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ABSTRACT. A variational framework for accelerated optimization was recently introduced on
normed vector spaces and Riemannian manifolds in [65] and [19]. It was observed that a careful
combination of time-adaptivity and symplecticity in the numerical integration can result in a
significant gain in computational efficiency. It is however well known that symplectic integrators
lose their near energy preservation properties when variable time-steps are used. The most common
approach to circumvent this problem involves the Poincaré transformation on the Hamiltonian
side, and was used in [20] to construct efficient explicit algorithms for symplectic accelerated
optimization. However, the current formulations of Hamiltonian variational integrators do not
make intrinsic sense on more general spaces such as Riemannian manifolds and Lie groups. In
contrast, Lagrangian variational integrators are well-defined on manifolds, so we develop here a
framework for time-adaptivity in Lagrangian variational integrators and use the resulting geometric
integrators to solve optimization problems on vector spaces and Lie groups.

1. Introduction.

Many machine learning algorithms are designed around the minimization of a loss function or
the maximization of a likelihood function. Due to the ever-growing scale of data sets, there has
been a lot of focus on first-order optimization algorithms because of their low cost per iteration. In
1983, Nesterov’s accelerated gradient method was introduced in [54], and was shown to converge in
O(1/k?) to the minimum of the convex objective function f, improving on the ©O(1/k) convergence
rate exhibited by the standard gradient descent methods. This ©(1/k?) convergence rate was shown
in [55] to be optimal among first-order methods using only information about V[ at consecutive
iterates. This phenomenon in which an algorithm displays this improved rate of convergence is
referred to as acceleration, and other accelerated algorithms have been derived since Nesterov’s
algorithm. More recently, it was shown in [59] that Nesterov’s accelerated gradient method limits, as
the time-step goes to 0, to a second-order differential equation and that the objective function f(x(t))
converges to its optimal value at a rate of O(1/t2) along the trajectories of this ordinary differential
equation. It was later shown in [65] that in continuous time, the convergence rate of f(z(t)) can be
accelerated to an arbitrary convergence rate O(1/tP) in normed spaces, by considering flow maps
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generated by a family of time-dependent Bregman Lagrangian and Hamiltonian systems which is
closed under time-rescaling. This framework for accelerated optimization in normed vector spaces
has been studied and exploited using geometric numerical integrators in [3, 8, 20, 21, 22, 31]. In [20],
time-adaptive geometric integrators have been proposed to take advantage of the time-rescaling
property of the Bregman family and design efficient explicit algorithms for symplectic accelerated
optimization. It was observed that a careful use of adaptivity and symplecticity could result in a
significant gain in computational efficiency, by simulating higher-order Bregman dynamics using the
computationally efficient lower-order Bregman integrators applied to the time-rescaled dynamics.

More generally, symplectic integrators form a class of geometric integrators of interest since, when
applied to Hamiltonian systems, they yield discrete approximations of the flow that preserve the
symplectic 2-form and as a result also preserve many qualitative aspects of the underlying dynamical
system [26]. In particular, when applied to conservative Hamiltonian systems, symplectic integrators
exhibit excellent long-time near-energy preservation. However, when symplectic integrators were
first used in combination with variable time-steps, the near-energy preservation was lost and the
integrators performed poorly [7, 24]. There has been a great effort to circumvent this problem, and
there have been many successes, including methods based on the Poincaré transformation [25, 69]:
a Poincaré transformed Hamiltonian in extended phase space is constructed which allows the use of
variable time-steps in symplectic integrators without losing the nice conservation properties associated
to these integrators. In [20], the Poincaré transformation was incorporated in the Hamiltonian
variational integrator framework which provides a systematic method for constructing symplectic
integrators of arbitrarily high-order based on the discretization of Hamilton’s principle [27, 49], or
equivalently, by the approximation of the generating function of the symplectic flow map. The
Poincaré transformation was at the heart of the construction of time-adaptive geometric integrators
for Bregman Hamiltonian systems which resulted in efficient, explicit algorithms for accelerated
optimization in [20].

In [42, 60], accelerated optimization algorithms were proposed in the Lie group setting for spe-
cific choices of parameters in the Bregman family, and [2] provided a first example of Bregman
dynamics on Riemannian manifolds. The entire variational framework was later generalized to the
Riemannian manifold setting in [19], and time-adaptive geometric integrators taking advantage of
the time-rescaling property of the Bregman family have been proposed in the Riemannian manifold
setting as well using discrete variational integrators incorporating holonomic constraints [16] and
projection-based variational integrators [17]. Note that both these strategies relied on exploiting
the structure of the Euclidean spaces in which the Riemannian manifolds are embedded. Although
the Whitney and Nash Embedding Theorems [53, 63, 64] imply that there is no loss of generality
when studying Riemannian manifolds only as submanifolds of Euclidean spaces, designing intrinsic
methods that would exploit and preserve the symmetries and geometric properties of the manifold
could have advantages both in terms of computational efficiency and in terms of improving our
understanding of the acceleration phenomenon on Riemannian manifolds. Developing an intrinsic
extension of Hamiltonian variational integrators to manifolds would require some additional work,
since the current approach involves Type II/IIT generating functions Hj (qk,Pr+1), Hy (Dks k1),
which depend on the position at one boundary point, and the momentum at the other boundary point.
However, this does not make intrinsic sense on a manifold, since one needs the base point in order to
specify the corresponding cotangent space. On the other hand, Lagrangian variational integrators
involve a Type I generating function Ly(qk, ¢x+1) which only depends on the position at the boundary
points and is therefore well-defined on manifolds, and many Lagrangian variational integrators have
been derived on Riemannian manifolds, especially in the Lie group [5, 27, 28, 36, 37, 38, 41, 43, 506]
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and homogeneous space [39] settings. This gives an incentive to construct a mechanism on the
Lagrangian side which mimics the Poincaré transformation, since it is more natural and easier to
work on the Lagrangian side on more general spaces than on the Hamiltonian side. However, a
first difficulty is that the Poincaré transformed Hamiltonian is degenerate and therefore does not
have a corresponding Type I Lagrangian formulation. As a result, we cannot exploit the usual
correspondence between Hamiltonian and Lagrangian dynamics and need to come up with a different
strategy. A second difficulty is that all the literature to this day on the Poincaré transformation
have constructed the Poincaré transformed system by reverse-engineering, which does not provide a
lot of insight into the origin of the mechanism and how it can be extended to different systems.

Outline. We first review the basics of variational integration of Lagrangian and Hamiltonian
systems, and the Poincaré transformation in Section 2. We then introduce a simple but novel
derivation of the Poincaré transformation from a variational principle in Section 3.1. This gives
additional insight into the transformation mechanism and provides natural candidates for time-
adaptivity on the Lagrangian side, which we then construct both in continuous and discrete time in
Sections 3.2 and 3.3. We then compare the performance of the resulting time-adaptive Lagrangian
accelerated optimization algorithms to their Poincaré Hamiltonian analogues in Section 4. Finally,
we demonstrate in Section 5 that our time-adaptive Lagrangian approach extends naturally to more
general spaces without having to face the obstructions experienced on the Hamiltonian side.

Contributions. In summary, the main contributions of this paper are:

A novel derivation of the Poincaré transformation from a variational principle, in Section 3.1
New frameworks for variable time-stepping in Lagrangian integrators, in Sections 3.2 and 3.3
Discrete variational formulations of continuous Lagrangian mechanics with the new variable
time-stepping mechanisms, in Sections 3.2 and 3.3

New explicit symplectic accelerated optimization algorithms on normed vector spaces

New intrinsic symplectic accelerated optimization algorithms on Riemannian manifolds

2. Background.

2.1. Lagrangian and Hamiltonian Mechanics.

Given a n-dimensional manifold Q, a Lagrangian is a function L : TQ — R. The corresponding
action integral & is the functional

s@= [ L, o

over the space of smooth curves ¢:[0,7] — Q. Hamilton’s variational principle states that 8 =0
where the variation d&8 is induced by an infinitesimal variation dq of the trajectory ¢ that vanishes

at the endpoints. Given local coordinates (q',...,¢") on the manifold Q, Hamilton’s variational
principle can be shown to be equivalent to the Euler-Lagrange equations,

d (0L oL

— | === fork=1,...,n. 2

The Legendre transform FL : TQ — T*Q of L is defined fiberwise by FL : (¢*,4") — (qi, 3{; ), and
we say that a Lagrangian L is regular or nondegenerate if the Hessian matrix ‘3% is invertible for
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every ¢q and ¢, and hyperregular if the Legendre transform FL is a diffeomorphism. A hyperregular
Lagrangian on T'Q induces a Hamiltonian system on 7*9Q via

H(g.p) = (FL0.0).0) - L) = 3 o - La.d)| )

where p; = (%L,; € T*Q is the conjugate momentum of ¢*. A Hamiltonian H is called hyperregular

if FH:T*Q - TQ, defined by FH(«) -8 = % oH(a+sp), is a diffeomorphism. Hyperregularity
of the Hamiltonian H implies invertibility of the Hessian matrix %1}2[ and thus nondegeneracy

of H. Theorem 7.4.3 in [48] states that hyperregular Lagrangians and hyperregular Hamiltonians
correspond in a bijective manner. We can also define a Hamiltonian variational principle on the
Hamiltonian side in momentum phase space which is equivalent to Hamilton’s equations,

OH 5w OH

aiqk(palZ)v q 2671)’6(273(])7 fOI'kZL...,Tl. (4)

These equations can also be shown to be equivalent to the Euler-Lagrange equations (2), provided
that the Lagrangian is hyperregular.

Dr = —

2.2. Variational Integrators.

Variational integrators are derived by discretizing Hamilton’s principle, instead of discretizing
Hamilton’s equations directly. As a result, variational integrators are symplectic, preserve many
invariants and momentum maps, and have excellent long-time near-energy preservation [49].

Traditionally, variational integrators have been designed based on the Type I generating function
known as the discrete Lagrangian, Ly : Q x @ — R. The exact discrete Lagrangian that generates
the time-h flow of Hamilton’s equations can be represented in both a variational form and in a
boundary-value form. The latter is given by

h
LE (i) = [ Lia().d())ar )

where ¢(0) = qo, g(h) = q1, and ¢ satisfies the Euler-Lagrange equations over the time interval [0, h].
A variational integrator is defined by constructing an approximation Lg: Q x @ — R to Lf , and
then applying the discrete Euler-Lagrange equations,

pr = —D1La(qr, qx+1), Pr+1 = DaLa(qr, gr+1), (6)

where D; denotes a partial derivative with respect to the i-th argument, and these equations
implicitly define the integrator Fr, 2 (a6, k) ¥ (qr+1, Pr+1)- The error analysis is greatly simplified
via Theorem 2.3.1 of [49], which states that if a discrete Lagrangian, Lg: Q x Q — R, approximates
the exact discrete Lagrangian LdE :@Q xQ — R toorder r, ie.,

La(qo0,q1;h) = L (o, q1;h) + O(h™1), (7)

then the discrete Hamiltonian map FLd :(qr,pr) = (qk+1,Pk+1), viewed as a one-step method, has
order of accuracy r. Many other properties of the integrator, such as momentum conservation
properties of the method, can be determined by analyzing the associated discrete Lagrangian, as
opposed to analyzing the integrator directly.

Variational integrators have been extended to the framework of Type II and Type III generating
functions, commonly referred to as discrete Hamiltonians [34, 46, 57]. Hamiltonian variational



TIME-ADAPTIVE LAGRANGIAN VARIATIONAL INTEGRATORS FOR ACCELERATED OPTIMIZATION 5

integrators are derived by discretizing Hamilton’s phase space principle. The boundary-value
formulation of the exact Type II generating function of the time-h flow of Hamilton’s equations is
given by the exact discrete right Hamiltonian,

h
H P (i h) =plas = [ [p(076(0) - Ha(t),p(t) ] ®)

where (q,p) satisfies Hamilton’s equations with boundary conditions ¢(0) = ¢o and p(h) = p;.
A Type II Hamiltonian variational integrator is constructed by using an approximate discrete
Hamiltonian H, and applying the discrete right Hamilton’s equations,

po =D1Hj(q0,p1), q1 = D2Hj (q0,p1), 9)

which implicitly defines the integrator, FH; :(q0,p0) ~ (q1,p1)-

Theorem 2.3.1 of [49], which simplified the error analysis for Lagrangian variational integrators,
has an analogue for Hamiltonian variational integrators. Theorem 2.2 in [57] states that if a discrete
right Hamiltonian H approximates the exact discrete right Hamiltonian H;’E to order r, i.e.,

H;(qo,p1;h) :HJ’E(CIoapl;h)ﬂ“@(hHl)» (10)

then the discrete right Hamilton’s map FH; : (qr,px) = (qk+1,PR+1), viewed as a one-step method,
is order r accurate. Note that discrete left Hamiltonians and corresponding discrete left Hamilton’s
maps can also be constructed in the Type III case [20, 46].

Examples of variational integrators include Galerkin variational integrators [46, 49], Prolongation-
Collocation variational integrators [45], and Taylor variational integrators [58]. In many cases, the
Type I and Type II/IIT approaches will produce equivalent integrators. This equivalence has been
established in [58] for Taylor variational integrators provided the Lagrangian is hyperregular, and
in [46] for generalized Galerkin variational integrators constructed using the same choices of basis
functions and numerical quadrature formula provided the Hamiltonian is hyperregular. However,
Hamiltonian and Lagrangian variational integrators are not always equivalent. In particular, it
was shown in [57] that even when the Hamiltonian and Lagrangian integrators are analytically
equivalent, they might still have different numerical properties because of numerical conditioning
issues. Even more to the point, Lagrangian variational integrators cannot always be constructed when
the underlying Hamiltonian is degenerate. This is particularly relevant in variational accelerated
optimization since the time-adaptive Hamiltonian framework for accelerated optimization presented
in [20] relies on a degenerate Hamiltonian which has no associated Lagrangian description. We will
thus not be able to exploit the usual correspondence between Hamiltonian and Lagrangian dynamics
and will have to come up with a different strategy to allow time-adaptivity on the Lagrangian side.

We now describe the construction of Taylor variational integrators as introduced in [58] as we
will use them in our numerical experiments. A discrete approximate Lagrangian or Hamiltonian is
constructed by approximating the flow map and the trajectory associated with the boundary values
using a Taylor method, and approximating the integral by a quadrature rule. The Taylor variational
integrator is generated by the implicit discrete Euler—Lagrange equations associated to the discrete
Lagrangian or by the Hamilton’s equations associated with the discrete Hamiltonian. More explicitly,
we first construct p-order and (p+1)-order Taylor methods \Ilgbp ) and \IIELP *1) approximating the exact
time-h flow map ®; : TQ — T'Q corresponding to the Euler-Lagrange equation in the Type I case
or the exact time-h flow map @ : T*Q — T*Q corresponding to Hamilton’s equation in the Type II
case. Let mq : (¢,p) » ¢ and mp+q : (¢,p) ~ p. Given a quadrature rule of order s with weights and
nodes (b;, ¢;) for i =1,...,m, the Taylor variational integrators are then constructed as follows:
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Type I Lagrangian Taylor Variational Integrator (LTVI):

(i) Approximate ¢(0) = vy by the solution ¥ of the problem ¢; = g o \Ilglpﬁ)(qom?o).
(ii) Generate approximations (q,,v.;) » (g(cih),¢(c;h)) via (ge,,ve;) = \Dgf}i(qo,ﬁo).
(iii) Apply the quadrature rule to obtain the associated discrete Lagrangian,
Ld(QOa q1; h) =h Z biL(qcm UCi)'
i=1

(iv) The variational integrator is then defined by the implicit discrete Euler-Lagrange equations,

po=-D1Lq(q0,q1), p1=DaLa(q0,q1)-
Type II Hamiltonian Taylor Variational Integrator (HTVI):

(i) Approximate p(0) = pg by the solution py of the problem p; = mp+g o \IIELP)(qO,ﬁO).
(ii) Generate approximations (gc,,pe,) ~ (q(cih), p(cih)) via (qc,,pe;) = ©) (g0, Fo)-

)
)
)
)

(ili) Approximate ¢; via ¢ = mg o \P§Lp+1)(q0,ﬁ()).
(iv) Use the continuous Legendre transform to obtain ¢., = ng' .

(v) Apply the quadrature rule to obtain the associated discrete right Hamiltonian,
m

H}(qo,p1;h) =piagy —h' Y. bi [pL,de; — H(qe, pe,)]-
i=1

(vi) The variational integrator is then defined by the implicit discrete right Hamilton’s equations,

¢1 = D2Hj (q0,p1), po =D1Hj(q0,p1)-

The following error analysis results were derived in [58] and [20]:

Theorem 2.1. Suppose the Lagrangian L is Lipschitz continuous in both variables, and is sufficiently
reqular for the Taylor method \I/,(LPH) to be well-defined.

Then Lq(qo,q1) approzimates LY (qo,q1) with at least order of accuracy min (p+1,s).
By Theorem 2.3.1 in [49], the associated discrete Hamiltonian map has the same order of accuracy.

Theorem 2.2. Suppose the Hamiltonian H and its partial derivative %—g are Lipschitz continuous

in both variables, and H is sufficiently reqular for the Taylor method \I/El’”l) to be well-defined.

Then HJ(qo,p1) approzimates H;’E(qo,pl) with at least order of accuracy min (p+1,s).
By Theorem 2.2 in [57], the associated discrete right Hamilton’s map has the same order of accuracy.

Note that analogous constructions and error analysis results have been derived in [20, 58] for
discrete left Hamiltonians in the Type III case.

2.3. Time-adaptive Hamiltonian integrators via the Poincaré transformation.

Symplectic integrators form a class of geometric numerical integrators of interest since, when
applied to conservative Hamiltonian systems, they yield discrete approximations of the flow that
preserve the symplectic 2-form [26], which results in the preservation of many qualitative aspects of
the underlying system and exhibit excellent long-time near-energy preservation. However, when
symplectic integrators were first used in combination with variable time-steps, the near-energy
preservation was lost and the integrators performed poorly [7, 24]. Backward error analysis provided
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justification both for the excellent long-time near-energy preservation of symplectic integrators
and for the poor performance experienced when using variable time-steps (see Chapter IX of [26]).
Backward error analysis shows that symplectic integrators can be associated with a modified
Hamiltonian in the form of a formal power series in terms of the time-step. The use of a variable
time-step results in a different modified Hamiltonian at every iteration, which is the source of
the poor energy conservation. The Poincaré transformation is one way to incorporate variable
time-steps in geometric integrators without losing the nice conservation properties associated with
these integrators.

Given a Hamiltonian H(q,t,p), consider a desired transformation of time ¢ — 7 described by the
monitor function g(g,t,p) via

dt

-
The time t shall be referred to as the physical time, while 7 will be referred to as the fictive time,
and we will denote derivatives with respect to ¢ and 7 by dots and apostrophes, respectively. A new

Hamiltonian system is constructed using the Poincaré transformation,

H(q,p) = 9(q,9,p) (H(q,q,p) +p), (12)

in the extended phase space defined by §=[4]€Q and p = [5] where p is the conjugate momentum
for q =t with p(0) = -H(¢(0),0,p(0)). The corresponding equations of motion in the extended
phase space are then given by
oH oH

7 =" pl= - 13

=%, T (13)
Suppose (Q(7), P(7)) are solutions to these extended equations of motion, and let (g(t),p(t)) solve
Hamilton’s equations for the original Hamiltonian H. Then

H(Q(r),P(1)) = H(Q(0), P(0)) =0. (14)

Therefore, the components (Q(7), P(7)) in the original phase space of the augmented solutions

(Q(71), P(7)) satisfy
H(Q(7), 7, P(7)) =-p(7),  H(Q(0),0,P(0)) =-p(0) = H(q(0),0,p(0)). (15)

Then, (Q(7), P(7)) and (q(t), p(t)) both satisfy Hamilton’s equations for the original Hamiltonian H
with the same initial values, so they must be the same. Note that the Hessian is given by

_ ~ _ 2 _ T _
625 _ %—Ijvpg{q,p)TT+9(q,p)%713+vpg(q,p W V@) (16)
9p Vp9(q.p) 0

which will be singular in many cases. The degeneracy of the Hamiltonian H implies that there

is no corresponding Type I Lagrangian formulation. This approach works seamlessly with the

existing methods and theorems for Hamiltonian variational integrators, but where the system under

consideration is the transformed Hamiltonian system resulting from the Poincaré transformation. We

can use a symplectic integrator with constant time-step in fictive time 7 on the Poincaré transformed

system, which will have the effect of integrdating the original system with the desired variable
t

time-step in physical time ¢ via the relation 7= = g(q,t,p).



8 VALENTIN DURUISSEAUX AND MELVIN LEOK
3. Time-adaptive Lagrangian Integrators.

The Poincaré transformation for time-adaptive symplectic integrators on the Hamiltonian side
presented in Section 2.3 with autonomous monitor function g(q,p) was first introduced in [69],
and extended to the case where g can also depend on time based on ideas from [25]. All the
literature to date on the Poincaré transformation have constructed the Poincaré transformed system
by reverse-engineering: the Poincaré transformed Hamiltonian is chosen in such a way that the
corresponding component dynamics satisfy Hamilton’s equations in the original space.

3.1. Variational Derivation of the Poincaré Hamiltonian.

We now depart from the traditional reverse-engineering strategy for the Poincaré transformation
and present a new way to think about the Poincaré transformed Hamiltonian by deriving it from
a variational principle. This simple derivation gives additional insight into the transformation
mechanism and provides natural candidates for time-adaptivity on the Lagrangian side and for more
general frameworks.

As before, we work in the extended space (q,q,p,p) where q = ¢ and p is the corresponding
conjugate momentum, and consider a time transformation ¢ — 7 given by

ﬁ =g(q.t,p). (17)

We define an extended action functional & : C2([0,T],7*Q) - R by
S(0).p() =p()aT) = [ (00 - H (o), t:0(0)) - (0] (19)
- - [ (o) S ) - Ha)ar)p o) - St 19)
- - [ e s ) - L 1H (), a0 +p a0

where we have performed a change of variables in the integral. Then,

6(a(-),p()) =p(T)q(T) - / {p(T)q (1) = 9(a(7), a(r),p(7)) [H(a(r),a(7), p(7)) +p(7)]} dr. (21)

Computing the variation of & ylelds
' , (.OH 0Og
56 = (D)p(r) + p)5a(D) - [ [at5ppi = (o5 + S22+ 0)) - 5o ar

7(t=T) 0H OH

—f [q'6p+p6q’—( —+—(H+p))6 —( —+—(H+p))6p]dr
7(t=0) dq dp

and using integration by parts and the boundary conditions §g(0) = 0 and §p(T") = 0, gives

T(t=T) OH 7(t=T) OH 3g
56 = f [ —+—H+ ]MT / [ H+ ]5 dr
o P 9%, (H +p)|dq o ap ap( p) -4 |op

T=T)r ,  O0H T(t=T)
+[ [p +g—+—(H+p)]6da [ [q"—g]opdr.
7(t=0) 8q 7(

Thus, the condition that &(g(+), p(+)) is stationary with respect to the boundary conditions §g(0) = 0
and 0p(T) =0 is equivalent to (g(-),p(+)) satisfying Hamilton’s canonical equations corresponding

7(t=T)
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to the Poincaré transformed Hamiltonian,

q9'=g(q.q, p) (22)
¢ =9(q,q, p) (q q,p) + i(q,q,p) (H(q,9,p) +p], (23)
= —g(q,qm)f(q,q,p) - %(q,qvp) [(H(q,a,p) +p], (24)
=-9(q.q, p) (q a.p) - i(qqup) [H(q,q,p) +p]. (25)

An alternative way to reach the same conclusion is by interpreting equation (21) as the usual
Type II action functional for the modified Hamiltonian,

9(q(7),a(7), p(7)) [H(q(7),q(7),p(7)) +p(7)], (26)

which coincides with the Poincaré transformed Hamiltonian.

3.2. Time-adaptivity from a Variational Principle on the Lagrangian side.

We will now derive a mechanism for time-adaptivity on the Lagrangian side by mimicking the
derivation of the Poincaré Hamiltonian. We will work in the extended space g = (¢,q,\)T € Q where
q =t and A\ is a Lagrange multiplier used to enforce the time rescaling j—i = g(t). Consider the action
functional & : C%([0,T],TQ) - R given by

S@O.i0) = [ [L<q<t>,q(t>,q<t>> 20 (T - stae ) 27
:fr;(tO)T)[dT (q( ), q(T) q(r)) )\(T)—(——g( (r )))] (28)

- [ [t (q<r>, d—jq'm,qm) AT [0 - g |ar, (29

where, as before, we have performed a change of variables in the integral. This is the usual Type I
action functional for the extended autonomous Lagrangian,

- N dr
L7 () =0 (L (). T (1),:00) ) - ADI O [0 -] (30
Theorem 3.1. If (G(7),q (7)) satisﬁes the Euler—Lagrange equations corresponding to the La-
grangian L, then its components satzsfy =g(t) and the original Fuler—Lagrange equations
d oL oL
,q,t) = ,q,1) . 31
dta(qq) q(qu) 31)
. . . F . . d 0L oL
Proof. Substituting the expression for L into the Euler-Lagrange equations, --£& = 5%, and

d oL _ aL
o7 = 9g gives

q'[a"-9(a)]=0
and
dg d | OL(eGda) | 0L(a ')

dr dq a aq’ dq
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Now, q’' =g(q) >0 so q' = g(q), and the chain rule gives
A0 dr ) 0L i
dq 04 q,dqq,q _8q q’dqq’q .

Using the equation ¢ = fl—;q’ and replacing q by t recovers the original Euler-Lagrange equations. [J

We now introduce a discrete variational formulation of these continuous Lagrangian mechanics.
Suppose we are given a partition 0 =79 <73 <... <7y =J of the interval [0, ], and a discrete curve
in Q xR xR denoted by {(gx,qr, A\x) }1o such that i ~ ¢(7%), qr ~ q(7x), and A\, » A(7%). Consider
the discrete action functional,

N-1

S ({(ar @ AWo) = 5 | Lalaws i quen) = M BB wng(q)| B0 (3
k=0 Tk+l — Tk Tk+l — Tk

where L4(qk, 9k, qk+1,qk+1) is obtained by approximating the exact discrete Lagrangian, which
is related to Jacobi’s solution of the Hamilton—Jacobi equation and is the generating function
for the exact time-h flow map. It is given by the extremum of the action integral from 74 to
Tr+1 Over twice continuously differentiable curves (¢,q) € Q x R satisfying the boundary conditions

(q(m),q(mk)) = (qr>ax), and (¢(Tk+1), 4(Tk+1)) = (Qrs1, Grs1):

Thk+1 q’
Ld(Qk‘7 Ak Gk+1, qk'+1) ~ 9 ext f L (Q7 N q) dr. (33)
(4:0)€C° ([k Tk 41],2%R) T g9(a)
(g:9) (71)=(qr,9%)s (2:0)(Tk+1)=(qk+1,9%+1)

In practice, we can obtain an approximation by replacing the integral with a quadrature rule, and
extremizing over a finite-dimensional function space instead of 02([Tk, Tr+1], 2 x R). This discrete
functional G, is a discrete analogue of the action functional & : C?([0,7],Q xR x R) - R given by

&(q(),a(),A()) = foy L(q(7),a(7),M(7),q'(7),q'(7), X' (7)) dr (34)

Moo 2 Aq'+ A 'd 35
- [ sa) -2 dut ] (3

We can derive the following result which relates a discrete Type I variational principle to a set of
discrete Euler—Lagrange equations:

Theorem 3.2. The Type I discrete Hamilton’s variational principle,

664 ({(qr, qis M) Fomo) = 0, (36)

18 equivalent to the discrete extended Fuler—Lagrange equations,

Are1 = Gk + (Ther — %) 9(ar), (37)
dk+1 — 9k Gk — k-1
S D1 La(qQk, Qb Qs Qes1) + ————— D3 La(qr-1, 961, @k, qx) = 0, (38)
Tk+1 — Tk Tk — Tk-1
1 - 1 -
[DQLdk +)\k7+)\kvg(qk)] Jk+1 qk _ [Ldk _)\kw_'.)\kg(qk)]
Tk+1 — Tk Tk+1 — Tk Tk+1 — Tk Tk+1 — Tk

1 = k- 1 — i
+ [D4Ldk—1 = Ak-1 ] e ~ Akt + [Ldk—l - )‘k—lw + )‘k—lg(qk—l)] =0,
Tk = Tk-1d Tk = Tk-1 Tk — Tk-1 Tk — Tk-1

where Lq, denotes Lq(qr, Ak, Qr+1, qk+1)-
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Proof. See Appendix A.1. O

Defining the discrete momenta via the discrete Legendre transformations,

Pk = =D1La(qr, dks @re1, Gk+1), P = —~DaLa(qk, Qk» Qr+1, Qes1) (40)
and using a constant time-step h in 7, the discrete Euler-Lagrange equations can be rewritten as
Pe = ~D1La(qr, 9k, Qr+1, Qkr1), (41)
Pr = =D2La(qk, Ak, Qr+1, Ak+1), (42)
ket = gk + hg(ar), (43)
Pk+1 = 9(a) D3 La(qu, dks Qr+1, Qre1 ) (44)
9(qr+1)

Ldk - Ldk 1 >\k+1 g(qk) [ >\k‘
k+l = - o+ +/\k \V4 k + DLd'_i:I' 45
p +1 hg(qurl) h +1 g(q +1) g(qk+1) 4 k h ( )

3.3. A Second Time-Adaptive Framework obtained by Reverse-Engineering.

As mentioned earlier, all the literature to date on the Poincaré transformation have constructed
the Poincaré transformed system by reverse-engineering. The Poincaré transformed Hamiltonian is
chosen in such a way that the corresponding component dynamics satisfy the Hamilton’s equations in
the original space. We will follow a similar strategy to derive a second framework for time-adaptivity
from the Lagrangian perspective.

Given a time-dependent Lagrangian L(q(t),q(t),t) consider a transformation of time t — 7,

dt

% = g(t), (46)

described by the monitor function g(¢). The time ¢ shall be referred to as the physical time, while 7
will be referred to as the fictive time, and we will denote derivatives with respect to ¢t and 7 by dots
and apostrophes, respectively. We define the autonomous Lagrangian,

!

T _ q

L) =0 (02 ) -3 (@ - ), )
9(a)

in the extended space with g = (¢,q,\)" where q = ¢, and where X is a multiplier used to impose the

constraint that the time evolution is guided by the monitor function g(¢). Note that in contrast to

the earlier framework, the Lagrange multiplier term lacks an extra multiplicative factor of ¢'.

Theorem 3.3. If (G(7),3 (7)) satisfies the Euler-Lagrange equations corresponding to the La-
grangian L, then its components satisfy j—i =g(t) and the original Fuler—Lagrange equations

d oL oL
(g0, ) = —(q,4,1). 48
at 9 (¢,4,t) 9 (g,4,1) (48)

Proof. Substituting the expression for L in the Euler-Lagrange equations % gf, = % and 4 2L _ OL

dr 8¢’ ~ 9q

gives
q"=g(a),
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and )
dq d | dq oL (g, 55-9) | @M(q’ﬁ’q).

dr dq dr aq’ dr dq

We can divide by g—ﬂ and use the chain rule to get q' = g(q) and
d@L( dr , ) 8L( dr , )
. a- q, q »q] -
dq 04 Jdq
Using the equations ¢ = ill—gq’ and q" = g(q), and replacing q by t recovers the desired equations. [

We now introduce a discrete variational formulation of these continuous Lagrangian mechanics.
Suppose we are given a partition 0 =79 < 71 <... <7y = J of the interval [0,7 ], and a discrete curve
in Q x R xR denoted by {(gx,qr, &)}, such that g, ~ q(7%), qx ~ q(7%), and Ay » A(7%). Consider
the discrete action functional,

Sa ({(qr, a1, Ae) Fhso) = Z {qkﬂ (La(qk: Gk Qes1s Gke1) — Ak ] + Akg(clk)} (49)
k=0 \Tk+1 — Tk
where,
Tk+1 q’
La(qi, Qs Qrert1, Qre1) ext / Llaq, ,q]dr. (50)
(4.0)eC> ([71,7141].2%R) T g9(q)

(¢:9) (71:)=(qx,9%)s (2:0)(Th+1)=(qr+1,9%+1)

This discrete functional &4 is a discrete analogue of the action functional & : C2([0,7],2 xRxR) - R
given by

S(q(),a(),A()) = /07 L(q(7),a(7),M(7),q'(7),q'(7), X' (7)) dr (51)

- [ ’T{q' [L(q,gg;),q)—A]Jr)\g(Q)}dT- (52)

We can derive the following result which relates a discrete Type I variational principle to a set of
discrete Euler-Lagrange equations:

Theorem 3.4. The Type I discrete Hamilton’s variational principle,

664 ({(qr Qs M) Yomo) = 0, (53)

1s equivalent to the discrete extended Fuler—Lagrange equations,

Ai+1 = i + (The1 — T6)9(dx ), (54)
Jk+1 — i k-1
+7D1Ld(q;c,qk7%+1,%+1)+7D3Ld(% 1, qk-1,qk> k) = 0, (55)
Thel — Tk Th = Th-1
L T L _
Ger ZQpy g e W@y g Loy o N Ay goay (56)
Tht1 — Tk Thel =Tk Th = Th-1 Th = Th-1  Th—Th-1 Th+l — Tk

where Lq, denotes La(qk, Gk, Qr+1, Qk+1)-

Proof. See Appendix A.2. O
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Defining the discrete momenta via the discrete Legendre transformations,

Pk = ~D1La(qr, ak, Qre1, Gr+1); Pr = —D2La(qr, Ak, Qr+1, qs1) (57)
and using a constant time-step h in 7, the discrete Euler—Lagrange equations can be rewritten as
Pk = =D1La(qr, dk; Gr+1, Gk+1), (58)
Pr = =DaLa(qk, Gk, Qr+1, Grr1), (59)
qk+1 = gk + hg(qr), (60)
Pr+1 = 9(a) D3 La(qk: ks qr+1,9k+1), (61)
9(qr+1)
_ La, = La,,, + M1 = Mg + hAk21V(dre1) + hg(qr) DaLa,
Pr+1 = . (62)
hg(qk+1)

3.4. Remarks on the Framework for Time-Adaptivity.

Time-adaptivity comes more naturally on the Hamiltonian side through the Poincaré transforma-
tion. Indeed, in the Hamiltonian case, the time-rescaling equation ¢’ = g(q,q,p) emerged naturally
through the change of time variable inside the extended action functional. By contrast, in the
Lagrangian case, we need to impose the time-rescaling equation as a constraint via a multiplier,
which we then consider as an extra position coordinate. This strategy can be thought of as being
part of the more general framework for constrained variational integrators (see [16, 49]).

The Poincaré transformation on the Hamiltonian side was presented in [20, 25, 69] for the general
case where the monitor function can depend on position, time and momentum, g = g(q,t,p). For
the accelerated optimization application which was our main motivation to develop a time-adaptive
framework for geometric integrators, the monitor function only depends on time, g = g(¢). For
the sake of simplicity and clarity, we have decided to only present the theory for time-adaptive
Lagrangian integrators for monitor functions of the form ¢ = ¢g(¢) in this paper. Note however
that this time-adaptivity framework on the Lagrangian side can be extended to the case where the
monitor function also depends on position, g = g(q,t). The action integral remains the same with
the exception that g is now a function of (g¢,q). Unlike the case where g = g(t), the corresponding

Euler-Lagrange equation % gqi, = g—s yields an extra term )\(t)g—g(q,t) in the original phase-space,
d oL oL dg
dt 0q dq Jq

The discrete Euler-Lagrange equations become more complicated and involve terms with partial
derivatives D1g(qk,qr) of g with respect to ¢. Furthermore, when g = ¢g(g,t), the discrete Euler—
Lagrange equations involve A\, but the time-evolution of the Lagrange multiplier A is not well-defined,
so the discrete Hamiltonian map corresponding to the discrete Lagrangian Ly is not well-defined,
as explained in [49, page 440]. Although there are ways to circumvent this problem in practice,
this adds some difficulty and makes the time-adaptive Lagrangian approach with g = g(q,t) less
natural and desirable than the corresponding Poincaré transformation on the Hamiltonian side. It
might also be tempting to generalize further and consider the case where g = g(q,q,t). However,
in this case, the time-rescaling equation (‘f—i =g(q,q,t) becomes implicit and it becomes less clear
how to generalize the variational derivation presented in this paper. There are examples where
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time-adaptivity with these more general monitor functions proved advantageous (see for instance
Kepler’s problem in [20]). This motivates further effort towards developing a better framework for
time-adaptivity on the Lagrangian side with more general monitor functions.

It might be more natural to consider these time-rescaled Lagrangian and Hamiltonian dynamics
as Dirac mechanics [44, 66, 67] on the Pontryagin bundle (gq,v,p) € TQ @ T*Q. Dirac dynamics
are described by the Hamilton-Pontryagin variational principle where the momentum p acts as a
Lagrange multiplier to impose the kinematic equation ¢ = v,

6AT[L(Q,U7t) +p(¢-v)]dt=0. (64)

This provides a variational description of both Lagrangian and Hamiltonian mechanics, yields the
implicit Euler-Lagrange equations

. OL oL

j=v, =—, =—, 65
1 P09 7o (65)

and suggests the introduction of a more general quantity, the generalized energy
E(q,v,p,t) =pv - L(q,v, 1), (66)

as an alternative to the Hamiltonian.

4. Application to Accelerated Optimization on Vector Spaces.

4.1. A Variational Framework for Accelerated Optimization.

A variational framework was introduced in [65] for accelerated optimization on normed vector
spaces. The p-Bregman Lagrangians and Hamiltonians are defined to be
p+1

Ly(0,) = t2p (0, 0) = Cpt?P L f(2), (67)
(2,7, t) = Qtfﬂ (r,r) + Cpt2P L f(2), (68)

which are scalar-valued functions of position = € X, velocity v € R? or momentum r € R%, and time ¢.
In [65], it was shown that solutions to the p-Bregman Euler-Lagrange equations converge to a
minimizer of f at a convergence rate of O(1/t?). Furthermore, this family of Bregman dynamics is
closed under time dilation: time-rescaling a solution to the p-Bregman Euler-Lagrange equations via
7(t) = tP/? yields a solution to the p-Bregman Euler-Lagrange equations. Thus, the entire subfamily
of Bregman trajectories indexed by the parameter p can be obtained by speeding up or slowing
down along the Bregman curve corresponding to any value of p.

In [20], the time-rescaling property of the Bregman dynamics was exploited together with
a carefully chosen Poincaré transformation to transform the p-Bregman Hamiltonian into an
autonomous version of the p-Bregman Hamiltonian in extended phase-space, where p < p. This
strategy allowed us to achieve the faster rate of convergence associated with the higher-order p-
Bregman dynamics, but with the computational efficiency of integrating the lower-order p-Bregman
dynamics. Explicitly, using the time rescaling 7(t) = /7 within the Poincaré transformation
framework yields the adaptive approach p — p-Bregman Hamiltonian,

2 2
7 N _ P Cp” oppy b 1-p/
Hpﬂﬁ(Qa T) - 2ﬁqp+ﬁ/p <r77ﬂ> + ﬁ q b pf(Q) + th P p? (69)
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and when p = p, the direct approach p-Bregman Hamiltonian,

(3,7 = o )+ Coa™ ™ () + v (70)
In [20], a careful computational study was performed on how time-adaptivity and symplecticity of
the numerical scheme improve the performance of the resulting optimization algorithm. In particular,
it was observed that time-adaptive Hamiltonian variational discretizations, which are automatically
symplectic, with adaptive time-steps informed by the time-rescaling of the family of p-Bregman
Hamiltonians, yielded the most robust and computationally efficient optimization algorithms, outper-
forming fixed-timestep symplectic discretizations, adaptive-timestep non-symplectic discretizations,
and Nesterov’s accelerated gradient algorithm which is neither time-adaptive nor symplectic.

4.2. Numerical Methods.
4.2.1. A Lagrangian Taylor Variational Integrator (LTVI).

We will now construct a time-adaptive Lagrangian Taylor variational integrator (LTVI) for the
p-Bregman Lagrangian
p+1

5o () - Cpa** ' f(q), (71)
p

using the strategy outlined in Section 2.2 together with the discrete Euler-Lagrange equations
derived in Sections 3.2 and 3.3.
Looking at the form of the continuous p-Bregman Euler-Lagrange equations,

Ep (qvqlvq) = q

+1

. D . _
i+ ——q+Cp*q" v f(q) =0, (72)
we can note that Vf appears in the expression for ¢. Now, the construction of a LTVI as presented
in Section 2.2 requires p-order and (p + 1)-order Taylor approximations of ¢g. This means that
if we take p > 1, then Vf and higher-order derivatives of f will appear in the resulting discrete
Lagrangian Ly, and as a consequence, the discrete Euler-Lagrange equations,

po =-D1La(qo,q1), p1=D2L4(q0,q1): (73)

will yield an integrator which is not gradient-based. Keeping in mind the machine learning
applications where data sets are very large, we will restrict ourselves to explicit first-order optimization
algorithms, and therefore the highest value of p that we can choose to obtain a gradient-based
algorithm is p = 0.

With p = 0, the choice of quadrature rule does not matter, so we can take the rectangular
quadrature rule about the initial point (¢; =0 and b, = 1). We first approximate q(0) = 9y by the

solution vy of the problem ¢; = ¢ o \Ilzl)((jo,ff)o) = o + hig, that is 99 = 2% Then, applying the

Tt
quadrature rule gives the associated discrete Lagrangian,
La(Go,q1) = hL (170 ! ?:Jo) = %" {0, 90) = Chpas”~" f(go) (74)
’ "\ g(a0) 2p(9(90))2 0

The variational integrator is then defined by the discrete extended Euler-Lagrange equations
derived in Sections 3.2 and 3.3. In practice, we are not interested in the evolution of the conjugate
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momentum t, and since it will not appear in the updates for the other variables, the discrete
equations of motion from Sections 3.2 and 3.3 both reduce to the same updates,

Tk = =D1La(qr, qk, Qre1, Qr+1)s (75)
Tkl = 9(9) D3 La(q, Ak, Qr+1,Ak+1)5 (76)
9(qr+1)
dk+1 = qr + hg(qr)- (77)
Now, for the adaptive approach, substituting g(q) = p -3 and
L DLBIP (g — — qi) - Chpg?™! 78
d( Q> Qs Qor1, Qis1) = Zh 5k (Qhs1 = Q> Qrs1 — Qi) pay” " f(ax), (78)
yields the adaptive LTVI algorithm,
Qk+1 = qr + h%q,ﬁ’ﬁ/”, (79)
hp? Ch?p* oo
Qhe1 = Qe+ —— o5 TR T T2 a, PG £ (ar), (80)
Peq
D) p+p/p
=k . 1
Th+l hp?’q,lcfl’/p (qr+1 = qr) (81)
In the direct approach, p = p so g(q) = 1 and we obtain the direct LTVI algorithm,
Qs = Qi + I, (82)
hp 2 2 p 2
Qhs1 = Qi + " —17k — Ch°p ay "V f(qk), (83)
k
qp+1
Tht1 = L(Qlﬂl - qr)- (84)
hp

4.2.2. A Hamiltonian Taylor Variational Integrator (HTVI).

In [20], a Type II Hamiltonian Taylor Variational Integrator (HTVI) was derived following the
strategy from Section 2.2 with p = 0 for the adaptive approach p - p-Bregman Hamiltonian,
H,yp(3,7) = 7 (r,r) + P vt £(q) + Leqtolr (85)
pP—=p q, 2]5(]1”*13/? ) 23 Cl q ﬁ q .
This adaptive HT'VI is the most natural Hamiltonian analogue of the LTVI described in Section 4.2.1,
and its updates are given by

Qs = Qi + b o(1 o, (36)
The1 = Tk — —DChqi.p‘ﬁ/pr(qk), (87)
dk+1 = qk t 7hq . p/p Tk+1- (88)

When p = p, it reduces to the direct HTVI,
Qr+1 = gk + I, (89)
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Thil =Tk = hCPClip_IVf(Qk)a (90)
Qk+1 = qk + hpcl;pilrmy (91)

4.3. Numerical Experiments.

Numerical experiments using the numerical methods presented in the previous section have been
conducted to minimize the quartic function,

f@)=[(@-1)"S@-1)], (92)

where z € R? and ¥;; = 0.9/, This convex function achieves its minimum value 0 at z* = 1.

As was observed in [20] for the HTVI algorithm, the numerical experiments showed that a
carefully tuned adaptive approach algorithm enjoyed a significantly better rate of convergence and
required a much smaller number of steps to achieve convergence than the direct approach, as can be
seen in Figure 1 for the LTVI methods. Although the adaptive approach requires a smaller fictive
time-step h than the direct approach, the physical time-steps resulting from ¢ = 7PIP in the adaptive
approach grow rapidly to values larger than the physical time-step of the direct approach. The
results of Figure 1 also show that the adaptive and direct LTVI methods become more and more
efficient as p is increased, which was also the case for the HTVI algorithm in [20].

107 ]

o L |
o L |
oy L |
M 100 .
r LTVI Direct p =2 B

i LTVI Direct p =4 1

1010 ——LTVI Direct p =8 u

r LTVI Adaptive p =2 b

[ LTVI Adaptive p =4 ]

l |—LTVI Adaptive p =8 |

10751 Ll L ]

10° 102 10° 10*
Number of Gradient Evaluations

F1cURE 1. Comparison of the direct and adaptive approaches for the LTVI algo-
rithm, when applied to the quartic function (92).

The LTVI and HTVI algorithms presented in Section 4.2 perform empirically almost exactly in
the same way for the same parameters and time-step, as can be seen for instance in Figure 2. As
a result, the computational analysis carried in [20] for the HTVI algorithm extends to the LTVI
algorithm. In particular, it was shown in [20] that the HTVI algorithm is much more efficient than
non-adaptive non-symplectic and adaptive non-symplectic integrators for the Bregman dynamics,
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and that it can be a competitive first-order explicit algorithm which can outperform certain popular
optimization algorithms such as Nesterov’s Accelerated Gradient [54], Trust Region Steepest Descent,
ADAM ([33], AdaGrad [15], and RMSprop [61], for certain choices of objective functions. Since the
computational performance of the LTVI algorithm is almost exactly the same as that of the HTVI
algorithm, this means that the LTVI algorithm is also much more efficient than non-symplectic
integrators for the Bregman dynamics and can also be very competitive as a first-order explicit
optimization algorithm.

10° ]
100~ a
[ L 4
[e)
q
[
[£4] S 4
0% ]
1010 ]
r HTVI 1
L |—1LTVI
101° = L L

10! 102
Number of Gradient Evaluations

FI1GURE 2. Comparison of the HT'VI and LTVI algorithms with the same parameters.

5. Accelerated Optimization on More General Spaces.

5.1. Motivation and Prior Work.

The variational framework for accelerated optimization on normed vector spaces from [20, 65]
was extended to the Riemannian manifold setting in [19] via a Riemannian p-Bregman Lagrangian
L, :TQ xR — R and a corresponding Riemannian p-Bregman Hamiltonian #, : T*Q x R - R, for
p >0, of the form

t§p+1

L(X,V, 1) = (V,V) - Cpt 51 p(X), (93)

Hp(X,R,t) = —2— (R, R) + Cpt 3D f(X), (94)
2t xP+l
where ¢ and \ are constants having to do with the curvature of the manifold and the convexity of
the objective function f. These yield the associated p-Bregman Euler—Lagrange equations,

. (p+ A
« X +
Vx At

Here, gradf denotes the Riemannian gradient of f, VxY is the covariant derivative of Y along X,
and {-,-) is the fiber metric on T*Q induced by the Riemannian metric (-,-) on Q whose local

X + Cp*tP?grad f(X) = 0. (95)




TIME-ADAPTIVE LAGRANGIAN VARIATIONAL INTEGRATORS FOR ACCELERATED OPTIMIZATION 19

coordinates representation is the inverse of the local representation of (-,-). See [1, 6, 48, 35, 32, 19]
for a more detailed description of these notions from Riemannian geometry and of this Riemannian
variational framework for accelerated optimization.

Note that some work was done on accelerated optimization via numerical integration of Bregman
dynamics in the Lie group setting [42, 60] before the theory for more general Bregman families on
Riemannian manifolds was established in [19].

It was shown in [19] that solutions to the p-Bregman Euler-Lagrange equations converge to
a minimizer of f at a convergence rate of O(1/tP), under suitable assumptions, and proven that
time-rescaling a solution to the p-Bregman Euler-Lagrange equations via 7(t) = /7 yields a solution
to the p-Bregman Euler-Lagrange equations. As a result, the adaptive approach involving the
Poincaré transformation was extended to the Riemannian manifold setting via the adaptive approach
Riemannian p - p Bregman Hamiltonian,

2 2 ; .
Wy (@ R) = —L () + P88 @)+ Pt (96)
2P0 P e p p

This adaptive framework was exploited using discrete variational integrators incorporating
holonomic constraints [16] and projection-based variational integrators [17]. Both these strategies
relied on embedding the Riemannian manifolds into an ambient Euclidean space. Although the
Whitney and Nash Embedding Theorems [53, 63, 64] imply that there is no loss of generality
when studying Riemannian manifolds only as submanifolds of Euclidean spaces, designing intrinsic
methods that would exploit and preserve the symmetries and geometric properties of the Riemannian
manifold and of the problem at hand could have advantages, both in terms of computation and in
terms of improving our understanding of the acceleration phenomenon on Riemannian manifolds.

Developing an intrinsic extension of Hamiltonian variational integrators to manifolds would
require some additional work, since the current approach involves Type II/III generating functions
H(qr,pr+1), Hi(Pr;qre+1), which depend on the position at one boundary point, and on the
momentum at the other boundary point. However, this does not make intrinsic sense on a manifold,
since one needs the base point in order to specify the corresponding cotangent space, and one
should ideally consider a Hamiltonian variational integrator construction based on discrete Dirac
mechanics [44, 66, 67].

On the other hand, Lagrangian variational integrators involve a Type I generating function
L4(qr,qr+1) which only depends on the position at the boundary points and are therefore well-
defined on manifolds, and many Lagrangian variational integrators have been derived on Riemannian
manifolds, especially in the Lie group [5, 27, 28, 36, 37, 38, 41, 43, 56] and homogeneous space [39]
settings. The time-adaptive framework developed in this paper makes it now possible to design
time-adaptive Lagrangian integrators for accelerated optimization on these more general spaces,
where it is more natural and easier to work on the Lagrangian side than on the Hamiltonian side.

5.2. Accelerated Optimization on Lie Groups.

Although it is possible to work on Riemannian manifolds, we will restrict ourselves to Lie groups
for simplicity of exposition since there is more literature available on Lie group integrators than
Riemannian integrators. Note as well that prior work is available on accelerated optimization via
numerical integration of Bregman dynamics in the Lie group setting [42, 60].

Here, we will work in the setting introduced in [42]. The setting of [60] can be thought of as a
special case of the more general Lie group framework for accelerated optimization presented here.
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Consider a n-dimensional Lie group G with associated Lie algebra g = T.G, and a left-trivialization
of the tangent bundle of the group TG ~ G x g, via (¢,q) = (¢,L4-1¢) = (¢,€), where L: G x G - G
is the left action defined by Lgh = gh for all ¢,h € G. Suppose that g is equipped with an inner
product which induces an inner product on T,G via left-trivialization,

(vew)r,a = (TgLg1veTLy1w)g, Vo,w e T,G. (97)

With this inner product, we identify g ~ g* and T;G ~ T G ~ G x g* via the Riesz representation.
Let J: g — g* be chosen such that (J(§) e () is positive-definite and symmetric as a bilinear form of
&, ¢ €g. Then, the metric {-,-) : gx g — R with (£,{) = (J(£) e () serves as a left-invariant Riemannian
metric on G. The adjoint and ad operators are denoted by Ad, : g - g and ad¢ : g — g, respectively.
We refer the reader to [48, 40, 23] for a more detailed description of Lie group theory and mechanics
on Lie groups.

As mentioned earlier, there is a lot of literature available on Lie group integrators. We refer the
reader to [11, 12, 13, 29] for very thorough surveys of the literature on Lie group methods, which
acknowledge all the foundational contributions leading to the current state of Lie group integrator
theory. In particular, the Crouch and Grossman approach [14], the Lewis and Simo approach [47],
Runge-Kutta—Munthe-Kaas methods [9, 50, 51, 52], Magnus and Fer expansions [4, 30, 68], and
commutator-free Lie group methods [10] are outlined in these surveys. Variational integrators have
also been derived on the Lagrangian side in the Lie group setting [5, 27, 28, 36, 37, 38, 41, 43, 56].

We now introduce a discrete variational formulation of time-adaptive Lagrangian mechanics on
Lie groups. Suppose we are given a partition 0 =79 <7 < ... <7y = J of the interval [0,7 ], and
a discrete curve in G x R x R denoted by {(gx,dk, ) 1oy such that gx ~ ¢(7%), qx ~ q(7x), and
Ak  A(7). The discrete kinematics equation is chosen to be

Qr+1 = QS (98)
where fi € G represents the relative update over a single step.
Consider the discrete action functional,
N-1

Gd({(Qkanw)\k)}iv:o) => I:Ld(Qkafkaqk75Ik+1) —)\kM + A9 (qr )] M, (99)
k=0 Tk+1 — Tk 1~ Tk
where,
Tk+1 €
La(qis fr, qr, Qre1) ext f Llg,——,qldr. (100)
(4.0)€C% ([71, 71411, G*R) T 9(q)

(g:9) (7.)=(ax,9%)s (¢:9) (T+1)=(qr fr,r+1)

We can derive the following result which relates a discrete Type I variational principle to a set of
discrete Euler—Lagrange equations:

Theorem 5.1. The Type I discrete Hamilton’s variational principle,

5@(1({(%,%,)\1«)}?:0) =0, (101)

where,

B N
Sa ({(qr, 9 M) omo) = . [Ld(Qk,fm%,qml) /\kM+)\ g(qr )]M (102)

k=0 Tk+1 — Tk

s equivalent to the discrete extended Fuler—Lagrange equations,

Qke1 = Gk + (Trr1 — ) 9(q8), (103)
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Tk+1 — Tk Gk — k-1

Ad;; (T;Ly, DyLg, ) =T.L, D1Lg, + T:Lys ,DoLg, ., (104)
Qk+1 — 9k Tk — Tk-1
1 - 1 .
|:D3Ld,c + Apg——— + /\ng(qk)] Qe =Gk _ [Ldk — )\ku + )\kg(qk)]
Tk+1 — Tk Tk+1 — Tk Tk+1 — Tk Tk+1 — Tk (105)
1 - Q- 1 — Qi
. [D4Ldk e ] Ak —Ar-1 [Ldk—l _ AHM + )\k-lg(%—l)] =0,
T = Tk-1d T = Th-1 T — Th1 Tk = Tk-1
where Lq, denotes La(qk, fr,dk, Qk+1)-
Proof. See Appendix A.3. O
Now, define
pr = =D3La(q, fr, Ok, qr+1) (106)
and
pik = Adpos (TZLg DaLa(qrs frs Gy Gre1)) = Tolq, D1 La(qrs frs Ok, Qhen)- (107)
Then,

T — T - *
i1 = ko2 7 Thel Ghet G T Ly, DaLa(qr, fi,qk, Qr+1)- (108)
Ok+2 = k+1 Th+1 — Tk

With these definitions, if we use a constant time-step h in 7 and substitute g(q) = %ql_ﬁ/p, the
discrete Euler-Lagrange equations can be rewritten as

pk = Adyos (TZLg, DaLa(qrs frs Grs Gre1)) = TeLg, D1 La(qr, fis Gk, ue1), (109)
1-p/p
M1 = ’lf_if)/pTszkD2Ld(Qk7 Jr> Qs Qis1) s (110)
k+1
qQr+1 = i + hgqi_p/p7 (111)
0 [ A1 — A+ Lg, — L A )
Pral = P[Ak+1 kt “di disr ] + DaLa, + k+1 (1 _ 179)' (112)
hpay 4" Qr+1 p
In the Lie group setting, the Riemannian p-Bregman Lagrangian becomes
tﬁp+1 . 5
Lo(0:66) = (€, €) - CptIP L f(g), (113)

with corresponding Euler-Lagrange equation,

dJT(f) * Hp; 1J(5) -ad{J (&) + Cp*t" VL f(q) =0, (114)

where Vy, f is the left-trivialized derivative of f, given by Vi, f(q) = T.Ly(Dyf(g)). We then consider
the discrete Lagrangian,

Kkp+1
qkp+ (k+1)p-1
La(qk, fr Ok, A1) = 75 Ta(fx) = Chpg f(ar), (115)
7 hp(g(ak))? "
where Ty(fx) » %(hfk, h&k), which approximates
Thk+1
Ld(Qk7fkaqk7qk+1) N 5 ext f L(qafaq) dar. (116)
(4,0)eC? ([7,7+1],GXR) T g9(a)

(g:9) (7)=(ax,9%)s (¢:9) (Tr+1)=(qr fr,dr+1)
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5.3. Numerical Experiment on SO(3).

We work on the 3-dimensional Special Orthogonal group,
SO(3) = {ReR¥3R"R = I3,3,det (R) = 1}. (117)

Its Lie algebra is

50(3) = {S e R¥3|ST = S}, (118)
with the matrix commutator as the Lie bracket. We have an identification between R* and s0(3)
given by the hat map *: R® - s0(3), defined such that Zy = = x y for any z,y € R%. The inverse of
the hat map is the vee map (-)" : s0(3) - R3. The inner product on so(3) is given by

N2 1 AT A
(7196) 03 = iTrace(nTé“) =n'¢, (119)
and the metric is chosen so that
(1,6) = (J(1) #€) 5y = Trace (7" Ja€) = 0" JE, (120)

where J € R*3 is a symmetric positive-definite matrix and Jy = Trace(J)I5x3 — J.
On SO(3), for any u,v € R® and F € SO(3),

adgd = [4,0] =40 - vt =ux0, Adpa = FuFT = Fu. (121)
Identifying s50(3)* ~ 50(3) ~ R*, we have for any u,v € R® and F € SO(3) that
ad,v = v = u x v, ad,v = —tv = v x u, Adpu = Fu, Adpu=F"u. (122)

On SO(3), the Riemannian p-Bregman Lagrangian becomes

tp+1

Ly(R,Q,t) = —QTJQ - Cpt** ' f(R), (123)

2
and the corresponding Euler-Lagrange equat}ijons are given by
JO+ %JQ +QIQ+ CP*P2YLf(R) =0,  R=RQ. (124)
The discrete kinematics equations is written as
Riv1 = R Fy, (125)
where Fj, € SO(3), and « =1 so we get the discrete Lagrangian,

02 R
La(Ry, Fis, Re, Rpee1) = hp—p?)mg‘“z”/PTd(Fk) — ChpR2P7 f(Ry). (126)

As in [37, 42], the angular velocity is approximated with QO ~ %R;(Rkﬂ - Ry) = %(Fk —I3x3) so we
can take

Td(Fk) ZTI"aCG([I?,Xg—Fk]Jd). (127)
Differentiating this equation and using the identity Trace(-2A) = (A - AT)Y -z yields
TiLp, (Dr,Ta(Fy)) = (JaFy - FLJa)" . (128)

Then, the discrete Euler-Lagrange equations for uy and pg+1 become

09 B
i = %ﬁﬁi‘””“’ (Feda=JaFy)" + Chpd ' VL f (Ry), (129)
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1-p/p
q _
pier = =5 By [ = ChpRT T VL f (Ri)]. (130)
k+1

Now, equation (129) can be solved explicitly when J = I5.3 as described in [42]:

-1 3
sin™" ||ag| . h 95 _
F = exp(||ak|‘|k|ak)7 where ay = p%m,ﬁ p=2p/p [uk - C’hpi)%ip 1VLf(R;C)] ) (131)
Therefore, we get the Adaptive LLGVI (Adaptive Lagrangian Lie Group Variational Integrator)
- 3
sin” |lag . h 25 _
Fy, = exp (|ak||k|ak)’ where ay, = p%%llc P=2p/p [ﬂk - Chpfﬁip 1VLf(Rk)] , (132)
Rpr1 = Ry + hERLPIP, (133)
p
1-p/p )
M+l = ]f%ﬁ/kaT (1 - ChpRP o f(R) ] (134)
k+1
Rii1 = R Fy.. (135)
We will use this integrator to solve the problem of minimizing the objective function,
1 1
F(R) = S1A=RI3 = 3 (AL} +3) - Trace(A™R), (136)
over R € SO(3), where |- | denotes the Frobenius norm. Its left-trivialized gradient is given by
Vif(R)=(ATR-R'A)". (137)

Minimizing this objective function appears in the least-squares estimation of attitude, referred to as
Wahba’s problem [62]. The optimal attitude is explicitly given by

R* = Udiag[1,1,det(UV)] VT, (138)
where A =USVT is the singular value decomposition of A with U,V € O(3) and S diagonal.

We have tested the Adaptive LLGVI integrator on Wahba’s problem against the Implicit Lie
Group Variational Integrator (Implicit LGVI) from [42]. The Implicit LGVI is a Lagrangian
Lie group variational integrator which adaptively adjusts the step size at every step. It should be
noted that these two adaptive approaches use adaptivity in two fundamentally different ways: our
Adaptive LLGVI method uses a priori adaptivity based on known global properties of the family
of differential equations considered (i.e. the time-rescaling symmetry of the family of Bregman
dynamics), while the implicit method from [42] adapts the time-steps in an a posteriori way, by
solving a system of nonlinear equations coming from an extended variational principle. The results
of our numerical experiments are presented in Figures 3 and 4. In these numerical experiments, we
have used the termination criteria

[f(Be) = f(RT)| <6 and  |f(Rk) = f(Rp-1)| <0. (139)

We can see from Figure 3 that both algorithms preserve the orthogonality condition R} Ry = I3x3
very well. Now, we can observe from Figure 3 that although both algorithms follow the same curve
in time ¢, they do not travel along this curve at the same speed. Despite the fact that the Adaptive
LLGVI algorithm initially takes smaller time-steps, those time-steps eventually become much larger
than for the Implicit LGVI algorithm, and as a result, the Adaptive LLGVT algorithm achieves the
termination criteria in a smaller number of iterations, which can also be seen more explicitly in
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the table from Figure 4. Unlike the Implicit LGVTI algorithm, the Adaptive LLGVT algorithm is
explicit, so each iteration is much cheaper and is therefore significantly faster, as can be seen from
the running times displayed in Figure 4. Furthermore, the Adaptive LLGVT algorithm is significantly

easier to implement.

f|—— Adaptive LLGVI
—— Implicit LGVI

10713

|1~ R"R|

1013 r T T T

101

[1-R"R|

. .
10° 10*

—Adaptive LLGVI| | 11} ?daﬁt?riIéL\/?VI
— Tmplicit LGVI | ]| ———mpuct

t

N WA OO N 0 O O

| 1 i

0
10° 10"

102

k 10° 10* 10° 10!

102
k

10°

FIGURE 3. Comparison of the Adaptive LLGVT algorithm and of the Implicit LGVI

algorithm from [42] with p = 6, to solve Wahba’s problem (136).

104
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-
o
N

x Adaptive LLGVI|
o Implicit LGVI | Css
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3
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T:}G 4 o o0 °® e oo '.
% O T e T 0se o
= L o ,x,x,,x,xxxx,x”x”x” ]
B 10 e e e K L e E
S} o xxX T T EXOX e
o Cnn v S O O S Y S S PV A S S PSR YT
1072 108 1074 107 10°® 107 10 10° 10710
Termination Criterion §
Termination Criterion § 1010410 ] 10| 107 | 10® | 10 | 10710
Adaptive LLGVI: Iterations 350 | 510 | 648 | 722 | 724 | 1181 | 1604 | 2237
Implicit LGVI: Iterations 179 474 970 | 1380 | 1392 | 4506 | 11992 | 16758

Adaptive LLGVI: Time (in seconds) | 0.007 | 0.009 | 0.011 | 0.012 | 0.012 | 0.016 | 0.027 | 0.034
Implicit LGVI: Time (in seconds) | 0.15 | 0.36 | 0.71 | 1.00 | 1.01 | 3.24 | 9.22 | 17.55

FIGURE 4. Time and number of iterations needed by the Adaptive LLGVI and

Implicit LGVT algorithms with p = 6, to satisfy the termination criterion (139) on
Wahba’s problem (136).

Conclusion.

A variational framework for accelerated optimization on vector spaces was introduced [65] by
considering a family of time-dependent Bregman Lagrangian and Hamiltonian systems which is
closed under time-rescaling. This variational framework was exploited in [20] by using time-adaptive
geometric Hamiltonian integrators to design efficient, explicit algorithms for symplectic accelerated
optimization. It was observed that a careful use of adaptivity and symplecticity, which was possible
on the Hamiltonian side thanks to the Poincaré transformation, could result in a significant gain in
computational efficiency, by simulating higher-order Bregman dynamics using the computationally
efficient lower-order Bregman integrators applied to the time-rescaled dynamics.

These variational framework and time-adaptive approach on the Hamiltonian side were later
extended to the Riemannian manifolds setting in [19]. However, the current formulations of
Hamiltonian variational integrators do not make sense intrinsically on manifolds, so this framework
was only exploited using methods which take advantage of the structure of the Euclidean spaces in
which the Riemannian manifolds are embedded [16, 17] instead of the structure of the Riemannian
manifolds themselves. On the other hand, existing formulations of Lagrangian variational integrators
are well-defined on manifolds, and many Lagrangian variational integrators have been derived on
Riemannian manifolds, especially in the Lie group setting. This motivated exploring whether it is
possible to construct a mechanism on the Lagrangian side which mimics the Poincaré transformation,
since it is more natural and easier to work on the Lagrangian side on curved manifolds.
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The usual correspondence between Hamiltonian and Lagrangian dynamics could not be exploited
here since the Poincaré Hamiltonian is degenerate and therefore does not have a corresponding
Lagrangian formulation. Instead, we introduced a novel derivation of the Poincaré transformation
from a variational principle which gave us additional insight into the transformation mechanism and
provided natural candidates for a time-adaptive framework on the Lagrangian side. Based on these
observations, we constructed a theory of time-adaptive Lagrangian mechanics both in continuous
and discrete time, and tested the resulting time-adaptive Lagrangian variational integrators to
solve optimization problems by simulating Bregman dynamics, within the variational framework
introduced in [65]. We observed empirically that our time-adaptive Lagrangian variational integrators
performed almost exactly in the same way as the time-adaptive Hamiltonian variational integrators
coming from the Poincaré framework of [20], whenever they are used with the same parameters and
time-step. As a result, the computational analysis carried in [20] for the HT'VI algorithm extends
to the LTVI algorithm, and thus the LTVI algorithm is much more efficient than non-symplectic
integrators for the Bregman dynamics and can be a competitive first-order explicit algorithm since
it can outperform commonly used optimization algorithms for certain objective functions.

Finally, we showed that our time-adaptive Lagrangian approach extends naturally to more
general spaces such as Riemannian manifolds and Lie groups without having to face the difficulties
experienced on the Hamiltonian side, and we applied time-adaptive Lie group Lagrangian variational
integrators to solve optimization problems on the three-dimensional Special Orthogonal group SO(3).
In particular, the resulting algorithms were significantly faster and easier to implement than other
recently proposed time-adaptive Lie group variational integrators for accelerated optimization.

In future work, we will explore the issue of time-adaptive Lagrangian mechanics for more general
monitor functions, using the primal-dual framework of Dirac mechanics. We will also study the
convergence properties of the discrete-time algorithms, and try to better understand how to reconcile
the Nesterov barrier theorem with the convergence properties of the continuous Bregman flows. It
would also be useful to study the extent to which the practical considerations recently presented
in [18], which significantly improved the computational performance of the symplectic optimization
algorithms in the normed vector space setting, extend to the Riemannian manifold and Lie group
settings with the Lagrangian Riemannian and Lie group variational integrators.
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Appendix A. Proofs of Theorems.
A.1. Proof of Theorem 3.2.

Theorem A.1. The Type I discrete Hamilton’s variational principle,

664 ({(qr, qis M) Fomo) =0,
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where,
N & Qk+1 — Qk+1 — Qi
a ({(ak, a1, M) omo) = . [Ld(QIm Qks Q1 Gv1) — Aki + Mg (gr )] _—
k=0 Tk+1l — Tk Tk+1 — Tk
1s equivalent to the discrete extended Fuler—Lagrange equations,
Grr1 = Gk + (Trer — 1) 9(dr),
quD1Ld(t]k7 ks Q15 Qhe1) + ¢D3Ld(q1c—l7qk—l7q1cy qr) =0,
Th+l = Tk Tk = Th-1
1 1 -
|:D2Ldk+)\k7+AkV,g(q )] Jk+1 — qk _ [Ldk—)\kM"')\kg(qk)]
Tk+1 +1 — Tk Tk+1 — Tk Tk+1 — Tk
1 - (k- 1 _
+ [D4Ldm - Ap1 ] L. L [Ldk T Ak—lg(%—l)] =0
Tk — Tk-1Jd Tk — Tk-1 Tk — Tk-1 Tk — Tk-1

where Lq, denotes La(qk, Gk, Qr+1, Qk+1)-

Proof. We use the notation Lg, = Lq(qk, 9k, qk+1,qk+1), and we will use the fact that
0qo = 6qN =0q0 = dqn =0

throughout the proof. We have

= & Ok+1 — qk+1 — 9k
06, = 5( > [Ld(Qk7%,Qk+1,qk+1) Ao L0 Neg (an )] )

k=0 Tk+1 — Tk+1l — Tk
N-1 1
= [D2Ldk A ———— + A/NQ(%)] M(SClic
k=1 Tk+1 — Tk Tk+1 — Tk
R Je+1 — Ak
[Ldk A+ )\kg(clk)] 8
o1 Thel — Tk Thel = Tk
N-2
1 _
+ 3 [DaLa -2 | =0 .
k=0 Thk+1l =Tk d Te+1 — Tk
N-2
1
+ 7[Ldk —/\kM+)\k9(%)]5%+1
k=0 Tk+1 — Tk Tk+1 — Tk
N-1

" MDlLdk 5q
k=1 Tk+1 — Tk

N-2

dk+1 — i Jk+1 — 9k Jk+1 — 9k
+ —————D3Lg, 0qps1 + Z 7(g(q ) - 7)5%.
k=0 Tk+1 — Tk k=0 Tk+1 — Tk Tk+1 — Tk
Thus,
_ N-1 1
06,4 = I:DQLdk + A ———— + A Vg (a )] Sl LY
k=1 Tk+1 ~— Tk Tk+1 — Tk

N-1 1 -k
- 7[Ldk —)\kM‘*')‘kg(CIk)] ]2
Tk+1 — Tk

N-1 1 _
9k — 9k-1
+ I:D4Ldk 1~ k-1 ] dqk
k=1 Tk = Tk-1) Tk — Tk-1
Nl 1 qk — qk-1
+ —_— I:Ldk_l “Apoi————— +>\k—19(%—1)] 0qx
=1 Tk~ Tk-1 Tk = Th-1

27
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N-1 _ _
5 [qk+1 I b, La, L qk*1D3Ldk,1]5qk

+
k=1 LTk+1 — Tk Tk — Tk-1
N-1
9k+1 — Jk+1 —
+ g(qx) - —— | 0 Ak
k=0 Tk+1 — 1~ Tk

As a consequence, if
Qk+1 = qk + (Tk+1 - 7)9(ak),

e+l — Gk e
B+t = Ak DlLd(Qkquan+1aqk+1)+ . LD La(qk-1, qr-1, 1> 1) = 0,
T+l — Tk Tk = Th-1
1 k+1 — Ok 1 k+1 — Qk
[DQLdk A +>\kV9(CIk)] Tt 7G5 |:Ldlc _Akiq #1719 +>\k9(qk)]
Tk+1 — Tk Tk+1 — Tk Tk+1 — Tk Tk+1 — Tk

1 - (k- 1
+ |:D4Ldk,1 - /\k—l ] Ak ~ k-1 + g

Ak — k-1
[Ldk,l — Ao ——— + Am19(Qp-1) | =
Tk = Tk-1d Tg — Tk-1 Tk — Tk-1 Tk — Tk-1

then 664 ({(q, k. Ax) o) = 0. Conversely, if 6&4 ({(qr,qr, Ax) o) = 0, then a discrete funda-
mental theorem of the calculus of variations yields the above equations. O

A.2. Proof of Theorem 3.4.

Theorem A.2. The Type I discrete Hamilton’s variational principle,
664 ({(an Ak )\k)}fc\]:o) =0

where,

N-1 _
Sa ({(ar ar, M) oso) = D, {LH a (La(qh, Qs Qre+1, Qis1) = Ai] + Akg(%)},
k=0 \Tk+1 — Tk

s equivalent to the discrete extended Fuler—Lagrange equations,

Ar+1 = Ak + (Tee1 — T6)9(dx ),

Ak+1 — 9k k-1
+7D1Ld(%,qk7%+1,%+1)+7D3Ld(% 1, qk-1,qk> k) = 0,
Thel = Tk Th = Th-1
- 1 — qr— 1 Ak A
MD?L% - La, + L 1D4Ldk—1 +——Lay, = L - u - )‘kvg(qk)7
The1 — Tk Thtl — Tk Th = Th-1 Th = Th-1 Th = Th-1 Thk+l—Th

where Lg, denotes La(qi, Gk, Qr+1, Qk+1)-

Proof. We use the notation Lg, = Lq(qk, 9k, Gk+1,qk+1), and we will use the fact that
dqo = 6qn =06q0 = dqn =0

throughout the proof. We have

—_ N -
66d:6( {qlﬁlqk[Ld(QkacIk7Qk+1»qk+l)_)\k]+)\kg(qk)})

s
LM

Tk+1 — Tk
N-1
_ 1 A
_ [MDzLdk - Lg, + b +>\kV9(CIk)]5CIk
k=1 LTk+1 — Tk Thel — Tk Tk+1 — Tk
1 A
N Z [MDzlLdk La, - k ]5qk+1
T+l — Tk Tk+1 — Tk Th+1 ~ Tk
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N qran - qu
+ Z ————D1Lg,0q
k

1 Tk+1 — Tk
N-2 _
+ MDSLdk&]lﬁl
k=0 Tk+1 — Tk
-1
k1 Clk)
+ g(q — 0.
ICZ::O ( Tk+1l — Tk
Thus,
N-
= k k 1 )\k
5&, = [7"‘ RS LN Lg, + +/\ng(%)]5%
k=1 LTk+1 — Tk Tk+1 — Tk Tk+1 —
~ [ 9k — qr- 1 Ak—
+ Z [7q d "'DyLg, , + ———Lg_, - ! ]6qk
k=1 LTk = Tk-1 Tk — Tk-1 Tk — Tk-1
1

N-1 _ N- -
N [qk+1 5Dy Ly, + 9k — 9k-1 D3Ldk_1] Sap + (g(q/c) _ Q1 qk:)é)\k.
k=0

k=1 LTk+1 — Tk Tk — Tk-1

As a consequence, if

- 1 — Qr— 1 Al A
MDQLdk - Lg, + A~ G-t DyLgy_, + ——Lag,_, = L b XeVg(ar),
Th+1 — Tk Th+1 — Tk Tk = Tk-1 Tk = Tk-1 Tk —Tk-1 Tk+l — Tk
Qr+1 — 9k — (k-1
DlLd(qka Aky qk+1, Qk+1) + DSLd(qk—h qk-1,9k, qk) = 07

Tk+1 — Tk Tk — Tk-1
Q1 = Gk + (The1 — 1) 9(q8),

then 06, ({(q;c,l]m)\k)}iv:o) = 0. Conversely, if 66, ({(qk,qk,)\k)}i\io) =0, then a discrete funda-
mental theorem of the calculus of variations yields the above equations. O

A.3. Proof of Theorem 5.1.
Theorem A.3. The Type I discrete Hamilton’s variational principle,

664 ({(qr, a1, Ae) }sg) = 0

where,

Jk+1 — Qk
7'+1_7'k

B N-1
Sa ({(qr, 0, M) Fiso) = . [Ld((Jmfk,CIm%n) A quiqur/\ 9(qx )]
k=0 +

1s equivalent to the discrete extended Fuler—Lagrange equations,

Gk+1 = Gk + (Tre1 — T6)9(dk ),

* * * Tk+1 — Tk Ok — Qk-1 %
Adfl;l (TeLfk D2Ldk) ) TEqu DlLdk ! qk:l —qk Tk — Tk-1 TeLfk_lD2Ldk_l’

_ 1 _
+ Ang(qk)] s L [Ldk - Ak% + Akg(qk)]

1
[Dngk P
— Tk Tk+1 — Tk Tk+1 — Tk Tk+1

Tk+1
1 ;= (k- 1
+ |:D4Ldk = Ak-1 ] Qb ~ k-t | [Ldk L~ Ak

Tk = Tk-1J Tk — Tk-1 Tk — Tk-1

e ~qk-1 Ak—lg(qk—l)] _

Tk — Tk-1

where Lg, denotes La(ars fi, Qs Gien)-
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Proof. We use the notation Lg, = Lq(qk, fx,qk, qr+1) and we will use the fact that

dqo = 6qn =090 = dqn =10 = 71N =0
throughout the proof. We have

66 a ({(ars ar, M) Fomo) 5( Z [Ld(mek,%,%n) Akw +)\k9(%)] M)

k=0 Tk+1 — Tk Tk+1 — Tk
& 1 Jk+1 —
= D3Lg, + \g———— + A\, Vg(ax) 75‘1
k=1 Tk+1 — Tk Thk+1 —
N-1
k+1 — Yk
[Ldk A et 7 Ok +/\k9(%)]5%
k=1 Tk+1 — Tk Tk+1 — Tk
N-2 1 & -
+ [D4Ldk - Ak ] et 20k g
k=0 Tk+1 — Tk d Tk+1 — Tk
N-2
1 k
+ 7[Ldk _)\kM+)\k9(qk):|6qk+l
k=0 Thk+1 — Tk Th+1
N-1 _
" MDlLdk 5q
k=1 Tk+1 — Tk

Jk+1 — Yk
+ ————Dy L4, 0 f
k=0 Tk+1 — Tk
N-1

3 Qr+1 —CI: (g(qk) _ Qk+1 —Clk)é)\k'

k=0 Tk+1 — T Tk+1 — Tk

+

We can write dgi as dgx = grni for some n; € g. Then, taking the variation of the discrete
kinematics equation qx41 = qx fr gives the equation

O0qr+1 = 6q1 fr + qrd f

and
fk = QI;1Qk+1~
Therefore,
Sfr = Qi 0qre1 — G5 Oqk fr = Qi Qre1Mke1 — G @Mk fr = Freer — Mk fres
SO

56d({(%,%,)\k)}é\[=o) = I:DBLdk + A ———

+ )\kvg(%)] Mfs d
k=1 Tk+1 — Tk

+1 — Tk

—

R 1 qk+1 — 9k
-y — [Ldk A+ )\k:g(%)] 0
k=1 Tk+1 — Tk Tk+1 — Tk

=l 1 qk — Qk-1
+ Z D4Ldk_1 - )\kfl 5%
k=1 Tk = Tk-1/ Tk — Tk-1
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&= qk — qk-1
+ ) —— (Lo, ~ o1 ———— + M—19(qr-1) | 0k
Tk~ The1 Th = Th-1
N-1 B
+ S el Tk pep DLy, e )
k=1 Tk+1 — Tk
N-1

N M (T:Lys,DyLa, ® [nier = fic ' ne f])

+
e
N
+
—
|
el
o
—_
—

k) - M)(;)\k.

k=0 Tk+1 — Tk Tkl — Tk

Then,
= N =l 1 qk+1 — Gk
66&a ({(aw, ar, Ae) o) = [DsLdk FA——— 4 )\kVQ(Clk)] ———0qx
k=1 Tk+1 — Tk Tk+1 — Tk

N-1 1 _

- 7[Ldk, _)\kM"‘)\kQ(qk)] 8
k=1 Tk+1 — Tk Tk+1 — Tk
= 1 — Qi

N (D4Ld,€_1 A ) qk — Uk L S
k=1 Tk = Tk-1/ Tk — Tk-1
& — Q-

+ — (Ldk_1 - )\k—lw + )\k—lg(qk—l)) 0q
k=1 Tk — Tk-1 Tk — Tk-1
N-1

+ M(TZLQleLdk .nk)
k=1 Tk+1 — Tk
1

L5 Tkl — Gk (g(qk) _ Qk+1 — 9k ) Y
Tk+1 — Tk

+ Y B (T Dol o)
=0 Tk — Tk-1
1

- 3 Bl A (TILy, DLy, @ Ad gy ).

As a consequence, if
Ar+1 = Ak + (The1 — T6)9(dx ),

* * * T =T - - *
Adf;;1 (TeLkaQLdk) =TLg,D1La, + fel _ LEL _ L TeLg, . D2La,_,,
Qk+1 — 9k Tk — Tk-1

- 1 _
+ Akvg(%)] et 70k _ [Ldk - )\kM + )\k:g(qk):l

1
DsLg, +\fp—————
k
[ Tk+1 =Tk Tk+1 — Tk Tk+1 — Tk

Tk+1 — Tk

1 — qQp— 1 — qp—
+ I:D4Ldk - Ak-1 ] ik L [Ldk_l - Ak—lw + Ak&Q(Qk—l)] =0,
Tk —Tk-1d Tk — Tk-1 Tk — Tk-1 Tk — Tk-1

then 06, ({(qk,qk,)\k)}g:o) = 0. Conversely, if 66, ({(qk,qk,)\k)}{c\[zo) =0, then a discrete funda-
mental theorem of the calculus of variations yields the above equations. O
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