-Unexplored Regions): The vi-
sualization of GMMap and the preservation of unexplored
regions for Warehouse and Soulcity are illustrated in Fig. 11
and 12, respectively. Unlike discrete representations that as-
sume occupancy is spatially independent, Gaussians allow
the GMMap to spatially interpolate occupancy to achieve
higher compactness. Thus, another fundamental trade-off of
the GMMap is the total extent of free regions classified for
safe navigation v.s. the extent of free regions interpolated by
free Gaussians into the unexplored region at the frontiers (i.e.,
boundaries between free and unexplored regions). This trade-

off can be controlled using the unexplored prior weight (mg)
that dictates the contribution of unexplored regions during
GMR. Specifically, if the application is more sensitive to the
exact locations of the frontier, the prior weight () can be
increased to reduce the total extent of free regions classified
by GMMap for safe traversal. Even if the prior weight () is
unchanged, the frontiers (and regions near obstacle surfaces)
can be identified at locations of high occupancy variance
computed using Eqn. (11).

C. Construction & Query Throughput

In this section, we compare the computational efficiency
of our GMMap against other frameworks using the NVIDIA
Jetson TX2 platform. The computational efficiency is evalu-
ated in terms of the throughput for constructing the map (i.e.,
depth images per second, in Section V-C1) and also querying
the map (i.e., locations per second, in Section V-C2). Table III
summarizes these metrics for all frameworks.

1) Map Construction: The NVIDIA Jetson TX2 platform
contains a low-power ARM Cortex A57 CPU with four cores
and a Pascal GPU with two Streaming Multiprocessors (SMs).
Due to computationally efficient GMM generation and fusion,
our GMMap can be constructed at a throughput of 11 to 18
images per second using only one CPU core, which is 4x to



(a) Warehouse point cloud

(b) GMMap

(c) Occupancy distribution at a cross section

Fig. 11. Visualization of (a) the point cloud overlaid with its (b) GMMap for Warehouse (structured indoor) environment. For ease of visualization, only
occupied Gaussians are shown for the GMMap. In (c), the distribution of occupancy is visualized in the free regions (blue), unexplored regions (yellow), and
occupied regions (red). The locations of the unexplored regions are well-preserved. Depending on the application requirements, the unexplored prior weight
(mo) of the GMMap can be used to increase (i.e., smaller o) or decrease (i.e., larger mp) the extent of free regions interpolated into the unexplored region

during Gaussian Mixture Regression.

(a) Soulcity point cloud

(b) GMMap

(c) Occupancy distribution at a cross section

Fig. 12. Visualization of (a) the point cloud overlaid with its (b) GMMap for Soulcity (structured outdoor) environment. For ease of visualization, only
occupied Gaussians are shown for the GMMap. In (c), the distribution of occupancy is visualized in the free regions (blue), unexplored regions (yellow), and
occupied regions (red). The locations of the unexplored regions are well-preserved. Depending on the application requirements, the unexplored prior weight
(mo) of the GMMap can be used to increase (i.e., smaller mg) or decrease (i.e., larger mp) the extent of free regions interpolated into the unexplored region

during Gaussian Mixture Regression.

36x higher than other frameworks. Since Scanline Segmenta-
tion (Line 12 in Alg. 1) dominates the amount of computation
during map construction and can be concurrently executed
across multiple rows of the depth image, our construction
throughput can be significantly increased via parallelization.
By using all four CPU cores, our multi-core implementation
reaches a throughput of 31 to 60 images per second. Multi-
core implementations of existing frameworks are either not
publicly available or highly experimental. Even if these frame-
works can be effectively parallelized with four cores, their
throughputs are expected to be 4 x higher, which are still much
lower than our multi-core implementation. By concurrently
executing Scanline Segmentation across four images, our GPU
implementation of GMMap offers the highest construction
throughput of 44 to 81 images per second, which is up to
2x higher* than our CPU multi-core implementation.

2) Occupancy Query: Table III also compares the query
throughput of our GMMap against existing frameworks. To
emulate an energy-constrained setting during path planning,
each map is queried at locations throughout all observed
regions (i.e., no unexplored regions) in the environment using
only a single CPU core. Recall that each map consists of

4Even though we are processing four images at the same time, the
throughput is not four times higher because other sequential procedures of
the GMMap construction (i.e., segment and GMM fusion) start to dominate.

geometric primitives (e.g., Gaussians or voxels) stored using
a spatial data structure (e.g., grid, R-tree, or octree). For
existing frameworks, either traversing the spatial data structure
(i.e., accessing a voxel from a grid in NDT-OM) or inferring
occupancy from primitives (i.e., reading occupancy probability
in BGKOctoMap-L and OctoMap) require little compute,
which leads to high query throughputs ranging from 9.3 x 10°
to 4.2 x 109 locations per second. However, in our GMMap,
both R-tree traversal and Gaussian Mixture Regression (GMR)
require more computation. Thus, the query throughput is lower
than other frameworks but still sufficiently high (ranging from
4.6 x 10° to 7.9 x 10° locations per second). If needed, the
query throughput can be increased by accessing the map with
multiple cores and/or partitioning the query locations into
more localized sets for batch processing.

D. Memory Footprint

In this section, we compare the memory efficiency of
our GMMap against other frameworks when executing on the
NVIDIA Jetson TX2 platform. In addition to the map size
(Section V-D1), we are interested in the memory overhead
(for storing input and temporary variables, in Section V-D2)
and the amount of DRAM access per pixel (which dictates
DRAM energy consumption, in Section V-D3) during the map
construction. Table III summarizes our results.



1) Map Size: We compare the size of the map that includes
the geometric primitives (e.g., Gaussians and/or voxels) and
the spatial data structure (i.e., R-tree, grid and/or octree)
among all frameworks. Due to the compactness and strong
representational power of the Gaussians, NDT-OM achieves
comparable accuracy while reducing the map size by 61% to
96% compared with BGKOctoMap-L and OctoMap. However,
the extent of each Gaussian in NDT-OM is restricted by the
constant voxel size across the entire environment. Thus, all
Gaussians appear similarly sized as shown in Fig. 7c and 8c.
By using SPGF* to construct Gaussians that appropriately
adapt to the geometries of occupied and free regions in the
environment (see Fig. 7a and 8a), our GMMap achieves
comparable accuracy while reducing the map size by 56%
to 73% compared with NDT-OM. Across all frameworks,
GMMap requires the least amount of memory (167KB to
850KB) across all four environments.

2) Memory Overhead: We are interested in the memory
overhead® (defined as the peak memory usage minus the map
size) for storing input and temporary variables during map
construction. For a memory-efficient framework, its memory
overhead should be insignificant compared with the map size.
Unfortunately, existing frameworks are not memory efficient.
For NDT-OM, the memory overhead mostly comprises the
point cloud associated with each depth image (up to 3.6MB)
for supporting a variety of edge cases during recency-weighted
covariance update [13]. For BGKOctoMap-L, the memory
overhead mostly is comprised of subsampled measurements in
free and occupied regions (up to 21MB) for performing multi-
pass BGK inference. For OctoMap, the memory overhead is

SMeasured using our own memory profiler that automatically tracks mem-
ory allocation in the constructors and deconstructors of relevant C++ objects.

mostly comprised of pointers to a large number of voxels
intersected by sensor rays from each depth image (up to IMB).

In contrast, our GMMap requires very little memory over-
head. Since SPGF* processes the depth image one pixel at a
time in a single pass, only one (for single-core implementa-
tion) or four pixels (for multi-core implementation) are stored
in memory at any time. Thus, the memory overhead associated
with map construction is mostly comprised of compact line
segments S generated from Scanline Segmentation in SPGF*
and the local GMMap G; generated at the output of Alg. 1.
From Table III, the memory overhead of our single-core imple-
mentation is only 31KB to 106KB, which is at least 90% lower
than other frameworks. Since four scanlines are segmented
concurrently in our multi-core implementation, the memory
overhead increases and ranges from 41KB to 128KB, which
is at least 88% lower than other frameworks. However, our
GPU implementation requires much larger memory overhead
(around 24MB) due to the allocations of large GPU-accessible
buffers for transferring four depth images and their Scanline
Segmentation outputs to and from the GPU.

3) DRAM Access: We compare the average amount of
DRAM access required for integrating each measurement (i.e.,
pixel in the depth image) into the map among all frameworks.
The amount of DRAM access correlates with the energy
consumption of the DRAM and is computed by multiplying
the number of last-level cache misses® with the size of the
cache line. Recall that existing frameworks update the map
by incrementally casting each measurement ray (more than
300,000 rays in a 640x480 depth image) into the current map.
Since these rays diverge away from the sensor origin, memory

60Obtained by reading hardware counters of the CPU using the
perf_event_open() system call on Linux. For GPU, the amount of DRAM
accesses can be obtained directly using NVIDIA NSight Systems.

TABLE III
COMPARISON OF THE GMMAP AGAINST PRIOR WORKS USING THE NVIDIA JETSON TX2. ALL FRAMEWORKS ACHIEVE COMPARABLE ACCURACY.

Compute Throughput Memory Footprint Energy Consumption
Environment Framework Resource Construction Query” Map Size  Overhead DRAM Access CPU & GPU DRAM Total
(C = CPU core) (images/s) (10° locations/s) (KB) (KB) (bytes/pixel) (mJ/image) (mJ/image)  (mJ/image)

GPU & 4 C 81 0.79 167 24,563 477 41 17 58

GMMap 4C 60 0.79 176 41 27 36 16 52

Room 1C 18 0.79 176 31 14 59 51 110
NDT-OM 1C 5.0 3.5 426 3,146 160 202 157 359

BGKOctoMap-L 1C 2.8 0.93 4,935 7,101 242 352 272 624

OctoMap 1C 3.6 4.0 2,190 629 164 298 209 507

GPU & 4 C 73 0.52 268 24,596 492 43 16 59

GMMap 4C 58 0.51 269 56 30 37 14 51

Warchouse 1C 18 0.51 269 41 20 59 41 100
NDT-OM 1C 3.7 3.7 614 3,436 199 273 209 482
BGKOctoMap-L 1C 0.5 1.4 13,811 21,265 940 1,888 1,463 3,351

OctoMap 1C 4.3 4.2 1,590 606 143 256 176 433

GPU & 4 C 60 0.46 850 24, 740" 625 56 23 79

GMMap 4C 31 0.47 838 128 76 73 25 98

Soulcity 1C 11 0.47 838 106 44 92 66 158
NDT-OM 1C 3.1 3.9 1,925 4,391 372 324 248 572
BGKOctoMap-L 1C 0.8 1.0 23,265 5,502 596 1,204 926 2,130

OctoMap 1C 2.1 4.1 10,452 1,068 644 485 373 858

GPU & 4 C 44 0.62 362 24,644 1,048 69 36 105

GMMap 4C 32 0.62 361 79 78 73 29 102

Gascola 1C 11 0.62 361 63 54 97 81 178
NDT-OM 1C 2.6 3.9 1,339 4,392 358 383 291 674
BGKOctoMap-L 1C 0.4 1.1 16,736 9,993 899 2,407 1,840 4,248
OctoMap 1C 1.6 3.9 9,376 760 1,136 634 494 1,129

" Unlike other metrics, query throughput is computed using a single CPU core.

“* High memory overhead due to the necessary allocation of large GPU-accessible buffers (used to

store input images and output results of Scanline Segmentation) for concurrent processing of four images. Allocations of these buffers are not required for CPU-only implementations.



accesses along these rays often lack spatial and temporal
locality for effective cache usage (especially if the map is
too large to fit within on-chip caches). Thus, the single-core
implementations of existing frameworks require a significant
number of DRAM accesses ranging from 160 bytes to more
than 1KB per pixel.

In contrast, our GMMap avoids ray casting by directly
fusing Gaussians from a compact local map G; with Gaussians
from the previously observed region C; in the global map
M;_1 (see Fig. 6). Since both the local map G; and the
previously observed region C; can be compactly cached, our
single-core implementation reduces DRAM access by at least
85% (compared to existing frameworks) by accessing only
14 bytes to 54 bytes per pixel. Since multiple cores share
the last-level cache, the number of cache misses increases for
our multi-core implementation which requires slightly higher
DRAM accesses ranging from 27 bytes to 78 bytes per pixel
(at least 78% lower than existing frameworks). Our GPU
implementation requires much larger DRAM accesses due
to the higher amount of cache misses from the concurrent
segmentation of all scanlines in four images. However, most
DRAM accesses from our GPU implementation are coalesced
(i.e., multiple accesses can be serviced with a single transac-
tion). Thus, the energy consumption of the DRAM slightly
increases compared with our multi-core CPU implementation.

E. Energy Consumption

Table III summarizes the average energy consumption’ per
depth image during map construction. For all frameworks, the
energy consumption of the DRAM is significant compared
with that of CPU and GPU, which underscores the importance
of reducing memory overhead and access. Due to computa-
tionally efficient single-pass GMM creation and fusion, our
single-core implementation reduces the energy consumption of
the CPU by at least 71% compared with other frameworks. By
avoiding ray casting (and its associated DRAM accesses), our
single-core implementation reduces the energy consumption of
the DRAM by at least 68% compared with other frameworks.
Our multi-core and GPU implementations are even more
energy efficient. Recall that energy equals the product of power
and latency. For both implementations, the decrease in average
latency per image significantly outweighs the increase in
power consumption. Thus, the energy consumption per image
decreases compared with single-core implementation. In all,
our CPU single-core, multi-core, and GPU implementations
reduce the average energy consumption by at least 69%, 83%,
and 84% compared with other frameworks, respectively.

VI. CONCLUSION

In this work, we proposed the GMMap that uses a compact
Gaussian Mixture Model to accurately model the continuous
distribution of occupancy in 3D environments. Occupancy
probability is inferred with Gaussian Mixture Regression
which is extended to retain unexplored regions. Across multi-
ple indoor and outdoor environments, we analyzed GMMap’s

"Measured directly from the power monitors embedded on the Jetson TX2.

ability to accurately model free/occupied regions as well
as boundaries from free-to-obstacle, and free-to-unexplored
regions. Furthermore, we explained how to tune the parameters
of the GMMap for controlling two fundamental trade-offs (i.e.,
modeling of distant small objects v.s. compactness of the map,
and the total extent of free regions v.s. extension of free regions
into unexplored regions) to ensure safe navigation of robots.

Due to single-pass processing of depth images and di-
rectly operating on Gaussians, GMMap can be constructed in
real-time on energy-constrained platforms while significantly
reducing memory overhead and access. When benchmarked
on the low-power NVIDIA Jetson TX2 platform across a
diverse set of environments, GMMap can be constructed at
a throughput of up to 60 images per second using the CPU
and up to 81 images per second using the GPU, which is 4x
to 146 x higher than prior works. While achieving comparable
accuracy as prior works, our CPU implementation of GMMap
reduces map size by at least 56%, memory overhead by at least
88%, DRAM access by at least 78%, and energy consumption
by at least 69%. Thus, to the best of our knowledge, GMMap
not only enables real-time large-scale 3D mapping for energy-
constrained robots for the first time but also illustrates the
significance of memory-efficient algorithms for enabling low-
power autonomy on these robots.

REFERENCES

[1] K. P. Valavanis and G. J. Vachtsevanos, Handbook of unmanned aerial

vehicles. Springer, 2015, vol. 2077.

Q. Tao, J. Wang, Z. Xu, T. X. Lin, Y. Yuan, and F. Zhang, “Swing-

reducing flight control system for an underactuated indoor miniature

autonomous blimp,” IEEE/ASME Transactions on Mechatronics, vol. 26,

no. 4, pp. 1895-1904, 2021.

[3] Y. M. Chukewad, J. James, A. Singh, and S. Fuller, “Robofly: An insect-
sized robot with simplified fabrication that is capable of flight, ground,
and water surface locomotion,” IEEE Transactions on Robotics, vol. 37,
no. 6, pp. 2025-2040, 2021.

[4] R. Wood, R. Nagpal, and G.-Y. Wei, “Flight of the robobees,” Scientific
American, vol. 308, no. 3, pp. 60-65, 2013.

[5] S. H. Suhr, Y. S. Song, S. J. Lee, and M. Sitti, “Biologically inspired
miniature water strider robot.” in Robotics: Science and Systems, vol.
2005, 2005, pp. 319-326.

[6] M. Keennon, K. Klingebiel, and H. Won, “Development of the nano
hummingbird: A tailless flapping wing micro air vehicle,” in 50th
AIAA aerospace sciences meeting including the new horizons forum and
aerospace exposition, 2012, p. 588.

[71 M. Horowitz, “1.1 computing’s energy problem (and what we can do
about it),” in 2014 IEEE International Solid-State Circuits Conference
Digest of Technical Papers (ISSCC), 2014, pp. 10-14.

[8] B. Yamauchi, “A frontier-based approach for autonomous exploration,”

in IEEE International Symposium on Computational Intelligence in

Robotics and Automation, 1997, pp. 146-151.

Z. Zhang, T. Henderson, S. Karaman, and V. Sze, “Fsmi: Fast computa-

tion of shannon mutual information for information-theoretic mapping,”

The International Journal of Robotics Research, vol. 39, no. 9, pp. 1155—

1177, 2020.

T. Henderson, V. Sze, and S. Karaman, “An efficient and continuous

approach to information-theoretic exploration,” in 2020 IEEE Interna-

tional Conference on Robotics and Automation (ICRA). 1EEE, 2020,

pp. 8566-8572.

S. Karaman and E. Frazzoli, “Sampling-based algorithms for optimal

motion planning,” The international journal of robotics research, vol. 30,

no. 7, pp. 846-894, 2011.

A. Hornung, K. M. Wurm, M. Bennewitz, C. Stachniss, and W. Burgard,

“Octomap: An efficient probabilistic 3d mapping framework based on

octrees,” Autonomous robots, vol. 34, no. 3, pp. 189-206, 2013.

[2

—

[9

—

(10]

(11]

[12]



[13]

[14]

[15]

[16]

[17]

[18]

[19]

[20]

[21]

[22]

[23]

[24]

[25]

[26]

[27]

[28]

[29]

[30]

(31]

(32]
[33]

[34]

(35]

[36]

(371

J. P. Saarinen, H. Andreasson, T. Stoyanov, and A. J. Lilienthal, “3d
normal distributions transform occupancy maps: An efficient represen-
tation for mapping in dynamic environments,” The International Journal
of Robotics Research, vol. 32, no. 14, pp. 1627-1644, 2013.

V. Guizilini and F. Ramos, “Towards real-time 3d continuous occupancy
mapping using hilbert maps,” The International Journal of Robotics
Research, vol. 37, no. 6, pp. 566-584, 2018.

S. Srivastava and N. Michael, “Efficient, multifidelity perceptual repre-
sentations via hierarchical gaussian mixture models,” IEEE Transactions
on Robotics, vol. 35, no. 1, pp. 248-260, 2018.

B. Eckart, K. Kim, A. Troccoli, A. Kelly, and J. Kautz, “Accelerated
generative models for 3d point cloud data,” in Proceedings of the IEEE
conference on computer vision and pattern recognition, 2016, pp. 5497—
5505.

C. O’Meadhra, W. Tabib, and N. Michael, “Variable resolution occu-
pancy mapping using gaussian mixture models,” IEEE Robotics and
Automation Letters, vol. 4, no. 2, pp. 2015-2022, 2018.

A. Dhawale and N. Michael, “Efficient parametric multi-fidelity surface
mapping,” in Robotics: Science and Systems (RSS), vol. 2, no. 3, 2020,
p. 5.

K. Goel, N. Michael, and W. Tabib, “Probabilistic point cloud model-
ing via self-organizing gaussian mixture models,” IEEE Robotics and
Automation Letters, vol. 8, no. 5, pp. 2526-2533, 2023.

K. Doherty, T. Shan, J. Wang, and B. Englot, “Learning-aided
3-d occupancy mapping with bayesian generalized kernel inference,”
IEEE Transactions on Robotics, pp. 1-14, 2019. [Online]. Available:
https://doi.org/10.1109/tr0.2019.2912487

P. Z. X. Li, S. Karaman, and V. Sze, “Memory-efficient gaussian fitting
for depth images in real time,” in 2022 International Conference on
Robotics and Automation (ICRA). 1EEE, 2022, pp. 8003—-8009.

A. Elfes, “Sonar-based real-world mapping and navigation,” IEEE
Journal on Robotics and Automation, vol. 3, no. 3, pp. 249-265, 1987.
N. Funk, J. Tarrio, S. Papatheodorou, M. Popovié, P. F. Alcantarilla, and
S. Leutenegger, “Multi-resolution 3d mapping with explicit free space
representation for fast and accurate mobile robot motion planning,” IEEE
Robotics and Automation Letters, vol. 6, no. 2, pp. 3553-3560, 2021.
D. Duberg and P. Jensfelt, “UFOMap: An efficient probabilistic 3D
mapping framework that embraces the unknown,” IEEE Robotics and
Automation Letters, vol. 5, no. 4, pp. 6411-6418, 2020.

S. T. O’Callaghan and F. T. Ramos, “Gaussian process occupancy maps,”
The International Journal of Robotics Research, vol. 31, no. 1, pp. 42—
62, 2012.

J. Wang and B. Englot, “Fast, accurate gaussian process occupancy
maps via test-data octrees and nested bayesian fusion,” in 2016 IEEE
International Conference on Robotics and Automation (ICRA), May
2016, pp. 1003-1010.

W. Zhi, L. Ott, R. Senanayake, and F. Ramos, “Continuous occupancy
map fusion with fast bayesian hilbert maps,” in 2019 International
Conference on Robotics and Automation (ICRA). IEEE, 2019, pp.
4111-4117.

Y. Gao and W. Dong, “An integrated hierarchical approach for real-time
mapping with gaussian mixture model,” IEEE Robotics and Automation
Letters, 2023.

F. Ramos and L. Ott, “Hilbert maps: Scalable continuous occupancy
mapping with stochastic gradient descent,” The International Journal of
Robotics Research, vol. 35, no. 14, pp. 1717-1730, 2016.

H. G. Sung, Gaussian mixture regression and classification.
University, 2004.

A. Guttman, “R-trees: A dynamic index structure for spatial searching,”
in Proceedings of the 1984 ACM SIGMOD international conference on
Management of data, 1984, pp. 47-57.

D. W. Scott and W. E. Szewczyk, “From kernels to mixtures,” Techno-
metrics, vol. 43, no. 3, pp. 323-335, 2001.

M. Kristan and A. Leonardis, “Multivariate online kernel density esti-
mation,” in Computer Vision Winter Workshop, 2010, pp. 77-86.

J. Sturm, N. Engelhard, F. Endres, W. Burgard, and D. Cremers, “A
benchmark for the evaluation of rgb-d slam systems,” in Proc. of the
International Conference on Intelligent Robot Systems (IROS), Oct.
2012.

W. Wang, D. Zhu, X. Wang, Y. Hu, Y. Qiu, C. Wang, Y. Hu, A. Kapoor,
and S. Scherer, “Tartanair: A dataset to push the limits of visual slam,”
in 2020 IEEE/RSJ International Conference on Intelligent Robots and
Systems (IROS). 1EEE, 2020, pp. 4909-4916.

“Jetson Download Center,” NVIDIA Developer, available: https://
developer.nvidia.com/jetson-tx2-nx-system-module-data- sheet.

Q.-Y. Zhou, J. Park, and V. Koltun, “Open3D: A modern library for 3D
data processing,” arXiv:1801.09847, 2018.

Rice

[38] T. Fawcett, “An introduction to roc analysis,” Pattern recognition letters,
vol. 27, no. 8, pp. 861-874, 2006.

VII. BIOGRAPHY

Peter Zhi Xuan Li (Student Member, IEEE) re-
ceived the B.A.Sc. in Engineering Science from the
University of Toronto, Canada, in 2018. Between
2016 and 2017, he worked in the High-Speed Con-
verters Group at Analog Devices, Toronto, as an
integrated circuit engineer. His research focuses on
the co-design of memory-efficient algorithms and
specialized hardware for localization, mapping, and
path-planning on energy-constrained devices such as
AR/VR headsets, smartphones, and micro-robots.

Sertac Karaman (Member, IEEE) received the B.S.
degrees in mechanical engineering and computer
engineering from the Istanbul Technical Univer-
sity, Istanbul, Turkey, in 2007, the S.M. degree in
mechanical engineering and the Ph.D. degree in
electrical engineering and computer science from
the Massachusetts Institute of Technology (MIT),
Cambridge, MA, USA, in 2009 and 2012, respec-
tively. He is currently a Professor of Aeronautics and
Astronautics at MIT. His research interests include
the broad areas of robotics and control theory. In
particular, he is focusing on the applications of probability theory, stochastic
processes, stochastic geometry, formal methods, and optimization for the
design and analysis of high-performance cyber-physical systems. The appli-
cation areas of his research include driverless cars, unmanned aerial vehicles,
distributed aerial surveillance systems, air traffic control, certification and
verification of control systems software, and many others.

Dr. Karaman was the recipient of the IEEE Robotics and Automation
Society Early Career Award, in 2017, the Office of Naval Research Young
Investigator Award, in 2017, the Army Research Office Young Investigator
Award, in 2015, the National Science Foundation Faculty Career Development
(CAREER) Award, in 2014, the ATAA Wright Brothers Graduate Award, in
2012, and the NVIDIA Fellowship, in 2011.

Vivienne Sze (Senior Member, IEEE) received the
B.A.Sc. (Hons) degree in electrical engineering from
the University of Toronto, Toronto, ON, Canada,
in 2004, and the S.M. and Ph.D. degree in elec-
trical engineering from the Massachusetts Institute
of Technology (MIT), Cambridge, MA, in 2006
and 2010 respectively. In 2011, she received the
Jin-Au Kong Outstanding Doctoral Thesis Prize in
Electrical Engineering at MIT.

She is an Associate Professor at MIT in the
Electrical Engineering and Computer Science De-
partment. Her research interests include computing systems that enable
energy-efficient machine learning, computer vision, and video compres-
sion/processing for various applications, including autonomous navigation,
digital health, and the Internet of Things. Prior to joining MIT, she was
a Member of the Technical Staff in the Systems and Applications R&D
Center at Texas Instruments (TI), Dallas, TX, where she designed low-power
algorithms and architectures for video coding. She also represented TI in the
Joint Collaborative Team on Video Coding (JCT-VC).

Dr. Sze was a recipient of the Air Force Young Investigator Research Pro-
gram Award, the DARPA Young Faculty Award, the Edgerton Faculty Award,
several faculty awards from Google, Facebook, and Qualcomm, the 2021
University of Toronto Engineering Mid-Career Achievement Award, and the
2020 ACM-W Rising Star Award, and a co-recipient of the 2018 Symposium
on VLSI Circuits Best Student Paper Award, the 2017 CICC Outstanding
Invited Paper Award, and the 2016 IEEE Micro Top Picks Award. She was a
member of the JCT-VC team that received the Primetime Engineering Emmy
Award for the development of the HEVC video compression standard.


https://doi.org/10.1109/tro.2019.2912487
https://developer.nvidia.com/jetson-tx2-nx-system-module-data-sheet
https://developer.nvidia.com/jetson-tx2-nx-system-module-data-sheet

	Introduction
	Related Work
	Occupancy Representation & Estimation
	Memory-Efficient Map Construction
	Efficiently Updating Gaussian Parameters
	Per-Image GMM Construction
	Globally-Consistent GMM Fusion

	Experimental Results & Analysis
	Selection of Hyperparameters
	GMMap
	Existing Frameworks

	Accuracy of Occupancy Estimation
	Occupied & Free Regions
	Obstacle Surfaces (at Free-to-Occupied Regions)
	Frontiers (at Free-to-Unexplored Regions)

	Construction & Query Throughput
	Map Construction
	Occupancy Query

	Memory Footprint
	Map Size
	Memory Overhead
	DRAM Access

	Energy Consumption

	Conclusion
	References
	Biography
	Biographies
	Peter Zhi Xuan Li
	Sertac Karaman
	Vivienne Sze


