
Behavior Research Methods
https://doi.org/10.3758/s13428-023-02162-w

PyBEAM: A Bayesian approach to parameter inference for a wide class
of binary evidence accumulation models

Matthew Murrow1 ·William R. Holmes2

Accepted: 3 June 2023
© The Psychonomic Society, Inc. 2023

Abstract
Many decision-making theories are encoded in a class of processes known as evidence accumulation models (EAM). These
assume that noisy evidence stochastically accumulates until a set threshold is reached, triggering a decision. One of the most
successful and widely used of this class is the Diffusion Decision Model (DDM). The DDM however is limited in scope and
does not account for processes such as evidence leakage, changes of evidence, or time varying caution. More complex EAMs
can encode a wider array of hypotheses, but are currently limited by computational challenges. In this work, we develop the
Python package PyBEAM (Bayesian Evidence Accumulation Models) to fill this gap. Toward this end, we develop a general
probabilistic framework for predicting the choice and response time distributions for a general class of binary decisionmodels.
In addition, we have heavily computationally optimized this modeling process and integrated it with PyMC, a widely used
Python package for Bayesian parameter estimation. This 1) substantially expands the class of EAMmodels to which Bayesian
methods can be applied, 2) reduces the computational time to do so, and 3) lowers the entry fee for working with these models.
Here we demonstrate the concepts behind this methodology, its application to parameter recovery for a variety of models,
and apply it to a recently published data set to demonstrate its practical use.

Keywords Markov chain monte carlo · Python · Changing thresholds · Likelihood approximation · Fokker planck

Introduction

Computational modeling has been used to study the proper-
ties of decisionmaking for over 50 years. Given the difficulty
in both perturbing and observing the brain, models are vital
for formally encoding and testing mechanistic hypotheses
about decision making processes. For example, how do peo-
ple process information over time, how do they modulate
their levels of caution under different circumstances, or how
do they extract information from complex choice sets with
multiple alternatives and attributes. These types of questions
are difficult to study through direct observation or statisti-
cal analysis alone. Models provide a rigorous way to study

B William R. Holmes
wrholmes@iu.edu

1 Department of Physics and Astronomy,
Vanderbilt University, 6301 Stevenson Science Center,
Nashville 37212, TN, USA

2 Cognitive Science Program and Department of Mathematics,
Indiana University, 1001 E. 10th St., Bloomington 47405,
IN, USA

these types of questions indirectly by comparing the expected
patterns of data predicted by the models to experimental
observation.

One of the dominant classes of models in this area are Evi-
dence Accumulation Models (EAMs). These models predict
the outcome of decisions by modeling the process by which
that decision is made. For example, the popular Diffusion
DecisionModel (DDM) (Ratcliff &McKoon, 2008) hypoth-
esizes that people stochastically sample information over
time, additively accumulate evidence based on that infor-
mation, and make a decision when a critical threshold of
evidence has been achieved. This and similar models are
mathematically encoded in stochastic differential equations
(SDE). A useful feature of this family of models is that they
make predictions about both the choices made and the time it
takes them tomake choices, so-calledChoice-ResponseTime
(choice-RT) data. Importantly, the time required to complete
the decision provides insight into the underlying decision
process. For example, one might expect a strong preference
for one alternative to yield a fast decision.

EAMs are a highly successful modeling framework in
cognitive psychology. They both qualitatively and quan-

123

http://crossmark.crossref.org/dialog/?doi=10.3758/s13428-023-02162-w&domain=pdf

Behavior Research Methods

titatively capture a range of choice and response time
benchmarks, including (1) speed-accuracy trade-off, (2) the
positive skew of human response time distributions, (3) the
relation between the mean and variance in response times,
and (4) differences in fast and slow errors (Usher &McClel-
land, 2001; Ratcliff, Zandt, & McKoon, 1999; Ratcliff &
Rouder, 1998; Brown & Heathcote, 2008; Ratcliff, 1978).
These models have also been applied to a wide range of
behaviors including learning (Evans, Brown, Mewhort, &
Heathcote, 2018; Fontanesi, Gluth, Spektor, & Rieskamp,
2019), categorization (Nosofsky& Palmeri, 1997; Nosofsky,
Little, Donkin, & Fific, 2011), memory (Ratcliff, 1978; Osth
& Farrell, 2019), language processing (Wagenmakers, Rat-
cliff,Gomez,&McKoon, 2008; Lerche,Christmann,&Voss,
2018), and consumer choice (Evans, Holmes, & Trueblood,
2019; Busemeyer, Gluth, Rieskamp, & Turner, 2019). More
recently, researchers have started combiningEAMswith psy-
chophysiological data, such as neural recordings (Turner,
van Maanen, & Forstmann, 2015; Turner, Rodriguez, Nor-
cia, McClure, & Steyvers, 2016; Turner et al., 2013), motor
recordings (Servant,White,Montagnini, &Burle, 2016), and
eye movements (Krajbich, Armel, & Rangel, 2010). Despite
their popularity and success, most applications use only the
simplest forms of EAMs, such as the DDM. Tools for quan-
titatively fitting general EAMs are still lacking.

All current theoretical modeling approaches in this area
make some type of significant sacrifice that limits their use.
The typical modeling process in this area involves three
essential elements: a theoretical model, experimental data
to test it, and efficient and accurate methods for challeng-
ing the model with data. Existing methods sacrifice at least
one of these. Approaches that build around the DDM (e.g.
HDDM, etc.) are fast and accurate, but are limited by the
assumptions of the DDM. Alternative approaches (discussed
in detail below) allow researchers to study broader theoret-
ical models (e.g. time varying caution) or utilize different
experimental designs (e.g. probing behavior with time vary-
ing stimuli), but at a cost. In these cases, the absence of an
easily obtainable likelihood (in most cases) has led to the
development of approaches with either documented accu-
racy issues, poor efficiency that limits experimental design
(i.e. too many experimental conditions = too much compute
time), or both (more details in theBackground). These limita-
tions restrict the questions researchers can ask and the studies
they design.

Themain challenge ofworkingwithEAMs and choice-RT
data is to determine, for a particular model and parameter set,
how well the model matches the empirical data (Dutilh et al.,
2019). The likelihood function is a natural way to do this.
Unfortunately, due to the difficulty in working with SDEs,
only the simplest models in this family have sufficiently
analytic likelihoods to be tractable. We say “sufficiently”
because the likelihoods of even the simplest models (e.g.

the DDM) involve infinite series or intractable integrals. For
example, Buonocore, Giorno, Nobile, and Ricciardi, 1990
developed an analytic approach to solve for the likelihood
function of a range of SDE models (summarized in Smith,
2000). Unfortunately, it tends to be slow to compute since it
requires numerical calculation ofmany integrals, causing it to
only be used infrequently when fitting data (Evans, Hawkins,
&Brown, 2020). Further, numerical integration produces res-
olution issues similar to that of numerical solutions. For these
reasons,mostmethods utilize somewayof approximating the
quantitative agreement between model and data and make
some sacrifice in the process. Since much of the work on
choice-RT model fitting applies to binary choice models, we
will limit this brief discussion to binary decision modeling
approaches (see Table 1).

Until recently, the majority of quantitative fitting
approaches were based on summary statistics (Turner &
Van Zandt, 2018). One common approach is the quantile
maximization approach (Ratcliff &Tuerlinckx, 2002; Heath-
cote, Brown, & Mewhort, 2002). For a stochastic model, the
user simulates a large number of outcomes, finds the quan-
tiles of the RT distribution, compares those to the quantiles
of the experimental RT distribution, and optimizes param-
eters for agreement. CHaRTr (Chandrasekaran & Hawkins,
2019), a recently developed R modeling package for general
binary EAMs, takes this approach. It is well known however
that this compression of the model and data into summary
statistics can lead to significant errors in parameter estimates
for EAMs (Turner & Sederberg, 2014).

A second approach is the Probability Density Approx-
imation (Turner & Sederberg, 2014; Holmes, 2015; Lin,
Heathcote, & Holmes, 2019) method. This method starts
much the same way by simulating a large number of stochas-
tic outcomes. Those samples are then used to construct a
kernel density estimate approximation of the actual like-
lihood function. This avoids the problems with summary
statistics and is easily generalizable to more complex mod-
els (Trueblood, Heathcote, Evans, & Holmes, 2021; Turner
& Sederberg, 2014; Evans, Holmes, Dasari, & Trueblood,
2021; Holmes, O’Daniels, & Trueblood, 2020; Evans, True-
blood, & Holmes, 2020; Trueblood et al., 2018; Holmes,
Trueblood, & Heathcote, 2016). However, the simulated
likelihood function becomes a stochastic entity, which intro-
duces significant problems for Bayesian inference (Holmes
& Trueblood, 2018). Specifically, a favorable estimate of the
likelihood is easily accepted but difficult to reject in favor
of a new parameter set, leading to MCMC chain stagnation,
high MCMC rejection rates, and generally poor posterior
approximations. Additionally, the large numbers of simula-
tions needed are extremely computationally intensive.

A third approach converts the SDE evidence accumula-
tion models into Fokker-Planck (FP) models. This approach
essentially reformulates the SDE description of the model

123

Behavior Research Methods

Table 1 List of existing
software for fitting
two-threshold, binary choice
models to choice-RT data with
the proposed characteristics of
our approach, PyBEAM, in the
final column

Package Approach Generality Language

PyDDM Max Likelihood General SDE Python

HDDM Bayesian DDM, LBA, LANs Python

ChaRTr Quantile Optimization General SDE R

DMAT Quantile Optimization DDM Matlab

Max Likelihood,

fast-dm Kolmogorov-Smirnov, DDM Command line

Chi-Square

DMC Bayesian DDM, LBA R

PyBEAM Bayesian General SDE Python

Programs include PyDDM (Shinn, Lam, & Murray, 2020), HDDM (Wiecki, Sofer, & Frank, 2013), ChaRTr
(Chandrasekaran & Hawkins, 2019), DMAT (Vandekerckhove & Tuerlinckx, 2008), fast-DM (Voss & Voss,
2007), and DMC (Heathcote et al., 2019)

as a probabilistic model described by a Partial Differential
Equation (PDE). Solving this PDE then provides an approx-
imation for the likelihood. This was first implemented in
a package by Voss and Voss with fast-DM (Voss & Voss,
2007, 2008). Their approach, however, was limited to only
fitting DDMs, not the broader class of EAMs. The expansion
to EAMs was addressed with the Python package PyDDM
(Shinn, Lam, & Murray, 2020). PyDDM takes a similar
approach to fast-DM in that it converts SDE models into FP
models. Whereas fast-DM uses the “backward FP,” PyDDM
uses the “forward FP,” which readily allows for modification
of the threshold and drift rates to increase model flexibility.

These methods are similar to what we propose here, but
they have a number of practical drawbacks. fast-DMdoes not
accommodate more complex models involving, for example,
time varying thresholds. PyDDMismore general; however, it
is a maximum likelihood based approach and their numerical
implementation would not scale well for Bayesian estima-
tion. Their maximum likelihood fits can take up to 5 hours
(according to their own benchmarks). Since Bayesian meth-
ods require sampling far more parameter sets than maximum
likelihood (10-100x more), it would be infeasible to directly
extend this. Further, more general discussion of a variety
of numerical approaches introduced above can be found in
Richter, Ulrich, and Janczyk, 2023. This is possibly the most
comprehensive comparison of first passage time approxima-
tion techniques to date, though they do not address Bayesian
implementations.

The fourth and final approach we briefly discuss here
are Likelihood Approximation Networks (LAN) (Fengler,
Govindarajan, Chen, & Frank, 2021; Fengler, Bera, Peder-
sen, & Frank, 2022). In the context of parameter estimation,
a model is a functional mapping from parameters and input
data to a likelihood value. In the LAN approach, a neural
network is trained to approximate this. This is accomplished
by simulating enormous amounts of choice-RT data from

a model to construct a training data set that consists of
parameter sets and approximate likelihood functions calcu-
lated using, for example, Kernel Density Estimation (KDE).
Though this technique has enormous potential going for-
ward, it has a few significant drawbacks. First, the stochastic
nature of simulation based data used for training may intro-
duce unknown inaccuracies into the training data itself
(Holmes, 2015). From this perspective, the likelihoodgenera-
tion approachwe demonstrate in this article could potentially
be used to generate higher quality training data for LANs.
Second, to utilize an LAN, you must first expend signifi-
cant computational resources to generate training data from
a specific model and experimental structure, then train the
LAN to approximate it. For frequently used models, this
approach will be useful since the up front cost of training
the LAN can be recouped through regular use. However,
the up front cost will be prohibitive if the intention is to
exploremultiple novelmodels or novel experimental designs.
As an example of the importance of experimental design, a
LAN trained for experimental trials with fixed information
cannot be used to model data from changing information tri-
als. Thus, LANs will likely be less efficient for exploratory
studies.

This is only a sub-sample of methods (see Table 1) and
there are a number of variations on them.However, they illus-
trate that there are currently nomethods for performing rapid
Bayesian choice-RT modeling with general EAMs. Each
makes some sacrifice that limits their generality, accuracy,
or efficiency. To address this gap in methods, we introduce
the Python package PyBEAM (Bayesian Evidence Accumu-
lation Models). The approach we describe here will provide
the first general, accurate, and efficient method for (non-
hierarchical) Bayesian choice-RT modeling of binary choice
EAMs. For discussion of the limitations of this approach,
see the “Limitations of approach” Section prior to the
discussion.

123

Behavior Research Methods

Methods

In this section, we describe the broad methodological details
of our algorithm for performing Bayesian parameter estima-
tion for two-threshold models of binary evidence accumu-
lation. Before continuing, we make a few notes. First, we
mainly discuss the general idea behind this method. There
are numerous implementation details “under the hood” that
are required to make this work; however, we leave this dis-
cussion for the Supplementary Information. Second, we do
not describe the Pythonic implementation of this algorithm
in this article. Instead, we will provide multiple Jupyter
notebooks (Kluyver et al., 2016) demonstrating the use of
this method for both parameter recovery and application to
data. These notebooks are more than just documented code.
They are descriptive in nature and should be more effective
than writing pseudo-code. These are publicly available and
can be found at the PyBEAM GitHub (https://github.com/
murrowma/pybeam). Finally, while reading these methods
will likely help a reader understand how this method works
at a high level, understanding these methods are not required
to use the provided Python implementation.

The general two-threshold binary accumulation
model

In this article, we develop an approach for calculating choice-
RT likelihoods for general two threshold models of binary
decision making and integrate them with Bayesian parame-
ter estimation. For this type of model (Fig. 1), the evidence
accumulation process begins at point z, corresponding to an
initial bias prior to stimulus presentation. Upon stimulus pre-
sentation, evidence is noisily accumulated, described by the
stochastic differential equation (SDE) (Buonocore, Giorno,
Nobile, & Ricciardi, 1990; Smith, 2000),

dx(t) = v(x, t)dt + D(x, t)dB(t), (1)

where x(t) is the total evidence accumulated at time t and
v(x, t) is the rate of evidence accumulation (referred to as
the drift rate). The drift is determined by the quality of infor-
mation in the presented stimulus, where decisions with clear
stimulus information produce larger drift rates. The function
D(x, t) is the diffusion rate, and though in some models it
can depend on (x, t), it is most often constant and fixed for
scaling purposes (commonly set to either D(x, t) = 1, 0.1).
Lastly, B(t) is a Gaussian noise term such that dB(t) is the
Gaussian error.

The evidence accumulation process described by Eq. 1
continues until one of the two opposing decision thresholds
(c1(t) or c2(t)) is reached, triggering a response (Fig. 1). The
separation s(t) between thresholds indicates the degree of
time dependent caution exhibited by the decision maker. If

)t(Bd)t,x(D+td)t,x(v=)t(xdBias (z)

Evidence (v)

Choice 1

Probability

f1(t)

Time

Choice 2 (c2)

Choice 1 (c1)

Caution (s)

Fig. 1 Model Schematic. Evidence is accumulated (blue line) starting
from an initial bias (black dot) until one of the two choice thresholds, c1
or c2, is reached (red dot), triggering a decision. The distance between
thresholds indicates an individuals degree of caution which can change
or remain constant as a function of time. Mathematically, this process
is described by the noted stochastic differential equation, where x(t)
is the total accumulated evidence (or preference), v(x, t) is the rate of
evidence accumulation, D(x, t) is the diffusion rate, and B(t) is the
noise term. This process results in the choice probability distribution
fi (x, t), which indicates how likely it is for an accumulator to cross
the decision threshold at that time. tnd indicates the time it takes for
non-decision processes, which is added to the decision time from the
response time

thresholds are far apart (close together), the participantmakes
slower (faster), more (less) cautious decisions. Though in
many evidence accumulation models the degree of caution is
fixed, time changing caution and accordingly thresholds (as
shown in Fig. 1) is increasingly being investigated as amech-
anism to optimize reward rates (Drugowitsch, Moreno-Bote,
Churchland, Shadlen, & Pouget, 2012; Tajima, Drugowitsch,
& Pouget, 2016) or the speed accuracy trade-off (Frazier &
Yu, 2007). An additional parameter referred to as the non-
decision time, tnd , is also generally included in EAMs. This
term describes the time it takes for a participant to encode
the stimulus information and the motor processes involved
in selecting one of the available choices.

Stochastic to probabilistic model form: The
Fokker-Planck formalism

So called choice-RT data is common in this field. In order
to determine how well a particular set of parameters for a
particular model describe data of this form, it is useful to
calculate the “likelihood” function which describes the prob-
ability of making the observed choice at the observed time.
Though the stochastic form of binary choice evidence accu-
mulation models is simple to formulate and interpret, it does
not immediately provide us with this quantity of interest.

123

https://github.com/murrowma/pybeam
https://github.com/murrowma/pybeam

Behavior Research Methods

This can be circumvented in a number of ways. Buono-
core, Giorno, Nobile, and Ricciardi, 1990 devised an analytic
integral based solution for this problem, which is summa-
rized for a psychological audience in Smith, 2000; however,
it is computationally intensive. Further, since it requires
numerical calculation of integrals, it only can approximate
the actual solution. Stochastic simulation based methods
(Chandrasekaran &Hawkins, 2019; Holmes, 2015) are more
general, but are computationally inefficient largely due to the
necessity of generating immense quantities of random numbers.

Fortunately, this stochastic process can instead be written
as a Fokker-Planck equation, which describes the probabil-
ity that the accumulator has precisely state (x) at time (t)
(Öttinger, 1996). We in particular use the forwards Fokker-
Planck (FP) equation,

∂ p(x, t)

∂t
= −∂ [v(x, t)p(x, t)]

∂x
+ 1

2

∂2
[
D(x, t)2 p(x, t)

]

∂x2
,

(2)

where p(x, t) is the probability of accumulated evidence x
at time t , and v(x, t) and D(x, t) are the drift and diffu-
sion rates introduced earlier. The EAM response thresholds
are modeled as the PDE’s boundary conditions. Specifically,
we use absorbing boundary conditions where p(c1(t), t) =
p(c2(t), t) = 0, encoding the fact that when the preference
state reaches the threshold, it is removed or absorbed by that
threshold.

While this is a probability, it is still not quite the quantity
we need. This describes the accumulator state rather than the
probability of a choice. We require the probability of having
first crossed either of the two thresholds at time t . This is often
referred to as the first passage time problem. Fortunately,
this first passage time probability can be directly calculated
from p(x, t) by calculating the flux of probability through
the threshold of interest. Here,

J (x, t) = v(x, t)p(x, t) − 1

2

∂
[
D(x, t)2 p(x, t)

]

∂x
, (3)

is the probability flux at point (x, t) and the first passage time
density at threshold i can be calculated as fi (t) = J (ci (t), t).

As a synopsis, here are the steps necessary to calculate
the likelihood function. 1) Transform the model from a SDE
formalism to the FP formalism. 2) Solve the the FP equation
in the relevant (x, t) domain determined by themodel thresh-
olds. 3) Use that solution to calculate probability fluxes at the
threshold, which ultimately is the likelihood function. Step
1 is straightforward as any SDE of the form discussed here
can be directly transformed into a FP. Step 3 is also straight-
forward once p(x, t) is calculated. Step 2, simulating the FP
equation, is the most complex and requires the most care.

A note on the forward versus backward Fokker-Planck
approach

This is a technical note that wemake for the interested reader.
An alternative to using the forwards FP equation is to use the
backwards FP equation. The backwards FP encodes the same
diffusion process, but is conceptually very different.Whereas
the forwards FP provides the probability of accumulator state
x and time t given an initial accumulator state, the backwards
equation - in the context of a first passage time problem -
indicates the probability of an accumulator in state x at time
t crossing the threshold at some future time T , and is inte-
grated backwards from T to t . This form has previously been
applied to cognitivemodels,most notably in the package fast-
dm (Voss & Voss, 2007, 2008). For our application, it has a
few significant drawbacks which prevented us from using it.
First, the backwards FP requires two PDEs, one for the upper
threshold crossing and another for the lower threshold cross-
ing. These must be solved independently, incurring a two
times speed cost to the solution. Secondly, the backwards FP
does not have a computationally inexpensive way to imple-
ment time changing thresholds or non-constant drift rates.
Unlike the forwards FP, where a simple change in coordi-
nates across x eliminates many of the difficulties associated
with changing thresholds (discussed in more detail in the
“Numerical solution” Section), the backwards FP requires
more care. As noted in Voss and Voss, 2008 and discussed in
Boehm, Cox, Gantner, and Stevenson, 2021, if the decision
thresholds and drift rate do not depend on time, solving the
backwards FP provides the likelihood function for all times
t . However, if the thresholds or drift rate are time depen-
dent, then a different FP equation is required for each time t .
This means that the backwards FP would need to be solved
independently for each choice-RT point in order to fit data to
experiment.

The backwards FP does however have a couple advantages
worth noting. First, unlike the forwards FP, which requires
the calculation of the probability flux at the threshold to
determine the likelihood function, the solution to the back-
wards FP gives the likelihood function immediately (Voss &
Voss, 2008), potentially reducing numerical error. Second,
(Boehm, Cox, Gantner, & Stevenson, 2021, 2022) devised
an integral transformation which improves the regularity and
numerical properties of the backwards FP equation. This
integral transformation, however, is unique for each thresh-
old, meaning that each threshold requires a new integral
to be computed. Additionally, this transformation cannot
be applied if the diffusion rate is non-constant, like in the
Urgency Gating Model. Since the purpose of PyBEAM is
to be highly general and allow for users to easily create
custom models, it is more convenient to use the forwards
FP.

123

Behavior Research Methods

Numerical solution

Here we describe the main ideas of the process for numer-
ically simulating the accumulator state probability p(x, t)
from the FP equation. We have added numerous bells and
whistles to this scheme for numerical stability, generality,
and numerical speed. These are further discussed in the Sup-
plementary Information and we focus on the main ideas only
here.

There are three sources of complexity in this model:
the state dependent drift v(x, t), the state dependent diffu-
sion D(x, t), and the time dependent bounds ci (t). It turns
out the bounds are the most challenging to deal with. We
will be using finite differences to solve this problem. This
causes issues like thresholds crossing between discretized
grid points and points being inside the threshold at one time
and outside at the next, introducing significant error into the
solution. Though these can be overcome, there is a better way
to address this complexity.

In its current form, the FP model is described by a rel-
atively simple PDE with a time changing bound. Since this
time changing bound is complicated to dealwith numerically,
we make a change of coordinates that flattens the thresholds
(Crank, 1984) at the expense of making the PDE more com-
plicated. Note that since this is an exact transformation, no
information about the model is lost. We introduce the fol-
lowing change of coordinates,

ε = x − c1(t)

c1(t) − c2(t)
. (4)

In this new coordinate ε, the thresholds are fixed at values
zero and one. Substituting into Eq. 2 yields,

∂ p(ε, t)

∂t
= 1

s

[
ε
ds

dt
+ dc2(t)

dt

]
∂ p(ε, t)

∂ε
(5)

− 1

s

∂ [v(ε, t)p(ε, t)]

∂ε
+ 1

2s2
∂2

[
D(ε, t)2 p(ε, t)

]

∂ε2
,

where p(ε, t) is the probability of accumulated evidence in
the new coordinate frame ε, s = c1(t) − c2(t) is the sep-
aration between thresholds, and v(ε, t) and D(ε, t) are the
drift and diffusion rates in the new coordinate frame. Though
Eq. 5 is more complex, the decision thresholds are now con-
stant in time with the upper threshold at 1 and the lower at
0. This transforms the space domain to (0, 1), dramatically
simplifying implementation since the computational domain
is now a rectangle.

This transformed problem now amounts to solving a PDE
on a rectangular domain. To solve this, we use the sec-
ond order Crank-Nicolson finite difference scheme (Crank
& Nicolson, 1947). This is a highly robust, unconditionally
stable numerical scheme used in a wide range of PDE simu-

lation applications.We do not go into detail here, but we have
extensively tested the numerical discretization used for this
method and introduced adaptive stepping in coordinate t to
improve it (described in detail in the Supplementary Infor-
mation). While we do not focus on these implementation
complexities here, we note that they are absolutely critical
to the practical application of this method. First, they speed
the numerical solution by a factor of 10x or more, which
is important when integrating this into a Bayesian frame-
work. Second, these optimizations allow the user to apply
this method to a wide array of problems without having to
substantially “tune” the algorithm. With this method, we can
now robustly and efficiently calculate p(x, t), which can then
be used to compute first passage time probabilities and con-
struct the desired likelihood function.

We do make a brief note about one computational com-
plexity. As noted by Shinn, Lam, and Murray, 2020, the
Crank Nicholson scheme can introduce a numerical insta-
bility arising from the initial condition to the FP equation
(i.e. the start point distribution), which can be particularly
problematic with time varying thresholds. This is a well
known issue (Østerby, 2003). We ameliorate this by start-
ing the PDE simulation with multiple small time steps to
essentially smooth the transition from the initial condition
to the remaining time domain. This adjustment removes this
issue without any intervention by the user, and is discussed
in more detail in the Supplementary Information. With this
and other similar optimizations, we have a highly efficient
and stable algorithm for calculating choice-RT likelihoods.

Across-trial variability

PyBEAM’s numerical solution readily allows for the addi-
tion of across-trial variability in the start point, non-decision
time, and drift rate. To implement across-trial variability in
the start point, we alter the FP PDE’s initial condition. If
no across-trial variability is desired, PyBEAM uses a Dirac
delta function as the initial condition, localizing all probabil-
ity mass at a single point. If across-trial variability is desired,
PyBEAM implements one of two functional forms which
can be chosen by the user: uniform and truncated normal.
We truncate the normal distribution near the decision thresh-
olds so that no values fall outside the boundary conditions.
In the future, more flexibility will be provided to the user to
implement their own start distributions. Starting point distri-
butions are implemented at little to no computational cost.
This trial-to-trial variability can be added to any model in
PyBEAM.

To implement across-trial variability in the non-decision
time, we follow the procedure described by Ratcliff and
Tuerlinckx in Appendix B of their publication (Ratcliff &
Tuerlinckx, 2002). First, we generate the likelihood func-
tion by solving the FP equation as described in Section

123

Behavior Research Methods

“Numerical solution.” Then, we take the likelihood function
and integrate across the non-decision time distribution. Since
our likelihood function is calculated using finite difference
and thus discrete, we numerically integrate the two func-
tions together using the trapezoidal rule. Two non-decision
time distributions are pre-coded in PyBEAM: uniform and
truncated normal. We choose a truncated normal distribu-
tion instead of a normal distribution to guarantee that no
non-decision time values end up below zero. If a uniform
distribution is chosen, we integrate across the entire dis-
tribution. If a truncated normal distribution is chosen, we
set the integration bounds at four standard deviations away
from the mean. The result of this integration is the likeli-
hood functionwith across-trial variability in the non-decision
time included. This integration step is highly efficient in
PyBEAM, incurring only minimal speed losses. This trial-
to-trial variability can be added to any model in PyBEAM.

Trial-to-trial variability in “drift rate” parameters is more
complex since in some cases a models drift rate is a param-
eter and in others it is a function. For this reason, we do not
add this feature generally. However, since it is important to
the dynamics of the “full DDM,” we include it for this model
for completeness. To incorporate this, we again follow the
procedure described by Ratcliff and Tuerlinckx in Appendix
B of Ratcliff and Tuerlinckx, 2002 to integrate over the drift
rate distribution. Since our likelihood function is calculated
using finite difference and thus discrete, we numerically inte-
grate the two functions together using the trapezoidal rule.
PyBEAM by default implements two drift distributions: uni-
form and normal. We select Nμ equally spaced drift rates
from these distributions. By default, PyBEAM sets this value
to Nμ = 10, but this can be altered by the user if more or
less precision is required. If the drift rate is uniformly dis-
tributed, we select Nμ drift rates such that both bounds of the
distribution are included. If normally distributed, we choose
Nμ drift rates with bounds four standard deviations away
from the mean drift rate. For each of these points from the
numerical discretization of the drift rate distribution, a like-
lihood function is generated. These are then integrated over
the discretized drift rate distribution using standard numeri-
cal integration. The result of this integration is the likelihood
functionwith across-trial variability in the drift rate included.
Since we by default generate Nμ = 10 likelihood functions,
this incurs an ∼10x slowdown compared to the base models
without this complexity. This across-trial variability is only
included for the DDM.

Parameter inference

To perform Bayesian parameter estimation, we integrate this
method of likelihood construction into the Python package
PyMC (Salvatier, Wiecki, & Fonnesbeck, 2016). PyMC is
a highly robust, well supported Python package designed

specifically to performMarkovchainMonteCarlo.Using this
Bayseian platform comes with a number of benefits. First, it
has been tested by a wide array of researchers over a number
of years. Second, it has a number of different MCMC sam-
plers integrated into it,which is important for this application.
Third, it simplifies posterior analysis since PyMC has a num-
ber of functionalities built in (e.g. trace plotting and posterior
summary statistics) and supporting packages such as ArviZ
(Kumar, Carroll, Hartikainen, &Martin, 2019) are available.

ThoughPyMCis knownprincipally for implementing gra-
dient based Monte Carlo methods like NUTS (Hoffman &
Gelman, 2014), we find that this algorithm is sub-optimal
for this type of problem. Since these methods require the
calculation of model derivatives with respect to every param-
eter in each step of the inference process - something that
is very slow when performed numerically - they work best
when fast, analytic solutions are available. We instead utilize
an MCMC sampler which does not require gradients, his-
tory based Differential Evolution Markov Chain (DE-MCz)
(Braak & Vrugt, 2008), a variant of the popular Differential
EvolutionMarkov Chain (DE-MC) algorithm (Braak, 2006).
In brief, DE-MC runs many chains in parallel and uses infor-
mation shared between chains to auto-sense the structure of
the posterior and intelligently construct parameter proposals.
The history based version, DE-MCz, works similarly except
that each chain only looks at its own history, not other chains.
Based on PyMC’s analysis of this algorithm, DE-MCz is able
to achieve comparable results to DE-MC with many fewer
chains (DEMetropolis(Z): Population vs. History efficiency
comparison, 2022), making it an attractive algorithm for use
on a personal computer with a limited number of cores.

As demonstrated in the following results, coupling this
approach to constructing model likelihoods with the capabil-
ities of PyMCyields a robust and efficient tool for performing
Bayesian inference with general binary choice-RT models.

EAMs implemented in PyBEAM

To facilitate use of this approach while allowing maximum
flexibility, we have implemented two sections of the Python
package. First, we have constructed pre-coded versions of a
number of common models. This allows for rapid use with
minimal interaction using the PyBEAM framework. Second,
we implement a general model class that allows users to go
beyond the common models. This requires more interaction
with the modeling framework, but provides increased flexi-
bility. We address both approaches in the remainder of this
section.

Pre-coded EAMs

PyBEAM contains pre-coded versions of EAMs commonly
used in the literature. The basis for all pre-coded models is

123

Behavior Research Methods

the EAM described in Eq. 1, which is then modified to match
the specific model needs.

The simplest of these is an EAM with constant non-
decision time tnd ; constant drift rate v(x, t) = μ; constant
diffusion D(x, t) = σ , usually set to either σ = 0.1, 1.0;
accumulation start point z; and flat, symmetric decision
thresholds c1(t) = −c2(t) = b. For convenience, we replace
z with w = z/(2b), referred to as the relative start point,
which sets the accumulator start as a ratio of the threshold
separation (ranging from 0 to 1). This EAM is sometimes
referred to in the literature as the “simple DDM” since it is
a DDM without across-trial variability parameters (Evans,
Hawkins, & Brown, 2020). We also refer to it in PyBEAM
as the simple DDM.

In addition to the simple DDM, PyBEAM also includes
a pre-coded version of the full DDM. The full DDM is the
simple DDMwith across-trial variability in the non-decision
time, start point, and drift rate included. As discussed in Sec-
tion “Methods,” the non-decision time and start point have
two pre-coded distributions: uniform and truncated normal.
Across-trial variability in the drift rate can be either uniform
or normally distributed.

The next two pre-coded EAMs add additional model
assumptions to the simple DDM described above to account
for other psychological factors. The first, referred to as the
“leakage” model in PyBEAM, adds leaky integration to the
simple DDM. This changes the drift rate from a constant to
v(x, t) = μ − lx , where l is the strength of leaky integra-
tion and x is the total accumulated evidence. The second,
referred to as “changing thresholds,” adds time varying deci-
sion thresholds to the simple DDM. They are free to either
collapse towards zero or move outwards, though collapse
is the more common behavior in the literature. By default,
three time varying decisions thresholds are implemented in
PyBEAM. The first, linear, defines the decision thresholds
as,

c1(t) = −c2(t) = b − mt, (6)

where b indicates the threshold location at time zero and m
is the thresholds’ slope. The second, exponential, has thresh-
olds defined as,

c1(t) = −c2(t) = b exp(−t/τ), (7)

where b, as before, is the threshold location at time zero and
τ describes how quickly the threshold collapses. The last,
Weibull, uses aWeibull distribution function for the decision
threshold, given by,

c1(t) = −c2(t) = b − b(1 − c)

2

[
1− exp

(
−

(t

λ

)κ
)]

. (8)

Here, b has the same meaning as in the linear and exponen-
tial models. The next parameter, λ, is the scale parameter
and approximately sets the time at which threshold col-
lapse or expansion occurs. Parameter κ is referred to as the
shape parameter and indicates whether the threshold behav-
ior is logistic (κ > 1) or exponential (κ < 1). Lastly,
c is the collapse ratio and sets the amount the threshold
collapses or expands. If c = −1, then the thresholds col-
lapse towards zero. If c > 1, thresholds expand away
from their initial location b. The Weibull distribution is a
commonly used threshold due to its flexibility in behav-
ior (Hawkins, Forstmann, Wagenmakers, Ratcliff, & Brown,
2015). Depending upon the choice of parameters, it is able
to model early collapse, late collapse, and no collapse, while
simultaneously replicating logistic and exponential threshold
behavior.

Though the Weibull decision threshold still maintains the
same functional form, we modify it slightly when running
PyBEAM’s MCMC sampler. Instead of sampling the shape
λ and scale κ parameters directly, we instead sample from
the base ten logarithm of these parameters. Since theWeibull
threshold can produce both logistic and exponential behavior,
λ and κ have large functional parameter ranges. This makes
it difficult for the MCMC algorithm to evenly sample from
all parts of parameter space. For example, common κ values
for an exponential model are between 0.5 and 1, while κ

values for a logistic model generally range from 1 to 10. This
disparity in reasonable parameter range makes its difficult to
sample from accurately. Thus, by default, PyBEAM samples
from and reports the base ten logarithm for parameters λ

and κ .
The final EAM currently pre-coded in PyBEAM is the

Urgency Gating Model, referred to as the “UGM” (Cisek,
Puskas, & El-Murr, 2009). As in Trueblood, Heathcote,
Evans, and Holmes, 2021, it starts with the simple DDM
discussed above, then adds an urgency signal and leakage to
the drift rate and an urgency signal to the diffusion rate. The
drift rate is defined as,

v(x, t) = μ(1 + kt) +
(

k

1 + kt
− l

)
x . (9)

Here, μ and l are the drift and leakage rates from the simple
DDM and leakage EAMs described above. The additional
parameter, k, is referred to as the urgency ratio parameter
and describes the strength of urgency in the model. If k = 0,
the model encodes no urgency and is instead the leakage
EAM. If k → ∞, urgency dominates the decision process.
In addition to altering the drift rate, the UGM modifies the
diffusion rate, D(x, t). It is given by,

D(x, t) = σ(1 + kt), (10)

123

Behavior Research Methods

where k is still the urgency ratio and σ is the noise parameter
from the simple DDM.

Note that the option to include across-trial variability in
the non-decision time and start point is available for all pre-
coded models. For example, if you would like a UGM to
have a normally distributed non-decision time and uniform
start distribution, PyBEAM allows this with a simple change
to the model input. We do not allow for across-trial variabil-
ity in the drift rate outside of the full DDM in the present
implementation.

Custommodels in PyBEAM

In addition to providing users with pre-coded models,
PyBEAM also allows for the creation of user-defined custom
scripts. Instructions for creating a script can be found on the
PyBEAM GitHub (https://github.com/murrowma/pybeam),
but we provide a useful example here which we test in the
results section of this paper.

Though we provide the UGM by default in PyBEAM
(see Section “Pre-coded EAMs”), it is known that parameter
recovery for it can be challenging. The urgency parameter
k is correlated with a and l, causing multiple combinations
of each parameter to generate similar likelihood functions.
To address this problem and improve parameter recovery,
Trueblood,Heathcote, Evans, andHolmes, 2021 proposed an
experimentwith time changing stimulus information. Specif-
ically, using a grid of pixels flashing one of two colors (blue /
orange), they altered the fraction of each color on the screen
at a given time while a decision was being made. So, early in
the decision process, the grid may be 55 percent blue while
later it might be 55 percent orange.

We implement a similar model as a custom script in
PyBEAM. In the UGM, stimulus strength is encoded in the
parameter μ. Thus, we modify the UGM drift rate from
Eq. 9 to account for the time changing stimulus information,
giving,

v(x, t) =
⎧
⎨

⎩

μ(1 + kt) +
(

k
1+kt − l

)
x, if t < tflip,

−μ(1 + kt) +
(

k
1+kt − l

)
x, if t ≥ tflip,

(11)

where tflip is the time when stimulus information changes.
For example, at time t < tflip, the grid may be dominated by
blue which corresponds to positiveμ. Then, at time tflip, they
flip to orange dominated, modeled by making μ negative.

Results

In this section, we test PyBEAM’s approach for fitting EAMs
to data. First, we validate our method of constructing the
likelihood function. Second, we validate parameter recovery.

Lastly, we use PyBEAM to fit EAMs to experimental data
and compare our results to prior published work.

Validating likelihood construction

We first validate PyBEAM’s likelihood construction. We
do this for three of the models discussed in Section
“Pre-coded EAMs”: the simple DDM, the leakage EAM, and
the Weibull changing thresholds model. For each model, we
generate 100 random parameter sets similar to those seen in
experiment, then simulate 250 data points for each set using
Eq. 1. Using the data generated from each model, we cal-
culated the total log-likelihood of the data sets using both
the analytic solution discussed in the introduction and the
PyBEAM numerical approach. The analytic solution was
pulled from Drugowitsch’s lab github (https://github.com/
DrugowitschLab/dm). The results of this are shown in Fig. 2.

In Panel A, we display the analytic log-likelihood
(LLanalytic) versus the PyBEAM numerical log-likelihood
(LLPyBEAM, Def) for all parameter sets in red dots. The solid
black line indicates the graphical location where the ana-
lytic and PyBEAM solutions are identical. PyBEAM has
several spatial resolution settings, and we calculate the log-
likelihood for this panel using the default spatial resolution.
PyBEAMalso allows the user to increase the time resolution;
however, it has an insignificant effect on the final result. In
Panel B, we report the error in the log-likelihood as boxplots
for each model type and level of computational resolution.
The error is calculated by taking the difference between the
numerical (LLP) and analytic (LLa) solutions. We do this for
three different PyBEAM resolution settings: Def (default),
High, and Max. These results show that PyBEAM’s numer-
ical approach to calculating likelihood functions is highly
accurate in all cases. The biggest errors occur when either
the initial threshold separation is large (b ≥ 1.5), or when
the drift rate is large (μ ≥ 4). In our experience, these devi-
ations from the analytic solution have only a small effect
on parameter estimation, but if it is a concern, increas-
ing PyBEAM’s spatial resolution mitigates the problem.
Notably, thePyBEAMnumerical solution is 5-10x faster than
the analytic solution with only minimal losses in precision.

Parameter recovery

We next assess PyBEAM’s ability to perform model and
parameter recovery for EAMs of the type discussed in Sec-
tion “EAMs implemented in PyBEAM .” To do this, we first
simulate data from the model. Then, we use PyBEAM to fit
the model to the simulated data set. Lastly, we compare the
posterior distributions output by PyBEAM to the generating
parameters and the best fit choice-RT distribution to the true
distribution.

123

https://github.com/murrowma/pybeam
https://github.com/DrugowitschLab/dm
https://github.com/DrugowitschLab/dm

Behavior Research Methods

−5 0
LLPyBEAM,Def

−5

0
LL

an
al

yt
ic

1e2

1e2

A)

Def High Max Def High Max Def High Max
PyBEAM Resolution

−2

0

2

LL
P
−

LL
a

Simple DDM Leakage Weibull

B)

Fig. 2 Validation of PyBEAM likelihood construction. A) Analytic
log-likelihood (LLanalytic) versus PyBEAM’s numerical log-likelihood
(LLPyBEAM,def) of 250 simulated data points (red dots). Calculated at
PyBEAM’s default spatial resolution setting. 300 total parameter sets
were chosen, 100 each for simple DDM, the leakage EAM, and the
Weibull changing thresholds EAM. The black line indicates the graph-

ical location where the analytic and numerical solutions are equal. B)
Boxplot of the error in log-likelihood calculation for each parameter
set. Calculated as the difference between the analytic log-likelihood
(LLa) and PyBEAM numerical log-likelihood (LLP) for each model.
Def (short for default), High, and Max indicate PyBEAM’s spatial res-
olution settings, with higher resolutions resulting in smaller errors

We make a brief note that there are multiple ways to
assess the efficacy of parameter recovery. The first and
most straightforward is to determine whether the posterior
distribution found matches the generating parameters. How-
ever, models, particularly more complex ones, often present
parameter indeterminacy issues where a subspace of param-
eters can produce nearly identical model outputs. In this
case, the estimation procedure may fail to recover the exact
generating parameters but still fit the data well. This is a
consequence of the model structure and is not a failing of the
parameter estimation procedure. For this reason we visualize
both posterior parameter distributions as well as the quality
of fit to the data itself.

Simple DDM

Wefirst demonstrate parameter recovery for the simpleDDM
described in Section “Pre-coded EAMs.” Following the pro-
cedure outlined in Section “Parameter recovery,” we first
simulate 1000 data points from the model using Eq. 1.
Then, we use PyBEAM to fit the model to this synthetic
data. Results for this process are shown in Fig. 3.

Panel A of Fig. 3 compares the analytic (dashed blue) and
PyBEAM (red) likelihood functions using the known gener-
ating parameters. The results exactly overlap, demonstrating
once again that the PyBEAMapproach produces highly accu-
rate choice-RT distributions. Panel B displays the simulated
data and the posterior predictive fit given by PyBEAM. In
this example and all going forwards, we generate the poste-
rior predictive by drawing 100 random parameter sets from
the PyBEAM posteriors and plotting the likelihood function
generated by each parameter set (red). The posterior predic-
tive displays the range of likelihood distributions which fit
the data, providing an approximation of the variance in fit.
In this case, the posterior predictive describes the data set

well, with little variation between the predicted likelihood
function and data.

The remaining panels C1-C4 display the model parameter
posteriors generated by PyBEAM. The vertical blue lines
indicate the true parameter values of the simulated data sets,
while the grey histograms are the posteriors. These results
show parameter recovery is excellent for the simple DDM.
In addition, PyBEAM is able to recover parameters quickly,
with an approximate run time for this experiment of less than
one minute on a 2020 Macbook Pro.

Full DDM

The second model we recover parameters from is the full
DDM discussed in Section “Pre-coded EAMs.” This is a
simple DDMwith across-trial variability included in the drift
rate, start point, and non-decision time. For this validation,
we choose to use a normal distribution for the drift rate, a
uniform distribution for the start point, and a truncated nor-
mal distribution for the non-decision time. We truncate the
normal distribution in the non-decision time so that no val-
ues go below zero. We use the same procedure as the simple
DDM validation, simulating 1000 data points which we then
fit with PyBEAM. Results for this validation are shown in
Fig. 4.

Panel A of Fig. 4 compares the likelihood function gen-
erated by PyBEAM (red) to 100,000 simulated data points
(blue histogram) using the known generating parameters.
PyBEAM closely matches the simulated data, demonstrating
that PyBEAM accurately reproduces the choice-RT distribu-
tion. PanelBdisplays the simulated data (grey) andPyBEAM
posterior predictive (red), demonstrating that PyBEAM’s
parameter estimation closely fits the simulated data.

The remaining Panels C1-C7 display the model parameter
posteriors generated by PyBEAM. Vertical blue lines indi-

123

Behavior Research Methods

−2 0 2
Time (s)

A) Likelihood Val.
PyBEAM
Analytic

−2 0 2
Time (s)

B) Posterior Pred.
PyBEAM
Data

0.2 0.3 0.4
Nd. Time (tnd)

C1) Posteriors
True
Post.

0.4 0.6
Rel. Start (w)

C2)

0.5 1.0 1.5
Drift (μ)

C3)

0.60 0.75 0.90
Thres. Start (b)

C4)

Fig. 3 Results from the simple DDM parameter recovery example. A)
Likelihood function validation for the simple DDM. The red line is the
PyBEAM numerical solution, while the blue dashed line is the analytic
solution (Navarro & Fuss, 2009). B) PyBEAM posterior predictive.
Red lines are the PyBEAM solutions, while the grey bars are the 1000
simulated data points. C) PyBEAM posteriors for each of the simple

DDM’s parameters. Grey bars are the PyBEAM posteriors, while the
blue lines are the true values used to generate the data. C1 displays
the non-decision time posterior, with a true value of tnd = 0.25. C2
displays the relative start point posterior, with a true value of w = 0.5.
C3 displays the drift rate posterior, with a true value of μ = 1.0. C4
displays the decision threshold posterior, with a true value of b = 0.75

cate the trueparameter values of the simulateddata sets,while
the grey histograms are the PyBEAMposteriors. Recovery of
non-decision time, start point, and drift parameters is good.
Recovery of across-trial variability parameters, which are
known to be difficult to recover (Boehm et al., 2018), is how-
ever more complex and beyond the scope of this article.

The run time needed to recover parameters is approxi-
mately 7minutes on a 2020Macbook Pro. This is about a 10x
slowdownwhen compared to the simpleDDMrecovery. This
increase in run time is due to inclusion of across-trial vari-
ability in the drift rate. As discussed in Section “Across-trial
variability,” including across-trial variability in the drift rate
involves an integration overmany likelihood functionswhich
covers the distribution of drift rates. We find that Nμ = 10
integration points is sufficient for parameter recovery, mean-
ing that we need to solve for 10 likelihood functions, leading
to our 10x slowdown.Across-trial variability in the start point
contributes nothing to the run time, while the non-decision
variability causes only a tiny increase in run time.

Leaky integration

The third model we recover parameters from is the leakage
model discussed in Section “Pre-coded models.” Recovering
the leakage parameter from a single condition EAM can be

challenging, so we instead simulate a slightly more compli-
cated data set with two conditions: low decision threshold
b1 (condition 1) and high decision threshold b2 (condition
2). This mimics a speed/accuracy trade-off scenario. The
remaining parameters are shared between the two conditions
and only the threshold parameter b differs between the two
simulated conditions.

To validate PyBEAM’s parameter recovery for the leak-
age EAM, we follow the process outlined at the beginning
of the results section. We simulate 500 data points for
each condition (1000 total data points). Then, we use
PyBEAM to find the model parameters which best describe
this data. We report the results of parameter recovery in
Fig. 5.

In panel groups A and B of Fig. 5, we report the likelihood
validation and posterior predictive plots for condition 1 (low
b) and condition 2 (high b), respectively. As with the previ-
ous example, likelihood validation compares the PyBEAM
likelihood to the analytic (Buonocore, Giorno, Nobile, &
Ricciardi, 1990; Smith, 2000) for the known generating
parameters while the posterior predictive panels compare
the data to the RT distributions resulting from the PyBEAM
model fits. Results demonstrate that once again, PyBEAM
produces highly accurate likelihood functions and fits the
generating data well.

123

Behavior Research Methods

Fig. 4 Results from the DDM parameter recovery example. A) Like-
lihood function validation for the DDM. The red line is the PyBEAM
numerical solution, while the blue histogram contains 100,000 simu-
lated data points. B) PyBEAM posterior predictive. Red lines are the
PyBEAM solutions, while the grey bars are the 1000 simulated data
points.C) PyBEAMposteriors for each of the DDM’s parameters. Grey
bars are the PyBEAMposteriors, while the blue lines are the true values
used to generate the data. C1 displays the posterior for the mean of the
non-decision time distribution, with true value tnd = 0.25. C2 displays

posterior for the standard deviation in the non-decision time, with true
value sdtnd = 0.1. C3 displays the posterior for the relative start dis-
tribution’s center, with true value w = 0.5. C4 displays the posterior
for the relative start distribution’s width, with true value sdw = 0.75.
C5 displays the posterior for the drift rate distribution’s mean, with true
value μ = 1.0. C6 displays the posterior for the standard deviation
in the drift rate, with true value sdμ = 1.5. C7 displays the decision
threshold posterior, with true value b = 0.75

Panel group C displays the posteriors for both fits. We
find that the shared parameters - non-decision time, rela-
tive start, drift, and leakage - have posteriors (grey) which
closely match the true values (blue lines). The individual
caution parameters b1 and b2 also match expectation closely.
Parameter recovery is once again highly efficient, taking
approximately a minute on a 2020 MacBook Pro.

Changing decision thresholds

We next use PyBEAM to recover parameters from the
changing thresholds model. Specifically, we use the Weibull
decision thresholds described in Section “Pre-coded mod-

els.” To validate PyBEAM’s parameter recovery for this
model, we again follow the methodology described at the
beginning of the results. First, we choose our parameters.
Since the Weibull threshold is capable of producing both
logistic and exponential thresholds, we choose two param-
eter sets to replicate these behaviors: one with κ > 1 and
one with κ < 1. The Weibull threshold is also able to pro-
duce varying amounts of collapse via the c parameter. For
convenience, for both parameter sets, we fix this at c = −1,
indicating that the thresholds will collapse to zero. We sim-
ulate 1000 data points for each parameter set. We then use
PyBEAM to recover parameters from the simulated data. The
parameter recovery results are shown in Fig. 6.

123

Behavior Research Methods

−1 0 1
Time (s)

A1) Like. Val.
PyBEAM
Analytic

−1 0 1
Time (s)

A2) Post. Pred.
PyBEAM
Data

−5 0 5
Time (s)

B1) Like. Val.

−5 0 5
Time (s)

B2) Post. Pred.

0.2 0.4
Nd. Time (tnd)

C1) Posteriors
True
Post.

0.25 0.50 0.75
Rel. Start (w)

C2)

0.5 1.0 1.5
Drift (μ)

C3)

0 5 10
Leakage (ł)

C4)

0.25 0.50 0.75
Threshold 1 (b1)

C5)

0.5 1.0
Threshold 2 (b2)

C6)

Fig. 5 Results from the leaky integration example. A) Likelihood val-
idation (A1) and posterior predictive (A2) for condition 1, low caution.
In A1, we plot the PyBEAM solution in red and the analytic solu-
tion in blue. In A2, the PyBEAM data fit is in red while the simulated
data is grey. B) Likelihood validation (B1) and posterior predictive
(B2) for condition 2, high caution. Colors have same meaning as in A.
C) Posteriors for both conditions. Vertical blue lines indicate the true

parameter values, while the grey bars are the PyBEAM posteriors. The
non-decision time (C1), relative start (C2), drift (C3), and leakage (C4)
posteriors are shared between conditions with true values of tnd = 0.25,
w = 0.5, μ = 1, and l = 3, respectively. The threshold locations for
the low caution b1 and high caution b2 conditions are displayed in C5
and C6, with true values of b1 = 0.5 and b2 = 0.75, respectively

Panel groupsA andBdisplay the likelihood validation and
posterior predictive (described in Section “Simple DDM”)
for the κ > 1 and κ < 1 parameter sets, respectively. In both
cases, the PyBEAM numerical solution produces the same
result as the analytic solution, and the posterior predictive
matches the data set closely. Panel group C displays the pos-
terior predictive for the threshold itself in each case. The blue
line corresponds to the true threshold, while the red lines are
generated by drawing 100 random random parameter sets
from the posterior and plotting their threshold shape. In both
the κ > 1 and κ < 1 cases, the posterior produces time vary-
ing thresholds that closely match that used to generate the
data.

Panel groups D and E display the posteriors for the κ > 1
and κ < 1 parameter sets, respectively. As discussed in

Section “Pre-coded models,” for the scale λ and shape κ

parameters, we sampled from and report here the log of
these parameter values. Both have large reasonable parame-
ter regimes, so sampling in log space guarantees we get good
coverage of all possible parameter space.

For the κ > 1 case, we see good agreement between
the true parameter values (blue) and the PyBEAM predic-
tion (grey histogram). However, for the κ < 1 case, the
posteriors predictive for the threshold is slightly different
than that of the simulated values, even though the likelihood
and threshold recovery from panel groups B and C are very
good. This is the result of parameter sloppiness inherent to
theWeibull thresholdmodel, wheremultiple parameter com-
binations can produce similar likelihood functions. Though
this is a common problem with the Weibull model, particu-

123

Behavior Research Methods

−1 0 1
Time (s)

κ> 1

A1) Like. Val.
PyBEAM
Analytic

−1 0 1
Time (s)

A2) Post. Pred.
PyBEAM
Data

−2.5 0.0 2.5
Time (s)

κ< 1

B1) Like. Val.

−2.5 0.0 2.5
Time (s)

B2) Post. Pred.

0 1 2
Time (s)

κ> 1

C) Threshold Recovery
PyBEAM
True

0 2
Time (s)

κ< 1

0.2 0.4
Nd. Time (tnd)

κ> 1

D1) Posteriors
True
Post.

0.25 0.50 0.75
Rel. Start (w)

D2)

0.5 1.0 1.5
Drift (μ)

D3)

0.5 1.0 1.5
Thres. Start (b)

D4)

−0.1 0.0 0.1
Log Shape (log10λ)

D5)

0.0 0.5 1.0
Log Shape (log10κ)

D6)

0.2 0.4
Nd. Time (tnd)

κ< 1

E1) Posteriors
True
PyBEAM

0.25 0.50 0.75
Rel. Start (w)

E2)

0.5 1.0 1.5
Drift (μ)

E3)

1 2
Thres. Start (b)

E4)

0 1 2
Log Shape (log10λ)

E5)

−1 0 1
Log Shape (log10κ)

E6)

Fig. 6 Results from the changing thresholds example. A) Likelihood
validation and posterior predictive for the κ > 1 parameter set. In Panel
A1, we plot the PyBEAM likelihood function in red and the analytic
likelihood function in blue. InPanelA2, thePyBEAMlikelihoodpredic-
tions are in redwhile the simulated data is grey.B)Likelihood validation
(B1) and posterior predictive (B2) for the κ < 1 parameter set. Col-
ors have same meaning as in A. C) Predicted thresholds for both the
κ > 1 and κ < 1 parameter sets. Red lines show the PyBEAMpredicted
thresholds, while the blue line is the true threshold. D) Posteriors for
the κ > 1 parameter set. Blue lines indicate the true parameter values,
while the PyBEAM posteriors are grey. D1 contains the non-decision
time posterior, with true value tnd = 0.25. D2 contains the relative start

posterior, with true value w = 0.5. D3 contains the drift rate posterior,
with true value μ = 1. D4 contains the threshold start posterior, with
true value b = 1. D5 contains the log of the shape parameter, with true
value λ = 1. D6 contains the log of the scale parameter, with true value
κ = 3. E) Posteriors for the κ < 1 parameter set. Blue lines indicate
the true parameter values, while the PyBEAM posteriors are grey. E1
contains the non-decision time posterior, with true value tnd = 0.25.
E2 contains the relative start posterior, with true value w = 0.5. E3
contains the drift rate posterior, with true value μ = 1. E4 contains the
threshold start posterior, with true value b = 1. E5 contains the log of
the shape parameter, with true value λ = 5. D6 contains the log of the
scale parameter, with true value κ = 0.67

123

Behavior Research Methods

larly in the κ < 1 parameter regime, it doesn’t significantly
affect the interpretation of the results. Different parameter
sets produce qualitatively similar decision thresholds.

Urgency gating model with changing information

The final model we recover parameters from is the UGM
with time changing stimulus information described in Sec-
tion “Custom models in PyBEAM.” In this model, the drift
rate takes the form of Eq. 11, where stimulus information
changes from positive to negative at time tflip. Note that since
this is a more complex synthetic experimental design (time
changing stimuli), fits here are implemented with the custom
component of PyBEAM. We fit the model for two data con-
ditions: high drift (condition 1) and low drift (condition 2),
corresponding to high and low quality stimulus information,
respectively. The reamining parameters are shared between
conditions. To validate PyBEAM’s parameter recovery for
the UGM with changing information, we simulate 500 data

points for each condition (1000 total data points). As before,
we then use PyBEAM to find the model parameters which
best describe this data. We report the results of parameter
recovery in Fig. 7.

In Panels A1 and B1, we display the likelihood validation
for data conditions 1 and 2, respectively. Since the UGM
has no analytic solution, we instead simulate 100,000 data
points from the model for each condition (blue histograms)
to compare our numerical result to (red). In both cases, the
PyBEAM likelihood is once again highly accurate. In Panels
A2 and B2, we report the posterior predictive for conditions
1 and 2, respectively. PyBEAM once again performs well at
fitting the data.

In Panel group C we report the posteriors output by
PyBEAM. In Panels C3 and C4, we report the drift rate pos-
teriors for condition 1 and condition 2, respectively. Panel C7
contains the posterior for the time at which stimulus infor-
mation changes. The other panels contain the posteriors for
the remaining UGM parameters shared between conditions.

−2 0 2
Time (s)

A1) Like. Val. 1
PyBEAM
Sim.

−2 0 2
Time (s)

A2) Post. Pred. 1
PyBEAM
Data

−2.5 0.0 2.5
Time (s)

B1) Like. Val. 2

−2.5 0.0 2.5
Time (s)

B2) Post. Pred. 2

0.2 0.4
Nd. Time (tnd)

C1) Posteriors
True
Post.

0.25 0.50 0.75
Rel. Start (w)

C2)

1.5 2.0 2.5
Drift 1 (μ1)

C3)

0.0 0.5 1.0
Drift 2 (μ2)

C4)

0 5 10
Leakage (l)

C5)

0 1 2
Urgency (k)

C6)

0.25 0.50 0.75
Flip Time (tflip)

C7)

0 1 2
Threshold (b)

C8)

Fig. 7 Results from the UGM with changing information example. A)
Likelihood validation (A1) and posterior predictive (A2) for condition
1, high drift rate. In panel A1, we plot the PyBEAM solution in red and
100,000 simulated data points in blue. In panel A2, the PyBEAMdata fit
is in red while the simulated data is grey. B) Likelihood validation (B1)
and posterior predictive (B2) for condition 2, low drift rate. Colors have
same meaning as in A. C) Posteriors for all conditions. Blue indicates
the true parameter value, while grey are the PyBEAM posteriors. C1

contains the non-decision time posterior, with true value tnd = 0.25. C2
contains the relative start posterior, with true value w = 0.5. C3 con-
tains the drift rate posterior for condition 1, with true value μ = 2. C4
contains the drift rate posterior for condition 2, with true valueμ = 0.5.
C5 contains the leakage posterior, with true value l = 5. C6 contains
the urgency posterior, with true value k = 1. C7 contains the flip time
posterior, with true value tflip = 0.5. C8 contains the decision threshold
posterior, with true value b = 1

123

Behavior Research Methods

For all cases, the posteriors (grey) match the true data values
(blue) well, indicating effective parameter recovery.

Application to data

Since real data is always messier than simulated data, we
last demonstrate the use of PyBEAM to perform parame-
ter inference using choice-RT experimental data collected
by Evans, Hawkins, and Brown, 2020. This data set consists
of three different experiments. In each, participants made
decisions about direction of dot motion in a random dot
kinematogram presented at different coherences: 0%, 5%,
10%, and 40%. In the first experiment, sixty-three partici-
pants were instructed to maximize reward rate; in the second
experiment, seventy-one participants were given a decision
deadline; and in the third experiment, one hundred and fifty-
four participants were instructed to emphasize speed. The
goal of these experiments was to examine if and when par-
ticipants might utilize collapsing thresholds. To answer this
questions, they used a hierarchical Bayesian approach to fit

three evidence accumulation models to their data: the sim-
ple DDM discussed in Section “Pre-coded EAMs,” the full
DDM, and a simple DDM with Weibull decision thresholds.

Our goal here is to fit models with and without changing
thresholds to each of these data sets and compare results
to those obtained by Evans, Hawkins, and Brown, 2020.
Specifically, we choose to fit the DDM (excluding across-
trial variability in the drift rate, but including across-trial
variability in the start point and non-decision times) and
Weibull changing thresholds models. We refer to these in
the rest of this section as the flat and Weibull models,
respectively. The purpose here is not to study the psycho-
logical question motivating their work. Rather, the purpose
is to assess the efficacy of this method and compare its
conclusions to theirs. Their modeling approach would be
considered the “gold standard” for this type of modeling.
Thus, we use it as a point of comparison while noting that:
1) their implementation utilized fully custom code compared
to PyBEAM’s more user friendly package approach, and 2)
PyBEAMis likely faster than their analytic solution approach

0 1
Data CP

0.0

0.5

1.0

M
od

el
 C

P

R2 = 0.99
Flat

A1) Experiment 1 CP
0%

0 1
Data CP

R2 = 0.99
Weib.

5%

0 2
Data RT (s)

R2 = 0.97
Flat

A2) Experiment 1 Average RT
10%

0 2
Data RT (s)

0

1

2

3

M
od

el
 R

T
(s

)

R2 = 0.96
Weib.

40%

0 1
Data CP

0.0

0.5

1.0

M
od

el
 C

P

R2 = 0.99
Flat

B1) Experiment 2 CP

0 1
Data CP

R2 = 0.98
Weib.

0 1
Data RT (s)

R2 = 0.96
Flat

B2) Experiment 2 Average RT

0 1
Data RT (s)

0.0

0.5

1.0
M

od
el

 R
T

(s
)

R2 = 0.96
Weib.

0 1
Data CP

0.0

0.5

1.0

M
od

el
 C

P

R2 = 0.98
Flat

C1) Experiment 3 CP

0 1
Data CP

R2 = 0.97
Weib.

0 2
Data RT (s)

R2 = 0.96
Flat

C2) Experiment 3 Average RT

0 2
Data RT (s)

0

1

2

3

M
od

el
 R

T
(s

)

R2 = 0.95
Weib.

Fig. 8 Choice proportion (CP) and average choice-RT results from
PyBEAM for both the flat threshold andWeibull threshold models. The
flat model is a DDM (excluding across-trial variability in drift), while
the Weibull model is a simple DDM with Weibull decision thresholds.
Panels plot the model predictions on the vertical axis and the data val-
ues on the horizontal axis. All three experiments share the same legend

displayed in the plot’s first row. The text on the figure indicates which
model is used, either the flat threshold or Weibull thresholds (Weib.),
and the correlation coefficient R2 of themodel and data.A)CP (A1) and
choice-RT (A2) results for Experiment 1. B) CP (B1) and choice-RT
(B2) results for Experiment 2. C) CP (C1) and choice-RT (C2) results
for Experiment 3

123

Behavior Research Methods

(Buonocore, Giorno, Nobile, & Ricciardi, 1990; Smith,
2000). Though we cannot directly compare the compu-
tational speed of PyBEAM to the Evan’s approach, the
numerical integration required by it scales quadratically
with changes in resolution (Buonocore, Nobile, & Ricciardi,
1987),whileCrank-Nicolson’s speed scales linearlywith res-
olution. In our experience, this results in a 5-10x slowdown
when compared to the PyBEAM approach.

We do make a few notable changes in our fitting method-
ology compared to that in Evans, Hawkins, andBrown, 2020.
First, we do not use a hierarchical approach and instead fit
the model to each individual. It is in principle possible to
extend PyBEAM to fit hierarchical models, but this is left
for future development. Second, we model across-trial vari-
ability in only the non-decision time and start point. We do
this since, 1) two of the models fit by Evans did not include
any across-trial variability, 2) across-trial variability in the
drift rate is computationally taxing using our methodology,
and 3) across-trial variation in the drift rate is usually not
recoverable (Boehm et al., 2018).

We first examine the Choice Proportion (CP) and choice-
RT predictions of the model in Fig. 8. Panel groups A1, B1,
and C1 compare the CP predicted by the model to that of
the data for Experiments 1, 2, and 3, respectively. For all
three Experiments, we find good model fits, with correla-
tion coefficients R2 far exceeding 0.9. Additionally, for all
three models, the correlation between model and data is very
similar for both the flat and Weibull decision thresholds.

Panel groups A2, B2, and C2 compare the average choice-
RTof themodel to that of the data for Experiments 1, 2, and 3,
respectively. For all three Experiments, bothmodels describe
the data well, with R2 values for both exceeding 0.9. As with
the CP graphs, we find that correlation between model and
data is very similar for both the flat and Weibull decision
thresholds.

In addition to reporting CP and choice-RT data compar-
ison, we also report DIC values for each model in Fig. 9.

Specifically, we plot the absolute difference in DIC between
the flat thresholds (DICf) and theWeibull thresholds (DICw).
If this value is positive, the changing thresholds model is pre-
ferred; if it is negative, the flat threshold is preferred.

We see that, for Experiment 1, the majority of partici-
pants favored the flat thresholds model. For Experiment 2,
the majority of participants favored the changing thresh-
olds model. For Experiment 3, there is roughly an even split
between those which favored the flat and changing threshold
models, with a majority preferring the changing thresholds
model. Our DIC results also match closely to those deter-
mined by Evans. Similar numbers of participants were found
to prefer the flat and Weibull threshold models, as shown
by Evans in Fig. 2 of their publication (Evans, Hawkins, &
Brown, 2020).

We last report the decision thresholds predicted by both
the flat andWeibull models in Fig. 10. In the first row, we dis-
play the threshold which produces themax log-likelihood for
each participant. In row two, we display the average thresh-
old, calculated by averaging together all of the participants’
decision thresholds. We find that, for Experiment 1, little
collapse occurs for most participants early on in the decision
process. It is not until the tail end of the RT distributions
that substantial collapse is seen. Thus, for most data points,
the decision threshold is similar to that of the flat threshold
model. This matches well with the CP and choice-RT anal-
yses which indicated that there was no distinct preference
for the changing threshold model over the flat thresholds.
Notably, the shape of the average threshold is comparable to
that of Evan’s results (shown in Fig. 2 of their publication
(Evans, Hawkins, & Brown, 2020)).

In Experiment 2, we see that all participants exhibit
thresholds which collapse substantially, suggesting that a
changing threshold may best describe the data. This matches
the results of the CP, choice-RT, and DIC results which
indicated that changing thresholds are the preferred model.
This also matches the results of Evans, which indicated that

10 30 50
Participants

−102
−101

−100
100

101
102

D
IC

F
−

D
IC

W

A) Experiment 1

10 25 40
Participants

−102
−101

−100

100

101

102
B) Experiment 2

10 40 70 100
Participants

−102
−101

−100

100

101

102
C) Experiment 3

Fig. 9 Absolute difference between the flat threshold DIC (DICf) and
the Weibull threshold DIC (DICw) for Experiment 1 (A), Experiment 2
(B), and Experiment 3 (C). The flat model is a DDM (excluding across-
trial variability in drift), while theWeibull model is a simple DDMwith

Weibull decision thresholds. Participants are ordered by how the large
this difference is, with smallest on the left and largest on the right. If the
absolute difference is positive, theWeibull model is favored. If negative,
the flat model is favored

123

Behavior Research Methods

0

1

2

3

A) Experiment 1

0

1

2

B) Experiment 2

0

1

2

3
C) Experiment 3

0.0 2.5 5.0
Time(s)

0

1

2

3

U
pp

er
 D

ec
is

io
n

Th
re

sh
ol

d

0.0 0.5 1.0 1.3
Time(s)

0

1

2

0.0 2.5 5.0
Time(s)

0

1

2

3

Fig. 10 Upper decision thresholds predicted by the model for Experi-
ment 1 (A), Experiment 2 (B), and Experiment 3 (C) versus time. The
upper and lower thresholds are symmetric, so the upper is only displayed
here.Black lines are for the flatmodel (DDMexcluding across-trial vari-

ability), while the red lines are for theWeibull model (simpleDDMwith
Weibull thresholds). The first row displays the decision thresholds for
each participant, while the second row averages all decision thresholds
together

Experiment 2 had the clearest support for changing decision
thresholds.

Lastly, in Experiment 3, we observe decision thresholds
which vary substantially from one participant to the next. For
this data set, some participants had mean choice-RTs near a
second, while others had mean choice-RTs upwards of three
and four seconds. This difference in response time produces
dramatically different thresholds for each individual which
makes describing the average behavior challenging. In spite
of this, the average threshold we calculate is very similar to
that determined byEvans (shown in Fig. 2 of their publication
(Evans, Hawkins, & Brown, 2020)). Further, it also supports
the conclusions of the CP, choice-RT, and DIC results which
suggested that Experiment 3 had no clear model preference.

Limitations of approach

While, based on our understanding of the literature, the
approach presented here has the greatest combination of
accuracy, efficiency, and generality of methods for fitting
EAMs, it does have a number of limitations. The largest cur-
rent limitation is that we do not yet implement hierarchical
models, which are increasingly common in this literature.
This is neither a theoretical nor a computational limitation.
Rather, it is a result of the way PyMC computationally
handles the back-end of hierarchical models with its rel-
atively new differential evolution sampler. We do not go
into detail here since it is mainly a computational structure

issue. However, we investigated this in detail, and the like-
lihood generation approach and implementation here can be
directly usedwith hierarchicalmodelswithout alterationwith
an appropriate sampler. We could write such a sampler (and
have one for personal use in Matlab), however that would
reduce the usability of this approach significantly and we
wanted to work within the confines of PyMC capabilities.

A second limitation is that this approach does not eas-
ily allow for across-trial variability in drift rates, which is
commonly invoked for the DDM. As discussed, variability
in non-decision time and start point are easily included with
little appreciable computational cost. Drift rate variability is
howevermore complicated.We could take the same approach
of HDDM (Wiecki, Sofer, & Frank, 2013) and integrate
over these distributions; however, that would significantly
increase compute cost (as it does with HDDM). For general
models, it is not clear if such a feature would be identifiable
and thus we have not yet included it. There is however a
direct path do doing so in the future if it becomes necessary
or compute capabilities reduce the cost of doing so.

Discussion

Evidence Accumulation Models are one of the most domi-
nant classes of computational models used to study decision
making behavior. However, to date, few tools are available
which allow researchers to study complex EAMs. Further,
Bayesian methods have generally been too slow for prac-

123

Behavior Research Methods

tical use, restricting model fitting to techniques like max
log-likelihood or quantile maximization.

In this work, we introduced the Python package PyBEAM
to provide an easy to use tool for Bayesian inference of
complex EAMs. Unlike previous methods which have either
generated likelihood functions using simulated SDEs or slow
analytic solutions, PyBEAM instead uses a Fokker-Planck
equation, dramatically improving both accuracy and speed.
In addition to being fast, it increases flexibility by allowing
custom inputs for the drift rate, diffusion rate, and decision
thresholds. PyBEAM then pairs this likelihood construction
method with the Python package PyMC (Salvatier, Wiecki,
& Fonnesbeck, 2016) for rapid Bayesian inference of model
parameter sets. Using PyBEAM, more complex models can
be fit to data with both high precision and high speed. Fur-
ther, to make this type of modeling accessible to others, we
provide a Python based package which allows exploration of
complex models with a relatively low cost of entry. Our hope
is that this framework will allow a wider array of researchers
to explore more complex hypotheses (encoded in models)
using more complex experimental designs.

Supplementary Information The online version contains supplemen-
tary material available at https://doi.org/10.3758/s13428-023-02162-
w.

References

Boehm, U., Annis, J., Frank, M. J., Hawkins, G. E., Heathcote, A.,
Kellen, D., ... Wagenmakers, E.-J. (2018). Estimating across-trial
variability parameters of the Diffusion Decision Model: Expert
advice and recommendations. Journal of Mathematical Psychol-
ogy, 87, 46–75. https://doi.org/10.1016/j.jmp.2018.09.004

Boehm, U., Cox, S., Gantner, G., & Stevenson, R. (2021). Fast solu-
tions for the first-passage distribution of diffusion models with
space-time-dependent drift functions and time-dependent bound-
aries. Journal of Mathematical Psychology, 105, 102613. https://
doi.org/10.1016/.jmp.2021.102613

Boehm, U., Cox, S., Gantner, G., & Stevenson, R. (2022). Efficient
numerical approximation of a non regular fokker-planck equation
associated with first passage time distributions. BIT Numeri-
calMathematics, 62, 1355–1382. https://doi.org/10.1007/s10543-
022-00914-2

Braak, C. J. F. T. (2006). A markov chain monte carlo version of the
genetic algorithm differential evolution: Easy bayesian computing
for real parameter spaces. Statistics and Computing, 16, 239–249.
https://doi.org/10.1007/s11222-006-8769-1

Braak, C. J. F. T., & Vrugt, J. A. (2008). Differential evolution markov
chain with snooker updater and fewer chains. Statistics and Com-
puting, 18, 435–446. https://doi.org/10.1007/s11222-008-9104-9

Brown, S. D., & Heathcote, A. (2008). The simplest complete model
of choice response time: Linear ballistic accumulation. Cognitive
Psychology, 57(3), 153–178. https://doi.org/10.1016/j.cogpsych.
2007.12.002

Buonocore, A., Giorno, V., Nobile, A. G., &Ricciardi, L.M. (1990). On
the two-boundary first-crossing-time problem for diffusion pro-
cesses. Journal of Applied Probability, 27(1), 102–114. https://
doi.org/10.2307/3214598

Buonocore, A., Nobile, A. G., &Ricciardi, L.M. (1987). A new integral
equation for the evaluation of first-passage-time probability densi-
ties. Advances in Applied Probability, 19(4), 784–800. https://doi.
org/10.2307/1427102

Busemeyer, J. R., Gluth, S., Rieskamp, J., & Turner, B. M.
(2019). Cognitive and neural bases of multi-attribute, multi-
alternative, value-based decisions. Trends Cogn Sci, 23(3), 251–
263

Chandrasekaran, C., & Hawkins, G. E. (2019). Chartr: An r toolbox
for modeling choice and response times in decision-making tasks.
Journal of Neuroscience Methods, 328. https://doi.org/10.1016/j.
jneumeth.2019.108432

Cisek, P., Puskas, G. A., & El-Murr, S. (2009). Decisions
in changing conditions: The urgency-gating model. Psycho-
logical Review, 29(37), 11560–11571. https://doi.org/10.1523/
JNEUROSCI.1844-09.2009

Crank, J. (1984). Free and moving boundary problems. Oxford Univer-
sity Press.

Crank, J., & Nicolson, P. (1947). A practical method for numerical
evaluation of solutions of partial differential equations of the heat-
conduction type. Cambridge University Press, 50–67,. https://doi.
org/10.1017/S0305004100023197

Demetropolis(z): Population vs. history efficiency comparison. (2022,
March). https://docs.pymc.io/en/v3/pymc-examples/examples/
samplers/DEMetropolisZ_EfficiencyComparison.html

Drugowitsch, J., Moreno-Bote, R., Churchland, A. K., Shadlen, M. N.,
& Pouget, A. (2012). The cost of accumulating evidence in per-
ceptual decision making. The Journal of Neruoscience, 32(11),
3612–3628. https://doi.org/10.1523/JNEUROSCI.4010-11.2012

Dutilh, G., Annis, J., Brown, S. D., Cassey, P., Evans, N. J., Grasman, R.
P., ... others (2019). The quality of response time data inference:
A blinded, collaborative assessment of the validity of cognitive
models.Psychonomic bulletin&review, 26(4), 1051–1069. https://
doi.org/10.3758/s13423-017-1417-2

Evans, N. J., Brown, S. D., Mewhort, D. J. K., & Heathcote, A. (2018).
Refining the law of practice. Psychological review, 125(4), 592–
605. https://doi.org/10.1037/rev0000105

Evans, N. J., Hawkins, G. E., &Brown, S. D. (2020). The role of passing
time in decision-making. Journal of Experimental Psychology:
Learning, Memory, and Cognition, 46(2), 316–326. https://doi.
org/10.1037/xlm0000725

Evans, N. J., Holmes, W. R., Dasari, A., & Trueblood, J. S. (2021). The
impact of presentation order on attraction and repulsion effects
in decision-making. Decision, 8(1), 36. https://doi.org/10.1037/
dec0000144

Evans, N. J., Holmes, W. R., & Trueblood, J. S. (2019). Response-
time data provide critical constraints on dynamic models of multi-
alternative, multi-attribute choice. Psychon Bull Rev, 26(3), 901–
933. https://doi.org/10.3758/s13423-018-1557-z

Evans, N. J., Trueblood, J. S., & Holmes, W. R. (2020). A parameter
recovery assessment of time-variant models of decision-making.
Behavior research methods, 52(1), 193–206. https://doi.org/10.
3758/s13428-019-01218-0

Fengler, A., Bera, K., Pedersen, M. L., & Frank, M. J. (2022). Beyond
Drift Diffusion Models: Fitting a Broad Class of Decision and
Reinforcement Learning Models with HDDM. Journal of Cog-
nitive Neuroscience, 34(10), 1780–1805. https://doi.org/10.1162/
jocn_a_01902

Fengler, A., Govindarajan, L.N., Chen, T., & Frank, M.J. (2021).
Likelihood approximation networks (lans) for fast inference of
simulation models in cognitive neuroscience. eLife, 10, e65074.
https://doi.org/10.7554/eLife.65074

Fontanesi, L., Gluth, S., Spektor, M., & Rieskamp, J. (2019). A
reinforcement learning diffusion decision model for value-based
decisions. Psychon Bull Rev, 26, 1099–1121. https://doi.org/10.
3758/s13423-018-1554-2

123

https://doi.org/10.3758/s13428-023-02162-w
https://doi.org/10.3758/s13428-023-02162-w
https://doi.org/10.1016/j.jmp.2018.09.004
https://doi.org/10.1016/.jmp.2021.102613
https://doi.org/10.1016/.jmp.2021.102613
https://doi.org/10.1007/s10543-022-00914-2
https://doi.org/10.1007/s10543-022-00914-2
https://doi.org/10.1007/s11222-006-8769-1
https://doi.org/10.1007/s11222-008-9104-9
https://doi.org/10.1016/j.cogpsych.2007.12.002
https://doi.org/10.1016/j.cogpsych.2007.12.002
https://doi.org/10.2307/3214598
https://doi.org/10.2307/3214598
https://doi.org/10.2307/1427102
https://doi.org/10.2307/1427102
https://doi.org/10.1016/j.jneumeth.2019.108432
https://doi.org/10.1016/j.jneumeth.2019.108432
https://doi.org/10.1523/JNEUROSCI.1844-09.2009
https://doi.org/10.1523/JNEUROSCI.1844-09.2009
https://doi.org/10.1017/S0305004100023197
https://doi.org/10.1017/S0305004100023197
https://docs.pymc.io/en/v3/pymc-examples/examples/samplers/DEMetropolisZ_EfficiencyComparison.html
https://docs.pymc.io/en/v3/pymc-examples/examples/samplers/DEMetropolisZ_EfficiencyComparison.html
https://doi.org/10.1523/JNEUROSCI.4010-11.2012
https://doi.org/10.3758/s13423-017-1417-2
https://doi.org/10.3758/s13423-017-1417-2
https://doi.org/10.1037/rev0000105
https://doi.org/10.1037/xlm0000725
https://doi.org/10.1037/xlm0000725
https://doi.org/10.1037/dec0000144
https://doi.org/10.1037/dec0000144
https://doi.org/10.3758/s13423-018-1557-z
https://doi.org/10.3758/s13428-019-01218-0
https://doi.org/10.3758/s13428-019-01218-0
https://doi.org/10.1162/jocn_a_01902
https://doi.org/10.1162/jocn_a_01902
https://doi.org/10.7554/eLife.65074
https://doi.org/10.3758/s13423-018-1554-2
https://doi.org/10.3758/s13423-018-1554-2

Behavior Research Methods

Frazier, P.I., & Yu, A.J. (2007). Sequential hypothesis test-
ing under stochastic deadlines. NIPS, 465–472. Retrieved
from https://proceedings.neurips.cc/paper/2007/file/
9c82c7143c102b71c593d98d96093fde-Paper.pdf

Hawkins, G. E., Forstmann, B. U., Wagenmakers, E. J., Ratcliff, R.,
& Brown, S. D. (2015). Revisiting the evidence for collapsing
boundaries and urgency signals in perceptual decision-making.
The Journal of Neuroscience, 35(6), 2476–2484. https://doi.org/
10.1523/JNEUROSCI.2410-14.2015

Heathcote, A., Brown, S., & Mewhort, D. J. K. (2002). Quantile maxi-
mum likelihood estimation of response time distributions.Psychon
Bull Rev, 9(2), 394–401. https://doi.org/10.3758/bf03196299

Heathcote, A., Lin, Y.-S., Reynolds, A., Strickland, L., Gretton, M.,
& Matzke, D. (2019). Dynamic models of choice. Behavior
Research Methods, 51, 961–985. https://doi.org/10.3758/s13428-
018-1067-y

Hoffman, M. D., & Gelman, A. (2014). The no-u-turn sampler: Adap-
tively setting path lengths in hamiltonian monte carlo. Journal of
Machine Learning Research, 15, 1593–1623.

Holmes, W. R. (2015). A practical guide to the probability density
approximation (pda) with improved implementation and error
characterization. Journal of Mathematical Psychology, 68(69),
13–24. https://doi.org/10.1016/j.jmp.2015.08.006

Holmes, W. R., O’Daniels, P., & Trueblood, J. S. (2020). A joint deep
neural network and evidence accumulation modeling approach to
human decision-making with naturalistic images. Computational
Brain & Behavior, 3(1), 1–12. https://doi.org/10.1007/s42113-
019-00042-1

Holmes, W. R., & Trueblood, J. S. (2018). Bayesian analysis of the
piecewise diffusion decision model. Behavior Research Methods,
50(2), 730–743. https://doi.org/10.3758/s13428-017-0901-y

Holmes, W. R., Trueblood, J. S., & Heathcote, A. (2016). A new
framework for modeling decisions about changing information:
The piecewise linear ballistic accumulator model. Cognitive psy-
chology, 85, 1–29. https://doi.org/10.1016/j.cogpsych.2015.11.
002

Kluyver, T., Ragan-Kelley, B., Pérez, F., Granger, B., Bussonnier, M.,
Frederic, J., ...Willing, C. (2016). Jupyter notebooks – a publishing
format for reproducible computationalworkflows. In F. Loizides&
B. Schmidt (Eds.), Positioning and power in academic publishing:
Players, agents and agendas (p. 87–90). https://doi.org/10.3233/
978-1-61499-649-1-87

Krajbich, I., Armel, C., & Rangel, A. (2010). Visual fixations and the
computation and comparison of value in simple choice. Nature
Neuroscience, 13(10), 1292–1298. https://doi.org/10.1038/nn.
2635

Kumar, R., Carroll, C., Hartikainen, A., & Martin, O. (2019). Arviz
a unified library for exploratory analysis of bayesian models in
python. Journal of Open Source Software, 4(33), 1143. https://
doi.org/10.21105/joss.01143

Lerche, V., Christmann, U., & Voss, A. (2018). Impact of con-
text information on metaphor elaboration a diffusion model
study. Experimental Psychology, 65(6), 370–384. https://doi.org/
10.1027/1618-3169/a000422

Lin, Y.-S., Heathcote, A., & Holmes, W. R. (2019). Parallel probability
density approximation. Behavior research methods, 51(6), 2777–
2799. https://doi.org/10.3758/s13428-018-1153-1

Navarro, D. J., & Fuss, I. G. (2009). Fast and accurate calculations for
first-passage times in wiener diffusion models. Journal of Math-
ematical Psychology, 53(4), 222–230. https://doi.org/10.1016/j.
jmp.2009.02.003

Nosofsky, R. M., Little, D. R., Donkin, D., & Fific, M. (2011). Short-
term memory scanning viewed as exemplar-based categorization.
Psychological review, 118(2), 280–315. https://doi.org/10.1037/
a0022494

Nosofsky, R. M., & Palmeri, T. J. (1997). An exemplar-based ran-
dom walk model of speeded classification. Psychological review,
104(2), 266–300. https://doi.org/10.1037/0033-295x.104.2.266

Østerby, O. (2003). Five ways of reducing the crank-nicolson oscilla-
tions. BIT Numerical Mathematics, 43, 811–822. https://doi.org/
10.1023/B:BITN.0000009942.00540.94

Osth, A. F., & Farrell, S. (2019). Using response time distributions and
race models to characterize primacy and recency effects in free
recall initiation. Psychological review, 126(4), 578–609. https://
doi.org/10.1037/rev0000149

Öttinger, H.C. (1996). Stochastic processes in polymeric fluids.
Springer-Verlag Berlin Heidelberg. Retrieved from https://link.
springer.com/book/10.1007/978-3-642-58290-5

Ratcliff, R. (1978). A theory of memory retrieval.Psychological review,
85(2), 59–108. https://doi.org/10.1037/0033-295X.85.2.59

Ratcliff, R., &McKoon, G. (2008). The diffusion decision model: The-
ory and data for two-choice decision tasks. Neural Computation,
20(4), 873–922. https://doi.org/10.1162/neco.2008.12-06-420

Ratcliff, R., & Rouder, J.N. (1998). Modeling response times for two-
choice decisions. psychological science. Psychological Science,
9(5), 347–356. https://doi.org/10.1111/1467-9280.00067

Ratcliff, R., & Tuerlinckx, F. (2002). Estimating parameters of the dif-
fusion model: Approaches to dealing with contaminant reaction
times and parameter variability. Psychon Bull Rev, 9(3), 438–481.
https://doi.org/10.3758/BF03196302

Ratcliff, R., Zandt, T. V., & McKoon, G. (1999). Connectionist and
diffusion models of reaction time. Psychological Review, 106(2),
261–300. https://doi.org/10.1037/0033-295x.106.2.261

Richter, T., Ulrich, R., & Janczyk, M. (2023). Diffusion models with
time-dependent parameters: An analysis of computational effort
and accuracy of different numerical methods. Journal of Mathe-
matical Psychology, 114, 102756. https://doi.org/10.1016/j.jmp.
2023.102756

Salvatier, J., Wiecki, T.V., & Fonnesbeck, C. (2016). Probabilistic pro-
gramming in python using pymc3.PeerJ Computer Science, 2(55).
https://doi.org/10.7717/peerj-cs.55

Servant, M., White, C., Montagnini, A., & Burle, B. (2016). Linking
theoretical decision-making mechanisms in the simon task with
electrophysiological data: A model-based neuroscience study in
human. Journal of Cognitive Neuroscience, 28(10), 1501–1521.
https://doi.org/10.1162/jocn_a_00989

Shinn, M., Lam, N.H., &Murray, J.D. (2020). A flexible framework for
simulating and fitting generalized drift-diffusion models. eLife, 9.
https://doi.org/10.7554/eLife.56938

Smith, P. L. (2000). Stochastic dynamic models of response time and
accuracy: A foundational primer. The Journal of Mathematical
Psychology, 44(2), 408–463. https://doi.org/10.1006/jmps.1999.
1260

Tajima, S., Drugowitsch, J., & Pouget, A. (2016). Optimal policy for
value-based decision-making. Nature Communications, 7, 12400.
https://doi.org/10.1038/ncomms12400

Trueblood, J. S., Heathcote, A., Evans, N. J., & Holmes, W. R. (2021).
Urgency, leakage, and the relative nature of information process-
ing in decision-making. Psychological Review, 128(1), 160–186.
https://doi.org/10.1037/rev0000255

Trueblood, J. S., Holmes, W. R., Seegmiller, A. C., Douds, J., Comp-
ton, M., Szentirmai, E., ... Eichbaum, Q. (2018). The impact of
speed and bias on the cognitive processes of experts and novices
in medical image decision-making. Cognitive Research: Princi-
ples and Implications, 3(1), 1–14. https://doi.org/10.1186/s41235-
018-0119-2

Turner, B. M., Forstmann, B. U., Wagenmakers, E. J., Brown, S. D.,
Sederberg, P. B., & Steyvers,M. (2013). A bayesian framework for
simultaneously modeling neural and behavioral data.Neuroimage,
72, 193–206. https://doi.org/10.1016/j.neuroimage.2013.01.048

123

https://proceedings.neurips.cc/paper/2007/file/9c82c7143c102b71c593d98d96093fde-Paper.pdf
https://proceedings.neurips.cc/paper/2007/file/9c82c7143c102b71c593d98d96093fde-Paper.pdf
https://doi.org/10.1523/JNEUROSCI.2410-14.2015
https://doi.org/10.1523/JNEUROSCI.2410-14.2015
https://doi.org/10.3758/bf03196299
https://doi.org/10.3758/s13428-018-1067-y
https://doi.org/10.3758/s13428-018-1067-y
https://doi.org/10.1016/j.jmp.2015.08.006
https://doi.org/10.1007/s42113-019-00042-1
https://doi.org/10.1007/s42113-019-00042-1
https://doi.org/10.3758/s13428-017-0901-y
https://doi.org/10.1016/j.cogpsych.2015.11.002
https://doi.org/10.1016/j.cogpsych.2015.11.002
https://doi.org/10.3233/978-1-61499-649-1-87
https://doi.org/10.3233/978-1-61499-649-1-87
https://doi.org/10.1038/nn.2635
https://doi.org/10.1038/nn.2635
https://doi.org/10.21105/joss.01143
https://doi.org/10.21105/joss.01143
https://doi.org/10.1027/1618-3169/a000422
https://doi.org/10.1027/1618-3169/a000422
https://doi.org/10.3758/s13428-018-1153-1
https://doi.org/10.1016/j.jmp.2009.02.003
https://doi.org/10.1016/j.jmp.2009.02.003
https://doi.org/10.1037/a0022494
https://doi.org/10.1037/a0022494
https://doi.org/10.1037/0033-295x.104.2.266
https://doi.org/10.1023/B:BITN.0000009942.00540.94
https://doi.org/10.1023/B:BITN.0000009942.00540.94
https://doi.org/10.1037/rev0000149
https://doi.org/10.1037/rev0000149
https://link.springer.com/book/10.1007/978-3-642-58290-5
https://link.springer.com/book/10.1007/978-3-642-58290-5
https://doi.org/10.1037/0033-295X.85.2.59
https://doi.org/10.1162/neco.2008.12-06-420
https://doi.org/10.1111/1467-9280.00067
https://doi.org/10.3758/BF03196302
https://doi.org/10.1037/0033-295x.106.2.261
https://doi.org/10.1016/j.jmp.2023.102756
https://doi.org/10.1016/j.jmp.2023.102756
https://doi.org/10.7717/peerj-cs.55
https://doi.org/10.1162/jocn_a_00989
https://doi.org/10.7554/eLife.56938
https://doi.org/10.1006/jmps.1999.1260
https://doi.org/10.1006/jmps.1999.1260
https://doi.org/10.1038/ncomms12400
https://doi.org/10.1037/rev0000255
https://doi.org/10.1186/s41235-018-0119-2
https://doi.org/10.1186/s41235-018-0119-2
https://doi.org/10.1016/j.neuroimage.2013.01.048

Behavior Research Methods

Turner, B. M., Rodriguez, C. A., Norcia, T. M., McClure, S. M., &
Steyvers, M. (2016). Why more is better: Simultaneous model-
ing of eeg, fmri, and behavioral data. Neuroimage, 128, 96–115.
https://doi.org/10.1016/j.neuroimage.2015.12.030

Turner, B.M., & Sederberg, P. B. (2014). A generalized, likelihood-free
method for posterior estimation. Psychon Bull Rev, 21(2), 227–
250. https://doi.org/10.3758/s13423-013-0530-0

Turner, B. M., van Maanen, L., & Forstmann, B. U. (2015). Informing
cognitive abstractions through neuroimaging: The neural drift dif-
fusionmodel. psychological review.PsychologicalReview, 122(2),
312–336. https://doi.org/10.1016/j.tics.2018.12.003

Turner, B. M., & Van Zandt, T. (2018). Approximating bayesian infer-
ence through model simulation. Trends in cognitive sciences,
22(9), 826–840. https://doi.org/10.1016/j.tics.2018.06.003

Usher, M., & McClelland, J. L. (2001). The time course of perceptual
choice: The leaky, competing accumulator model. Psychological
Review, 108(3), 550–592. https://doi.org/10.1037/0033-295x.108.
3.550

Vandekerckhove, J., & Tuerlinckx, F. (2008). Diffusion model analysis
with matlab: A dmat primer. Behavior Research Methods, 40, 61–
72. https://doi.org/10.3758/BRM.40.1.61

Voss, A., & Voss, J. (2007). Fast-dm: A free program for efficient dif-
fusion model analysis. Behavior Research Methods, 39, 767–775.
https://doi.org/10.3758/BF03192967

Voss,A.,&Voss, J. (2008).A fast numerical algorithm for the estimation
of diffusion model parameters. Journal of Mathematical Psychol-
ogy, 52(1), 1–9. https://doi.org/10.1016/j.jmp.2007.09.005

Wagenmakers, E. J., Ratcliff, R., Gomez, P., & McKoon, G. (2008). A
diffusion model account of criterion shifts in the lexical decision
task. Journal of Memory and Language, 58(1), 140–159. https://
doi.org/10.1016/j.jml.2007.04.006

Wiecki, T., Sofer, I., & Frank, M. (2013). Hddm: Hierarchical bayesian
estimation of the drift-diffusionmodel in python.Frontiers in Neu-
roinformatics, 7. https://doi.org/10.3389/fninf.2013.00014

Publisher’s Note Springer Nature remains neutral with regard to juris-
dictional claims in published maps and institutional affiliations.

123

https://doi.org/10.1016/j.neuroimage.2015.12.030
https://doi.org/10.3758/s13423-013-0530-0
https://doi.org/10.1016/j.tics.2018.12.003
https://doi.org/10.1016/j.tics.2018.06.003
https://doi.org/10.1037/0033-295x.108.3.550
https://doi.org/10.1037/0033-295x.108.3.550
https://doi.org/10.3758/BRM.40.1.61
https://doi.org/10.3758/BF03192967
https://doi.org/10.1016/j.jmp.2007.09.005
https://doi.org/10.1016/j.jml.2007.04.006
https://doi.org/10.1016/j.jml.2007.04.006
https://doi.org/10.3389/fninf.2013.00014

	PyBEAM: A Bayesian approach to parameter inference for a wide class of binary evidence accumulation models
	Abstract
	Introduction
	Methods
	The general two-threshold binary accumulation model
	Stochastic to probabilistic model form: The Fokker-Planck formalism
	A note on the forward versus backward Fokker-Planck approach

	Numerical solution
	Across-trial variability
	Parameter inference
	EAMs implemented in PyBEAM
	Pre-coded EAMs
	Custom models in PyBEAM

	Results
	Validating likelihood construction
	Parameter recovery
	Simple DDM
	Full DDM
	Leaky integration
	Changing decision thresholds
	Urgency gating model with changing information

	Application to data

	Limitations of approach
	Discussion
	References

