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ABSTRACT

Geometric numerical integration has recently been exploited to design symplectic
accelerated optimization algorithms by simulating the Bregman Lagrangian and
Hamiltonian systems from the variational framework introduced in Wibisono et al..
In this paper, we discuss practical considerations which can significantly boost the
computational performance of these optimization algorithms, and considerably sim-
plify the tuning process. In particular, we investigate how momentum restarting
schemes ameliorate computational efficiency and robustness by reducing the unde-
sirable effect of oscillations, and ease the tuning process by making time-adaptivity
superfluous. We also discuss how temporal looping helps avoiding instability issues
caused by numerical precision, without harming the computational efficiency of the
algorithms. Finally, we compare the efficiency and robustness of different geomet-
ric integration techniques, and study the effects of the different parameters in the
algorithms to inform and simplify tuning in practice. From this paper emerge sym-
plectic accelerated optimization algorithms whose computational efficiency, stability
and robustness have been improved, and which are now much simpler to use and
tune for practical applications.
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1. Introduction

The field of symplectic optimization grew out of efforts to generalize Nesterov’s acceler-
ated gradient method [63], which was shown to converge in ©(1/k?) to the minimum of
the convex objective function f and improves on the ©(1/k) convergence rate exhibited
by standard gradient descent methods. This O(1/k?) convergence rate, referred to as
acceleration, was shown in [64] to be optimal among first-order methods using only
information about Vf at consecutive iterates. Nesterov’s algorithm was shown in [77]
to limit to a second-order ordinary differential equation (ODE), as the timestep goes
to 0, and that f(x(t)) converges to its optimal value at a rate of ©(1/t?) along any
trajectory z(t) of this ODE. It was then shown in [84] that in continuous time, an
arbitrary convergence rate O(1/tP) can be achieved in normed spaces, by considering
flow maps generated by a family of time-dependent Bregman Lagrangian and Hamilto-
nian systems which is closed under time-rescaling. This lead to the field of symplectic
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optimization [47], where symplectic discretizations of the Bregman Hamiltonian flow
are used to construct accelerated optimization algorithms.

Lagrangian and Hamiltonian flows can also be described variationally. This, together
with the time-rescaling property of this family, were exploited in [32] by using time-
adaptive geometric integrators to design efficient explicit algorithms for symplectic
accelerated optimization. It was observed that a careful use of adaptivity and sym-
plecticity could result in a significant gain in computational efficiency. There has also
been work on deriving accelerated optimization algorithms in the Riemannian manifold
setting [1, 3-5, 28-31, 59, 88, 89].

While the symplectic optimization approach provides a broad framework for con-
structing accelerated optimization algorithms, the real-world performance of these
methods depend on the choice of numerous parameters. In this paper, we will perform
a systematic and comprehensive test of a class of symplectic accelerated optimization
algorithms, so as to provide practical guidance on how to achieve good real-world
performance with less tuning.

Outline of the paper.

After reviewing the basics of geometric integration in Section 2, we introduce variational
accelerated optimization and present how to integrate the corresponding dynamics
in Sections 3 and 4. We then analyze the oscillatory behavior of these dynamical
systems in Section 5, and discuss how their unfavorable effect can be neutralized,
in particular via the use of momentum restarting techniques which can dramatically
improve computational efficiency and robustness. We will see that momentum restarting
makes time-adaptivity futile, which allows us to simplify the algorithms. We will
then compare different geometric integrators, and investigate how the computational
performance depends on the different parameters, which will allow us to reduce the
numbers of parameters to tune in practice. In Section 7, we see that temporal looping
can avoid instability issues due to numerical precision, and finally in Section 8, we test
the resulting algorithms on problems of interest to the machine learning community.
For brevity and conciseness of exposition, we will move the more experimental parts of
the discussion which are less theoretically interesting to Supplementary Materials.

2. Geometric Mechanics and Geometric Numerical Integration

2.1. Lagrangian and Hamiltonian Mechanics

Given a manifold Q, a Lagrangian is a function L : TQ — R. The corresponding
action integral & is the functional $(q) = fOT L(q, g)dt, over the space of smooth
curves ¢ : [0,7] — Q. Hamilton’s variational principle states that §8 = 0 where the
variation 08 is induced by an infinitesimal variation dq of the trajectory ¢ that vanishes
at the endpoints. Given local coordinates (¢!, ...,¢") on the manifold Q, Hamilton’s
variational principle can be shown to be equivalent to the Euler—Lagrange equations,
d ( OL oL
%(a_qk)za_qk’ fOI'k’:l,...,TL. (1)

A Lagrangian L is hyperregular if the Legendre transform FL : TQ — T*Q of L, defined

fiberwise by FL : (¢*,¢") v (qi’ gé

) , is diffeomorphic.



A hyperregular Lagrangian on T'Q induces a Hamiltonian system on 7*Q via

n .
H(q,p)z(FL(C],(]),Q>_L(C],(])= Zp]qj_L((Lq) ) (2)
J=1 PF;I},
where p; = 2L ¢ T*Q is the conjugate momentum of ¢*. There is a Hamiltonian

= 57
variational principle on the Hamiltonian side in momentum phase space which is
equivalent to Hamilton’s equations,

0 OH

pk:__]i(paQ)a qk:_(p7Q)7 fOI'k:L...,TL. (3)
dq bk,

and these equations are equivalent to the Euler-Lagrange equations (1), provided

the Lagrangian is hyperregular. Hamiltonian systems possess a long list of structural

invariants and constants of motion, the most important of which are the conservation

of the Hamiltonian energy and the conservation of the symplectic 2-form.

2.2. Symplectic and Variational Integrators

Symplectic integrators form a class of geometric numerical integrators of interest since,
when applied to Hamiltonian systems, they yield discrete approximations of the flow
that preserve the symplectic 2-form. The preservation of the symplectic 2-form results
in the preservation of many qualitative aspects of the underlying dynamical system. In
particular, the numerical solution of a Hamiltonian system obtained using a constant
time-step symplectic integrator is exponentially near to the exact solution of a nearby
Hamiltonian system for an exponentially long time [14, 43]. It explains why symplectic
integrators exhibit good energy conservation with essentially no accumulation of errors
in time, when applied to Hamiltonian systems, and why symplectic methods are
best suited to integrate Hamiltonian systems. We refer the reader to [45] for a brief
recent overview of geometric numerical integration, and to [17, 43, 53] for a more
comprehensive presentation of structure-preserving integration techniques.
Variational integrators form a class of symplectic integrators, derived by discretizing
Hamilton’s principle instead of discretizing Hamilton’s equations directly. As a result,
variational integrators are symplectic, preserve many invariants and momentum maps,
and have excellent long-time near-energy preservation [60]. Traditionally, variational
integrators have been designed based on the Type I generating function known as the
discrete Lagrangian, Ly : @ x () - R. The exact discrete Lagrangian that generates
the time-h flow of Hamilton’s equations can be represented both in a variational form
and boundary-value form. The latter is given by L% (qo,q1;h) = foh L(q(t),q(t))dt,
where ¢(0) = qo, ¢(h) = q1, and ¢ satisfies the Euler-Lagrange equations over the time
interval [0,h]. A variational integrator is defined by constructing an approximation
Lg:QxQ — R to LY, and then applying the discrete Euler-Lagrange equations,

Pk = —D1La(qk, Q1) Pk+1 = DoLg(qk, 1), (4)

where D; denotes a partial derivative with respect to the i-th argument. The error
analysis is greatly simplified via Theorem 2.3.1 of [60], which states that if a discrete
Lagrangian, Ly : Q@ xQ — R, approximates the exact discrete Lagrangian LdE QxQ —-R
to order r, i.e., Ly(qo,q1;h) = Lf(qo, qi;h) + O(h™1), then the discrete Hamiltonian



map FLd : (qk,pr) ~ (qk+1,Pr+1) defined by (4) and viewed as a one-step method, has
order of accuracy r. Many properties of the integrator can be determined by analyzing
the associated discrete Lagrangian, as opposed to analyzing the integrator directly.
Variational integrators have been extended to Type II/III generating functions,
referred to as discrete Hamiltonians [50, 56, 74]. Hamiltonian variational integrators are
derived by discretizing Hamilton’s phase space principle. The boundary-value formula-
tion of the Type II generating function of the Hamiltonian flow is given by the exact
discrete right Hamiltonian, H;’E(qo,pl;h) =piq1 - foh [p(t)"q(t) — H(q(t),p(t))]dt,
where (g, p) satisfies Hamilton’s equations with boundary conditions ¢(0) = qo, p(h) = p1.
A Type II Hamiltonian variational integrator is constructed by using an approximate
discrete Hamiltonian H, and applying the discrete right Hamilton’s equations

po = D1Hj(q0,p1), q1 = D2Hj (qo,p1)- (5)

Theorem 2.3.1 of [60], which simplifies the error analysis for Lagrangian variational
integrators, has an analogue for Hamiltonian variational integrators. Theorem 2.2 in [74]
states that if a discrete right Hamiltonian H approximates the exact discrete right

Hamiltonian H;’E to order r, i.e., H;(qo,p1;h) = H;’E(qo,pl; h) + ©(h™1), then the

discrete right Hamiltonian map FH; (g, pr) = (qk+1,Pr+1) defined by (5) and viewed
as a one-step method, is order r accurate. Note that discrete left Hamiltonians and
corresponding discrete left Hamilton’s maps can also be constructed in the Type III case
(see [32, 56]). Examples of variational integrators include Galerkin variational integrators
[56, 60], Taylor variational integrators [75], and prolongation-collocation variational
integrators [54]. In this paper, we will use Taylor variational integrators, where a
discrete approximate Lagrangian or Hamiltonian is constructed by approximating
the flow map and the trajectory associated with the boundary values using a Taylor
method, and approximating the integral by a quadrature rule. The Taylor variational
integrator is generated by the implicit discrete Euler-Lagrange equations associated to
the discrete Lagrangian or by the Hamilton’s equations associated with the discrete
Hamiltonian. The construction of Taylor variational integrator is presented in the
context of accelerated optimization in [29, 32].

In many cases, the Type I and Type II/IIT approaches produce equivalent integrators,
such as for Taylor variational integrators provided the Lagrangian is hyperregular [75].
However, Hamiltonian and Lagrangian variational integrators are not always equivalent
in practice, even when they are analytically equivalent, as they might still have different
numerical properties because of numerical conditioning issues [74]. Even more to
the point, Lagrangian variational integrators cannot always be constructed when the
underlying Hamiltonian is degenerate, which is the case in the adaptive Hamiltonian
framework for accelerated optimization presented in Section 3.4.2.

3. Variational Framework for Accelerated Optimization

3.1. General Framework

Efficient optimization has become one of the major concerns in data analysis. Many
machine learning algorithms are designed around the minimization of a loss function or
the maximization of a likelihood function. Due to the ever-growing size of data sets and
problems, there has been a lot of focus on first-order optimization algorithms because
of their low cost per iteration, and many gradient-based optimization methods have



been proposed since Cauchy’s first gradient descent algorithm [22]. In 1983, Nesterov
introduced an algorithm, Nesterov’s Accelerated Gradient (NAG) method, which
converges in O(1/k?) to the minimum of the convex objective function f, improving on
the O(1/k) convergence rate exhibited by the standard gradient descent methods. This
O(1/k?) convergence rate was shown in [64] to be optimal among first-order methods
using only information about V f at consecutive iterates. This phenomenon in which an
algorithm displays this improved rate of convergence is referred to as acceleration, and
other accelerated algorithms have been derived, such as accelerated mirror descent [62],
and accelerated cubic-regularized Newton’s method [65].

It was shown in [77] that Nesterov’s method limits to a second order ODE, as the step
size goes to 0. The authors also proved that the objective function f(xz(t)) converges
to its optimal value at a rate of ©(1/t?) along the trajectories of this ODE. It was
then shown in [84] that in continuous time, the convergence rate of f(x(t)) can be
accelerated to an arbitrary rate ©(1/tP), by considering flow maps generated by a family
of time-dependent Bregman Lagrangian and Hamiltonian systems on normed vector
spaces which is closed under time rescaling. More precisely, in a general space Q, given
a convex, continuously differentiable function h: Q — R such that |[Vh(q)| — oo as
lg| = oo, its corresponding Bregman divergence is Dy, (z,y) = h(y)-h(x)—(Vh(x),y-x).
The Bregman Lagrangian and Hamiltonian are defined as

Lo (q,v,t) = e* 7 [Dy(g+ e v,q) - €™ f(q)], (6)
Hop(q,7,t) = € [ D (Vh(q) + e 1, Vh(q)) + e f(q)], (7)

which are scalar-valued functions of position ¢ € Q, velocity v € R, momentum r € R?,
and time ¢, and are parametrized by smooth functions of time, «,3,~. Here, the
function h* : Q* - R denotes the Legendre transform (or convex dual function) of h,
defined by h*(w) = sup,.q [{w, z) = h(2)]. These parameter functions «, /3,7 are said
to satisfy the ideal scaling conditions if

By < e and A = e (8)
If the ideal scaling conditions are satisfied, then Theorem 1.1 in [84] asserts that
fla(®) - f(g") <O(e™), (9)
along the trajectory ¢(t) associated with the Bregman Lagrangian (6) and Bregman
Hamiltonian (7), where ¢ is the desired minimizer of the objective function f.

From now on, we take h(q) = %(q, q). Assuming that the functions «, 3, satisfy the
ideal scaling conditions (8), the Bregman Lagrangian and Hamiltonian become

1.,

Lo (@,0,8) = 5€7%{,0) = e £ ), (10)
1 -

Ha gy (0,7,8) = 567 ) 420750 £(g), (1)

with corresponding Euler-Lagrange equation given by

G(t) + (™ = cu) q(t) + e** v f(q(t)) = 0. (12)



3.2. Polynomzial Subfamily

A subfamily of Bregman dynamics of interest, indexed by a parameter p > 0, is given
by the choice of parameter functions

o =logp-logt,  By=plogt+logC,  ~ =plogt, (13)

where C' > 0 is a constant. These parameter functions satisfy the ideal scaling condi-
tions (8), and the corresponding Lagrangian and Hamiltonian are given by

tp+1 9p_1
Lp(qavvt) = %(7}7”) - Cpt P f(Q)7 (14)
Hy(q.r.1) = g {rr) = Cot™ ™ 1 (g). (15)

with corresponding Euler—Lagrange equation given by

P24 + CRP AV (a(0)) =0, (16)

G(t) +

From Theorem 1.1 in [84], the evolution ¢(t) resulting from this dynamical system
satisfies the convergence rate f(q(t)) - f(¢*) < O(1/tP).

Note that this Bregman subfamily has been exploited extensively in [16, 29, 32, 84],
and that the special case where p = 2 and C' = 1/4 corresponds to the limiting continuous
differential equation introduced in [77] for Nesterov’s Accelerated Gradient method.

3.3. Ezxponential Subfamily

Another subfamily of Bregman dynamics of interest, indexed by a parameter 1 > 0, is
given by the choice of parameter functions

ap=logn,  Br=nt+logC, v =nt, (17)

where C' > 0 is a constant. These parameter functions satisfy the ideal scaling condi-
tions (8), and the corresponding Lagrangian and Hamiltonian are given by

e ot
Ln(qavat) = %(va) - 0776 K f(q)7 (18)

H'(q,r,t) = 50 (rr) + Cne™ f(g), (19)
2ent
with corresponding Euler—Lagrange equation given by
§(t) + ng+ C*e™ v f(q(t)) = 0 (20)

From Theorem 1.1 in [84], the evolution ¢(¢) resulting from this dynamical system
satisfies the convergence rate f(q(t)) - f(¢*) <O (e™).



3.4. Geometric Numerical Integration of Time-rescaled Bregman
dynamics

3.4.1. Time-rescaling Property of the Bregman Family

A very important property of the family of Bregman dynamics is its closure under time
dilation:

Theorem 3.1 ([84]). If q(t) satisfies the Euler—Lagrange equations corresponding to
the Bregman Lagrangian L g ., then the reparametrized curve y(t) = q(7(t)) satisfies
the Euler—Lagrange equations corresponding to the Bregman Lagrangian

Laps(00:8) = 7(t) oy (q, = ,T(t)) : (21)

(1)

where

at = o (py +log 7(1), Be = Brays Ve = Vr(t)- (22)

Thus, the entire subfamily of Bregman trajectories can be obtained by speeding
up or slowing down along any specific Bregman curve in spacetime. It is natural to
exploit this time-rescaling property with carefully chosen variable time-steps in the
integrator to transform the time-dependent Bregman Hamiltonian or Lagrangian into a
simpler autonomous system in some extended phase-space. This allows the higher-order
Bregman dynamics to be integrated in a more computationally efficient fashion by time-
rescaling the lower-order Bregman dynamics. This was first achieved in [32] with the
polynomial subfamily of Section 3.2, where time-rescaling a solution to the p-Bregman
Euler-Lagrange equations via 7(t) = t"/? yielded a solution to the p-Bregman Euler—
Lagrange equations. We can similarly jump from one solution of Bregman dynamics
from the exponential subfamily from Section 3.3 to another via 7(t) = ;—7]15, or jump from

exponential Bregman dynamics to polynomial Bregman dynamics via 7(t) = %log t,

and vice-versa via 7(t) = e"*/?.

However, when symplectic integrators were first used in combination with variable
time-steps, they performed poorly [20, 39]. A major advantage of using symplectic
integrators on conservative Hamiltonian systems is that they exhibit excellent long-
time near-energy preservation [43]. Backward error analysis [43] shows that symplectic
integrators can be associated with a modified Hamiltonian in the form of a formal
power series in the time-step. Using variable time-step results in a different modified
Hamiltonian at every iteration, which is the source of the poor energy conservation
and poor overall performance of these symplectic integrators. Fortunately, there are
ways to circumvent this issue, which will allow us to exploit the time-rescaling property
of the Bregman dynamics with variable time-steps integrators, to transform the time-
dependent Bregman dynamics into simpler autonomous systems in an extended space.

3.4.2. Time-adaptive Hamiltonian Integrators

On the Hamiltonian side, the Poincaré transformation is a way to incorporate variable
time-steps in geometric Hamiltonian integrators without losing their nice conservation

properties [32, 41, 87]. Given a Hamiltonian H (g, p,t), consider a desired transformation
of time ¢ ~ 7 described by the monitor function dd—i = g(t). The time ¢ shall be referred

to as the physical time of the system, while 7 will be referred to as the fictive time. A



new Hamiltonian system is constructed using the Poincaré transformation,

H(q,p) =g(a) (H(g,9,p) +p), (23)

in the extended phase space defined by ¢ =[] € Q and p = [§], where p is the conjugate
momentum for q = ¢ with p(0) = -H(g(0),0,p(0)). Then, using a symplectic integrator
with constant time-step in fictive time 7 on the Poincaré transformed Hamiltonian,
has the effect of integrating the original system with the desired variable time-step in
physical time ¢ via the relation % = g(t). Note that this framework can be extended
to monitor functions which also depend on position ¢ and momentum p, g = g(q,t,p)
(see [32]), but we will only need g = ¢g(¢) in this paper. Also note that the Poincaré
transformed Hamiltonian can be thought of as coming from a variational principle [29].

Going back to accelerated optimization, and denoting momentum by r to avoid
confusion, we can jump from one form of Bregman dynamics to another using one of
the following monitor functions

P n 0 p -
gty ==t"PP gty ==,  g(t)=-—t,  g(t)="eP. (24)
p i p 0

3.4.8. Time-adaptive Lagrangian Integrators

The time-adaptive framework for symplectic integration on the Hamiltonian side
presented in the previous section relies on a degenerate Hamiltonian which has no asso-
ciated Lagrangian description. Therefore, we cannot exploit the usual correspondence
between Hamiltonian and Lagrangian dynamics, and we follow a different strategy to
allow time-adaptivity in Lagrangian integrators. Given a time-dependent Lagrangian
L(q,q,t), consider the extended autonomous Lagrangian

E<q<7>,q'<7>>:q'mL(q(T) (q(()) ,q<r))—A(r)[q'm—g(qmn, (25)

)

defined in the extended space ¢ = (q,q,\)" where time is viewed as a position
coordinate q = ¢, where A is a Lagrange multiplier enforcing the desired time rescaling
dt = ¢(t), and where apostrophes denote derivatives with respect to 7. Now, if
(q(T) q' (7)) satisfies the Euler Lagrange equations corresponding to the Lagrangian
L, then its components Satlsfy = ¢g(t) and the original Euler-Lagrange equations [29].

A discrete variational formulation of these continuous extended Lagrangian mechanics
can be formulated [29], by considering a discrete Lagrangian

Tk+1 /
Li(qk, Qs Qr+1, Q1) ™ , ext / L(% - 7Cl)d7'-
(4,0)€C? ([7h,m411,2xR) T 9(q)
(4,9) (7e)=(qxk,9%), (4,9) (Th+1)=(qr+1,q50+1)

where 0 = 79 < 71 < ... < 7y partitions the time interval of interest, and {(qx,qx)}a
is a discrete curve in Q x R such that g, ~ ¢(7;) and qi ~ q(7%). Defining the discrete
momenta via the discrete Legendre transformations, py = —D1 Lq(qk, 9k, qk+1, Gk+1), and
using a constant time-step h in fictive time 7, the corresponding discrete extended



FEuler-Lagrange equations can be written as

Pk = —D1Lq(qr, Gk, Qs Gh+1)
MDsLd(Qk,%,ka%n), (26)
g(qk+1)

Gk+1 = 9k + hg(qr),

Pk+1 =

with two additional equations for py and pg.1 (see [29]). For accelerated optimization,
we are usually not interested in the evolution of p, and since it will not appear in the
updates for the other variables we do not need these equations and will omit them
here. We can then use one of the monitor functions

D,1-5 -
gy=2er gy =1 gwy="Tt,  gt)=Leir, (27)
D n p n

to transform from one type of Bregman Lagrangian to another.

4. Numerical Methods and Problems of Interest

4.1. Numerical Methods

We now present four different methods to design symplectic integrators for the time-
rescaled Bregman Lagrangian and Bregman Hamiltonian systems presented in Section 3.
Keeping in mind the desired applications in machine learning where problem sizes
and data sets are very large, we restrict ourselves to explicit first-order optimiza-
tion algorithms. Each of these four methods can be used within the four different
adaptive approaches presented in Section 3.4.1 (polynomial, exponential, polynomial-to-
exponential, and exponential-to-polynomial), and the resulting algorithms are presented
in Supplementary Material 3.

4.1.1. Hamiltonian Taylor Variational Integrator (HTVI)

Proceeding as in [32, Section 4.4] or [75], we can derive the Hamiltonian Taylor
Variational Integrator (HTVI),

Pi+1 = Pk — hD1H (i, Pr+1),

28
Qh+1 = Gk + hDoH (qi, Pi+1)- (28)

These updates recover the Symplectic Euler method [43], which is a popular symplectic
integrator of order 1.

4.1.2. Lagrangian Taylor Variational Integrator (LTVI)

As in [29], we can define a discrete Lagrangian,

_ q1 —qo
Lq(Go,q1) = hL (QO, —7q0), 29
P\ % hg(an) (2)

and the updates for the Lagrangian Taylor Variational Integrator (LTVI) can be
obtained from the discrete extended Euler—Lagrange equations (26).



4.1.83. Stormer-Verlet (SV)
A popular symplectic integrator is the Stérmer—Verlet (SV) method,

h
Pk+1/2 = Pk — §D1H(Qk,pk+1/2),
h
Gl =k + 5 [ D2H (qi, prs1y2) + DoH (Gt prs1y2) ] (30)
h
Dk+1 = Dks1/2 — §D1H(Qk+1apk+1/2),

which is a symmetric symplectic integrator of order 2 (see [43]). A very detailed
description of the Stormer—Verlet method, its different interpretations, and its beneficial
numerical properties can be found in [42]. Note however that in the polynomial and
polynomial-to-exponential frameworks, the update for q in the resulting integrators
becomes implicit, which makes these integrators less desirable. For the accelerated
optimization application, we will usually be able to combine the first and last updates
for the momentum vector p into a single update and save roughly a third of the
computational time. This is because Stérmer—Verlet is conjugate to symplectic Euler.

4.1.4. Symmetric Leapfrog Composition of Component Dynamics (SLC)

The main idea is to decompose the vector field into its components,

d d¢gd dgd drd ded OHd OHd O0Hd 0Hd

dr drdg drdq drdr drde Ordg . Ovdq g dr 0qde
= A + B + C + D

and then combine the component dynamics using a symmetric leapfrog composition
h h h h h h
d;, = exp (5@) oexp (56) o exp (5@) oexp (hA) oexp (5@) o exp (56’) oexp (5@)

which satisfies ®;, = exp (hH) + O(h?®) (can be shown using the Baker-Campbell-
Hausdorff formula). This strategy is similar to the integrator from [16, Section 3.3]
and the Splitting algorithms in [32]. An explicit derivation of the SLC algorithm for
the polynomial Bregman Hamiltonian is provided in Supplementary Material 2 as an
example. The position of the A, B, C, @ terms was chosen to save computational time,
as explained with the polynomial example in Supplementary Material 2.

4.1.5. Remarks

It was observed in [32] that symplecticity of the integrator was essential for the efficient,
robust, and stable discretization of these variational flows describing accelerated
optimization. Therefore, we will not consider non-symplectic methods here.
Higher-order explicit symplectic integrators can be derived, leveraging higher-order
compositions such as Yoshida splittings [86], but it was observed in [32] that these
require much more evaluations of the objective function and its gradient at each step.
Thus, the resulting algorithms would not be competitive in terms of computational
time and number of gradient evaluations, since the other methods usually converge in
a similar number of iterations but only require one gradient evaluation per iteration.

10



4.2. Problems of Interest

A subset C of R? is convex if Az + (1 - \)y € C for any z,y € C and X € [0,1]. A

differentiable function f:R? — R is convex if its domain dom(f) is convex and for

any A €[0,1] and z,y € dom(f), we have that f (Ax+ (1-X)y) <Af(x)+(1-N)f(y),

or equivalently if f(y) > f(x) +Vf(z)"(y—z) for any z,y € dom(f). A differentiable

function f:R? - R is strongly convex if there exists p > 0 such that f(z) - p|z|? is

convex, or equivalently if f(y) > f(2)+Vf(x)"(y—2)+uly—=z|?* for any =,y € dom(f).
In our numerical experiments, we will use termination criteria of the form,

[f (zx) = f(@r-1)| <6 and V()] <9, (31)
for various values of the tolerance ¢, and solve the following convex problems.
Problem 1. Minimize the quartic polynomial

f@)=1+[(z-1)"S(z - 1)]2 . where ¥;; = 0.9/ and 2 e R (32)
This convex function achieves its global minimum at z* = (1,1,...,1)".

Problem 2. Minimize the convex (not strongly convex) function

f(z1,29) = 21 + 23 — In(z120), (33)
which achieves its global minimum at 2* = (1,v/2/2)7.

Problem 3. Minimize the strongly convex function known as negative entropy

d
f(z1,.,2q) = Y zplog zy. (34)
k=1
This function achieves its global minimum at z* = (e™!,e7,...,e 7.

Problem 4. Minimize the ill-conditioned strongly convex function
f(x1,29,23) = 1 +0.012% + 23 + 10022, (35)

which achieves its global minimum at z* = (0,0,0)7.

Problem 5 (Linear Regression or Least Squares). Given a matrix A e R™" with
m >n and a vector b € R™, consider the problem of finding a vector x € R" such that
| Az —b|2 is minimized. The least squares problem has many applications in data-fitting
and interpolation. It can be formulated as the minimization of

f(x) = %xTATA:U -b" Az, (36)

with a gradient given by Vf(x) = ATAz— ATb. A vector x € R™ is a solution of the least
squares problem if and only if it satisfies the normal equation AT Az = ATb. Furthermore,
the least squares problem has a unique solution, given by z* = (ATA)"tATb, if and
only if the matrix A has full rank [82].

11



There are also regularized versions of the least squares problem or linear regression
[15, 19], to penalize larger values of z. A common form of regularization is Tikhonov
regularization [69, 80, 81] (or £? regularization), where we minimize the convex function

(@) = [Az = b]5 + A3, (37)

for some A > 0, which has a unique minimizer z* = (AT A+\b) "L ATb. Another regularized
version is the ¢! penalized linear regression (also known as the Lasso problem [79]),
where we minimize the convex (not strongly convex) function

f(@) = [Az = 0|5 + Al (38)

Problem 6 (Logistic Regression for Binary Classification). Given a set of feature
vectors x1,...,T, € R™ and associated labels y1,...,ym € {-1,1}, we want to find a
vector w € R™ such that sign(w'z) is a good model for y(x). This can be formulated
as the problem of minimizing the convex (not strongly convex) function

flw) = ilog(l +exp (—yin:Ui)). (39)

As for linear regression, there are also regularized versions of logistic regression, such
as ¢! and (2 regularized logistic regression, obtained by adding x| or A|z|3.

Problem 7 (Fermat—Weber Location Problem [13, 18, 26]). Given a set of points
Yi,---,Ym € R™ and associated positive weights wq,...,w, € R, we want to find the
location x € R™ whose sum of weighted distances from the points y1, . . ., Yn, is minimized.
In other words, we wish to minimize the convex function

f() = i wjle -yl (40)

The Fermat—Weber location problem is at the heart of Location Theory and has
countless applications across many fields of science and engineering.

Remark 1. A Tikhonov-type regularization can also be achieved by modifying the
second-order differential equation instead of adding a penalty to the objective function
(see [2, 7, 8, 46] for instance). The idea is to add an extra term e(¢)x(t) with e(t) = 0
as t - oo to the second-order differential equation of interest:

E(t) + a(t)i(t) + () Vf(x(t)) + e(t)x(t) = 0. (41)

This extra term forces the generated trajectory to converge to a solution of minimal
norm. This type of modified differential equation can be generated from a variational
framework via Lagrangians and Hamiltonians of the form

L(,0.0) = Sa(0)v,0) + ()0, 2) - 1)1 (), (42)
H(a.p.0) = 5ol 0= e(t)2) + 1) @), (43)
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whose Euler-Lagrange equation reads

a(t)i(t) +a(t)a(t) + () Vf(x(t)) + é(t)z(t) = 0. (44)

5. Controlling the Oscillatory Behavior
The Bregman Euler-Lagrange equation (12) can be written in the form
Z(t) +d(t)z(t) +b(t)V f(x(t)) =0. (45)

The introduction of momentum in the dynamical system causes the solution to this
ordinary differential equation to overshoot frequently in its path towards the minimizer
of the objective function f, and as a result the solution can be highly oscillatory.
Therefore, this differential equation can be thought of as modeling a nonlinear os-
cillator with damping, and the convergence of the function f to its minimum value
is not monotone along Bregman trajectories. This is similar to what was observed
for the limiting continuous differential equation for Nesterov’s accelerated gradient
method [61, 77] and for most momentum methods. These oscillations are problematic
since they can significantly slow down optimization algorithms that are derived from
the discretization of these Bregman differential equations. Indeed, to resolve the fast
oscillations of the differential equation, the time-step in the discretization has to be
reduced sufficiently, which can considerably increase the number of iterations and
gradient evaluations needed to achieve convergence. If the time-step is not taken small
enough, the momentum in the algorithms can lead to large overshoots which can result
in divergence. It would therefore be desirable to have a mechanism to neutralize these
oscillations. Fortunately, there are ways to reduce the effect of these oscillations, which
we will discuss in the remainder of this section.

5.1. Momentum Restarting

Momentum causes the solution to the Bregman Euler-Lagrange equation to overshoot
frequently on its path towards the minimizer of f. One strategy to control these
overshoots and reduce the effect of the resulting oscillations is to use restarting or
momentum restarting schemes, previously explored in [23, 25, 35, 36, 38, 66, 70-72, 77].
We will consider three different momentum restarting schemes:

e Function Scheme: Restart momentum whenever f(qx) > f(qx-1)
This scheme restarts the momentum r whenever the function evaluation at
the new update moves away from the minimum value, to try to avoid wasting
iterations in a bad direction.

e Gradient Scheme: Restart momentum whenever V f(qx)(qx — qk-1) >0
This restarts the momentum variable » whenever momentum seems to take the
new updates in a bad direction, measured using the gradient at that point.

¢ Velocity Scheme: Restart momentum whenever |\gx+1 — g | < |gx — qr-1]
This scheme restarts the momentum variable r whenever the norm of the (discrete
version of the) velocity [¢| starts decreasing, to try to maintain a high velocity
along the trajectory.

13



Note that the quantities needed to implement these restarting schemes are already
calculated in the standard versions of the optimization algorithms, and thus there is a
negligible difference in the computational costs of each iteration in the restarted and
non-restarted schemes. We can also require a minimum number of iterations between
momentum restarts, to avoid having consecutive restarts that are too close to each other.
In practice however, it did not seem to really improve the computational efficiency
of the algorithm and could sometimes negatively impact the overall performance. For
simplicity, we will not impose a minimum number of iterations between consecutive
restarts.

In our first numerical experiment, we compared the performance of the standard
algorithms to their restarted versions on three different problems for fixed values of all
the parameters except the time-step h. Figure 1 shows the resulting error plots after
tuning the value of h optimally. We can clearly see that the restarted versions of the
algorithms are much less oscillatory, and they can allow for much larger time-steps
leading to significantly faster algorithms, as is the case for Problems 2 and 3. Problem 1
is a special instance where larger time-steps cannot be taken in the restarted algorithms,
despite their non-oscillatory nature. It should be noted however that although the use
of momentum restarting does not lead to significant improvements in computational
efficiency, it does not penalize computational efficiency either.
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Figure 1.: Error vs. Iterations number as the standard PolyHTVI and ExpoHTVI
algorithms and their restarted versions (Function (F), Gradient (G) and Velocity (V))
are applied to Problem 1 (left), Problem 2 (middle), and Problem 3 (right).

We have performed additional experiments to obtain a better idea of the benefits of
momentum restarting in terms of computational efficiency, robustness and stability.
More precisely, we solved optimization problems using the different versions of the
algorithms on a 100 x 100 grid with logarithmic spacing in the parameter (C,h)-
plane, and recorded the number of iterations required to achieve certain convergence
criteria. Figures 2, 3, 4, and 5 display the results as filled contour plots (where the
absence of color indicates either divergence or failure of the algorithm to converge
in less than 10° iterations). Table 1 displays the number of iterations required to
converge by each version of the algorithms with its optimal (C,h) pair on the 100 x 100
logarithmically-spaced grid.
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Figure 2.: Contour plot of the number of iterations required to achieve convergence
with 6 = 107 in the (C, h)-plane, for p = p = 4 PolyHTVI applied to Problem 2.
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Figure 3.: Contour plot of the number of iterations required to achieve convergence

with 6 = 107% in the (C, h)-plane, for p = p = 4 PolyHTVI applied to Problem 2.

Figure 2 confirms the earlier observation that restarting can significantly reduce the
number of iterations needed to converge, and we can also see that the restarted versions
of the algorithm are more robust, since the regions of fast convergence are larger than
for the standard algorithm. As a result, it is easier to tune the restarted algorithms
to achieve fast convergence. Note as well from Figure 3 that a restarting scheme can
significantly improve the stability of the algorithms: as the convergence criteria are
made stricter going from Figure 2 to Figure 3, the regions of fast convergence have
not shrunk as dramatically for the restarted algorithms as for the standard version.
Given a converging (C,h) pair for a restarted algorithm in Figure 2, the restarted
algorithm usually remains convergent for that (C,h) pair with the stricter criteria
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in Figure 2 with a slightly increased number of iterations required. This is not true
for the standard algorithm where the increase in number of iterations is much more
significant, and there is a larger region of initially convergent (C,h) pairs where the
standard algorithm diverges when the stricter convergence criteria is imposed.

] 1 [0
3 é 104
e J10E 3 Mo
E 0006 —— 1 ¢ -
10_6: @ No Restart ‘ ‘ 5106:‘°Restart (Functlon)‘ ‘ 102
E L L L L L E| E L T L L L L T L L L L L L L L
0 —19° 19° L
£ 7 10*
4l il ] 3
107 ¢ E E 10
F F T
106§‘°R‘estart (Gradient) L ‘ 710_6§‘°I‘{estart (Velocit}f)‘ ‘ E 102
1070 10° 10° 10° 1070 10 10° 10°

Figure 4.: Contour plot of the number of iterations required to achieve convergence in
the (C, h)-plane, for the p = p = 8 PolyHTVI algorithm applied to Problem 1.
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Figure 5.: Contour plot of the number of iterations required to achieve convergence
with 6 = 107 in the (C, h)-plane, for 5 =7 = 1 ExpoSLC applied to Problem 2.

As was observed earlier in Figure 1, we can see from Figure 4 that momentum
restarting does not lead to significant improvements in computational efficiency for
Problem 1, but also does not penalize computational efficiency in that case. From
Figure 4, we see that this observation extends to robustness and stability. since all the
different versions of the algorithm share similar convergence regions given the same
parameter values and convergence criteria.
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All the observations made so far also extend to the other Bregman subfamilies of
dynamics and other algorithms, as can be seen, for instance, in Figure 5 for the ExpoSLC
algorithm, where momentum restarting leads to significant gains in computational
efficiency, robustness and stability. Table 1 provides additional data supporting the
significant gain in efficiency that can be achieved using momentum restarting.

Algorithm | Problem 1 No Restart | Function Scheme | Gradient Scheme | Velocity Scheme
PolyHTVI | Problem 1 | 10712 52 52 52 108
PolyHTVI | Problem 2 | 107 621 39 23 34
PolyHTVI | Problem 2 | 1078 15994 80 51 57
PolyHTVI | Problem 3 | 1078 4121 60 11 16
PolyHTVI | Problem 4 | 1078 14723 60 12 14
PolyHTVI | Problem 5 | 107° 3917 104 33 38
ExpoSLC | Problem 1 | 10712 75 68 64 155
ExpoSLC | Problem 2 | 107 3929 50 20 21
ExpoSLC | Problem 2 | 1078 204598 91 27 32
ExpoSLC | Problem 3 | 1078 17081 66 15 18
ExpoSLC | Problem 4 | 1078 58028 72 10 12
ExpoSLC | Problem 5 | 107 21440 54 27 41

Table 1.: Comparison of the fastest convergence achieved by the standard algorithms
and the restarting schemes on various problems with different tolerances § (displayed
in terms of number of iterations required to achieve the termination criteria).

Overall, all the numerical experiments conducted in this section unequivocally
support the use of momentum restarting in the algorithms for accelerated optimization,
and it can be seen from Figures 2, 3, 4, and 5 and Table 1 that the gradient based
restarting scheme consistently outperforms the other two restarting schemes in terms
of computational efficiency, robustness and stability. Unless stated otherwise, we will
now always use momentum restarting based on the gradient scheme in the remainder
of this paper, without explicitly stating it every time.

5.2. The Effect of the Parameter C

The parameter C' in the polynomial and exponential subfamilies of Bregman dynamics,
presented in Sections 3.2 and 3.3, can sometimes provide a simple way to control
the oscillatory behavior of the second-order differential equation. From the point of
view of perturbation theory, the polynomial and exponential Bregman Euler-Lagrange
equations (16) and (20),

PELi(0)+ O a() =0, andd(8)+nd+ CEEm T (a(0) =0, (46)

q(t) +
can be thought of as perturbations of the simpler differential equations,

1
p; a(t)=0,  and  @(t) +n0=0. (47)

au(t) +
The solutions to these two unperturbed equations are given by
u(t) = (k1t™" + ko) 1, and v(t) = (kse™ + kq) 1, (48)

for some constants ki, ko, ks, k4 depending on the initial conditions. They are non-
oscillatory, and converge monotonically to a constant vector at the respective
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rates of O(t™?) and O(e™). We can thus think of the terms Cn?e™v f(q(t)) and
Cn?e"v f(q(t)) as perturbations steering the dynamical system towards the minimizer
of the objective function f, in an oscillatory fashion. The parameter C', which appears
in front of these two perturbation terms, should therefore be chosen, in theory, to be
small enough to control the oscillations but also large enough to guide the dynamical
system towards the minimizer of the objective function. The situation is similar in the
ExpoToPoly and PolyToExpo subfamilies of Bregman dynamics.

This perturbation theoretic point of view and the numerical results which will be
presented in this section suggest that the parameter C' can play a very important
role reducing the effect of oscillations and improving the performance of optimization
algorithms. The benefits that tuning the parameter C' can provide have not been
sufficiently explored in the literature exploiting the variational framework for accelerated
optimization (in [16, 21, 32, 47, 84] for instance), and the resulting dynamical systems
were highly-oscillatory and thus required smaller time-steps for their discretizations.
As a consequence, the resulting optimization algorithms might not be as competitive
as they could have been. Note as well that the limiting continuous differential equation
for Nesterov’s Accelerated Gradient introduced in [77] can be thought of as the p = 2
polynomial Bregman dynamics with C' = 1/4, which results in the highly oscillatory
behavior observed in the continuous dynamics associated to most objective functions,
and in the numerous discretizations of these dynamics which can be found in the
literature. This observation also extends to the Riemannian manifold generalization
of this variational framework for accelerated optimization [31], where the constant C
might not have been optimally tuned in practice (in [28-31, 52, 78] for instance).

As a first example, Figures 6 and 7 display the changes in the polynomial and
exponential Bregman dynamics for Problem 1 as the parameter C' is decreased. The
oscillations are clearly neutralized in the continuous Bregman dynamics as C' decreases.
Although the convergence happens later in time for lower values of C| this is usually
not an issue since the neutralization of the oscillations allows for larger time-steps when
discretizing, as can be seen in Figure 8. This could also be seen in the ‘No Restart’
contour plots presented in Figures 2, 3, 4, and 5, where lower values of C' allowed for
larger time-steps h. Unfortunately, this behavior as C' is decreased does not seem to be
universal, as can be seen from Figure 9 for Problem 4.
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Figure 6.: Error as a function of time ¢ along the p = p = 6 polynomial Bregman
dynamics for Problem 1, with different values of the constant C.
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Figure 9.: Error vs. t along p = p = 6 polynomial Bregman dynamics for Problem 4.
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Further numerical experiments, presented in Supplementary Material 4, show that
the regions of optimal convergence are problem-dependent and as a result we cannot
find a single value of C' which will achieve almost-optimal performance on all problems.
However, in these numerical experiments, the convergence regions in the (C, h)-plane
were left almost unchanged as the dimension of the problem was increased. This
observation can improve significantly the process of tuning the optimization algorithm
for high-dimensional problems by first tuning the algorithm on a similar low-dimensional
problem, which could be particularly helpful for certain machine learning applications.

5.3. Other Approaches to Control Oscillations

There are other possible approaches to control the oscillations in second-order nonlinear
differential equations. One such method is Hessian-driven damping [6, 9-11], where
the idea is to add a damping term which involves the Hessian of the objective function,
B(t)V2f(x(t))i(t), to the differential equation of interest:

(1) +y(0)E(t) + BV ((1))E () +b()V f(2(1)) = 0. (49)

The addition of this Hessian-driven damping term appears to neutralize the oscillations
in the continuous solution to the differential equation. Furthermore, it was shown
using Lyapunov analysis that under suitable assumptions, solutions to the modified
equation not only satisfied a similar convergence rate to the minimizer as solutions to
the original equation, but also benefited from additional convergence properties for
the norm of the gradient Vf. First-order optimization algorithms were also derived
by discretizing the modified differential equation, after rewriting V2f(x(t))i(t) as
%V f(xz(t)). Unfortunately, we cannot derive a simple variational formulation for this
modified differential equation, so we cannot easily incorporate Hessian-driven damping
into our framework which relies on geometric numerical integration of Lagrangian or
Hamiltonian systems.

Another possible approach to control oscillations consists in simplifying the Bregman
dynamics using local approximations. For instance, one could integrate local lineariza-
tions of the Bregman Hamilton’s equations, or start from local quadratic Hamiltonian
approximations to the Bregman Hamiltonian, or use a local quadratic model for the
objective function. We will not consider these methods here because they can suffer
from additional numerical stability issues coming from the approximations at play, and
it can be very challenging to design a symplectic integrator which preserves the nice
properties of the dynamics across all the different local approximations.

A different approach consists in designing a symplectic integrator which can travel
faster along the oscillations via larger time-steps. This may be achievable using Spectral
or Galerkin variational integrators [44, 55, 56, 60], which rely on a choice of basis
functions that span a good approximation space for the Bregman dynamics (for instance,
simulations of the polynomial Bregman dynamics suggest that the error usually follows
a trajectory which can be well-approximated using functions of the form ¢~ cos (at”)
or t77 sin (atf8 ), where ~ is the decay rate, a tunes the frequency of oscillations, and
B € (0,1) characterizes the slowing down of the oscillation frequency). Due to the
oscillatory nature of the dynamical system, it might also be advantageous to use
Filon-type [37] or Levin-type [57, 58] quadrature rules in the construction of the
integrators, since they are designed specifically for highly oscillatory integrals (see [24]
for a thorough presentation).
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Another possibility involves averaging techniques [34, 73, 74, 83]. The extended
Bregman Hamiltonians or Lagrangians can be split as

H(q,7)=H"q,7)+CHP(q), or L(3.¢d)=L"qq)+CLP@), (50)

where the A-component is dominating and can be solved exactly (or efficiently ap-
proximated with high accuracy), and the B-component generates small perturbations
affecting the overall dynamics. One can then hope to integrate the dominating dynam-
ics very accurately with larger time-steps and incorporate the influence of the small
perturbations by averaging them out. Unfortunately, although this approach seemed
to neutralize the oscillations in the solution in practice, it did not allow the use of
larger time-steps, and the resulting algorithm was actually less competitive and robust
because of the implicit nature of the update for the momentum r.

6. Choosing and Tuning a Geometric Integrator

6.1. Time-Adaptivity in the Momentum Restarted Algorithms

In [28-32], numerical experiments with the polynomial Bregman dynamics suggested
that time-adaptivity could result in significantly faster optimization algorithms. These
experiments were however carried with the standard versions of the algorithms. Al-
though the use of time-adaptivity allows for a larger family of algorithms from which
one might be able to extract a more efficient algorithm than without time-adaptivity,
numerical experiments presented in Supplementary Material 5 suggest that with mo-
mentum restarting, the benefits time-adaptivity may provide are very limited and are
not worth the computational effort of tuning one additional parameter. For this reason,
we will now discard time-adaptivity, and focus on the non-adaptive approaches. In
particular, this allows to discard the ExpoToPoly and PolyToExpo Bregman subfamilies
and to focus on the p = p polynomial and 1 = 7 exponential Bregman subfamilies.

6.2. Comparison of Integrators

Numerical experiments presented in Supplementary Material 7 showed that all the
geometric integrators perform with very small discrepancies. However, if we had to
choose an integrator for the Bregman dynamics, the SLC algorithms with momentum
restarting seem to be the slightly better choices. These algorithms will be referred to
as PolySLC-R and ExpoSLC-R and are given explicitly in Supplementary Material 7.

6.3. Tuning the Algorithms

In an effort to reduce the number of parameters needing tuning in practice, we
investigated how the algorithms perform as the parameters C,h,p,n are varied in
Supplementary Material 8. We saw that tuning the values of p or n carefully might not
be very helpful and necessary in practice, so we can set and fix their value to p = 6
and 1 = 0.01. Further experiments showed that there is no universally optimal value of
C or h. However, (C,h) =(0.1,0.01) in the polynomial case and (C,h) = (1,4) in the
exponential case seem to work well for most problems considered and can be used as
default values. In conclusion, one would typically only have to try a few logarithmically-
spaced values of C in [107°,10°] and then adjust A for optimal convergence.
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7. Temporal Looping to Improve Numerical Stability

There is an important caveat to the promising performance observed for the optimization
algorithms constructed in this paper. The evolution of the variables ¢, q and r associated
with the exponential Poincaré Hamiltonian,

H"(q,7) = 2:1(7", )+ CneQ"qf(q) +t, (51)

is guided by Hamilton’s equations,
g=ne M, i=-Cne®Vf(g),  q=1. (52)

From these equations of motion, we can see that the time variable q grows linearly
without bound, and as a result quantities like "9 grow exponentially without bound.
More precisely, looking at the updates of the ExpoSLC algorithm,

rer-Cnhe®Vf(g), qedq+h,  geq+Ag=qrphe ™ (53)
we have at every iteration that the new update is given by

(AQ)new e A(AQ)preUious + Benqvf(Q)v (54)

for some constants A and B.

If we could perform all the operations exactly, the gradient V f would converge
to 0 with arbitrary precision and neutralize the unbounded growth of €7, and the
quantity Be"V f(q) would remain very small. However, in practice, we can only perform
operations with finite precision in floating-point arithmetic. As a result, V f only decays
to 0 up to machine precision while e’ grows without bound. Eventually, Be"V f(q)
becomes large again and the position variable ¢ moves away from the equilibrium it
found near its optimal value. Something analogous happens in the polynomial family
of Bregman dynamics, except that the unbounded growing exponential is replaced
by an unbounded growing polynomial. This numerical instability phenomenon is
illustrated in Figure 10 which displays the evolution of the error |f(zy) — f(«*)| when
the SLC algorithms are applied to Problem 2. We see that both algorithms first achieve
convergence to machine precision, stay at the minimizer for a few hundred iterations,
and finally are expelled away from the minimizer due to numerical instability.

In all our numerical experiments so far, the algorithms stopped when they reached a
desired convergence criterion, so we did not observe this numerical instability issue
as it happens only after convergence is achieved. However, in practice, optimization
algorithms are often terminated after a specified number of iterations instead of a
specified convergence criterion. Thus, we need a strategy to avoid this numerical
instability phenomenon. Since the numerical instability results from the limitation
imposed by machine precision on accurately representing the decay to 0 of V f(g) while
the term e grows without bound, it is natural to try to restrict the growth of the
term e, by restricting the growth of q (and similarly in the polynomial case).

One possibility is to reset time whenever a certain numerical instability criterion is
met, via q < (q for some (€ (0,1). A larger (3 is preferable to keep enough momentum
in case convergence to the minimizer was only suboptimal when the numerical instability
criterion was met, or if the algorithm is used in an online fashion or with a stochastic or

22



! : : : : .
108{—PolySLC-R 7
ExpoSLC-R

o

Error

6] ]
10 ! ‘ ‘ ‘ ‘ ! ! ‘ ! ‘
50 400

100 200
Number of Gradient Evaluations

Figure 10.: The PolySLC-R and ExpoSLC-R algorithms applied to Problem 2.

mini-batch approach. It is also preferable to avoid values of 5 very close to 1, since the
algorithm would then always remain close to numerical instability, and could possibly
become unstable if the criterion is not chosen very carefully. In practice, taking g
between 0.6 and 0.95 works well, by ensuring that a reasonable amount of momentum
is kept while avoiding the numerical instability region. Alternatively, one could reset
time via q < q — vh for some v > 1. A smaller v is preferable to retain momentum,
while v should not be too close to 1 to avoid numerical instability. In practice, we
will reset time via q < max(e, 3q) or q <« max(e,q — vh), where € is a small positive
number, to avoid very small or negative values of time . This phenomenon where the
time variable q is stuck in a loop by resetting q < 8q or q < q— vh whenever numerical
instability is near will be referred to as Temporal Looping.
Improving the ExpoSLC-R, algorithm via temporal looping yields Algorithm 1:

Algorithm 1: ExpoSLC-RTL: Symmetric Leapfrog Composition for the
Exponential Bregman dynamics, with Restarting and Temporal Looping

Input: An objective function f:R? — R. An initial guess ¢ € R%.
Parameters C,h,p >0, f€(0,1) or v > 1.

1 e<000l, q<1, G<Vf(g), r<-iCnhe’MG
2 while convergence criteria are not met do

3 Aq < nhe (a+5)

4 q< q+Aq

5 | G<Vf(qg)

6 if GTAq >0 then restart momentum: r < 0

7 if numerical instability criterion is met then q < max(e, 3q) or
q < max(e,q — vh)

8 q<q+ h

9 r < r—Cnhe?G

In our numerical experiments with ExpoSLC-RTL, we use the instability criterion
Ch* e |G > ™| Aql, (55)

to reset time. This criterion roughly ensures that |Ble™ |V f(q)| < |A|[(Aq)previous| n
equation (54), so that (Ag)new is not significantly larger in norm than (Agq)previous-
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Improving the PolySLC-R algorithm via temporal looping yields Algorithm 2:

Algorithm 2: PolySLC-RTL: Symmetric Leapfrog Composition for the
Polynomial Bregman dynamics, with Restarting and Temporal Looping

Input: An objective function f:R? - R. An initial guess ¢ € R%.
Parameters C,h,p >0, f€(0,1) or v > 1.

€< 0001, q<1, G<Vf(g), r<-1Chpe*'G

while convergence criteria are not met do

Aq < hp (q + %)7;;71 r

q<q+Aq

G < Vf(q)

if GTAq > 0 then restart momentum: r < 0

if numerical instability criterion is met then q < max(e, 3q) or
q < max(e,q — vh)

qeq+h

r<r—Chpg? G

N =

N O A W

03]

In our numerical experiments, we have chosen the numerical instability criterion
Ch*p*(a+h)"" |G| > a Agl, (56)

which roughly ensures that the new position update is not significantly larger than the
previous one.

Figure 11 shows that temporal looping takes care of the numerical instability issue
experienced earlier in Figure 10 for Problem 2:
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Figure 11.: The effect of temporal looping in PolySLC-R and ExpoSLC-R.
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It can be seen from Figures 12 and 13 that temporal looping, with the q < max(e, 5q)
scheme or q < max(e, q—vh) scheme, does not negatively affect the performance of the
algorithms, although the algorithms with temporal looping might sometimes require a
larger number of iterations to achieve convergence for a fixed (C, h)-pair. Indeed the
regions of fast convergence might be shifted slightly, but remained at least as large if
not larger when using temporal looping.
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Figure 12.: Contour plot of the number of iterations required to achieve convergence
(6 =1078) in the (C, h)-plane, for the ExpoSLC-R and ExpoSLC-RTL algorithms, when
applied with 1 = 0.01 to Problems 1 and 2.
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Figure 13.: Contour plot of the number of iterations required to achieve convergence
(6 =1078) in the (C,h)-plane, for the PolySLC-R and PolySLC-RTL algorithms, when
applied with p = 10 to Problems 3 and 4.

Overall, we have seen that temporal looping can be very helpful to deal with post-
convergence numerical instability, and that it does not affect negatively the initial
performance of the algorithm. Note that temporal looping could be improved by tuning
the parameters 8 or v, or by designing a better suited numerical instability criterion.
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8. Testing for Machine Learning Applications

We now test our algorithms on more challenging optimization problems for machine
learning with a variety of model architectures, loss functions, and applications. For most
of the problems considered in this section, the gradients are evaluated in a mini-batch
fashion. For reference, we will also solve these optimization problems using gradient
descent and the most commonly used optimizer in machine learning, Adam [48]:

ADAM

Mps1 = Brmyg + (1= B1)V f(2)
Ve1 = Povg + (1= B2)V f(x) © V f(ar)

[0 Y (VTR TS | R

Here, © ® v denotes elementwise multiplication, and the update for x,; is performed
elementwise. The variable € present in the updates of the Adam algorithm is there to
avoid numerical instability associated with division by 0 (with default value e = 1078
in [48] and PyTorch). The three parameters of Adam are (1, 82 used for computing
running averages of gradients, and the learning rate h (with default values 8; = 0.9,
B2 =0.999, h =0.001 in [48], PyTorch and TensorFlow).

The ExpoSLC-RTL and PolySLC-RTL algorithms have been implemented under the
more evocative names eBrAVO and pBrAVO (Bregman Accelerated Variational
Optimizer) in Python so that they can be used within the TensorFlow and PyTorch
frameworks. These algorithms are available at github.com/vduruiss/AccOpt_via_GNI,
and can be called in a similar way as the Adam algorithm in TensorFlow and PyTorch:

optimizer

optimizer

tf.keras.optimizers.Adam(learning_rate = 0.001)
BrAVO_tf.eBravo(learning_rate = 1)

torch.optim.Adam(model.parameters(), 1lr = 0.01)
BrAVO_torch.eBravo (model.parameters (), 1lr = 1)

The purpose of this section is not to do a very careful computational comparison
of the BrAVO algorithms with commonly used optimization algorithms in machine
learning but rather to show that the BrAVO algorithms can be used conveniently
within the PyTorch and TensorFlow frameworks for numerous concrete machine learning
applications, and that they might be worth considering and improving in the future. A
very careful computational comparison of optimization algorithms for machine learning
is a much more ambitious goal which is beyond the scope of this paper, and would
be more meaningful once the implementation of the BrAVO algorithms within the
PyTorch and TensorFlow frameworks has been highly-optimized.

We have first tested the performance of our algorithms with automatic differentiation
on instances of the Binary Classification Problem 6 and the Fermat—Weber Location
Problem 7. Figure 14 shows the evolution of the loss function (39) when formulating a
model separating blue and red regions of 2-dimensional space using a line based on the
displayed 500 randomly generated points. Figure 15 shows the evolution of the loss
function (40) when solving the Fermat—Weber Location Problem 7 with 5000 randomly
generated vectors in R'%%” and 5000 randomly generated corresponding scalar weights.
We can see from Figures 14 and 15 that our algorithms solve the binary classifica-
tion and location problems with an accuracy and efficiency comparable to those of
the Adam and standard gradient descent (SGD) algorithms implemented in TensorFlow.

optimizer
optimizer
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Figure 14.: Comparison of algorithms applied to a Binary Classification Problem 6.
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Figure 15.: Comparison of algorithms applied to a Location Problem 7.

Next, we tested our algorithm on the popular multi-label image classification
problem based on the Fashion-MNIST dataset [85]: ‘Fashion—-MNIST is a dataset of
Zalando’s article images consisting of a training set of 60,000 examples and a test set
of 10,000 examples. Each example is a 28x28 grayscale image, associated with a label
from 10 classes (t-shirt/top, trouser, pullover, dress, coat, sandal, shirt, sneaker, bag,
ankle boot)’. We use nn.CrossEntropyLoss() as the loss function, and the following
neural network architecture in PyTorch as our classification model:

Layer (type) Output Shape Parameters
dense (Dense) [-1, 784] 0

dense_1 (Dense) [-1, 64] 50,240
dense_2 (Dense) [-1, 64] 0

dense_3 (Dense) [-1, 64] 4,160

Total Number of Parameters: 55,050

Figure 16 shows that the BrAVO algorithms achieve comparable accuracy
and efficiency on the Fashion—-MNIST classification problem as the Adam and
gradient descent (SGD) algorithms. Note that the momentum restarting scheme
and the temporal looping strategy are essential to the good behavior of the
algorithms. Indeed, we can see from Figure 17 that without them, the algorithms
eventually lose convergence due to numerical instability. Note as well that these strate-
gies can also allow for larger time-steps which usually translates into faster convergence.
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Figure 16.: Evolution of the loss function and accuracy (in %) of Adam, standard
gradient descent (SGD) and the BrAVO algorithms, when applied to the Fashion—
MNIST multi-label classification problem.
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Figure 17.: Convergence and loss of convergence for the BrAVO algorithms without
momentum restarting and temporal looping, when applied to the Fashion-MNIST
multi-label classification problem.

We then tested our algorithm on another popular multi-label image classification
problem based on the CIFAR-10 dataset [49]: ‘the CIFAR-10 dataset consists of 60000
32x 32 color images in 10 mutually exclusive classes (airplane, automobile, bird, cat,
deer, dog, frog, horse, ship, truck), with 6000 images per class’. The results are displayed
in Figure 18.

We used nn.CrossEntropyLoss() as the loss function to minimize and a small
Convolutional Neural Network in PyTorch very similar to the LeNet-5 architecture
first described in [51]:

Layer (type) Output Shape Parameters
Conv2d -1 [-1, 6, 28, 28] 456
Conv2d -2 [-1, 16, 10, 10] 2,416
Linear -3 [-1, 120] 48,120
Linear -4 [-1, 84] 10,164
Linear -5 [-1, 10] 850

Total Number of Parameters: 62,006

28



22 50

g

o
S
]

=
@

Test Accuracy
w
8

Train Loss

g
o

20
14

12

0 20 40 60 80 100 0 20 40 60 80 100

Figure 18.: Evolution over 20 epochs of the loss function and accuracy of various
algorithms when applied to the CIFAR-10 multi-label image classification problem.

Let us now consider the Natural Language Processing problem of constructing
a multi-label text classifier which can provide suggestions for the most appropriate
subject areas for arXiv papers based on their abstracts. The code and architecture used
are based on the Keras tutorial [68]. An arXiv paper can belong to multiple categories,
so the prediction task can be divided into a series of multiple binary classification
problems, and we can use the Binary Cross Entropy loss. We will use the following
neural network architecture:

model = keras.Sequential ()

model.add(layers.Dense (units=256, activation=’relu’))

model.add(layers.Dense (units=256, activation=’relu’))

model.add(layers.Dense (units=lookup.vocabulary_size (), activation=’sigmoid’))

The evolution of the loss on the training and validation datasets is displayed in
Figure 19. Although the Adam optimizer achieves the smallest loss on the training
dataset, the resulting optimized model does not outperform the models generated by
the other optimizers on the validation dataset. Its validation loss actually worsens as
the epoch number increases (unlike for the other algorithms) which indicates that the
optimized model might be suffering from overfitting.

\¥ 6x1072

4x1072

101

10-2

3x1072

Training Loss
Validation Loss

10734

2x1072

2;5 5:0 7i5 ld.O 12‘.5 15‘.0 17'A5 ZO‘AO 2?5 5?0 7?5 10‘.0 lé.S 15’.0 17‘.5 ZOVAO
epochs epochs

Figure 19.: Evolution of the Binary Cross Entropy loss function on training and

validation datasets for several algorithms, when applied to the Natural Language

Processing problem of multi-label text classification of arXiv papers.

Next, we consider timeseries forecasting for weather prediction, based on the Keras

tutorial [12]. We use the Mean Squared Error (MSE) as the loss function and the
following Long Short-Term Memory (LSTM) model (with 5,153 parameters):
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inputs =

lstm_out = layers.LSTM(32) (inputs)
outputs = layers.Dense (1) (lstm_out)
model = keras.Model (inputs=inputs,

layers.Input (shape=(inputs.shape[1],

inputs.shape [2]))

outputs=outputs)

The evolution of the mean squared error on the training and validation sets is
displayed in Figure 20. We can see that the four different algorithms generate similar
losses on the training and validation datasets.
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Figure 20.: MSE evolution on training and validation datasets for several algorithms,
when used to optimize a LSTM model for timeseries forecasting for weather prediction.

Then, we solved a data fitting problem: given 500 data points from a noisy version
of the function 10z|cos2x|+ 10exp (—sinx) on the interval [-2,2], we wish to obtain a
model which fits these data points as well as possible. We used the following neural
network architecture (with 4,355 parameters) and loss function in TensorFlow:

model

model.
model.
model.
model.

keras.Sequential ()

add (layers.Dense (units 1, activation = ’linear’, input_shape=[1]))
add (layers.Dense (units = 64, activation = ’relu’))
add (layers.Dense(units = 64, activation = ’relu’))

add (layers.Dense (units 1,

activation

>linear’))

The results are displayed in Figures 21 and 22. We see that all the algorithms achieve
very small mean squared error, and all generate models, plotted as blue curves in
Figure 22, which fit the green data points very well.
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Figure 21.: Evolution of the mean squared error for various algorithms, when applied
to the problem of fitting a model to a set of 500 data points.
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Finally, we test our algorithms for dynamics learning and control on the rotation
group SO(3). We consider the same problem as in [27, 33], where we wish to learn
the dynamics of a fully-actuated pendulum with dynamics given by ¢ = —=15sin ¢ + 3u,
where ¢ is the angle of the pendulum with respect to its vertically downward position
and u is a scalar control input. The data is collected from an OpenAl Gym environment,
provided by [91]. We can see from Figure 23 that Adam and the BrAVO algorithms can
achieve good training and test losses on this system identification problem using the
Hamiltonian-based neural ODE network from [27] (with 231,310 parameters), inspired
by [40, 91]. Note that we were unable to tune SGD to obtain a similar performance.
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Figure 23.: Evolution of the training and test losses for various algorithms, when
learning the 231,310 parameters of a neural ODE network for dynamics learning.

Overall, we have demonstrated here that the BrAVO algorithms can be used conve-
niently within the PyTorch and TensorFlow frameworks, and that they can perform
very well on more challenging optimization problems arising in machine learning ap-
plications, with a variety of model architectures, loss functions, and applications. We
would like to reiterate that this was the main purpose of this section, and that it is
not our intention to make a very careful computational comparison of the BrAVO
algorithms with other optimization algorithms that are commonly used by the machine
learning community.
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A very careful computational comparison of optimization algorithms for machine
learning is a much more ambitious goal which is beyond the scope of this paper. Such
a comparison would be more meaningful once the current rudimentary implementation
of the BrAVO algorithms within the PyTorch and TensorFlow frameworks has been
highly-optimized, to take advantage of hardware architectures and highly-optimized
PyTorch/TensorFlow operations. Aside from the quality of the implementation, other
practical aspects of the algorithm could be investigated and improved further before
carrying a careful comparison, for instance by looking into ways to boost the performance
of the temporal looping technique or of the momentum restarting scheme.

An important advantage of our methods is that they are derived by discretizing
continuous-time dynamical systems. We might be able to derive theoretical results
about the algorithm by considering the associated continuous-time dynamical system
and the discretization used. Furthermore, by considering the associated continuous-time
dynamical system, we may be able to leverage numerous results from the theory of
differential equations, dynamical systems, and geometric numerical integration. As a
first example, in Section 5.2, we exploited perturbation theory for continuous-time
dynamical systems to gain insight into the effect of the parameter C' on the performance
of the algorithms, which enabled us to improve tuning. As a second example, numerous
ideas from the continuous-time theory of dynamical systems have been exploited in [6, 9—
11] and in particular the notions of dissipation, of visous and Hessian-driven damping,
and of inertia, in second-order differential equations. As a last example, the notion
of momentum itself is better understood as a physical property of a continuous-time
dynamical system, and we can also gain a lot of insight into the mechanism allowing
the accelerated convergence towards the minimizer by considering these dynamical
systems. There might be many other ways in which the performance of our algorithms
can be improved by leveraging the associated continuous-time dynamical system.

Conclusion and Future Directions

In this paper, we have discussed practical considerations which can significantly boost
the computational performance and ease the tuning of symplectic accelerated opti-
mization algorithms that are constructed by integrating Lagrangian and Hamiltonian
systems coming from the variational framework for optimization introduced in [84].

We showed that momentum restarting schemes can lead to a significant gain in com-
putational efficiency and robustness by reducing the undesirable effect of oscillations,
and that a temporal looping strategy helps to avoid instability issues caused by numer-
ical precision, and does not impair the computational performance of the algorithms in
general. We also observed that time-adaptivity and the choice of symplectic integrator
hardly make a difference once a momentum restarting scheme is incorporated in the
optimization algorithms. This observation, along with other numerical experiments
designed to study the effects of the different parameters, has provided insights that
allowed to inform and ease the tuning process by simplifying the algorithms and by
reducing the number of parameters to tune.

Overall, we have designed symplectic accelerated optimization algorithms whose
computational efficiency and stability have been improved using temporal looping
and momentum restarting, and which are now more user-friendly. We tested these
algorithms on machine learning optimization problems with numerous different model
architectures, loss functions, and applications, and saw that they can achieve very good
results when tuned properly.
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Preliminary experiments suggest that the benefits of momentum restarting and tem-
poral looping uncovered in this paper extend to the Riemannian manifold framework for
accelerated optimization introduced in [31]. We intend to explore that direction to im-
prove the computational efficiency and stability of symplectic accelerated optimization
algorithms on Riemannian manifolds.

It would be nice to have further theoretical guarantees about the convergence
of the discrete algorithm. However, this could be very difficult to obtain because
momentum methods lack contraction, are nondescending, and are highly oscillatory [67].
While it is hoped that the continuous analysis will eventually guide the convergence
analysis of the discrete-time algorithms, this does not appear to be a straightforward
exercise, as one would first need to reconcile the arbitrarily fast rates of convergence
of the continuous-time trajectories with Nesterov’s barrier theorem of ©(1/k?) for
discrete-time algorithms. We note however that some theoretical guarantees for certain
integrators applied to the polynomial subfamily were obtained in the case where p > 2
in [90], although this was already a very complicated task achieved under additional
assumptions on the objective function and its derivatives. In the future, we intend to
try to build upon the results of [90] to derive more general theoretical guarantees for
our discrete algorithms, and see how momentum restarting and temporal looping affect
those guarantees.

The temporal looping technique could also be improved by designing different
numerical instability criteria. Instead of temporal looping strategies, one could also try
to implement very popular techniques in machine learning such as decaying learning
rates via a learning rate scheduler, or to progressively increase the batch size [76], or a
combination of these different approaches.

The current implementation of the algorithms within the PyTorch and TensorFlow
frameworks is rather rudimentary, and can certainly be improved to reduce compu-
tational time by taking advantage of hardware architectures and highly-optimized
PyTorch/TensorFlow operations. With the same objective in mind, one could also
replace the gradient scheme for momentum restarting by the function scheme if the
latter can be implemented more efficiently.

Once the algorithms have been improved further, possibly leveraging the theory of
continuous-time dynamical systems, and once the implementation of the algorithms
has been highly-optimized, it would be very interesting to perform a very careful
computational comparison with other popular algorithms on many different types of
problems to see whether the BrAVO algorithms can outperform the state-of-the-art
algorithms on certain classes of machine learning problems.
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