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Abstract: Although the literature provides valuable insight into tornado vulnerability and resilience,
there are still research gaps in assessing tornadoes” impact on communities and transportation
infrastructure, especially in the wake of the rapidly changing frequency and strength of tornadoes
due to climate change. In this study, we first investigated the relationship between tornado exposure
and demographic-, socioeconomic-, and transportation-related factors in our study area, the state of
Kentucky. Tornado exposures for each U.S. census block group (CBG) were calculated by utilizing
spatial analysis methods such as kernel density estimation and zonal statistics. Tornadoes between
1950 and 2022 were utilized to calculate tornado density values as a surrogate variable for tornado
exposure. Since tornado density varies over space, a multiscale geographically weighted regression
model was employed to consider spatial heterogeneity over the study region rather than using
global regression such as ordinary least squares (OLS). The findings indicated that tornado density
varied over the study area. The southwest portion of Kentucky and Jefferson County, which has low
residential density, showed high levels of tornado exposure. In addition, relationships between the
selected factors and tornado exposure also changed over space. For example, transportation costs
as a percentage of income for the regional typical household was found to be strongly associated
with tornado exposure in southwest Kentucky, whereas areas close to Jefferson County indicated
an opposite association. The second part of this study involves the quantification of the tornado
impact on roadways by using two different methods, and results were mapped. Although in both
methods the same regions were found to be impacted, the second method highlighted the central
CBGs rather than the peripheries. Information gathered by such an investigation can assist authorities
in identifying vulnerable regions from both transportation network and community perspectives.
From tornado debris handling to community preparedness, this type of work has the potential to
inform sustainability-focused plans and policies in the state of Kentucky.

Keywords: tornado impact assessment; GWR; MGWR; vulnerability; tornado exposure; resilience;
spatial heterogeneities; roadway infrastructure

1. Introduction

Over the last century, many tornadoes have hit the continental U.S., causing significant
economic losses. For example, between 1949 and 2006, 793 tornadoes caused more than
USD 1 million in losses for each tornado [1]. In addition to the monetary damage, the
catastrophes were also to blame for 71 fatalities annually between 1993 and 2022 [2]. While
being subjected to a tornado can result in death, injuries, and property damage, it can
also have a lasting impact on the psychological well-being of the public [3]. Making this
problem even more challenging, tornado risk is expected to increase due to higher exposure
and climate-change-driven factors [4]. When all these issues are considered, it is essential
to develop methodologies that can help mitigate the impact of these disasters and alleviate
associated problems.
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Like any disaster, it is critical to investigate tornado victims’ experiences to understand
individual risk perception, preparedness, response, protective action, and recovery tech-
niques. Wang et al. [5] conducted qualitative analyses related to the community resilience
of the EF3 Jacksonville tornado survivors. The oral history approach was used to analyze
the experience of 25 residents who experienced this EF3 tornado in Jacksonville, AL on 19
March 2018. Analyzed data gave insight into different recovery paths and challenges. It
has also been discovered that persistent trauma and recovery issues were common in rural
areas due to extensive damage and housing shortages. Similarly, Falcon et al. inspected
systemic vulnerabilities created by informal warning systems for U.S. Hispanic and Latinx
immigrants during the 2021 quad-state tornado outbreak by conducting semi-structured
interviews [6]. Twenty-five participants who contributed to the research with the most
valuable information were chosen by critical sampling strategy. The interviews revealed
that language barriers and complex English jargon hindered critical information access.
Another study by Senkbeil et al. aimed to find out the effect of ethnic and racial differences
in tornado hazard perception, preparedness, and shelter lead time for the 27 April 2011 EF4
Tuscaloosa, AL tornado [7]. In a hybrid survey and interview conducted in the following
two weeks, it was found that there were significant differences between hazard perception,
preparedness, and shelter lead time among three ethnic and racial groups.

In the literature, several factors have been found to cause some demographic groups
of people to be more vulnerable [8]. One of those groups is mobile homeowners. Strader
and Ashley [9] assessed the tornado impact probability of that susceptible population. They
performed a comparative analysis between Alabama and Kansas to highlight tornado risk,
exposure, and vulnerability of mobile home residents. The Monte Carlo simulation tool
was employed to simulate physical exposure of mobile home vulnerability using historical
tornado paths and land parcel-level mobile home (MH) data across Alabama and Kansas,
and a socioeconomic and demographic vulnerability index was created (SEDVI). They
suggested that tornado impact potential on mobile homes was 4.5 times (350%) greater
in Alabama than in Kansas, attributed to the greater sprawling mobile-home distribution
and higher mobile home numbers in Alabama. In addition, Strader et al. [10] investigated
evacuation vulnerability of mobile home residents and emergency medical service access
during tornado events for the state of Alabama by employing geospatial network analysis
techniques. Using these techniques, they tried to understand possible reasons for prob-
lematic sheltering rates of mobile homeowners by comparing the accessibility of mobile
and permanent homes to potential sheltering locations. Furthermore, an assessment of
emergency medical service response times for both mobile and permanent homes was
conducted using a network analysis methodology. While doing network analysis, it was
assumed that people traveled at posted speed limits and that the roadway network was free
of any obstacles (downed electric lines and trees, road closures, accidents, etc.). The results
indicate that the distances and travel times from mobile homes to shelters are significantly
greater than those from permanent homes to shelters. This observation is linked to the
predominant rural locations of mobile homes, particularly notable in Southern Alabama.

To decrease disaster-induced vulnerability, the first step is to quantify community
resilience. Like tornadoes, hurricanes also cause disruptions like power outages and debris
formation. Therefore, the literature regarding hurricanes can also provide insights into
quantifying the disruption caused by tornadoes. For example, Ulak et al. investigated
Hurricane Hermine-induced power outages in the community and infrastructure of Talla-
hassee, FL through spatial and statistical analyses [11]. The spatial analysis was employed
to detect highly impacted regions based on the “percentage of the affected customers’
criteria, while the Bayesian spatial autoregressive model was utilized to associate those
customers with their demographics, socioeconomic status, access to transportation infras-
tructure, and hurricane-related features. Karaer et al. proposed a data fusion framework
to identify critical factors in debris formation to detect post-hurricane vegetative debris
in Tallahassee, FL after Hurricane Michael [12]. The paper achieved this by combining
spectral and vector datasets from four major domains: vegetation, storm surge, land use,
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and socioeconomics. It was found that Hurricane Michael caused a larger volume of debris
in the study area block groups where there was a higher proportion of elderly people
and/or higher-income households.

In addition to measuring disruption after disasters, evaluating variables related to
tornado exposure can help the authorities to pinpoint problematic locations related to
tornadoes. In their study, Dixon and Moore used tornado incidences between 1950 and
2008 and several sociodemographic variables of Texas counties to rate county-level tornado
vulnerability and assess the spatial distribution of tornadoes [13]. They used Pielke and
Pielke’s (1997) technique, where the susceptibility of an area to a specific hazard is influ-
enced by societal exposure to the area and the incidence of that hazard [14]. Three different
assessment methods were used to map the vulnerability. Even though spatial distribution
varied diversely based on the method used, some counties were classified as highly vul-
nerable in all three methods. Differing from the technique proposed by Pielke and Pielke,
Leon-Cruz and Castillo-Aja conceptualized tornado risk in an area as a composite of hazard,
vulnerability, and exposure [15]. In their investigation, they examined tornado hazard,
vulnerability, and exposure at the municipality level in Mexico, employing a GIS-based
approach. For tornado hazard assessment, they integrated historical tornado reports with
potentially severe convective environments. Tornado vulnerability was addressed by the
construction of socioeconomic indicators and multivariate statistics employed to reduce
the potential number of variables. The resulting values were weighted based on their ex-
planatory power to create a vulnerability index. Tornado exposure was measured using the
population density of municipalities. Subsequently, the tornado risk index was computed
by multiplying the vulnerability, hazard, and exposure indices. The spatial distribution of
these risk components and the tornado risk index was presented separately, classified from
very low to very high using the natural classification method. Finally, the study showcased
the percentage of municipalities categorized by state, with varying computed risk levels
ranging from very low to very high.

Vulnerable locations can also be determined by spatial analysis methods. Blinn (2012)
estimated the density of tornado days in the commonwealth of Kentucky for tornadoes
between 1950 and 2010 [16]. Tornado incidence data within the state of Kentucky were in-
cluded in the spatial analysis. Using kernel density estimation, tornado impact density was
calculated for the state of Kentucky. Afterwards, tornado risk zones for the study area were
categorized into three classes using —1 and 1 standard deviation as break values, and the
exposure zones were then mapped. It was found that southwest Kentucky was more vulner-
able to tornadoes in terms of tornado days, while the southeast portion experienced fewer
tornadoes than average. Hwang and Meier [17] examined past tornadoes that occurred in
the US in the period 1950-2015. The tornado database from the Storm Prediction Center
(SPC) was used to carry out raster-based spatial analysis. In the analysis, techniques like
point density map analysis and map algebra were utilized to detect areas with a high risk
of tornadoes. It was found that regions affected by tornadoes varied over time, stretching
from the traditional “Tornado Alley’ to the other eastern states, including Kentucky.

While detecting vulnerable locations due to tornadoes, population bias should be
taken into consideration as it can affect the reporting of tornadoes. As discussed by Schaefer
and Galway [18], due to the population bias in the western plains from Oklahoma to the
Dakotas, when a tornado impacts an urban location, it is more likely to have a higher
rating than those in a rural area. In addition to lower F-scale ratings, the density of tornado
reports is also affected by population bias. A study that tried to estimate tornado reporting
rates and expected tornado counts over central United States between 1975 and 2016 [19]
found that the frequency of tornado reporting showed a noticeable decline as one moved
farther from densely populated areas. To illustrate, over 90% of tornadoes were reported
to have occurred within 5 km of a city with a population exceeding 100,000. On the other
hand, this reporting rate diminished to less than 70% at farther distances ranging from 20
to 25 km. Similarly, Elsner [20] found that, starting in 1950, tornado reports in cities within
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the 5.5° latitude x 5.5° longitude region centered on Russell, Kansas, with a minimum
population of 1000, consistently exceeded their rural counterparts by an average of 70%.

As Blinn [16] depicted, some regions may be particularly vulnerable to tornadoes.
In addition to that, social vulnerability also changes spatially. To consider these multiple
spatial variations, spatial statistics techniques like geographically weighted regression
(GWR) can be employed. In a study by Wang et al. (2017), GWR was employed to
investigate the spatially explicit relationship between inundation frequency and spatial
explanatory variables [21]. They indicated that the GWR model was useful for investigating
spatially varied causes of floods. Similarly, Chun et al. [22] used GWR to measure the
heterogeneity of local indicators of flooding risk for flood-prone areas in the city of Seoul.
This study employed GWR to develop an assessment model for social resilience. Similar to
the previous study, the local GWR model showed better results than the global ordinary
least squares (OLS) model. This can be attributed to GWR's ability to consider spatial
heterogeneities. On the other hand, global models like OLS assume that the observations
are independent and identically distributed and neglect spatial autocorrelation and non-
stationarity [23].

As described above, GWR can be more successful than a global model in explaining
spatial relations. However, it has some limitations, such as assuming each explanatory
variable to have the same spatial variability. To relax this assumption, multiscale geograph-
ically weighted regression (MGWR) can be employed instead of GWR. MGWR yields more
accurate results as each variable is evaluated by different levels of spatial heterogeneity. In
addition, changing spatial scales of each variable provides valuable information to better
understand a given spatial phenomenon [24].

Although the literature provides valuable insights into community vulnerability and
resilience against tornadoes, there is still a gap in providing risk assessment using advanced
GIS models. As such, this paper provides a meaningful contribution to the research
literature by introducing several key innovations in the realm of GIS-based tornado risk
assessment. Firstly, a finer spatial unit is employed compared with the other studies [13,15],
offering higher spatial resolution to understand the relation of selected variables with
the tornado impact. Secondly, this research particularly focuses on the vulnerability of
the region by focusing on each of these variables contrary to existing work [13,15] that
created composite indices while quantifying the vulnerability using various variables. As
a result, any associated impact and exposure can be analyzed in a more comprehensive
manner. Thirdly, employing multiscale GWR combined with this multi-variable focus
enables us to provide a sensitivity analysis between selected variables and tornado impact,
which provides a better understanding of the impact over the study region. During this
analysis, spatial heterogeneities and spatial nonstationary are also considered. Finally,
there is a notable gap in the existing literature regarding quantifying roadway disruption
that can be caused by tornado debris. Although several studies have a particular focus on
transportation vulnerability, they are mostly based on critical infrastructure, and roadway
closures during disasters are not considered [25-27]. In this paper, a scoring method
is utilized to quantify tornado impact on roadways to detect vulnerable census block
groups with regards to roadway accessibility. From tornado debris handling to community
preparedness, this type of work has the potential to inform sustainability-focused plans
and policies in the state of Kentucky. Furthermore, this scoring method can be integrated
into research that is intended to estimate travel times more accurately in the aftermath
of tornadoes.

2. Study Area and Data Collection

The state of Kentucky was chosen as the study area for several reasons. First, there
are limited studies in the literature that focus on the impact of tornadoes in Kentucky (see
Figure 1 to see the state and its counties). Second, the literature suggests that there has been
an upward trend in tornado occurrences in some states, including Kentucky [28]. Therefore,
this region should be investigated more, with a focus on tornado-induced damage. Finally,
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Table 1. Variables and their explanations.

Kentucky has been found to have the seventh-worst economy out of the 50 states with a
poverty rate of 14.9% [29]. Out of 120 counties, 54 of them in eastern Kentucky are located
within the largest economically distressed region, with most classified as economically
distressed [30].
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In this paper, vector-based tornado incidence data, as well as socioeconomic, demo-
graphic, and transportation-related data, were collected from several sources. ArcGIS Pro
v3.0 was utilized to process these datasets. These datasets (i.e., American Community
Surveys, Smart Location Database, and Center for Neighborhood Technology’s Housing
and Transportation Affordability Index) are shown in Table 1, including variable names
with explanations for all the variables. They will be explained in the next subsections.

TIGER and American Community Surveys (ACS) Dataset

Variable Explanation

Occupied Housing Unit Number of housing units that are occupied

Vacant Housing Unit Number of housing units that are vacant

No vehicle household Number of households that have no access to any vehicle
Median household income Median household income in the past 12 months (2019)
Nonwhite pop Nonwhite population in given CBG

White pop White population in given CBG

Under 5 Population of people who are under the age of five
Under 18 Population of people who are under the age of eighteen
Pop 65+ Population of people who are 65 and over

Total pop

Total population in given CBG
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Table 1. Cont.

Smart Location Database (SLD)

Variable Explanation

SLC Score Smart location score

P_WrkAge Percent of population that is working aged 18 to 64

D2a_JpHH Jobs per household

D3a Total road network density

R_PCTLOWWA(2017) Percent of low-wage workers in CBG

Ac_total Total geometric area (acres) of the CBG

Housing and Transportation Affordability (H + T) Index

Variable Explanation

ht_ami Housing + transportation costs % income for the regional typical household
t_ami Transportation costs % income for the regional typical household
autos_per_hh_ami Autos per household for the regional typical household

vmt_per_hh_ami Annual vehicle miles traveled per household for the regional typical household
compact_ndx Compact neighborhood score (0-10)

res_density Residential density (households per residential acre)

intersection_density Intersection density in square miles

2.1. TIGER and ACS Dataset

The state border GIS database for each census block group in Kentucky was created
using the U.S. cartographic border file from the Topologically Integrated Geographic En-
coding and Referencing (TIGER) geographic database created by the U.S. Census Bureau.
In addition, the American Community Surveys (ACS) 2019 dataset was used to obtain
demographic and socioeconomic data. Variables of ACS are typical socioeconomic and
demographic indicators that can be used to assess the vulnerability of the region. Therefore,
similar variables have been used in other studies such as total population [31,32], popula-
tion density [32,33], white population [32], median household income [32,34], vulnerable
age groups (e.g., under 18 and over 65) [32,35], and number of housing units [32].

2.2. Smart Location Calculator Dataset

The Smart Location Database is a freely accessible data service that was produced by
the Environmental Protection Agency under the Smart Growth Program [36]. The dataset
has been used to utilize socioeconomic and transportation-related data for each census
block group in Kentucky.

2.3. H+ T Index

The Center for Neighborhood Technology’s Housing and Transportation Affordability
(H + T) Index was used to gather additional information based on transportation characteris-
tics, transport affordability, and housing. It is a novel tool that calculates the transportation
costs connected with a household location [37].

2.4. Tornado Incident Dataset

The Storm Prediction Center (SPC) tornado incident dataset between the years 1950
and 2022 was used in this study. The dataset contains line-approximated tornado paths,
casualty/fatality figures, and times of tornadoes. In this research, tornadoes that occurred
between 1950 and 2022 in Kentucky were selected. In addition, similar to Blinn [16], to
prevent the edge effect near boundary regions, tornadoes that occurred within a 25-mile
buffer of Kentucky were also added to this study.
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3. Methodology

This study investigates the relationships between tornado exposure, and several
selected demographics, socioeconomics, and transportation-related indicators. Tornadoes
between 1950 and 2022 were utilized to calculate tornado density, which has been used as a
surrogate variable for tornado exposure. In addition, to quantify the impact of tornados on
the roadway infrastructure, a scoring method was used. The following section describes

the steps of the proposed methodology, as shown in Figure 2.

Demographics &

Population
e Occupied Housing
: - Unit
ACS Vacant Housing
uUnit
o Under 5 Pop.
Under 18 Pop.
Over 65 Pop.
Total Pop. No Variable is removed
- ——Median HH Income
SLD -+ No Vehicle HH R
Non-white Pop. Selection
White Pop. Data. by b N
Jobs Per HH Adgregation Variance < VIF<10 >
P Wikage BaéeBdGO"' Influence P
— R_PCTLOWWA sty T ,
H+T s (VIF) Yes—— Independent Variable (X)
] Transportation &
Index Land Use HT_AMI
mm— Vacant Housing Unit
SLC Score
% Under 5 Pop.
Total Road Network FURETEED
Density : ol op
( ) |Total Area of the % Over 65 Pop.
Census CBG T_AMI
Block - ht_ami Median HH Income
Gropus {t_ami No Vehicle HH
——— - autos_per_hh_ami Residential Density
vmt_per_hh_ami Intersection Density
compact_ndx Jobs Per HH
Residentiial Density P_WrkAge
Intersection Density R_PCTLOWWA
SLC Score
Total Area of the CBG
) || MGWR
i ) ‘ Kernel
Tornado D_ensn_y Density Estimation (Pixel) ana}l Pixel to CBG Dependent VETTETHE m
Kk Estimation Statistics
‘TVaC S | (KDE) Mean Tornado Exposure

Figure 2. Steps of the proposed methodology.

(Risk)

3.1. Density Estimation

To calculate the spatial densities of tornado incidences, kernel density estimation
(KDE) was utilized. Kernel density estimation is a technique that calculates the density
of features using a distance decaying function, calculated by the following function in
Equation (1):

1 n 3 [ dist;
Density = (h)zig1 n* (1 ( k ) ) if dist; <h (1)

0 otherwise

In this equation, i denotes bandwidth and dist; denotes the distance between the center
of a given cell and the tornado event. In terms of concept, a curved surface is applied to each
tornado line, which exhibits its maximum value directly on the line and gradually decreases
as one moves away, ultimately reaching zero at the designated bandwidth distance from
the line.
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KDE has been widely employed to analyze tornado exposure and likelihood in previ-
ous works [16,38-40]. The analysis can be applied to our case of tornadoes since it implies
that geographic trends have magnitudes at each point in the study area instead of just the
places directly affected. Also, the kernel density radius was selected as 25 miles, similar to
other studies focusing on disasters [16,38]. After mapping the tornado densities of the study
area, the zonal statistics tool in ArcGIS was employed to quantify tornado occurrences
of each U.S. census block group (CBG). This quantification was performed by taking the
averages of the output cell size values in the boundary of the given census block group.
This procedure was carried out for each CBG in the study area.

In addition to calculating tornado densities for each CBG, the impact of tornadoes on
roadways was quantified. When determining this roadway impact, the second and third
methods from Dixon et al. [13] were adapted to detect vulnerable CBGs in terms of the
roadway impact of tornadoes. It should be noted that Dixon et al. used these methods to
evaluate the vulnerability of the population, and their unit of analysis was country. We, on
the other hand, aimed to detect the vulnerability of the roadway infrastructure for every
CBG. What we conducted can be regarded as adapting the previous scoring methods into a
roadway vulnerability assessment at a smaller spatial level, which is an improvement over
Dixon et al.’s work [13].

To assess vulnerable CBGs in terms of roadway impact, a combination of occurrence
and exposure values was utilized. Tornado density values, representing occurrences,
were calculated for each CBG. Both occurrence and exposure values for each CBG were
normalized. To measure exposure, network densities of CBGs were employed as surrogates,
reflecting the vulnerability of roadways where a higher network density implies a higher
likelihood of significant roadway disruption during tornado events. Two scoring methods
were used. In the first scoring method, cumulative scores of occurrences and exposures
were mapped to detect vulnerable regions. As both the exposure and tornado occurrence
score ranges between 0 and 1, the maximum score of the roadway impact cannot be
more than 2. As this method is based on the addition of occurrence and exposure values,
highlighted counties may still have low overall scores compared with one variable score.
For example, a county with a low exposure score may still be highlighted if it has a high
occurrence score. To be able to highlight those counties that have both high exposure and
occurrence values, the second method was applied. In this method, the final score was
found by multiplying exposure and occurrence scores.

3.2. Variable Selection

As discussed earlier, different data sources were used to obtain sociodemographic and
traffic-related variables for the region at the CBG level. After the creation of the datasets,
variables should be evaluated in terms of their correlation since multicollinearity.

When fitting and analyzing a GWR model, it is crucial to check these multicollinearity
effects in global models [41]. Therefore, as a first step to deal with multicollinearity, variable
selection was performed by using the ordinary least squares tool in ArcGIS. All the pre-
selected variables were used in the OLS model. As conducted by Chun et al., coefficients
with a variance inflation factor (VIF) value lower than 10 were considered as they did not
have significant multicollinearity problems [22]. Therefore, after running the model, the
variables that had VIF values greater than or equal to 10 were eliminated in the developed
regression models. Upon removing those variables, the OLS tool was used again to check
the new model in terms of multicollinearity. Obtained VIF values in that procedure can be
seen in Table 2. As a result of this selection, 15 variables were selected, where 13 of them
had VIF values less than 3.5, and the maximum value was 6.71.
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Table 2. Obtained VIF values.
Variable Name Explanation VIF_before VIF_after
Ac_total Total geometric area (acres) of the CBG 2.63 1.92
P_WrkAGE Percent of population that is working aged 18 to 64 years 2.73 2.62
R_PCTLOWWA Percent of low-wage workers in CBG 1.94 1.56
D2a_JpHH Jobs per household 1.11 1.04
D3a Total road network density 11.58 -
SLC Score SLC Score 271 2.23
occ_hou Number of occupied housing units 10.73 -
vacant_hou Number of vacant housing units 1.22 1.16
no_veh_hhs No vehicle household 1.98 1.61
median_household_income Median household income 3.32 231
total_pop Total population 11.1 -
ht_ami Housing+ transporf:;t}i)ci)(r;1 lccl)ls:f1 S"ﬁ }iglcé)me for the regional 516 471
t ami Transportation costs % income for the regional typical 8.72 6.71
household
autos_per_hh Autos per household 14.25 -
vmt_per_hh Annual vehicle miles traveled per household 18.71 -
compact_nd Compactness index 11.01 -
res_density Residential density 1.75 1.72
intersection_density Intersection density 6.75 242
P_65 Percentage of people who are older than 65 3.3 2.69
P_5 Percentage of people who are younger than 5 1.49 1.47
P_18 Percentage of people who are younger than 18 3.16 3.05
P_nwhite Percentage of nonwhite population >1000 -
P_white Percentage of white population >1000 -

3.3. Multiscale Geographically Weighted Regression (MGWR)

Geographically weighted regression (GWR) is a spatial regression technique proposed
by Brunsdon et al. [42] to deal with spatial heterogeneities where a single ‘global’ model
cannot explain the relationship between the set of variables. GWR achieves this goal
by calibrating a multiple regression model that enables different spatial points to have
different relationships. These various models are created by choosing sample points near
each observation point and regressing them. A weight matrix W, which is determined
based on the distance between elements, is used in the selection processes. Since tornado
occurrences and their impacts rely heavily on location-specific parameters, GWR is utilized
in this study. The following Equations (2) and (3) are a description of the developed
regression model:

Yi = ﬁo(l) + /31(1) * Xq; +ﬁ2(i) * Xoj + ... +‘Bn(i) * Xy + & 2)

B (i) = (XTW(i)X) XY 3)

where i signifies the location of the points in space (a CBG in our case) and W(i) is a matrix
of weights assigned to location i. Y is a vector of observations on the dependent variable,
while X is a matrix of independent variables. Finally, f is the vector of global parameters to
be predicted.
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Weighting matrix W is an n-by-n diagonal matrix in which each observation is
weighted based on the distance between two locations. This weighting between any
two locations, namely diagonal elements (w;;), is calculated using a weighting scheme
that includes a kernel function and a bandwidth parameter. In this study, we selected a
bi-square weighting function, as given in Equation (4) below:

2\ 2
— 0 ifd..
w; = <1 dl) ifdij<d 4)

0 otherwise

In this equation, bandwidth is d, while dij is the distance between location i and
j- In this weighting scheme, points that are more distant than the bandwidth are given
zero weight. When the distance between observations is smaller than the bandwidth,
this kernel gives more weight as the points become closer to each other. It should be
noted that bandwidth plays an important role in GWR coefficients; this is because, for
each observation point, it affects the selection of sample points and their weights on the
regression model. Therefore, increasing bandwidth leads to a more global model as the
selection pool for sample is larger. On the contrary, a smaller bandwidth results in more
abruptly changing coefficients over space since the estimates are based on a model that
only uses close observations as sample points [43].

The GWR model is an effective algorithm to explain locally changing relationships
over the study region, but it has some limitations. Firstly, the model assumes that each
variable has the same spatial variability; however, this assumption does not have to be true.
Thus, when GWR is applied to variables with multiple distinct spatial scales, one or more
scales may be wrongly specified, leading to biased parameter estimations [44]. Secondly,
GWR has a multicollinearity problem. As suggested by Wheeler et al., even though the
variables used to generate the data are uncorrelated, local regression coefficients may be
collinear [41]. Because of these limitations, multiscale geographically weighted regression
(MGWR) modeling was employed to assess the spatial variation of tornado incidences.
Multiscale geographically weighted regression is a specialized form of GWR modeling.
The main difference is that MGWR enables each explanatory variable to have a distinct
bandwidth so that independent variables can function at various spatial scales [45]. First,
data were standardized to compare the estimated bandwidth for each variable [24]. The
golden search was selected to determine optimal bandwidth size and a distance-based
neighborhood was chosen as the neighborhood selection method. This indicated that the
bandwidth size would be determined by distance rather than the number of neighborhoods.
To detect optimal bandwidth size and measure model fitness, corrected Akaike information
criterion (AICc) was used in the modeling [46].

4. Results and Discussions
4.1. Spatial Analysis Results

Tornado density distributions are shown in Figure 3, obtained by using five exposure
zones and natural breaks (i.e., Jenks). This type of clustering is applicable for events with
non-uniform distributions like tornadoes. Figure 3 shows tornado exposure between 1950
and 2022 for Kentucky. As seen in Figure 4, the findings of our study (Figure 3) show some
similarities with respect to the risk zone classes of tornado day occurrences between 1950
and 2010, as depicted by Blinn in his study [16]. Similar to the study by Blinn [16], the west
and southwest regions of Kentucky, namely Graves, McCracken, Marshall, Calloway, and
Christian counties, experienced high tornado activity. In addition, it should be noted that in
the northern parts of Jefferson County and all parts of Warren County, respectively, several
highly populated counties, including the city of Louisville, had relatively high tornado
exposure over the study period. On the other hand, tornado density was the lowest in the
eastern parts of Kentucky (which are relatively less populated than other areas).
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Figure 3. Kentucky tornado exposure map between 1950 and 2022.
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Figure 4. Risk zone classes of tornado day occurrences within Kentucky between 1950 and 2010
(Blinn, 2012) [16].

Similarly, the roadway impact of tornadoes is visualized in Figures 5 and 6. In
Figure 5, the cumulative scoring approach was utilized, with the maximum score being
2. As Figure 5 indicates, roadway vulnerability due to tornadoes was highly observed in
Jefferson County, the south of Graves County, and the central areas of Christian County
and Warren County. Also, high scores were observed in the neighboring counties to those
three counties. Focusing on the entire state, tornado vulnerability of roadways decreased
from west to east, except Jefferson County, where Louisville is located.
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Figure 6. Kentucky roadway tornado exposure map using the second method.

Figure 6, on the other hand, depicts vulnerable regions where both exposure and
occurrences had high values. This was performed by multiplying normalized variables
with a max score of 1. Figure 6 shows that CBGs in Jefferson County had the highest
roadway vulnerability. In other comparatively highly populated counties like Kenton,
Boone, and Warren, there was a relatively high roadway impact, even though there was
comparatively less tornado impact in Kenton and Boone counties. On the other hand, in
the southwest portion of the state, in counties like Graves, McCracken, Marshall, Calloway,
and Christian, high roadway impact was observed more in central areas. This association

can be explained by increased roadway network density in central connector areas.
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4.2. Statistical Analysis Results
4.2.1. MGWR Model and Its Performance

Summary statistics of the selected coefficients in the final regression model are shown
in Table 3A, while model diagnostics and comparison are depicted in Table 3B. As seen
in Table 3B, the MGWR model gives more accurate results with respect to a comparison
performed based on the following statistics: r-squared, adjusted r-squared, and AICc. This
is an expected result due to the multiscale nature of MGWR and it is natural to expect each
explanatory variable to have a distinct spatial scale. Based on this capability, better results
are obtained by MGWR than the GWR model, where residuals have a normal distribution
indicating a good fit of the model.

Table 3. (A) Summary statistics for coefficient estimates and (B) model diagnostic.

Explanatory . Standard . .
Variables Explanation Mean Deviation Min Median Max
Intercept - —0.062 0.779 —1.565 —0.111 1.992
Ac_total Total geometrie srea (acres) of the 415 0.071 —0228 0016 0.250
Percent of population that is
P_WrkAge working aged 18 to 64 years 0.007 0.034 —0.246 0.012 0.181
R_PCTLOWWA Percent of lowc'gége workers in 0.018 0.047 —0.284 0.021 0.160
D2a_JpHH Jobs per household 0.001 0.002 —0.001 0.001 0.028
SLC Score SLC score 0.035 0.077 —0.236 0.034 0.211
vacant_hou Number of vacant housing units —0.014 0.041 —0.227 —0.005 0.089
no_veh_hhs No vehicle household —0.010 0.019 —0.023 —0.018 0.071
median_household._ Median household income 0.067 0.109 ~0.133 0.036 0.319
A income
Housing+ transportation costs %
ht_ami income for the regional typical 0.049 0.098 —0.278 0.070 0.372
household
. Transportation costs % income for
t_ami the regional typical household —0.188 0.333 —0.920 —0.131 0.474
res_density Residential density 0.002 0.116 —0.443 0.008 0.445
intersection_density Intersection density 0.005 0.063 —0.363 —0.020 0.380
P_65 Percentage of people who are 0.009 0.029 —0.087 0.011 0.115
older than 65
P5 Percentage of people who are —0.004 0.025 —0141  —0.003 0.152
younger than 5
P_18 Percentage of people who are —0.007 0.004 0029  —0006  —0.003
younger than 18
Statistic GWR MGWR
R-Squared 0.926 0.936
Adjusted
R-Squared 0.911 0.929
B AlCc 1668.870 927.527
Sigma-Squared 0.089 0.071
Sigma-Squared MLE 0.074 0.064
Effective Degrees of 2637.060 2855.330
Freedom

Table 4 provides a summary of chosen bandwidths and their significance for each
explanatory variable. In the bandwidth column, the selected bandwidths in miles are
given. In the parenthesis of that column, the scale of the selected bandwidth is shown



Sustainability 2024, 16, 1180

14 of 27

by percentage in terms of geographical context. In that section, values close to 0 describe
a perfectly local variable, while values near 100 show that the given variable is almost
a global one. For example, in this study, the D2a_JpHH (jobs per household) variable
has the highest bandwidth by 285.97 miles. Similarly, the no_veh_hhs (households that
have zero vehicles) and P_18 (percentage of people who are younger than 18) variables
have bandwidths of 141.50 miles and 213.73 miles, respectively. This indicates that those
variables are more global and there is less spatial heterogeneity for them in the study area.
It should also be noted that the rest of the variables are more local and have bandwidths
of 38.41 miles. In the significance column, the number of CBGs is given so that those
variables are significant, with their percentage given in parenthesis. The D2a_JpHH (jobs
per household) variable has no significance all around the county, indicated by the highest
bandwidth. t_ami (transportation costs % income for the regional typical household),
ht_ami (housing + transportation costs % income for the regional typical household), me-
dian_household_income (median household income), no_veh_hhs (no vehicle households),

and SLC_score are noticeable variables in terms of significance in the study area.

Table 4. Summary of MGWR explanatory variables, neighborhoods, and bandwidth.

. N Effective Adjusted Adjusted Critical
Explanatory . Bandwidth Significance
. Explanation o o Number of Value of Value of Pseudo-t
Variables (% of Extent) (% of Features) e
Parameters Alpha Statistics
Intercept - 38.41 (8.75) 2446 (77.80) 19.42 0.0026 3.0172
Total geometric area

Ac_total (acres) of the CBG 38.41 (8.75) 357 (11.35) 23.93 0.0021 3.0801

Percent of population that
P_WrkAge is working aged 18 to 38.41 (8.75) 59 (1.88) 25.41 0.0020 3.0979

64 years
R_PCTLOWWA Percent of low-wage 38.41(8.75) 309 (9.83) 242 0.0021 3.0833
workers in CBG
D2a_JpHH Jobs per household 285.97 (65.15) 0 (0.00) 1.02 0.0490 1.9698
SLC Score SLC score 38.41 (8.75) 818 (26.02) 21.47 0.0023 3.0475
vacant_hou N‘;mbe.r of vacant 38.41 (8.75) 319 (10.15) 24.03 0.0021 3.0813
ousing units
no_veh_hhs No vehicle household 141.50 (32.23) 797 (25.35) 2.58 0.0194 2.3392
median_household_ Median household 38.41 (8.75) 1030 (32.76) 22.03 0.0023 3.0553
income income

Housing + transportation

ht_ami costs % income for the 38.41 (8.75) 1062 (33.78) 21.10 0.0024 3.0423
regional typical
household
Transportation costs %
t_ami income for the regional 38.41 (8.75) 2025 (64.41) 16.58 0.0030 2.9688
typical household

res_density Residential density 38.41 (8.75) 289 (9.19) 15.3 0.0033 2.9439
intersection_density Intersection density 38.41 (8.75) 110 (3.50) 18.44 0.0027 3.0013

Percentage of people who
P_65 are older than 65 38.41 (8.75) 2 (0.06) 25.19 0.0020 3.0954
P_5 Percentage of people who 54 /1 (g 75, 32 (1.02) 26.52 0.0019 3.1106

are younger than 5

P_18 Percentage of people who 513 73 (45 69 1(0.03) 1.43 0.0351 2.1086

are younger than 18

While determining whether a variable is significant for a location, the following logic
is used: if the variable’s absolute pseudo-t statistic is higher than a determined value, it is
considered significant. In contrast to regular t statistics, where a typical « = 0.05 value is
generally equivalent to a 95% confidence interval, an alternative method is utilized in this
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study by considering the effect of the GWR model [44]. Based on Table 4, a new value is
obtained by dividing the alpha by the effective number of parameters (ENP), where this
parameter is calculated by tracing the MGWR hat matrix [47].

As mentioned before, using MGWR decreases multicollinearity. To show that dif-
ference, condition numbers with GWR and MGWR can be seen in Figure 7, respectively.
The condition number is a good indicator of multicollinearity, and it is suggested that
explanatory variables are highly correlated when it is greater than 30 [48]. According to
this indication, a great proportion of the observation points are highly correlated with each
other, as shown in Figure 7. On the other hand, when MGWR is utilized, there are only two
observations where the condition number is greater than 30.
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Figure 7. Comparison of condition numbers: (a) GWR and (b) MGWR.
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4.2.2. Spatial Distribution of Each Variable

The spatial distribution of each significant variable is portrayed in Figure 8. These vari-
ables can be utilized as local variables for statistically significant regions while assessing tor-
nado exposure. This section assesses the positive and negative coefficient values for selected
variables. While selecting variables in this respect, we considered covering major aspects
related to demographics-, socioeconomic-, and transportation-related characteristics of the
state. We chose median_household_income and P_65 as demographics-based indicators of
vulnerability (older people and population that have low median_household_income). In
addition, to relate socioeconomics and transportation with tornado occurrence, we selected
t_ami (transportation costs % income), residential density, and intersection density.
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Figure 8. Distribution of coefficients over Kentucky: (a) intercept, Ac_land, P_WrkAge, and
R_PCTLOWWA (percent of low wage workers); (b) D2A_JPHH (jobs per household), SLC_score,
vacant_hou, and no_veh_hhs (no vehicle households); (¢) median_household_income, ht_ami, t_ami,
and residential density; (d) intersection density, P_65, P_5, and P_18.

A bivariate relationship between the selected independent and dependent variables
was used while explaining the effect of the sign. This relationship can be categorized into
nine classes, as seen in Figure 9. Shades of pink express the explanatory variable, while
shades of blue are used to express mean tornado exposure in the region. The signs drawn
in a cell can be explained as a positive or negative contribution to the coefficient. For
example, diagonal relationships should contribute as positive for high values of tornado
exposure. That is, if the value of t_ami is high as well, it is expected that t_ami will have a
positive correlation. This holds for the low values of t_ami and low values of mean tornado
exposure. However, if the t_ami value is high when tornado exposure is low (as in the top
left cell), the relation is expected to be negative. This inverse correlation is also evident for
low values of t_ami when paired with high levels of mean tornado exposure, as depicted in
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the bottom-right cell. While inspecting variables, we referred to those relationships based
on the cell color in Figure 9.

B t ami —
Contribution to
- M EAN the coefficient

High
[ ]

++
Low - N
Low High
Figure 9. Bivariate relationship between tornado exposure and the selected variable.

It should also be noted that, unlike global models, regression was performed for a
sub-population which was chosen by bandwidth. The values near the observation points
were weighted more, and this weight decreased by increasing distance. When inspecting
the relationship, we used buffer zones to simulate the selection of subpopulation by using
bandwidth. Therefore, for each variable explained, buffer zones are created based on the
bandwidth values presented in Table 4.As seen in Table 4, bandwidths are 38.41 miles for
the five variables inspected below.

As depicted in Figure 10, different trends across buffer zones are revealed by the
examination of tornado exposure and t_ami. While zone 2 displays a negative coefficient
for high tornado exposure and low t_ami, zone 1 exhibits a positive coefficient for both
conditions. The buffer zone around Jefferson County had different types of neighbors.
Some had a positive effect on the coefficient, while others weakened this effect (e.g., gray
neighbors in the southeast and north), resulting in a mildly positive coefficient. A modestly
positive coefficient with a variety of neighbor impacts is seen in buffer zone 4. In contrast
to buffer zone 3’s low t_ami and high tornado exposure, buffer zone 5 exhibits a negative
coefficient with low tornado exposure but high t_ami.

Referring to Figure 11, in buffers 1 and 2, the great majority of the CBGs have a high
tornado exposure while having a very low residential exposure, leading to a negative
coefficient. On the other hand, in buffer zones 3 and 4, close neighbors have a low density
of tornado exposure and residential values (i.e., white neighbors), resulting in a positive
coefficient as both values are low. We see that in buffer zones 5 and 6, there are both light
blue and white neighbors. As a result, without further analysis, it is hard to judge the
sign with bare eyes; however, for the rest, it is very easy to predict the sign. As seen in
zone 7, the great majority of close neighbors are light blue, leading to a negative coefficient.
In addition, in zones 8 and 9, most of the buffer zones are composed of white neighbors,
representing a positive coefficient.

For some zones, we observe analogous patterns associated with reporting bias in
the literature [19,20]. As illustrated in Figure 11, buffer zones 3, 4, and 6 exhibit lower
residential densities in comparison to their neighboring CBGs. Intriguingly, these zones
have less tornado densities than their neighbors. For instance, zone 3 has a low tornado
exposure, while the surrounding areas have moderate tornado exposures (as illustrated
in Figure 3). Notably, as one moves from the perimeter to the center, there is a gradual
decrease in residential density. One can argue that this abruptly decreasing tornado activity
may have occurred due to reporting bias, given that the zone has a lower residential density
compared with the CBGs in the perimeter.
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Figure 10. Spatial analysis of t_ami variable: (a) bivariate coloring of t_ami and mean tornado
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Figure 11. Spatial analysis of residential density variable: (a) bivariate coloring of residential den-
sity and mean tornado exposure and (b) distribution of significant residential density coefficients
(Numbers in the circles represent buffers).

Figure 12 illustrates that buffer zones 1 and 2 exhibit low residential density and high
tornado exposure, leading to an expected negative coefficient. However, some CBGs in the
buffer zone have both high tornado exposure and intersection density, possibly influencing
the coefficient positively, though they are distant from selected points. For zones 3, 4, and 5,
the nearest neighbors are white, resulting in positive coefficients due to bi-square weighting.
Zone 6, mainly with white neighbors, contributes to a positive coefficient for residential
density. Zone 7 features a selected CBG surrounded by high tornado exposure and low
intersection density, resulting in a negative coefficient.

In Figure 13, it is seen that only the northern part of Meade County turned out to
have a significant coefficient for the percentage of elder people (people over 65). Although
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the neighbors of the selected CBG are occupied with neighbors having various colors,
if the sign is elevated by the closest neighbors, the coefficient should be positive. This
is since the neighbors have a moderate value both for tornado exposure and inspected

explanatory value.
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Figure 12. Spatial analysis of intersection density variable: (a) bivariate coloring of intersection
density and mean tornado exposure and (b) distribution of significant intersection density coefficients

(Numbers in the circles represent buffers).
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Figure 13. Spatial analysis of P_65 variable: (a) bivariate coloring of P_65 and mean tornado exposure
and (b) distribution of significant P_65 coefficients.

As Figure 14 reveals, in the first buffer zone, the observation point is occupied by pink
and white neighbors, resulting in a mild positive relation. On the other hand, the second
zone is surrounded by dark blue points, leading to a highly positive relation in Jefferson
and neighboring counties. In the third zone, however, the relation cannot be judged because
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of the presence of different colors around the observation point. In the fourth zone, the
majority of the CBGs are white neighbors, leading to a positive contribution to the median
household income variable.
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Figure 14. Spatial analysis of median household income variable: (a) bivariate coloring of median
household income and mean tornado exposure and (b) distribution of significant median household
income coefficients (Numbers in circles represent buffers).
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The findings of this study disclose the critical locations in areas that are under risk of
disruption due to tornadoes, providing a better understanding of this risk to emergency
officials. Officials can utilize this assessment to identify the most vulnerable areas, with
a specific focus on the roadway disruptions. This might be obtained by establishing new
emergency response facilities or better tornado shelters in these highly impacted areas. As
a possible impact on developing state-wide and local development policies, the findings
of this study can help delineate the areas and the communities in a state that are highly
at risk of disruptions due to tornadoes. This type of analysis can help planners and
emergency officials develop better strategies in identifying critical and less resilient regions
and make accurate assessments for targeted locations. This information can be utilized to
improve emergency response and development plans by identifying the critical roadway
infrastructure, which can help provide efficient emergency routes to the public before a
tornado hits.

5. Conclusions

In this study, tornado impacts on the community were assessed by examining the rela-
tionship between tornado exposure (dependent variable) and demographic, socioeconomic,
and transportation characteristics (explanatory variables) in Kentucky. Tornado exposure
for each CBG was calculated using kernel density estimate and zonal statistics. Thanks
to applying MGWR, it can be seen how the relation between the associated variable and
tornado exposure changed over the study area for each explanatory variable. In addition,
tornado impact on the roadways was quantified to assess roadway infrastructure vulner-
ability. As such, this methodology could be used to develop more informed decisions
and plans in order to mitigate the risk associated with exposure to future tornado events.
The described methodology can be helpful to the authorities both from a community and
infrastructure (e.g., roadway impact) perspective.

From a community perspective, MGWR analysis can help gather location-specific
insights related to future risk mitigation by checking the coefficients of significant vari-
ables. For example, the regions that have high tornado activity and low values of median
household income will be particularly vulnerable to tornadoes since they will not have
enough financial power to prepare for disaster. This can be achieved by reinforcing their
buildings before the disaster or recovering from the damage in the aftermath. Due to the
same reason, it may be harder for them to obtain affordable insurance coverage. However,
insurance plays a significant role in long-term recovery [49]. To solve all these problems,
for these regions, incentives can be introduced to citizens, such as tax breaks or low-interest
loans, so that people will be more encouraged to strengthen their properties against disaster.
Moreover, community-based insurance schemes that provide affordable insurance can
be facilitated. MGWR can be used to detect the regions where the relationship between
median household and tornado exposure is significantly inverse (i.e., a negative value).
Choosing the areas that have significantly negative relations is not enough, because the
regions that have less tornado activity with high values of median household income are
also highlighted in this case, even though these areas are less vulnerable. Therefore, as
a second filtering, regions that have relatively less median household income should be
selected as vulnerable areas.

From an infrastructure perspective, it is significant to improve the resilience of roadway
networks to ensure quick recovery after disasters [50]. To improve this resilience, the first
step is to predict possible problematic areas. The tornado impact assessment method we
have suggested could be utilized to forecast regions where roadway closures might occur
due to tornadoes. After a tornado hits a region, roadways may be disrupted by downed
trees. The quantification procedure highlights the areas where there is a lot of high tornado
activity and/or road network density, as both of those factors can be associated with a
higher chance of roadway closure. For example, when there is a higher tornado occurrence
in an area, it is more likely that roadways will be closed due to vegetation. Similarly, if
an area has high network density, more roadways can be disrupted by the downed trees
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because a higher portion of the network will be exposed to vegetation. Therefore, vegetation
might be monitored for the highlighted regions to minimize future road destruction in a
tornado event. In this study, two methods are discussed to quantify roadway impact. Both
methods can be employed in a region. However, the second method is more reasonable for
use by the authorities as it pinpoints the region where there is high tornado activity and
network density at the same time. This type of approach can also help develop sustainable
hurricane debris handling plans and policies.

This study proposes a simple yet effective approach to identify vulnerable populations
by considering spatial heterogeneities. Meanwhile, it enables to analyze the association of
network density with tornado exposure. In future work, this analysis can be conducted
with more detail using tornado damage data, if available. This study also has multiple
limitations. Firstly, the spatial distribution of the explanatory variables over the study
area changes abruptly either when there is no normalization in the data set or when GWR
is used instead of MGWR. These sudden changes may result in unpredictable model
behavior. Secondly, the quality of tornado reports before the 1980s should be questioned,
due to several reasons. There were inconsistencies in counting tornadoes and assessing
damage [51]. Because of different practices, nonstationary behavior has been observed
in the data [52]. In addition, adverse effects due to population bias were more common,
especially in rural areas [20,53]. Even though the majority of tornado data has been recorded
after the 1980s (approximately 76%), filtering the pre-1980 dataset in a meaningful way
would bring in more reliability and accuracy, which is an excellent direction for future work.
Thirdly, while obtaining kernel densities, all tornadoes that occurred in the study area were
considered. However, some studies only considered EF2+ tornadoes, as the milder ones
had comparatively less impact over the disaster area. This filtering may be considered in
future studies. In addition, no damage data related to tornadoes were used in this study.
This dataset may be employed in the future, if available. The presented methodology can
also be applied in other states prone to tornadoes, given the data availability.
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