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1. Introduction

Symmetry reduction plays a central role in the field of geometric mechanics [4, 1, 23], and it in-
volves expressing the dynamics of a mechanical system with symmetry in terms of the equivalence
classes of group orbits on the space of solutions. This allows one to derive reduced equations of mo-
tion on a lower-dimensional reduced space which is obtained by quotienting the phase space by the
symmetry action. The modern approach to symmetry reduction was introduced in [3], [33], [28], and
[26], but the notion of symmetry reduction arises in earlier work of Lagrange, Poisson, Jacobi, and
Noether.

Discrete variational mechanics [27, 12, 17] provides a discrete (in time) notion of Lagrangian dy-
namics, based on a discrete Hamilton’s principle. This leads to discrete flow maps that are symplectic,
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and exhibit a discrete Noether’s theorem. In turn, this naturally raises the question of whether one
can develop a corresponding theory of symmetry reduction for discrete variational mechanics. Interest
in this direction was motivated in part by attempts to understand the integrable discretization of the
Euler top due to [29]. Prior work on discrete symmetry reduction includes a constrained variational
formulation of discrete Euler—Poincaré reduction [21, 7], the associated reduced discrete Poisson struc-
ture [22], discrete Euler—Poincaré reduction for field theories [36] and discrete fluids [32, 30], discrete
Lie—Poisson integrators [18, 5], discrete higher-order Lagrange—Poincaré reduction [6], and a discrete
notion of Routh reduction for abelian groups [11]. The resulting symplectic and Poisson integrators
can be viewed as geometric structure-preserving numerical integrators, and this is an active area of
study that is surveyed in [10]. In addition, discrete reduction theory can also be expressed in terms of
composable groupoid sequences, which was the approach introduced in [39], and explored further in
[19], and extended to field theories in [37].

The goal of this paper is to develop a discrete analogue of Dirac cotangent bundle reduction [42] for
Lagrangian systems, that is to say, a discrete Dirac reduction theory for implicit Lagrangian systems.
The relevance of this type of reduction lies in the fact that it allows for treating a wide variety of sys-
tems with symmetry from a unifying viewpoint, including degenerate systems. Therefore, our discrete
analogue allows us to construct geometric integrators for those systems. The theory presented here is
limited to systems with abelian symmetry groups, but we expect to extend it to nonabelian groups in
the future. Moreover, our work here is the first step in the construction of a category containing discrete
Dirac structures that is closed under quotients, as proposed in [16], which is fundamental for the study
of discrete Dirac reduction by stages.

In addition, framing the discrete reduction theory in the context of discrete Dirac mechanics is
significant, as it is the natural setting for studying discrete Hamiltonian mechanics on manifolds, par-
ticularly when expressed in terms of the discrete generalized energy. This is because the notion of
discrete Hamiltonians [12, 17], which are Type 2 and 3 generating functions, does not make intrinsic
sense on a nonlinear manifold, since it is not possible to specify a covector on a nonlinear manifold
without also specifying a base point. In contrast, the discrete generalized energy does make intrinsic
sense, and is a more promising foundation on which to construct a discrete analogue of Hamiltonian
mechanics on manifolds. Discrete Dirac mechanics is also the basis of a discrete theory of inter-
connections [31], which allows one to construct discretizations of complex multiphysics systems by
interconnecting simpler subsystems, which provides a framework for geometric structure-preserving
discretization of port-Hamiltonian systems [35].

Reduction theory can be addressed either in terms of the reduction of geometric structures like the
symplectic or Poisson structures, or in terms of the reduction of variational principles. In this work,
we will start with the discrete Lagrange—Dirac mechanics that was developed in [16], which can be
viewed as a discrete analogue of Lagrange—Dirac mechanics, that can be formulated both in terms of
Dirac structures [40] and the Hamilton—Pontryagin variational principle [41]. In order to coordinatize
the reduced spaces arising in the reduction that we will perform, we rely on the notion of discrete
principal connections that was introduced in [14] and further developed in [9].

Overview

In Section 2, we will recall the notion of discrete principal connection [14, 9] and discrete Dirac
mechanics [15, 16]. Initially, we will consider the case where the configuration space Q is a vector
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space, and the symmetry group G is a vector subspace acting on Q by addition, and show how the
discrete Dirac structure is group-invariant, descends to a discrete Dirac structure on the quotient space
in Section 3. In Section 4, we will show how the reduced discrete Dirac structure can be used to de-
rive the reduced discrete equations of motion, after we derive the reduced discrete Dirac differential,
which is a map arising in the reduced discrete Tulczyjew triple. In Section 5, we also show that the
discrete variational principle can be expressed in terms of a discrete generalized energy, and that if
the discrete Lagrangian is group-invariant, then so is the discrete generalized energy. This induces
a reduced discrete variational principle, which yields the same reduced discrete equations of motion.
Then, in Section 6, we show that, in the nonlinear setting, we can use the notion of retractions [2]
and an atlas of retraction compatible charts [16] to develop a global discrete theory, whose local rep-
resentatives recover the vector space theory that we considered in the earlier part of the paper. This is
significant, because that implies that with respect to an atlas of retraction compatible charts, the local
theory that we initially constructed on each chart is compatible on overlapping domains, and induces
a well-defined global theory on a manifold endowed with a semi-global retraction map. In Section 7,
we will illustrate the proposed discrete reduction theory by applying it to simulate the charged particle
in a magnetic field, and the double spherical pendulum. Finally, we will summarize our contributions
in the conclusion, and discuss future research directions.

2. Preliminaries

2.1. Group actions

Let Q be a smooth manifold, G be a Lie group, and ®¢ : G x Q — Q a free and proper left action
of G on Q. We will denote ®9(g,q) = g- q for each g € Q and g € G. For a fixed g € G, we define the
mapCI)g :Q - Qas g+ q-g. Likewise, for a fixed g € Q, wedeﬁnethemap(DqQ:G» Qasgr—q-g.
The action being free and proper yields a principal bundle s : Q — X, where £ = Q/G. We denote
the equivalence class of g € Q by [¢] € X. In general, we use a superscript to denote the space where G
acts, and brackets [-] to denote the corresponding equivalence classes.

The diagonal action on Q x Q is given by

PUC:GxQx0>0%x0,  (8(q0.91)) ~ (8 90.8q1). 2.1)
Likewise, the lift of the action to the cotangent bundle is given by
(DT*Q:GX T*Q—> T*Q’ (g,pq) = ((dq)gl)gq (pq)),

where the superscript * denotes the adjoint map. In other words, for each v,., € T,.,Q we have

(8 Py Veq) = <pq, (dCI)gQ,l)g.q (vg.q)>.

The infinitesimal generators (or fundamental vector fields) of the action ®¢ are denoted by &
X(Q) for each ¢ € g, where g is the Lie algebra of G, and analogously for the actions defined on the
other spaces. In the same fashion, the momentum map J : 7*Q — g* of the action is defined by

(/(Pq),€) = (Pg-0(q)) for each py e T*Q and & ¢ g.
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2.1.1. Group actions on vector spaces

Now we suppose that Q is a vector space, which allows us to identify

TQ=0x0, I"Qg=0xQ". (2.2)

In addition, assume that G c Q is a vector subspace* acting by addition, i.e., g-g=g+¢gforeachge G
and g € Q. In this case, we have g~! = —g and the action on T*Q reduces to,

OTC:GXT'Q~>T"Q, (8 (q0,11)) = (8+40, 1) (2.3)

To conclude, note that g = G and g* = G*, and that the exponential map is the identity. Hence,
£o(q) = &€ for each ¢ € g and g € Q. Subsequently, the momentum map is given by (J(qo, po),&) =
(po, &) for each (go, po) € T*Q and & € g.

2.2. Discrete principal connections

Discrete principal connections were first introduced in [14] and further studied in [9]. Let Q be a
smooth manifold and G be a Lie group acting freely and properly on Q.

Definition 2.1. A discrete principal connection on the principal bundle npy : O — X is a (smooth)
function wy : Q x Q — G such that

1. wq(q0,q0) = e, the identity element, for each gg € Q.

2. wa(80-q0.81-q1) = 81wa(qo.q1)g," for each (go,q1) € O x Q and go, g1 € G.

Discrete principal connections are not generally defined globally on Q x Q, as its global existence
implies a global trivialization of 7Q. Instead, it is only semi-globally defined on a G-invariant open
subset U c Q x Q containing the diagonal, i.e., (¢go,qo) € U for each gy € Q. Nevertheless, in the
following we assume that they are globally defined in order to simplify the notation.

A discrete principal connection w, enables us to define the discrete horizontal bundle as

H;={(q0.91) € O x Q| wa(qo.q1) =€} c O x Q.

In addition, w, induces a discrete horizontal lift, i.e., amap h; : Q x £ - Q x Q that is the inverse of
the diffeomorphism (idp x 7 s)|n, : Hs — O xX. We denote hy = myoh, : Q x X — Q, where 7, denotes
the projection onto the second component.

2.2.1. Local expression of discrete connections on vector spaces

Suppose that Q is a vector space and G c Q is a vector subspace acting by addition. Therefore,
X = Q/G is a vector space and the projection myy : Q — X is linear. In this case, we assume that the
horizontal lift, h; : Q x X - Q x Q, is a linear map (where the vector structure on the product is given
by the direct sum). This, in turn, ensures that hg: QO xX — Qis also linear.

Working in a trivialization of 7y, i.e., supposing that Q = X x G with mypx = m; and the vector
structure given by the direct sum, then the horizontal lift of the discrete connection is determined by a
map h, : Q x X - G defined by hy =7, o hy,ie.,

ha(qo» x1) = (x1,ha(qo, x1)), qo = (x0,80) € Q, X1 €X.

“Recall that any vector space can be regarded as a Lie group with the additive structure.
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Of course, h, is also linear and, from [9, Equation (4.2)], it satisfies

wd(%,‘]l) =81- hd(%,xl), q0.q1 € O.

In particular, hy(qgo, X0) = go and hy(g + g0, x1) = g + ha(qo, x1), for each g € G (to obtain this second
equation we have used the equivariance of wy).

On the other hand, the dual of Q is given by Q* = £* x G*, and the adjoint of h,; can be written as
h) = (hfi,Q,hZ’z) : G* - Q* x X* for some linear maps h;, : G* - Q* and h;y : G* - X*. They are
related to the adjoint of /4, as follows

Ba(po) = (0] o (ro), wo + hj5(r0)), po = (wo,10) € Q" (2.4)

Similarly, we denote by hy o : ¥ - G the adjoint map of h; ,, and analogously for hys : ¥ — G. In fact,
we have h; o(q0) = h4(qo,0) and hyx(x;) =h,(0,x;). Hence,

hd(qo,xl) = hd,Q(qO) + hd’z(xl). (25)

For the sake of simplicity, we introduce the map hY) : £ x £ — G, where h)(xo, x;) = hy((x0,0),x,).
Lastly, observe that h, : Q x £ — G may be regarded locally as a map defined on (X x G) x X. For this
reason, we denote its partial derivatives by

ohy oh

oh
Dihy(go. x1) = —2(go. x1) = (—(xo,go,xl), —d(xo,go,xl)),
dqo 0x 0go

oh
Dxhy(qo,x1) = a—xd(CIo, x1),
!

for each (go,x1) = ((x0,80),X1) € (£ x G) x Z. Due to the linearity of h,, they are given by

D1hy(qo0,x1)(q) =ha(g,0), Dyhy(qo, x1)(x) =hy(0, x), geQ, xeX. (2.6)

We conclude with the following straightforward result.
Lemma 2.2. Let Q = X x G be a trivialization of ngs. Then for each qo = (x0,80) € Q and py =
(wo,r0) € Q* we have J(qo, po) = ro.
2.3. Discrete Dirac mechanics

Let us briefly recall the formulation of discrete Dirac mechanics introduced in [15, 16]. Here, we
present only the unconstrained case. In the following, let Q be a vector space.
2.3.1. Generating functions and discrete Tulczyjew triple

The Tulczyjew triple consists of three diffeomorphisms defined between the iterated tangent and
cotangent bundles of a smooth manifold (cf. [40]).

Yo
/_\
Ko Qb
*(TQ) T(T*Q) T(T*Q)
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If Or«(r+0) € QUT*(T*Q)) and O« (rg) € Q(T*(TQ)) denote the tautological 1-forms on 7*(T*Q)
and T*(T Q), respectively, then the Tulczyjew triple induce a symplectic form on 7(7*Q),

Qr(r+g) = =d (kgOr+(r0)) = d (") Or-(1+0)) € (T (T*Q)).

Remark 2.3. Given a continuous Lagrangian, L : TQ — R, the Tulczyjew [34] and the Dirac [40]
approaches of mechanics make use of the Tulczyjew triple to define the induced Dirac structure on

T*Q,
D(p,) ={(vp,ap,) eT(T*Q) & T*(T*Q) | ), =’ (v,,)} = graph @', p, e T*Q,

and the Dirac differential,
DL=vypodL:TQ -~ T*(T*Q).

Then, the Lagrange—Dirac equations for the vector field X : T*Q — T(T* Q) are given by

(X(py),DL(v)) € D(py),  v4€TQ, py=FL(v,) €T*Q,

where FL : TQ — T*Q is the Legendre transform of the Lagrangian. The key idea of discrete Dirac
mechanics is to build a discrete analogue of the Tulczyjew triple that retains the symplecticity of the
maps involved. In turn, the discrete Tulczyjew triple will be used to construct the discrete analogue of
the induced Dirac structure. To that end, generating functions are utilized to construct the symplectic
maps.

By means of the Poincaré Lemma (see [16, §3.2] for details), it can be shown thatamap F : T*Q —
T*Q, given by (qo, po) + (g1, p1) is symplectic if and only if there exists a function S; : Q@ x Q —
R, known as the Type I generating function, such that py = -D1S1(qo,q1) and p; = D2S1(q0,q1)
for each (qo,q1) € Q x Q. We denote by ¢; : Q@ x Q - T*Q x T*Q the map defined as (qo,q1) ~
((qo, Do), (ql,pl)), and arrive at the following commutative diagram.

Kd

T*OxT*Q

\/

((CIO’PO) ((]1,1?1 } (90.91,—po, P1)

~

(QO, QI

An analogous conclusion may be reached by using a function S, : Q x Q* — R, known as Type 2
generating function. In such case, we obtain a map

QT OxT*Q->T(Q0x0%),  ((90.P0):(q1.p1)) = (q0. P1: P0- 1)
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This way, we define the (+)-discrete Tulczyjew triple as follows,

073
m 2.7)
T*(Qx Q) T-QxT*Q T*(Qx Q%)

(90,91, —Ppo, 1) —— ((QO,PO),(Ch,Pl)) ——— (g0, P1> Po-q1)

The discrete triple preserve the symplecticity of the continuous triple in the sense that the following is
a natural symplectic formon 7*Q x T*Q,

Qregurg = =d ((k9)"Or+(gx0)) = d ((2.) Or+(gx0n)) € (T Qx T*Q).

On the other hand, a function S5 : O* x Q — R, known as Type 3 generating function, may be used
to get a map

QIZF : T*Q X T*Q - T*(Q* X Q)’ ((QO,pO),(QIapl)) = (po’ql’_qo’ _pl)'

By using ', instead of Q’,, we arrive to an analogous diagram called the (—)-discrete Tulczyjew
triple, which also inherits the symplecticity properties of the continuous triple.

73
m 2.8)
T*(QxQ) T*OxT*Q T*(Q* x Q)

(90-q1,-Pos 1) — ((g0, Po). (q1,P1)) ——— (Po.q1, G0, —P1)

2.3.2. Discrete implicit Lagrangian systems

Definition 2.4. The (+)-discrete induced Dirac structure is defined as

D = {(z0,21,+) | 20,21 € T*Q, 2" = (qos 1) e = @, (20,21) } € (T*Qx T*Q) x T*(Q x Q).

where z = (g, p) € T*Q ~ Q x Q*. Similarly, the (-)-discrete induced Dirac structure is defined as

D ={(z0.21,0) | 20,21 € T*Q, 2 = (po, @), @ = U (20,21) € (T*Qx T*Q) x T*(Q" x Q).

Remark 2.5. A Dirac structure on a smooth manifold M is a maximally isotropic subbundle of its
Pontryagin bundle, TM @ T*M (see, for example, [40]). Recall that the Whitney sum is a fibered
sum over M, i.e., its elements are of the form (v,,a,) € T.M x T:M for each x € M. Note that
m1(z0,21) = 20 # 2+ = m; (a,+ ), where ; denotes the projection onto the first component. Subsequently,
(20,21, @+ ) are not elements of the Pontryagin bundle of M = T*Q and, hence, the (+)-discrete induced
Dirac structure D¢+ defined above is not a Dirac structure on 7*Q in the sense of Dirac structures on
manifolds. The same holds for the (—)-discrete induced Dirac structure. Despite this, we refer to these
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objects as discrete induced Dirac structures, in order to be consistent with the existing literature on
discrete Dirac mechanics [16, 31].

Although these discrete structures are not Dirac structures themselves, the discrete Tulczyjew struc-
ture is still present. Therefore, the maps involved are symplectic and, hence, they can be used to
construct variational integrators.

Remark 2.6. It is worth noting that a new approach to discrete Dirac mechanics has been introduced
in [8]. In this proposed approach, the discrete structures are actual Dirac structures, which allows one
to apply the previous results found in the literature for Dirac mechanics. It would be interesting to
explore a reduction theory for this new discrete Dirac mechanics and to compare it with the one given
in the present paper. We leave this for future work.

Given a (possibly degenerate) discrete Lagrangian L; : Q x Q — R, its derivative is the map dL, :
0 x Q—~T*(Qx Q) given by
dL4(qo,q1) = (qo.q1, D1La(qo.q1), D2La(q0.91)). (q0.q1) € O % Q, (2.9)

where D; denotes the partial derivative with respect to the i-th component, i = 1,2. The (+)-discrete
Dirac differential is the map

D*Li=y4 0dLy: Qx Q— T*(Qx Q).
Analogously, the (-)-discrete Dirac differential is the map
D L=y odLy: 0 x Q — T*(Q" x Q).
At last, a discrete vector field on T*Q is a sequence
X, = {X" = ((qk,pk),(qkﬁ,pkﬂ)) eT"OxT*Q|0<k<N- 1}.

Definition 2.7 ((+)-discrete implicit Lagrangian system). A (+)-discrete implicit Lagrangian system,
also called a (+)-discrete Lagrange—Dirac system, is a pair (Ly, X;), where L, is a discrete Lagrangian
on Q and X, is a discrete vector field on T*Q, satisfying the (+)-discrete Lagrange—Dirac equations,
i.e.,

(X5, D*La(qr.q7)) e D,  0<k<N-1

The equations are locally given by

qr = qi+1>  Prst = DaLa(qr.q;),  pr = —D1La(qr, g3 ), 0<k<N-1.

Definition 2.8 ((-)-discrete implicit Lagrangian system). A (-)-discrete implicit Lagrangian system,
also called a (-)-discrete Lagrange—Dirac system, is a pair (Ly, X;), where L, is a discrete Lagrangian
on Q and X, is a discrete vector field on T*Q, satisfying the (-)-discrete Lagrange—Dirac equations,
i.e.,

(Xs,DiLd(q];_],qk_,.l)) EDdi, 0<k<N-1.

The equations are locally given by
Gk = Q1> Pt = DoLa( G, @is1)s P = —DiLa(qrsys Qi) O0<k<N-1
Since we are considering the unconstrained case, both the (+) and (-)-discrete Lagrange—Dirac

equations are equivalent to the discrete Euler—Lagrange equations [27].
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2.3.3. Variational structure for discrete implicit Lagrangian systems

The discrete Lagrange—Dirac equations may also be obtained from a variational principle, as shown
in [16]. As above, there exist two possible choices when performing discretization. Firstly, the (+)-
discrete Pontryagin bundle is the (vector) bundle over Q given by

(% Q)@ (Qx Q") = Qx0x0"={(q0.95-P1) | 9095 € Q- p1€Q"}.
Given a discrete Lagrangian L, : Q x Q — R, the (+)-discrete Lagrange—Pontryagin action is the

discrete augmented action defined as

N-1
Szd [(qk, q}:, pk+1);<vz():| = Z (Ld(Qk, q;) + (pk+1’ qik+1 — q;)) . (210)
k=0
The (+)-discrete Lagrange—Pontryagin principle,

S, [ (g i Prs1)io] = 0, @2.11)

is obtained by enforcing free variations {(6qx,dq;,0p+1) € Q x Q x Q* | 0 <k < N} that vanish at the
endpoints, i.e., dqp = ogy = 0.

Theorem 2.9. The (+)-discrete Lagrange—Pontryagin principle is equivalent to the (+)-discrete
Lagrange—Dirac equations.

On the other hand, the (-)-discrete Pontryagin bundle is given by

(0% Q)@g(Q"xQ) =0 x0" xQ={(q1.P0:q1) | 4191 € Q- po€ Q"}.
The (-)-discrete Lagrange—Pontryagin action is defined as

N-1
SL, [(611:+1,Pk,61k+1)kN=o] = > (La(iers @) + (P Gk — Gcin)) - (2.12)
k=0

The (-)-discrete Lagrange—Pontryagin principle,

ST, [ (it Pr it )ilo] = 0, (2.13)

is obtained by enforcing free variations {(6q;, ;, 6Pk, 0qis1) € @ x Q x Q* | 0 < k < N} that vanish at the
endpoints, i.e., dqp = ogy = 0.

Theorem 2.10. The (-)-discrete Lagrange—Pontryagin principle is equivalent to the (-)-discrete
Lagrange—Dirac equations.

3. Reduction of the discrete Dirac structure
Let Q be a vector space and G c Q be a vector subspace acting by addition on Q. In this section
we will show that the discrete induced Dirac structure on Q is G-invariant and we will reduce it to the

corresponding quotient.
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3.1. Trivializations of the tangent bundle and cotangent bundles

Let ws : QO x Q — G be a discrete connection form on mps. We define a right trivialization of

TQ=0xQas
A;:0x Q- 0x(X2xG), (qo-q1) = (90, [91], wa(qo.q1)) -

Observe that it is a linear map with the vector structure of Q x Q given by the direct sum. Using [9,
Remark 4.3] it is straightforward to check that 4, is an isomorphism (of bundles over 7% = X x X) with
inverse given by

/lgl :0x(2xG)—>0x0, (qo, X1, 81) = (610,81 +Ed(610’x1))-

The action of G on Q x Q induces an action on Q x (X x G) by means of 1,. Using the equivariance
of wy, such an action is given by

g-(qo,x1,81) = (& + g0, x1,81), 2¢G, (qo,x1,81) € 0x (£2xG).

By construction, A, is equivariant, i.e., Ay o (DgQXQ = (DgQX(ZXG) o A, for each g € G. Subsequently, it
descends to a left trivialization of (Q x Q)/G, i.e., an isomorphism of the corresponding quotients,

[]: (@x Q)/G — (@ x (2% G))/G.
Furthermore, note that (Q x (£ x G))/G ~ X x (X x G) via the isomorphism

[qo’xl’gl]H([QO]’xl’gl)' (31)

Remark 3.1. For the (-)-case, it will be useful to trivialize the first factor instead, i.e., we consider
the map

A 0x Q- (£xG)xQ, (90,91) = ([q0], wa(q1.90)-91) -

Of course, all the computations performed for 1, are also valid for A, by exchanging the order of the
factors.

On the other hand, we define a right trivialization of 7*Q ~ Q x Q* as

;ld : Q X Q* g Q X (Z* X g*)’ (quPO) = (CIOJTZ OE;(pO)’ J((IO,pO)) .
Again, this trivialization is a linear map with the vector structure on Q x Q* given by the direct sum.

Remark 3.2. Observe that the adjoint of the projection myx : Q — X yields a canonical embedding of
>* into Q*. However, there is not a canonical linear projection of Q* onto X*. The discrete principal
connection gives a choice of this projection via the adjoint of the horizontal lift, thus yielding the
following split

Q" =im(n,y) @ ker (712 o E:,) .
In addition, (7}, 3 (w),&0(q0)) = O for every w € £* and ¢ € g, so we have
im(m)s) = {€0(q0) € Q| € € 9},

where the superscript 0 denotes the annihilator.
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Using the previous remark, it can be seen that the inverse of 1, is given by
2;1 : Q X (Z* X g*) - Q X Q*’ (qO’ WO?#O) = (QOJT&;(WO) + (MO)Q(QO)),

where (10)0(qo) € O is implicitly defined by the relations (o) 0(g0).€0(q0)) = (to, &) foreach & € g
and (73 0 7y ) ((tt0)o(40)) = 0.
It is easy to check that the action of G on Q x (£* x g*) induced by A, is given by

g (g0, wo, o) = (g + qo, Wo, M), g€G, (qo,wo,po) € Qx (X" xg").

Remark 3.3. For the (-)-case, it will be useful to trivialize the first factor instead. To that end, we
consider the map

i Q" xQ— (T xg*) x Q, (Po>q0) = (7T2 OE;(pO)’J(QO’pO)aQO)-

As for 1, all the computations performed for A, are also valid for A, by exchanging the order of the
factors.

Since O x Q, O x (X xG), Q x Q* and Q x (X* x g*) are vector spaces, we may identify their
tangent and cotangent bundles as in (2.2), e.g., T*(Q x Q) = Q x Q x Q* x Q*. Furthermore, we may
consider the diagonal actions of G on T(Q x Q) and T(Q x Q*), as in (2.1). Likewise, on T*(Q x Q)
and T*(Q x Q*) we consider the cotangent lift of the action, as in (2.3). In turn, these actions may be
transferred to the corresponding (co)tangent bundles of Q x (£ x G) and Q x (X* x g*) using the maps
A, and Ay, and their adjoint maps, accordingly. Note that since these maps are linear, their derivatives
are the maps themselves. This can be done because 1, and A, are linear isomorphisms. For instance,
the action of G on T*(Q x (X* x g*)) is induced from the action on T*(Q x Q*) using the map A, and
its adjoint, as well as their inverses.

3.2. Local expressions of the trivializations and quotients

In order to study the explicit expression of the maps introduced above, we choose a trivialization
0 =X x G of mpx as in Section 2.2.1. Using the local expression of the discrete connection, we have

A4(q0.q1) = (g0, x1,81 —ha(qo, x1)), (90,91) € O x Q. (3.2)
Hence,
/1;1((]0’161’81) = ((]0, (Xl,gl + hd((]()’xl)))’ (Clo,xl,gl) € 0 x (E X G)- (3.3)
Its adjoint is given by
ﬂ;(Po,Wl,i’l) = (Po - (rl,hd(',o)), (Wl - <V1,hd(0")>,7’1)) s (3.4)
for each (po, w1, r1) € O* x (£* x G*). Hence,
(43) " (Po, 1) = (po + (r1,ha (- 0)),wy + {ri,hy(0,-)), 7)., (3.5)

for each (po, p1) € Q* x Q*. Now we perform analogous computations for A4, where we used (2.4) and
Lemma 2.2,

A4(q0. Po) = (g0, wo +hj5(r0). 7o), (90, Po) € @ x Q. (3.6)
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The inverse is given by

43" (g0, wo. o) = (g0, (o =05 (10).110) ), (g0, Wo» o) € @ x (27 x g").

Likewise, its adjoint is given by

y(pr.xié1) = (p1. (x1,has () + &), (p1,x1,€1) € Q" x (Zx g).

At last, we have

(;12)_1 (p1-q1) = (p1,x1,81 —haz(x1)), (P1,q1) € Q" x Q.

On the other hand, observe that the group action is locally given by

g+qo=(x0,8+80)s g0 = (x0,80) € Q, ge€G,

(3.7)

(3.8)

(3.9)

where we identify G ~ {0} xG c Q. Using the local expression for the trivializations and their adjoints,
we obtain the local expression for the actions of G on the (co)tangent bundles of Q x (X x G) and

O x (% x g*).
Proposition 3.4. The action of G on T*(Q x (X* x g*)) is locally given by
8" ((C]O,WO,,UO)’ (pl,xbfl)) = ((g +q0,Wo, Mo ), (P1, X1, 8 +§1)),

for each g € G, (qo,wo, o) € Q x (Z* x g*) and (p1, x1,&1) € O* x (£ x g).
Analogously, the action on T(Q x (X* x g*)) is locally given by

g ((go,wos o), (g1, wi,p1)) = ((8 + g0, wos o), (8 + g1, wis 1)),

for each g € G and (qo, wo, o), (q1, w1, i1) € Q x (2% x g*).

Proof. As explained at the end of the previous section, the action of G on T*(Q x (X* x g*)) is induced

from the action on T*(Q x Q*). Namely,

(g0, wo,10), (p1,x1,€1))

I(3.7), (3.8)
(a0, (wo = 0z 0. 10) ). (1. (31, Bus(1) + €1))
IG action
((g +qo, (wo =5 (10). 10) ), (1 (x1, 8 + has (1) + & )))
166,69

((g + C[o,WQ,,LlQ), (Pl’ X1, 8 +§1)).

The computation for 7(Q x (X* x g*)) is analogous.

O
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To conclude, by the previous proposition, we may define the following local isomorphisms,

T(Qx (2 xg7))/G = Zx(T*xg")xQx(T*xg),

3.10
[(q0sWos0)s (g, wi,p1)] = (X0, Wo, Hos =80 + q1, Wi, 1) 5 (3-10)

and
T*(Qx (2*xg*))/G =~ EIx(Exg*)xQ"x(Zxg),

3.11
[(QO,Wo,ﬂo),(Pl,Xl,fl)] g (Xo,Wo,,Uo,Pl,xl,—go +§1)- ( )

Remark 3.5. By using A, instead of A, (recall Remark 3.3), we arrive at analogous results. In particu-
lar, we have the isomorphisms

T(Qx (2 xg"))/G=Qx (X xg") xTx (¥ xg"),
and

T((Z" xg") x Q) /G = (X" xg") xTx (Zx g) x Q.

3.3. Invariance of the discrete induced Dirac structure

The definition of invariance for (continuum) Dirac structures [42] can be extended to the discrete
setting. More specifically, D¢+ is said to be G-invariant if for each g € G and (29,71, a,+) € DI we
have

(@8 (e0). @] (). 07 @ (@) € D,

Similarly, D?- is said to be G-invariant if for each g € G and (zy, z1, .- ) € D~ we have
(q);*Q(ZO),q)g*Q(Zl)’q)g (Q xQ)(aZ_)) ¢ D

Proposition 3.6. The discrete induced Dirac structures D and D~ are G-invariant.

Proof. Let g € G and (z9,z1,@,+) € D?*. By definition, we have

A+ = QZ+(ZO’Z1) = (QO,PI,PO,QI)-

Recall that the actions are given by

(DgT*Q(%,PO) = (g+ 490, Po)

and
%) (40, po, praq1) = (8 + Gos Pos P18 + 1)
respectively. Hence,
Zizd)g*Q(Zi) =(g+4gipi), i=0,1,
and
oo - (Dg*(QxQ*)(aﬁ) = (g+40-P1>P0-8+q1) >

where Z* = (g +qo, p1). It immediately follows that &, (Zp,Z;) = @+, which establishes the desired
result. The computation for D?- is analogous. O
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On the other hand, the right trivialization A, allows D?* to induce a (+)-discrete Dirac structure on
Qx (X xg*),

D = { () | 20 € O Q"1 € T2 (0 x (27 x6)).

Z+ = (QO’PI), (ZO,Z], (;1;1,;12) (&2+)) € Dd+},

where, for the sake of simplicity, we let Z = /Ald(z) for each z = (¢, p) € Q x Q*. Equivalently, Q.
induces a map €, between the trivialized spaces by imposing the commutativity of the following
diagram,

b

Q
(Qx Q) x(Q@x Q) T*(Qx Q%)

(4 ) (A, ()7)

b
Qd+

(Qx (2" xg7)) x (@ x (2" xg")) T*(Qx (2 xg%))

This way, D?* can be regarded as the (+)-discrete Dirac structure induced by QZ+, ie.,

D = { (20,21,0) | 20,21 € O x (T xg), 0 € TA(Q % (T x5")),

2= Aulao.p1). 2, (2o 20) = - ).

Of course, the G-invariance of D implies the G-invariance of D4+, since we have constructed the
actions on the trivialized space so that A, is equivariant.
The same stands for the (-)-discrete Dirac structure. Namely, we have the following diagram,

b
d

(Qx Q) x(Q@x Q) - T*(Q* x Q)

(4 ) (A, (1))

A

Q)

(Qx (2" xg7)) x (@ x (2" xg")) T*((£* xg*) x Q)

Hence, we define

b= { (20,21, @2-) | 20,21 € Q x (X7 x g"), &z~ € TZ((Z" x g") x Q),

5 = Aa(po,q1), @ (20,21) = &27}-
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3.4. Reduced discrete Dirac structure

The G-invariance of D4+ ensures that it descends to a discrete Dirac structure on the quotient space.
Since Q,, and A, are equivariant, so is )., which induces a well-defined map between the quotient
spaces,

(@] [(Qx (2" x ") x (@ x (£ xg"))] /G — [T*(Qx (£ xg"))]/G.

Then, the reduced (+)-discrete Dirac structure is the structure induced by this map, i.e.,

A

[D*]= {([20’21], [@z+]) [ [20,21] € [(@ x (27 xg%)) x (@ x (X" xg")] /G,
[a:] € [T°(Qx (2 x g )]/G,[0] ([t 21]) = [a2:]}. (3.12)
Locally, identifications (3.10) and (3.11) enable us to regard [QZ . | as a map between the trivializations,
[0, ]:Zx (T xg*) x O x (T*xg*) — Zx (T xg*) x Q" x (E x g).
Lemma 3.7. Working in a trivialization and using the above identification, we have
[QZ+](X0,W0,NO,611,W1,#1) = (XOaWI’,ul, (Wo - h;,Z(/"O)’:UO),xl’gl - hd,z(xl)),

for each (xo, wo, o, q1, Wi, 41) € Zx (£ x g*) x Q x (Z* x g*).

Proof. We employ the explicit local expression computed in the previous sections,

(X0, Wos o> G1, W1, 1)
JREAL)
(((Xo, 0),W0,/10), (611,W1,,U1 ))

Tem

(20,0 (w0 = B35 (ht0)110)): (1 (w1 = i (). r) )
IQ§+ @7

((Cx00), (w1 = b (uar), 1)), (w0 = B (k). 0, 1) )
[66.69

(((xO,O),wl,ul), ((Wo - h;,z(llo),llo)’xl,gl - hd,z(xl)))
Jem

(XO,WI’,UI’ (Wo - hz,z(ﬂo),ﬂo),xl,gl - hd,Z(xl))'

O

Observe that [Q'[’H] is a bundle morphism covering the identity if we regard the previous maps as
bundles over £ with the projection onto the first component.
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Proposition 3.8. Locally, the reduced (+)-discrete Dirac structure is given by

A

[Dd+] = { ((x0, wo, o> g1, w1, 1), (X0, Wi i1, p, x1,€)) | p = (Wo —hz,z(ﬂo),ﬂo),f =81 _hd,E(xl)}
c(Zx(Z*xg*)xQx(Z*xg*))x(Zx(Z*xg*)xQ*x(ng)),
In the same fashion, we may define the reduced (-)-discrete Dirac structure as

A

(D] ={ (20211, [6:- 1) | 20, 2] € [(@ % (2 x9") x (@ x (" xg")] /G,
[6: 1€ [T (2" x8") x 0)]/G. [Q4] (2, 21]) = [a= 1} (B.13)
By analogous computations using Remark 3.5, we arrive at the local expressions.

Lemma 3.9. Locally, we have
[QEJ—](%,WO,#O,M’M,M) = (Wo,,uo,xl, —X0,—80 + hd,z(xo), (_Wl + hé,z(m), —ﬂl)),

for each (qo, wo, o> X1, Wi, 1) € Q x (2% x g*) x X x (Z* x g*).

Proposition 3.10. Locally, the reduced (-)-discrete Dirac structure is given by

(D] = { (90> Wo» o> X1, w1, 1), (Wo o, X1, =%0,&, p) | € = =go+has(x0), p = (—wi+hjz(u1), —ﬂl)}
c(QX(Z*xg*)xe(Z*xg*))x((Z*xg*)xe(ng)xQ*),

4. Discrete Lagrange-Poincaré-Dirac reduction

Making use of the reduced discrete Dirac structure, we will compute the the reduced equations
corresponding to a discrete Lagrange—Dirac system. Let Q be a vector space and G c Q be a vector
subspace acting by addition on Q, and L, : Q x Q — R be a (possibly degenerate) G-invariant discrete
Lagrangian, i.e.,

La(g+q0.8 + q1) = La(qo, q1), g€G, (q0.q1)€Q0xQ.

The invariance of the discrete Lagrangian leads to the invariance of its partial derivatives.

Lemma 4.1. If L, is G-invariant, then so are its partial derivatives D;L;: Q x Q - Q*, i = 1,2, i.e.,

DiLs(g + 40,8+ q1) = DiLa(qo.q1), (90,q1) € 0% Q, geG.
Proof. For each g € Q we have

Li(g+qo+hq,g+q1)—Lia(g+qo.8+q1)
h
L _
_ lim a(q0 +hq,q1) — La(q0,q1)
h—0 h

=(D1La(90,91)-9)-

An analogous computation establishes the result for D, L. O

(DiLa(g + 40,8 + 1), q) = lim
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Remark 4.2. Working on a trivialization Q = X x G of myy, we may regard L, as a function defined on
(£ xG) x (¥ x G). This way, its partial derivatives can be written as

oLy

oL oL
DyLy(q0.q1) = —d(QO,%) = (—(Xo,go,xl,gl), —d(xo,go,x1,g1)) ,
0q0 dxo dgo

for each (qo,q1) = (x0, 80, x1,81) € (£ x G) x (X x G), and analogous for D,L;(qo,q1).

We may regard a discrete vector field, X,,, that is a solution of the (+)-discrete Lagrange—Dirac
equations, as a map

Xer: OxQ — T(QxQ%)=(QxQ")x(QxQ),
(0-q1) +— ((QO,—DlLd(qO,ql)),(ql,DzLd(CIO,CI1)))~

It follows from Lemma 4.1 that this map is G-equivariant. Similarly to €', , this induces a map between
the trivialized spaces by imposing the commutativity of the following diagram,

Xt
0xQ a (0x Q") x (Qx Q)

Aa (14> Aa)

A

Xd+

0% (£xG)

(Qx (Z*xg*)) x (Qx(Z*xg"))
Since X, is G-equivariant, it descends to a (+)-discrete reduced vector field,

[X4:]: (@ x (£xG))/G—>T(Qx (£ xg"))/G. (4.1)

As above, locally we may regard it as [X,;,] : Z x (ExG) - Z x (Z* x g*) x Q x (Z* x g*).
Similarly, if X,_ is a solution of the (-)-discrete Lagrange—Dirac equations, we may trivialize it as
follows,

X,
0xQ : (0% 0*) x (Qx Q%)

Aa (A4, Aa)

X,

(ZxG)xQ

(Qx (Z*xg*)) x (Qx (2 xg*))
This way, we obtain the (—)-discrete reduced vector field,

[-1: (ExG) x 0)/G > T(Qx (£ x8"))/G. (4.2)

Locally, we may regard it as a map [X,_]: (ExG) xZ » Q x (Z* x g*) x T x (T* x g*).
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4.1. Reduced discrete Dirac differential

The next step is to trivialize yé* and the exterior derivative of the discrete Lagrangian. To that end,
we impose the commutativity of the following diagram,

0x0— M roxg 2 T*(0 % Q%)
Aq (A (A7) (A, (7))
A ; /)\/d+
QX(ZXG) dL T*(QX(ZXG)) 0 T*(Qx(z*xg*))

Furthermore, since y‘é*, A, and 1, are G-equivariant, so is i/é*, by construction. The same holds for
dL,, by Lemma 4.1. By composing the previous maps, we induce the (+)-discrete Dirac differential
on the trivialized spaces,

D'L;=9% odLy: QO x (2xG) — T*(Q x (£ x g*)).

Due to G-equivariance, it descends to the corresponding quotients, yielding the reduced (+)-discrete
Dirac differential,

[D*Ly]: (Qx (£xG))/G — T*(Qx (X* xg"))/G. (4.3)

Proposition 4.3. Locally, the reduced (+)-discrete Dirac differential is given by a map [75+ Ly]:Zx
(ExG) > Zx (X% xg*)x QO x (X xg). Furthermore, for each (xo,x1,81) € Z x (2xG), it is given by

oLy . (8Ld) OL; OLy

25+L ’ ’ = ’_+h ) )
[ a](x0, x1,81) (xo =\ g, ) g1 qo

b b +h ’O b
o, X1, 81 d,Q(xo ))

where the partial derivatives of L, are evaluated at (xo, 0,x1,81 + hg(xo, xl)).
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Proof. Once again, we use the explicit local expressions computed in the previous sections,

(Xo,xl,gl)
1(3.1)
((x0.0),x1,81)
JRES)
((XO,O), (x1,81+ hg(xo,)ﬁ)))
1(2.9)
((x0,0), (x1,.81 +h(x0,x1)), D1 La, DoLy)
17 en
((xo,o),DzLd, =D\ Ly, (x1,81 + hg(Xo,)ﬁ)),)
[66.69
oLy ., (aLd) aLd) ( oL, 0 ))
90 s A h s s | T s s h s _h
(((xo ) o, +hyx o2, ) 9a, B4 X1,81+ d(xo Xl) d,z(xl)
I(3.11)
oL, . (8Ld) oL, 0L, )
s a h ) s s s h ,0 5
(xo o, +hys 021 ) 99, 0qy x1,81 +hgo(x0,0)

where the partial derivatives are evaluated at (xo,O, X1,81+ hg(xo,xl)) and we used (2.5) in the last
step. O

For the (-)-case, we consider the diagram

d %
0xg— T*(Q % Q) ¢ T*(0* x Q)

A (A, () (. C5))
(£x6)x 0 — T (ExG) x Q) — 2 T+((z x ") x Q)

Subsequently, we arrive at the reduced (—)-discrete Dirac differential,
[D7Li]: ((£xG) xQ)/G — T*((Z* xg") x Q)/G. (4.4)

Proposition 4.4. Locally, the reduced (-)-discrete Dirac differential is given by a map [D~Ly] : (2 x
G)xX — (X xg*) x X x (X xg) x Q*. Furthermore, for each (xo, 8, x1) € (X x G) x X, it is given by

oLy . %) OLy GLd)

ﬁ_L H > = ___h s T A s T A0y T _h ,0 s T A
[ d](xo 80 Xl) (8x0 d’z(ago 020 X1, =X0, —80 d,Q(Xl ) a1

where the partial derivatives of L, are evaluated at (xo, go+ hg(xl, X0)s X1, O).
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4.2. (+)-discrete Lagrange—Poincaré—Dirac equations

Define L4, : O x (£xG) — R by the condition Lyvody =Ly Clearly, it is G-invariant, thus inducing
the (+)-discrete reduced Lagrangian,

e (Q % (ExG))/G —R.
Locally, we may regard it as [, : £ x X x G — R. It is easy to check that
Ly (x0,X1,81) zLd(xo,O,xl,gl +h2(xo,x1)), (x0,x1,81) €L xZ xG. 4.5)

Lemma 4.5. Locally, for each (xo,x1,81) € L x X x G we have

oL, (ald+ <6LH o > <a@+ ))
= - ,hiy(-,0)), - {——,h,((0,-),0)} |,

dq0 Oxo \0g «(-0) 0g «((0.).0)

aLd _ ald+ _ <ald+,h2(0,~)> ’ % _ 6ld+’

ox, Ox; 0g, 0g, 0g

where the partial derivatives of Ly and l;, are evaluated at (xo, 0, x1,g1 +h)(x0, X, )) and (xo,x1,81),
respectively.

Proof. Let (x0,80,%1,87) € (2xG) x (£ xG). Using (3.2), we obtain
Ld((xo,go), (Xl’gll)) = (i‘d+ o /ld) ((Xo,go), (x1,81))

= La. ((x0,80), x1, g1 = ha((x0. 80), 1))
= lar (x0. %1, 81 = ha((%0. 80). x1)) -

Recall that the partial derivatives of h, are given by (2.6). Using this fact, as well as the chain rule and
the relation above, we obtain

oL, 0l ( 0lyy o > 0L, ( oly. )
= - s h y O s - =~ s h 07 *)s O 5

oxy  Oxy \dg a(~0) 08o 0g1 «((0.).0)

0L, _ ol ~ <azd+,h2(0")>, % _ 6ld+.

Ox;  O0x; \0g g1 0g

In the above expressions, the partial derivatives of L, and /,;, are evaluated at (xo,go,xl,g’l) and
(x0, x1, 81 —ha((x0,80),x1)), respectively. To conclude, we choose g = 0 and g} = g; + h(xo,x;). O

Gathering the results of the previous sections, we arrive at the main result of this paper.

Theorem 4.6 ((+)-discrete Lagrange—Poincaré-Dirac equations). Let (Ly,Xy,) be a (+)-discrete
Lagrange—Dirac system and suppose that Ly is G-invariant. Let [D?], [X;.] and [D*L,] be the re-
duced (+)-discrete Dirac structure, the (+)-discrete reduced vector field and the reduced (+)-discrete
Dirac differential defined in (3.12), (4.1) and (4.3), respectively. Then, they satisfy the (+)-discrete
Lagrange—Poincaré—Dirac equations, i.e., for each 0 < k < N — 1, we have

A

([Xd+]([61k,xk+1,gk+1]), [ﬁ+Ld]([Qk,xZ’gZ])> e [D].
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In order to obtain its local expression, we write the discrete vector field as
[Xd+] = {[XSJ = (Xt Wi Mes Qi1 Wi 1, Mis1) |0 <k <N — 1}.
Subsequently, the reduced equations read as
(X501 [P L) (xo i 88)) € [DT], 0<k<N-1.

Making use of Proposition 3.8, Proposition 4.3 and Lemma 4.5 we arrive at the local expression for
the reduced discrete equations of motion,

ald+ <ald+ 0 > * (ald+
—{—=——,h,;(0,- h

o, o2 2(0,-) ) +hs 9

8ld+

a8

ol ol .
- (9;; + <i’h2(‘,0)> = wi —hgs (), 4.6)

581
ol,,
(8" ,hd((o,-),O)) - e
g1

+ _
Xi = Xk+15

) = WkJrla
81

= Mk+ls

g+ hd,Q(Xk,O) = 8k+1 — Dz (Xps1)-
In the above equations, partial derivatives of /,, are evaluated at (x;, X, g,j)

4.3. (-)-discrete Lagrange—Poincaré—Dirac equations

As in the previous case, we define Ly : (£ x G) x Q - R by the condition L, o1, = Ly, which
induces (-)-discrete reduced Lagrangian,

lLi-: ((ExG)x Q)]G —R.
Locally, it is given by [, : £ x G x £ — R. It is easy to check that
ld—(xo,go,xl) = Ld(xo,go + hg(xl,xO),xl,O), (xo,go,xl) eXxGxX. 4.7)

Lemma 4.7. Locally, for each (xy,x1,81) € £ x X x G we have

oL, (azd_ ((?Id_ . ) dl, )
= - ) h 0’ : s a_ |
dqo dxo 980 ((0-) 980

Ly Ola <ald_
Bxl N 6x1 6g0

L -
’h2(90)>’ Q:_<ald

o=~ ha((0..0)).

where the partial derivatives of Ly and l;_ are evaluated at (xo,go +h5(x1, x0), X1, 0) and (xo, 80, X1),
respectively.
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Theorem 4.8 ((-)-discrete Lagrange—Poincaré-Dirac equations). Let (L4, X,-) be a (-)-discrete
Lagrange-Dirac system and suppose that Ly is G-invariant. Let [D?], [X,_] and [D-L,] be the re-
duced (-)-discrete Dirac structure, the (—)-discrete reduced vector field and the reduced (-)-discrete
Dirac differential defined in (3.13), (4.2) and (4.4), respectively. Then, they satisfy the (-)-discrete
Lagrange—Poincaré—Dirac equations, i.e., for each 0 < k < N — 1, we have

A A

([Xd—]([xkagk’QkH])a [@_Ld]([XZH,g/:HaCIkn])) e [D"].
Locally, the equations are given by
(X1 D Lal (xicor- 8icor- X)) € [D]. - O<k<N -1

Making use of Proposition 3.10, Proposition 4.4 and Lemma 4.7 we arrive at the local expression for
the reduced discrete equations of motion,

oly |0l > . (azd)
a _9h 0" h - |- 5
0xp <580 ((0-)) + “x 08 W
al,.
6g() _Iuk9
ol,_ oly- *
- + <T£o’hd(.’o)> = Weer = s (Hie1)s (4.8)
ol
(6—d,hd((o,~),0)) -t
80
xl;+1 = Xk
8ie1 +hao(Xks1,0) = gk — hyz ().

In the above equations, partial derivatives of /,_ are evaluated at (x;,, &85, > Xk+1)-
5. Reduction of the discrete variational principle

In this section, we perform reduction of discrete Lagrange—Dirac systems from the variational point
of view. As expected, we will recover the discrete Lagrange—Poincaré—Dirac equations obtained from
the geometric reduction of the discrete Dirac structure. Let Q be a vector space and G c Q be a vector
subspace acting by addition on Q.

5.1. Trivialization of the (+)-discrete Pontryagin bundle

Let wy : Q x QO — G be a discrete connection form. Using the trivializations defined in Section 3.1,
we define the following map

Agr = (A A0) 1 0x 0O x O x Q" - Ox (TxG)x O x (T xg").
Again, the G-action on Q x Q x Q x Q* given by
g (q0.95-91-p1) = (8 +q0.8 + 458 + 41, P1)» g€G, (90,95.91,p1) €O xQxQx Q"
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induces an action on the trivialized space via Ag;.
Let Q = ZxG be a trivialization of 7y 5, as in Section 2.2.1. For each gy = (x0,80), 95 = (x5.85).¢1 =
(x1,81) € Q=X xG and p; = (wy,r1) € Q* = £* x G*, the local expression of Ay, is

Ai(90, 9541, P1) = (g0, x5, 8 — ha(qo, X3), g1, wi + 05 (r1),11). (5.1

Similarly, for each g = (x0,80).¢1 = (x1,81) € O, (x},8¢) € Zx G and (wy, ;) € Z* x g* we have

Az (qos X586, q1, wis 1) = (qo, (x5 80 +ha(q0.x5)). a1 (wn —hfl,z(ul),,ul)). (5.2)
At last, locally we may identify the quotient spaces as

(0x0x0xQ*)/G ~ ZxQxQxQ*,
[90-45. 91, P1] = (X0,-80+ 45,80+ 4q1.p1)

and

(Ox(ExG)xQx(Z*xg*)))G ~ Ix(ExG)xQx(X*xg*),

5.3
(90, X5, 85> q1. w1, 1] = (X0, X3, 85, =80 + 1. Wi, 1) . (5-3)

5.2. Trivialization of the (-)-discrete Pontryagin bundle

In the same vein as in the previous section, we trivialize the (-)-discrete Pontryagin bundle.
Namely, we define

Ad-= (A0 da) : QX Q% Q" x Q> (2xG) x @ x (X" xg") x Q.
Again, the G-action on Q x Q x Q* x Q may be transferred to the trivialized space via A,_.
Let Q = ZxG be a trivialization of 7y 5, as in Section 2.2.1. For each gy = (X0, 80),97 = (x7.87)-¢1 =

(x1,81) € Q=X x G and py = (wp, 1) € Q* = £* x G*, the local expression of Ay, is
Aa-(g7-q1:Po-q0) = (x7,87 = ha(q1. x7), g1, wo + hiy5(r0), 70, q0).- (5.4)
Similarly, for each gy = (x0,80).¢1 = (x1,81) € O, (x7,87) € Zx G and (wo, o) € Z* x g* we have
A (X7, 8191, wo. o, q0) = ((XI,gI +ha(q1,x7)), q1, (wo - h;,z(ﬂo)’/lo)’%)- (5.5)
At last, locally we may identify the quotient spaces as
(Qx0x0"xQ)[G~QxZx Q" xQ,

and
(ExG)xOx(Zxg")xQ)/G~(ExG)xEx (X*xg*)x Q. (5.6)

Journal of Geometric Mechanics Volume XX, Issue X, XXX—XXX



24

5.3. (+)-discrete reduced variational principle

Let L;: O xQ — R be a (possibly degenerate) G-invariant discrete Lagrangian and consider the cor-
responding (+)-discrete reduced Lagrangian I, : (Q x (X x G))/G — R. The (+)-discrete generalized
energy is the map

Eg : OxQOxQ0x Q" >R, (90.95-91- 1) ¥ La(q90.95) +{P1.q1 — q5)- (5.7)

Since L, is G-invariant, so is E;,.. Analogous to the discrete Lagrangian, we consider the trivialized
energy, i.e., £z, : O x (ZxG) x Q x (£* x g*) — R, which is defined by the condition £, o Ay, = E,,.
Again, E, is G-invariant, what enables us define the reduced (+)-discrete generalized energy,

eir: (Ox (2xG)x Qx (T xg"))/G — R.

Lemma 5.1. Locally, the reduced (+)-discrete generalized energy is a map eq, : X x (£ x G) x Q x
(X* x g*) = R. Furthermore, for each (xo, x5, 85, g1, wi,p1) € Zx (Zx G) x Q x (Z* x g*) we have

eq+ (X0, X35 80> 91, Wi- 1) = Lav (X0, X5, 80) + <W1 —hZ,z(m),xl - X(J)r) + <,l11,g1 -8 _hd((anO),x6)>-

Proof. 1t is a straightforward computation, making use of the local expressions of the maps and actions
that we have computed previously,

(xO’x(J)rvg(J)r’CIleI’ﬂl)
163
((x0,0), x5, 85+ g1, 1. 1)
I 62
((XO’O), (XS,gS +hd((xo,0),x8)),6h, (Wl —hg,z(ﬂl),#1)>
ANER)
Ld(xO,O,xg,gg +hd((x0,0),xg)) + ((w] —h;z(pl),/ll),ql - (xg,gg +hd((x0,0),x(+)))>
1 @s)
las (%0, X§,85) + (Wl _hZ,Z(:ul)axl - X8> + (/11,81 -8 —hd((xo,o),)%»

]
The following result relates the variational principles in both the original and the reduced spaces.

Theorem 5.2 (Reduced variational principle). Let L; : QxQ — R be a G-invariant discrete Lagrangian
and {(q.q;,prs1) € Qx Qx Q" |0<k <N} be a trajectory on the (+)-discrete Pontryagin bundle.
Consider the reduced trajectory, i.e.,

{[ %5 &5 G Wi i ] € (@ x (Ex G) x O x (£ x g%))/G |0 <k <N -1},

where (G, X5, 87, Qrsr> W15 flke1) = Nav (Gs @5 Qi1 Prer) for 0 < k < N — 1. Then the (+)-discrete
Lagrange—Pontryagin principle (2.11) is satisfied if and only if the reduced (+)-discrete Lagrange—
Pontryagin principle is satisfied, i.e.,

N-1

§Y e ([@k’)?Z,gzt’flkn,wknaﬂkn]) =0, (5.8)
k=0
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for free variations
{(62]](,6&;,6@;,5@’]{“,5[&]{“) € Q X (2 X G) X (Z* X g*) ‘ 0<k< N}

with fixed endpoints, i.e., gy = 0y = 0.

Proof. By construction, we have
N-1
ST, [(Qk,q;,PkH)kN:Q] = > (Eas © M) (@i G Qi1 Picir)
k=

(=]

N—

—_

- N A+ A+ A A A
Eq (Qk,xk ,gk,Clk+1,Wk+1,,Uk+1)

=~
(=]

=

PSSP S ~ ~
ed+([qk’xk’gk’Qk+1,Wk+1,,uk+1]).

T
=)

To arrive at our conclusion, note that the free variations of the Lagrange—Pontryagin principle yield

free variations on the trivialized space (with fixed endpoints), since A, is a linear isomorphism.

O

Lastly, we show that the reduced variational equations agree with the reduced geometric equations

obtained in the previous section from the reduced discrete Dirac structure.

Proposition 5.3. The variational equations obtained from the reduced (+)-discrete Lagrange—

Pontryagin principle are the (+)-discrete Lagrange—Poincaré—Dirac equations.

Proof. Since the equations are local, we may work in a trivialization Q ~ X x G of myy. Observe that

locally, (5.8) reads as

N-1

+ 5+
6 Z €d+(xk,xk,gk,Qk+1,Wk+1,,Uk+1) =0,
k=0

for free variations

{(5xk,5gk,5x;€,5g;,5wk+l,5ﬂk+l) € Q X (E x G) x (Z* X g*) |O < kS N}

with fixed endpoints, i.e., 6xp = dxy = 0 and 6gy = gy = 0. Making use of Lemma 5.1 and taking

variations dx;, 1 <k < N — 1, with fixed endpoints, we get

8ld+
(9x0

+we = hgx () = (s, 09(-,0)) = 0.
Analogously, taking variations 0g;, 1 <k < N — 1, with fixed endpoints, yield

M = (tx+1,04((0,-),0)) = 0.
Now, we consider variations 0x;, 0 <k <N -1,

ald+
6.X1

— Wil t h;,):(/"kﬂ) - (ﬂk+1’h2(0’ )> =0.
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Similarly, for variations 6g;,0 <k <N -1,

ol
agd: _#kJrl = 0'

Next, for variations owg,1, 0 < k<N -1,
Xer1 — X7 = 0.
In the end, for variations ouy1, 0 <k <N -1,
h s (X = X0) + ket — 8 — h?g(xk,x,?) =0.
In the above equations, partial derivatives of I, are evaluated at (x,x;,g;). By gathering all the
equations and rearranging terms, it is easy to check that these equations are exactly (4.6). O
5.4. (-)-discrete reduced variational principle

Last of all, we carry out the same procedure, but using the (-)-discrete reduced Lagrangian /;_ :
((2xG) x Q)/G — R. The (-)-discrete generalized energy is the map

Eq:QxQ0xQ"x0->R,  (q1,q1,P0-90) = La(q7.q1) + {Po, 90 — 41 )- (5.9)
The trivialized energy, £,_ o Ay = E,_, gives rise to the reduced (-)-discrete generalized energy,
e (ExG)x 0 (T xg") x 0)/G — R.

Lemma 5.4. Locally, the reduced (-)-discrete generalized energy is a map e;_ : (£ xG) x X x (T* x
g*) x Q = R. Furthermore, for each (xi, g7, X1,Wo,Ho,qo) € (£ x G) x X x (X* x g*) x Q we have

ea— (X7, 81, X1, Wo, to, qo) = La—(x7, 87, x1) + (wo —hjj 5 (ko). X0 — x7) + (10, 8o — &1 — ha((x1,0), x7)).

Theorem 5.5 (Reduced variational principle). Let L; : QxQ — R be a G-invariant discrete Lagrangian
and {(q;, > Pr-qr+1) € Q@ x Q* x Q| 0 <k < N} be a trajectory on the (-)-discrete Pontryagin bundle.
Consider the reduced trajectory, i.e.,

{815 815 Qs Wi fits G ) € (X G) x @ x (2% x ™) x Q) /G| 0< k<N -1},

where (3,1, 8,1 Q1> Wi flis Qi) = Na— (i, (s Qrs1, Poogi) for 0 < k < N — 1. Then the (-)-discrete
Lagrange—Pontryagin principle (2.13) is satisfied if and only if the reduced (-)-discrete Lagrange—
Pontryagin principle is satisfied, i.e.,

N-1
6 > ea- ([Ferrs Brrs Gurts Wi fiks 4] ) = 0, (5.10)
k=0
for free variations
{(0%511508)cs15 0Gn1, Wi, Oy, 6G) € (Ex G) x O x (X" xg") x Q|0 <k < N}

with fixed endpoints, i.e., 6y = 0gn = 0.

Proposition 5.6. The variational equations obtained from the reduced (-)-discrete Lagrange—
Pontryagin principle are the (-)-discrete Lagrange—Poincaré—Dirac equations.
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6. Nonlinear theory

The previous reduction theory has been developed for the linear setting, i.e., when Q is a vector
space and G c Q is a vector subspace acting by addition on Q. Nevertheless, it can be applied when
Q is an arbitrary smooth manifold and G is an abelian Lie group acting freely and properly on Q. In
order to see this, we use retractions and retraction compatible charts (see, for example, [2, 16]).

Definition 6.1. A retraction of a smooth manifold M is a smooth map R : TM — M such that for each
m € M we have R,,(0,,) = m and (dR,,), = idz, s, where R,, = R|r,» and we make the identification
T, (TuM) ~ T,,M.

Observe that the second condition ensures that R, : T,,M — M is invertible around O,,.

Definition 6.2. Let M be an n-dimensional smooth manifold and R : TM — M be a retraction of M.
A coordinate chart (U, ¢) on M is said to be compatible at m € M with R if ¢(m) = 0 and R(v,,) =
1 ((dp)m(v)) for each v,, € T,,M, where we identify T,,R" ~ R”" using the standard coordinates in
R~
For the particular case of a Lie group G and g € G, it was shown in [16, §9] that the canonical
coordinates of the first kind at g € G (cf. [38, 21]) are a coordinate chart compatible with the retraction
defined by RS = L, o expo(dL,-1),, where L, : G — G denotes the left multiplication by g.

Proposition 6.3. Let R : TM — M be a retraction of an n-dimensional smooth manifold M and (U, ¢)
be a compatible coordinate chart on M at m € M. Then for each® r € U and p,, € T;;M we have

(pmaRr_nl(r)> = Zpiri’
i=1
where R} (r) ~ r'd; and p,, ~ p:dq' in this chart.

In other words, the previous result says that the dual pairing of 7,,M and T M reduces to the usual
Euclidean inner product on R” when using retraction compatible charts.

6.1. Retractions and abelian Lie group actions

In what follows, let Q be a smooth manifold and G be a connected, abelian Lie group acting freely
and properly (on the left) on Q, thus yielding a principal bundle 7ys : Q@ - X = Q/G. Consider
retractions R* : TY — X and R¢ : TG — G of X and G, respectively, and a trivializing set U c X of
mox. For simplicity, we write U = X, so we have an identification Q ~ X x G. Under this identification,
a straightforward check shows that the map

R=(R*RY):TQ~Q

is a retraction of 0. We may use it to define (at least locally) a discrete Lagrange—Pontryagin action.
Namely, given a (possibly degenerate) discrete Lagrangian L, : O x Q — R, the (+)-discrete Lagrange—
Pontryagin action is defined as

N-—
St [(qrs G7 s Prst ) e o] Z (Li(qi.q7) + (Pres Ry (aen) - R, (a))

"We will assume that the inverse of R, is defined on the whole of U by choosing a smaller coordinate domain if necessary.
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where qi,q¢ € Q and py,y € T, Q. The (+)-discrete Lagrange—Pontryagin principle is obtained by
enforcing free variations vanishing at the endpoints. In order for the previous expression to be well-
defined, g; must be in the neighborhood of g, where R, ., is invertible for each 0 < k < N-1. This can
always be achieved for bounded initial conditions by reducing the size of the time step. Furthermore,
Proposition 6.3 ensures that using retraction compatible coordinate charts, this discrete action reduces
to the one considered in the linear case (2.10).

In the same vein, the (-)-discrete Lagrange—Pontryagin action is defined as

N-1
SZd [(q;+l’pk, Qk+l);<vzo] = kZ(:) (Ld(q;H’QkH) + (pk’R;kI (Qk) - Rl_ykl (ql:+1)>) >

where g, ,,q+1 € O and p; € Q*. Once again, Proposition 6.3 ensures that, in a retraction compatible
chart, the discrete action reads as in the linear case (2.12).

On the other hand, recall that the G action on the trivialized principal bundle is given by the left
multiplication, i.e., g+ qo = (x,gg0) for each g € G and gy = (x0,80) € Q ~ X x G. Furthermore,
suppose that the retraction on G is given by RS = Ly, o exp o(a’Lg61 )» @s mentioned when describing
the canonical coordinates of the first kind. Since G is abelian and connected, the exponential map is
surjective and, hence, the inverse of RS exists locally around every element of the group. As a result,
when ¢y = (xo, 8o) is fixed, an action of T, G on T,,,Q = T,, X & T,,G may be built as follows

-1
tgy* (Vags Vo) = (Vi (RE) ™ (RE, (g, )RS (v4y)) )
for each v, € T X, and u,,v,, € T,,G. When g, = 0, this action has a very simple expression,

&+ (v €0) = (Vi log(exp(é) exp(£0))) = (vxp & +€0), v € T %, €60 €6,

where we have used that G is abelian. This is the case considered in the previous sections, a vector
subspace acting by addition. Note that if g, # 0, we obtain the same result by using the left translation.

In summary, the linear theory developed above is the coordinate representation of a general system
with abelian group of symmetries when retraction compatible charts are used. This allows us to use
the linear theory at least locally on a coordinate chart. Furthermore, if ¥ and G both admit retraction
compatible atlases, then a retraction compatible atlas for Q can be built such that each coordinate
domain is a trivializing set for mps. Hence, we can make computations on the whole Q by starting
from a specific compatible chart and changing to another one whenever it is necessary. Since the
variational principle, as well as the group action, have the same expressions in each compatible chart,
the local preservation of geometric properties extends to the global setting. This is an important feature
of retraction compatible atlases, since computation on local charts might otherwise lead to dynamics
that is not globally well-defined. The discrete analogue of Tulczyjew dynamics (see, [34]) appears to
be the discrete Dirac mechanics of [16] that we based our construction upon, so the analogous reduced
discrete geometric structures for discrete Tulczyjew dynamics can be obtained from our construction.

7. Examples

We present two examples to illustrate the reduction theory developed above. In both of them, we
employ the (+)-discrete equations.
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7.1. Charged particle in a magnetic field

We analyze the dynamics of a charged particle moving in a magnetic field, as presented in [25]
for the continuous case. To account for gauge symmetry, we consider the Kaluza-Klein configuration
space,

Ok =R*x 8,
with coordinates (g, ), where ¢ = (¢',¢%,¢*) € R? and 6 ~ ¢ € S'. The Kaluza-Klein Lagrangian is
defined as | |
. ; .. . A\ 2
Li(4:4,6,0) = 5m{q.4) + 5 ((A(a),4) + )",

where m € R* is the mass of the particle, A € Q'(R3) is the magnetic potential, and (-, -)) denotes the
Euclidean inner product in R3. The conjugate momenta are given by

p= T <, )+ ((A(). @) + ) AC).  po= " = (A(g).4) +.
q 06
It is clear that this Lagrangian is invariant under the tangent lifted action of S' on Q given by
0 - (q.0) = (q,0" +0) for each (g,0) € Qk and & € S'. Note that using these coordinates, the action is
linear. The corresponding quotient is £ = Qx/S' ~ R3. Choosing the principal connection w = A + df €
Q!(Qk) on Qkx — R3, the corresponding reduced equations are the Lorentz force law together with the
conservation of the momentum corresponding to 6, i.e.,

m— = _qXB9 pHZO’ (71)

where B € X(R?) is the magnetic field corresponding to* B = dA € Q?(R3), and e = ¢ py is the electric
charge of the particle.

7.1.1. Discrete equations

Given h > 0, consider the following discrete Lagrangian

0]3—40’90, 96'—90).

Ld(QO»QO, q(J)ra Haah) = hLK (6]0, h h

It is easy to check from Definition 2.1 that the following is a discrete principal connection,

wa((qo, ), (q5.65)) = 65 — 6o, (qo.60) (q5.65) € Ok-

Subsequently, the local map h, : Qx x R? — S! is given by h,((g0,60),95) = 6 and h,sz = 0. The
reduced discrete Lagrangian (4.5) is

1:(q0. 45,653 1) = La(40,0, 45,65 +h3(q0.45))

m 1 2
=ﬁ<<q8—cJo,q$—Qo>>+ﬂ (A(q0).490 — qo) +65)" .

*Recall that we can associate to each 2-form a = o'ty (d°q) € Q*(R*) a vector field @ = @'d; € X¥(R*), which is known as proxy field,
where ¢y denotes the left interior product by U € ¥(R?).
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Consider an interval [0,7] c R and divide it into N = T'/h subintervals [fy, ;1 ], with #, = kh, 0 < k <
N — 1. As usual, we let g, = g(#), 0 < k < N, and analogously for the other quantities. Similarly, we
express the discrete vector field as [f(é‘,] = (> Wi Mics Qs 15 Ok 1, Wi 1, M1 ). By computing the partial
derivatives of the reduced discrete Lagrangian, we obtain the reduced discrete equations

m

Z«‘Jkﬂ — Yk, >> +,uk+1A(qk) = Wi+ 1,

1
E((A(qk),CIku = qi) + Ohe1) = Herr , 0<k<N-1. (7.2)
m

Z«Qkﬂ — i) = it (A, Grer — @) — A(qi)) = wy,

Mi+1 = Mk

7.1.2. Numerical computations

In order to implement the above equations, we need to make a particular choice of the particle mass
and charge, time interval, magnetic field and initial conditions. We express all of the magnitudes in
natural units, i.e., ¢ = 1. We choose m = 1, ¢ = 1 and T = 20. For each ¢ = (¢',¢* ¢*) € R3, we
write ¢ = ¢'0; € T,R*> ~ R3 when regarded as a vector. Hence, (g, ) = ¢'dg’. On the other hand, we
suppose that the magnetic field is constant, i.e., B(q) = By, for some fixed By € R. The corresponding
magnetic potential is

B
A(q):jo(—qqul+q1dq2), q=(q1,q2,q3)ER3.

We suppose that the initial position is the origin, gy = 0, and the initial velocity is gy = 0; + 0.
Likewise, we choose 6y = 0. Since A(gy) = A(0) = 0, the corresponding initial momenta are

Po = {Go.-) + ((A(90). o) + 8) A(qo) = (do. ") = dg' + de’,

and (pg)o = e = 1. Likewise, we have 8y = (ps)o — (A(q0),Go) = 1. The initial position and momenta
may be trivialized using (3.6),

((90-60)- wo.110) = A4((40-60)- (Po- (Pe)o)) = ((0,0),(1,0,1),1).

On the other hand, it is easy to check that the exact solution of (7.1) for By =1 is

q(t) = (sin(¢),cos(¢) - 1,1), 0<t<T.

Table 1. Number of steps vs. error at the last step

N1 1lg(T) —gul
10 [ 1.6781
50 | 025971
100 | 0.06626
200 | 0.01664
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® Numerical

—— Exact

Figure 1. Exact and approximate trajectories of a charged particle moving in a constant
vector field. The approximate trajectory is computed using time step & = 0.2.

After working out the approximate solution for different values of N and comparing it to the exact
solution, we can see that the error decreases with the number of steps at a second-order rate of conver-
gence, as shown in Table 1. In addition, Figure 1 compares both the exact and numerical trajectories
for N =100, i.e., h = 0.2.

7.2. Double spherical pendulum

In this example, we investigate the double spherical pendulum. We assume that there is no friction
and that the system is under a uniform gravitational field. The dynamics of the double spherical pendu-
lum has been investigated in [20, 24] and variational integrators from different perspectives have been
proposed in [11, 13].

For i = 1,2, we denote by m; € R*, [; ¢ R* and r; € R3 the particle mass, the link length and the
position of the i-th pendulum, respectively. Furthermore, we use standard coordinates r; = (r},r?,r}) €
R3 with the coordinate origin at the fixed pivot, and we suppose that the gravitational acceleration is
given by g = (0,0, -g) for some fixed g € R*. This way, the Lagrangian is

1

L(r1, 10, 71,72) = =my (i, i) + =ma(fa, ia ) —my g1y —ma g3,

2 2

where (-,-)) denotes the Euclidean inner product in R3. In addition, the links connecting the particles
yield the following constraints,

(rm) =8, (r-r.n-n)=5

Journal of Geometric Mechanics Volume XX, Issue X, XXX—XXX



32

Figure 2. Spherical coordinates for the double spherical pendulum.

To avoid the need for constraints, we use spherical coordinates for each particle, r; = (p;,6;, %),
i = 1,2, where the origin of the first sphere is at the pivot and the origin of the second one is at the first
particle, as shown in Figure 2. As such, the constraints become p; = [;, i = 1,2, and may be imposed
explicitly in the Lagrangian. Then, the configuration space is given by

Q — SZ x SZ
with angular coordinates (6, ¢1, 6, ). After the change of coordinates, the Lagrangian reads

L((HDQDDHZ’QDZ), (919¢1’929¢2)) =

1 ) o
El% my ((,D% + 9% Sll’l2 (,01) + T2 —gm ll CoSp —gmy (ll Cosp; + lz COS(pz).

where T is the kinetic energy of the second pendulum,

T, = 5 (l% @+ B3+ B8 sin’ @y + BO3sin® o, + 211 L (@1 ¢a sing sing,
+ @1 (208 @) cOS @y cos(6) — 6,) + @ By sin, sin(6; — 6,) cos ¢,

— @20, sing; sin(#; — 6,) cos ¢, + 6 6, sin @, sin ¢, cos(6; — 92))).
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Observe that the system is invariant by simultaneous rotation of both pendula around the Z-axis,
i.e., the group of symmetries is G = S! with the action on S? x S? given locally by
6 ) (Hla 901’62’ 902) = (9+ 917(101’0+ 025 (pZ),
for each (01, ¢1,60:,¢,) € S> x S and 0 € S'. As usual, we denote the quotient by X = (S? x S2)/S'.

Remark 7.1. Observe that this action is not free. Indeed, it leaves invariant configurations with ¢; =
ki and ¢, = k,m for some ki, k, € Z. Therefore, the following is only valid for trajectories not passing
through those configurations.

At last, we perform another change of coordinates,
01 +6, 6,0,
2 o2
with ¢, and ¢, remaining the same. Observe that the inverse is given by 8, = ¢, — ¢, and 6, = ¢ + .
In these coordinates, the action reads

- (171,901,192,Q02) = (9+ 171,901,192,Q02),
for each (91, ¢1,%2,¢,) € S? x S? and § € S'.

th

2

7.2.1. Discrete equations

For the sake of simplicity, we will let go = (91, ¢1,92,¢2) € S? x S? and xo = (1,92, ¢2) € (S? x
S2)/S!, and analogous for ¢ and xj. Given i > 0, we define the discrete Lagrangian as

q90+9; 95 —4
Ld(qo,qa;h)=hL( 02 2 Oh O),

Likewise, we choose the following discrete principal connection

G S? x §2.

Wy (qo,qg) :ﬂir_ﬂl’ QO,C](J; 682XS2.
In particular, the map h, : Q x X — G is given by h, (g0, xj) = 1. Thus, hyz =0, hjy = 0 and hd = 0.
The reduced discrete Lagrangian is
Li(x0, x5, 973 h) = La((0, 01,92, 2), (97,97, 95,93 ): h),

for each xo,x € X and 97 € S'. Given the interval [0,7] c R, we divide it into N = T'/h subin-
tervals [fy,ty1], with #, = kh, 0 < k < N - 1. We denote the discrete vector field by [)A(’;] =
(X W ks Qs 15 Wi 1, M1 ), 0 < k < N — 1. Observe that wy = (w},w?,w}) € 2* ~R3 and . € G* ~ R,
Since h,;((91,0),0) =9, and h, o(x0,0) = 0, the reduced discrete equations read

ol, dl; ol

(aw?’ 093 6<ﬁ§) = (wiowiow).
Ho = M1,

oly ol azd) o
o s | = Wy Wp, W s
(0S01 0%, 0, (5, 5)
ol

aﬁ_{_ _/’LO’

where (¢1,9,¢2), o and wy are the initial conditions, and (97, ¢],93,¢;), 11 and w; are the un-
knowns. As in the previous example, by using (3.6), the momentum is given by py = (1o, wo).
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Figure 3. Evolution of ¢; (top) and projection of the trajectory of the second pendulum on
the XY-plane (bottom) for the double spherical pendulum.

7.2.2. Numerical computations

For the numerical simulation, we need to fix the parameters of the system, as well as the initial
conditions. Using ST units, we pick 7 = 100, N = 10%, m; = 20, m, = 35, [; = 500, [, = 800, g = 9.8, qo =
(0,9/4,2,3) and (uo, wo) = (0,0,1,1). Recall that the (+)-discrete generalized energy of the system is
given by (5.7), i.e., (E4)x = La(qx. q; ), where we have used that g1 = ¢;, 0 <k < N—1. The evolution
of the energy is plotted in Figure 4. Observe that it exhibits good near energy conservation, since it
oscillates around a fixed value instead of exhibiting a spurious drift. This is typical of symplectic,
and in particular, variational integrators, but is not generally true of standard integrators. Moreover,
we have simulated the system by using the (+)-discrete Euler-Lagrange equations. The difference
between the energies obtained from our reduced equations and the energy obtained from the Euler—
Lagrange equations is also plotted in Figure 4. As can be seen, both methods give almost the same
values for the discrete energy. However, we have observed that our method was about 75% faster
than the usual discrete Euler—Lagrange equations, which suggests that the reduced integrator could be
significantly faster than the unreduced one.

8. Conclusions

In this paper, we developed the theory of discrete Dirac reduction of discrete Lagrange—Dirac sys-
tems with an abelian symmetry group acting on a linear configuration space. This involves using the
notion of discrete principal connections to coordinatize the quotient spaces, which allows us to study
the reduction of the Dirac structure and the discrete variational principle expressed in terms of the dis-
crete generalized energy. Both the reduced discrete Dirac structure and the reduced discrete variational
principle lead to the same reduced discrete equations of motion. We also discussed the role of retrac-
tions and the atlas of retraction compatible charts in allowing us to generalize the local theory that was
discussed to a discrete reduction theory that is globally well-defined on a manifold.

For future work, we will extend this to the setting of nonabelian symmetry groups, and to discrete
analogues of Routh reduction, where the discrete dynamics is also restricted to the level sets of the
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Figure 4. Evolution of the discrete energy for the double spherical pendulum (top) and
difference between the energy computed with the discrete reduced equations and the energy
computed with the discrete Euler—Lagrange equations (bottom).

discrete momentum. In the same vein, it would be interesting to explore discrete Dirac reduction by
stages. To that end, a category containing discrete Dirac structures that is closed under quotients must
be constructed and the reduction procedure must be defined on the whole category.
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