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Abstract—Problems involving controlling the collective behav-

ior of a population of structurally similar dynamical systems, the

so-called ensemble control, arise in diverse emerging applications

and pose a grand challenge in systems science and control

engineering. Owing to the severely under-actuated nature and the

difficulty of placing large-scale sensor networks, ensemble sys-

tems are limited to be actuated and monitored at the population-

level. Moreover, mathematical models describing the dynamics

of ensemble systems are often elusive. Therefore, it is essential

to design broadcast controls that excite the entire population in

such a way that the heterogeneity in system dynamics are robustly

compensated. In this paper, we propose a reinforcement learning-

based data-driven control framework incorporating population-

level aggregated measurement data to learn a global control

signal for steering a dynamic population in the desired manner. In

particular, we introduce the notion of ensemble moments induced

by aggregated measurements and derive the associated moment

system to the original ensemble system. Then, using the moment

system, we learn an approximation of optimal value functions

and the associated policies in terms of ensemble moments

through reinforcement learning. We illustrate the feasibility and

scalability of the proposed moment-based approach via numerical

experiments using a population of linear, bilinear, and nonlinear

dynamic ensemble systems.

I. INTRODUCTION

Large populations of dynamical systems are ubiquitous in
many emerging applications across diverse scientific domains,
including quantum control systems, neural networks, robotics,
and cellular systems [1]–[6]. For instance, electromagnetic
pulses are used to excite quantum ensembles in nuclear
magnetic resonance spectroscopy and imaging [1], [3], a pop-
ulation of circadian cells are manipulated by the varying light
intensities throughout the day to trigger biological clocks [2],
and a population of neurons is actuated using neurostimulation
to induce desired spiking activity in neuronal networks [5].

The task of precisely steering such populations of dynamical
systems or the ensemble control problem has received great
attention in the past two decades [1], [7]–[11]. In particu-
lar, investigations on the fundamental properties of ensemble
controllability [12]–[18] and observability [19], [20] have
been extensively reported in the literature. Furthermore, using
the theoretical tools developed for the analysis of ensemble
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controllability, computational methods for synthesizing open-
loop and optimal control signals to steer an ensemble system
have also been investigated [21]–[28]. Primarily, these control
synthesis methods rely on the availability of an accurate model
describing the ensemble system dynamics, and focus only on
a class of linear and bilinear ensembles.

Traditionally, adaptive and learning-based feedback control
approaches have been employed to synthesize controls in the
presence of model uncertainties by leveraging measurement
data [29]–[31]. However, in many practical applications, the
feedback information accessible from ensemble systems is
spatio-temporally sparse either due to the lack of sophisticated
sensing mechanism (e.g., neural systems) or it is infeasible to
directly monitor these systems to begin with (e.g., quantum
systems). In fact, in many emerging applications such as neu-
ronal networks [32], robot swarms [33], and cellular oscillators
[26], the ensemble systems are equipped with the infrastructure
to only provide population-level aggregated measurements. In
other words, all the subsystems in the population cannot be
individually measured, and only an aggregation of measure-
ments at the population level is available at each sampling
instant. The existing ensemble control methods fail to exploit
this information, although incomplete, to close the feedback-
loops in an ensemble control systems to synthesize data-driven
closed-loop policies.

To fill this gap, in this paper, we develop a data-driven
moment-based control technique that adopts the reinforcement
learning (RL) framework for synthesizing feedback control
policies. In our approach, we employ the population-level
feedback to compute moment sequences and utilize them to
define the rewards and objectives for the RL algorithm. We
demonstrate that the proposed strategy not only facilitates
a feasible learning framework for synthesizing controls for
ensemble systems but also is scalable (in terms of number of
systems in the ensemble), making it data-efficient. Specifically,
we demonstrate the efficacy of this approach using three case
studies involving an ensemble system with (1) linear; (2)
bilinear; and (3) input-affine nonlinear dynamic units.

The major contributions of this work include the (a) sys-
tematic RL formulation to study ensemble control problems;
(b) design of data-driven moment-based RL algorithm to
synthesize ensemble control policies; and (c) comprehensive
analysis to verify the efficacy and scalability of the proposed
RL strategy. To the best of our knowledge, in this work, we
establish the first RL-based ensemble control design algorithm
using aggregated measurement data and close the feedback
loops of ensemble control systems.

The remainder of this paper is organized as follows. In
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Section II, we briefly review some related works in RL,
formally introduce ensemble control systems, and present the
ensemble control problem using aggregated measurements.
In Section III, we define the notion of ensemble moments,
moment systems, and the optimal control problem in terms of
the moment system. In Section IV, we present our learning
strategy to design feedback control using the moment system.
Furthermore, we report the results of applying the proposed
method to three cases of numerical experiments in Section V.
In Section VI, we present detailed discussions on performance
considerations, such as scalability and data-sparsity.

II. BACKGROUND AND PROBLEM FORMULATION

A. Ensemble systems and control

An ensemble system is a parameterized family of dynamical
systems, where the differences in the dynamics of individual
units in the ensemble are captured by a dispersion parameter.
Formally, the dynamics of an inhomogeneous ensemble is
given by

d

dt
x(t,�) = F (�, x(t,�), u(t)), x(t0,�) = x0(�), (1)

where F is the nonlinear dynamics of the ensemble, and
� 2 K ⇢ Rd is the dispersion parameter characterizing the
variations in the subsystems within the ensemble. Typically,
K is assumed to be a compact set [1], and hence the state-
space of the ensemble system in (1) is a space of Rn-valued
functions defined on K, denoted by F(K). The state, or
profile, of the ensemble system at time t is denoted by x(t,�),
so x(t, ·) 2 F(K), and u(t) 2 Rl is independent of �, which
is broadcast to every individual system in the ensemble to steer
the entire population to a desired target state.

B. RL and optimal control for a single dynamical system

Here, we provide a brief background on RL and its role
in learning an optimal control policy for uncertain nonlinear
systems. In particular, a (single) dynamical system can be
represented as

ẋ(t) = f(x(t), u(t)), x(t0) 2 X, (2)

where X is the set of states associated with the system in (2).
We define U as the sets of feasible controls and M as the set
of all functions µ : X ! U that maps x(t) 2 X to u(t) 2 U,
where µ denotes the feedback control. We further define the set
of all admissible feedback policies as ⇧, wherein, a feedback
policy ⇡ 2 ⇧ is admissible if it stabilizes the system and
results in a finite cost (3) [34]. The control inputs are selected
based on policies that are designed to meet a desired objective.
To quantify the performance of the system, we define the
performance output associated with a policy µ as

Jµ(x) =

Z 1

t0

r(x(t), µ(x(t))), (3)

where J : X ! R is the infinite-horizon cost, and r is a utility
function (or the instantaneous cost). Thus, starting at an initial
condition x(t0) = x0, a system is governed by (2) through µ

for the time t = [t0,1), which results in the cost Jµ based
on the instantaneous reward r.

The optimal control problem associated with the infinite
horizon cost (3) and the dynamic constraint (2) pertains to
finding the admissible policy ⇡⇤ 2 ⇧ that yields the minimum
cost. In other words, the optimal value function V

⇤ is the cost
J⇡ over ⇡, which satisfies

V
⇤(x) = inf

⇡2⇧
J⇡(x) = J⇡⇤(x). (4)

To find V
⇤ and the associated optimal policy ⇡⇤, a Hamilto-

nian is defined that augments the performance measure and
the dynamic constraint, and then the stationary condition is
utilized to obtain a closed-form expression of the optimal
policy, which is a function of the optimal value function [34],
[35]. The optimal value function is then built by solving the
associated Hamilton-Jacobi-Bellman (HJB) equation, or the
integral Bellman equation, which is analogous to the Bell-
man equation but is written for the continuous-time dynamic
constraints (2). In this context, adaptive/approximate dynamic
programming techniques have been used to learn a solution
to the HJB equation [36]–[40]. However, RL approaches have
not been studied in the context of ensemble systems, and the
goal of this paper is to develop a formal RL framework for
ensemble systems, and analyze its feasibility in controlling
dynamic populations.

Next, we illustrate the application of an RL-based control
design procedure for a single dynamical system and highlight
the challenges associated with its application to an ensemble
system.

Example 1: A single Bloch system: To understand how
the RL-based control strategy is employed to design controls,
we start with the optimal control problem associated with a
single Bloch system. This system, which is a bilinear control
system evolving on the sphere S

2, is widely studied in quantum
control applications [16], and its governing equations are given
by

d

dt
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where x =
⇥
x1 x2 x3

⇤0 denotes the bulk magnetization of
a sample of nuclear spins, ! denotes the Larmor frequency
of the spins, and u1 and u2 are the radio-frequency (rf) fields
applied to steer the bulk magnetization to a desired state.

We start with a simple task of steering the Bloch system
states x from x0 = [0, 0, 1]0 to xF = [0, 0,�1]0 and consider
the system in the rotating frame with respect to !, i.e., ! = 0
[1]. In this preliminary example, the control set is defined as
U = (u1, u2) 2 {(1, 1), (1, 0), (0, 1), (0, 0)}. With this control
set, the value function profile corresponding to the Bloch
system is learned using the temporal-difference (TD) learning
scheme [41], and the learned value function is shown in Figure
1 (a). Specifically, the approximation of value function is done
through polynomials of states up to the second order. The
value function, which is a function of the state variables, can
then be used to decide the feedback controls that yield the
minimum cost while steering the state of the system between
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Fig. 1. Value function profile and approximation. (Left) Value corre-
sponds to each state travelled. Unexplored states are colored in light
blue. (Right) Approximated value plotted using function of states
generated by polynomials up to second order.

the initial and final points of interest. In this specific case, the
optimal control generated from the value function profile is
just (u1, u2) = (1, 0) for all time instances, which will steer
the system from x0 to xF .

C. RL problem formulation for an ensemble system
Motivated by the success of controlling the Bloch system,

we formally expand the application of RL to ensemble sys-
tems. Primarily, the difference between the traditional RL task
and the one considered in this paper is illustrated in Fig. 2.
In the classical RL, a single agent is sent out to explore and
learn a policy in a single environment, while our goal is to
use RL in multiple-environment scenarios, which embody an
ensemble of systems generating distinctive state trajectories
and rewards even under the identical control input.

We study a general class of input-affine ensemble systems
defined on a Hilbert space, governed by the dynamics

d

dt
x(t,�) = f(�, x(t,�)) +

lX

i=1

gi(�, x(t,�))ui(t), (6)

where x(t, ·) 2 L
1(K,Rn), the space of Rn-valued essen-

tially bounded measurable functions over K; the functions f

and gi, i = 1, . . . , l, are smooth nonlinear maps representing
the drift and the control vector fields, respectively, and K is
a compact set [11].

Contrary to the traditional control problem associated with a
single system or a finite collection of systems, in an ensemble,
only population-level aggregated measurements are available,
which poses the fundamental challenge for controlling ensem-
ble systems. Formally, we define an aggregated measurement
as follows.

Definition 1 (Aggregated measurement). For the system in
(6), we denote an aggregated measurement at time t as a set
Y (t), composed of 2-tuples, given by

Y (t) := {(�, x(t,�)) | � 2 Kt}, (7)

where Kt ⇢ K.

Note that the observation set Kt is dependent on time, and
it is a proper subset of K for each sampling time. This implies
that these measurements are available from only finitely many
systems and come from different set of systems at each

Agent

Environment

actionstate 
reward

Agent

Env1

actionstate 
reward

Env2

�

Fig. 2. Illustration of the traditional reinforcement learning task
involving a single RL agent navigating in an environment (left) and
task considered in this paper, where a single RL agent navigates in
a continuum of environments (right).

Fig. 3. Ensemble size v.s. parameters required to approximate.

sampling time. The definition of aggregated measurements,
thus, indicates both spatial as well as temporal sparisty in
feedback data. Consequently, we cannot adopt traditional
feedback strategies to learn ensemble control policies. The
primary obstacle in using RL in a multi-state set-up origi-
nates from the notorious “curse of dimensionality” issue; that
is, computational requirements grow exponentially with the
ensemble size [42], as illustrated in Fig 3. In the flowing
section, we will introduce a moment-based RL framework to
remove this obstacle. In particular, we will formally introduce
the moment system associated with a given ensemble system.
The moment system makes the synthesis of feedback controls
tractable and has significant advantages over using the original
ensemble system in both model-free and model-based aspects,
owing mainly to significantly less parameters to explore. The
“curse of dimensionality” issue can therefore be alleviated,
which will be addressed in detail in Sections III-B and IV.
Specifically, the rapid expansion of the parameter space causes
convergence issues and efficiency drops in learning algorithms,
which will be addressed in Section IV-C and Figure 5.

III. MOMENT-BASED ADAPTIVE ENSEMBLE CONTROL

In this section, we introduce a moment-based learning
framework to design rewards, objective functions, and feed-
back policies for a given ensemble control task.

A. Ensemble moments and their dynamics

We begin by defining the notion of ensemble moments asso-
ciated with an ensemble state. Specifically, we define a trans-
formation L that associates each point x(t, ·) 2 L

1(K,Rn)
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with a moment sequence m(t) = (m0(t),m1(t),m2(t), . . .)0,
where, we define the k-th moment associated with the state of
an ensemble system (1) as

mk(t) =

Z

K
�
k
x(t,�)d�

.
= L(x(t, ·)), (8)

for k = 0, 1, . . .. Since K is a compact set and x(t, ·) 2 L
1,

the moments m(t) 2 M are well-defined for t � 0, where M
is the space of moment vectors associated with x(t, ·) 2 L

1.

Remark 1. Note that though the definition of the ensemble
moments are given with respect to K ⇢ R, this can be easily
extended to higher dimensions (i.e., K ⇢ Rd for some d > 1),
and, in this case, k is a multi-index and �k = �

k1
1 �

k2
2 . . .�

kd
d ,

where k = (k1, . . . , kd)0 2 Nd with
Pd

i=1 ki = k.

With the introduction of the ensemble moment sequence
m(t) associated with the ensemble state x(t,�) at time t, an
important follow-up question pertains to the time-evolution of
the ensemble moments. Using the ensemble system defined in
(6) and the moments defined in (8), the dynamics of ensemble
moments can be derived as follows

ṁk(t) =
d

dt

Z

K
�
k
x(t,�)d� =

Z

K
�
k d

dt
x(t,�)d�

=

Z

K
�
k

"
f(x(t,�),�) +

lX

i=1

gi(x(t,�),�)ui(t)

#
d�

=

Z

K
�
k
f(x(t,�),�)d� +

lX

i=1

ui(t)

Z

K
gi(x(t,�),�)d�

The second equality is possible when x(t,�) and ẋ(t,�)
are both continuous in t and �. In fact, we may further
define f̄(m(t)) = L

�
f(x(t, ·), ·)

�
= L

�
f(L�1

m(t), ·)
�

and
ḡi(m(t)) = L

�
gi(x(t, ·), ·)

�
= L

�
gi(L�1

m(t), ·)
�
, where

L is defined as in (8), which we refer to as the moment
transformation. The moment dynamics can then be written
compactly as

d

dt
m(t) = f̄(m(t)) +

lX

i=1

ui(t)ḡi(m(t)), (9)

where f̄ = (f̄ 0
0, f̄

0
1, . . .)

0 and ḡi = (ḡ0i0, ḡ
0
i1, . . .)

0 for i =
1, . . . , l, which is also in a control-affine form. Here the
existence of an inverse map L�1 that takes each point in M
and assigns a unique point in L

1(K,Rn) can be guaranteed
by the results of Hausdorff moment problem [43], [44].

Note that the ensemble and its moment system as in (6) and
(9), respectively, are driven by the same control input ui. This
is illustrated in the following example.

Example 2: Ensemble Bloch System: Consider an ensem-
ble of Bloch systems [8], indexed by � = (!, ✏),

ẋ(t,�) = [!⌦z + ✏u1(t)⌦y + ✏u2(t)⌦x]x(t,�), (10)

where x(t,�) 2 S2 ⇢ R3, ✏ 2 [1� �, 1 + �] is the dispersion
parameter modeling rf-inhomogeneity, ! 2 [0, 1] is the Larmor
dispersion, (u1(t), u2(t)) are the external controls, and the
matrices

⌦x =
h
0 0 0
0 0 �1
0 1 0

i
, ⌦y =

h
0 0 1
0 0 0
�1 0 0

i
, and ⌦z =

h
0 �1 0
1 0 0
0 0 0

i
.

Using the definition of the ensemble moments in (8) with a
multi-index � = (!, ✏), we can write down the monomials
�
1 = (!, ✏)0 2 N1, �2 = (!2

,!✏, ✏
2)0 2 N2, �3 =

(!3
,!

2
✏,!✏

2
, ✏

3)0 2 N3, and so on. Then, the ensemble
moments of the first- and the second-order can be defined
as m1 = (m1,1,m1,2)0, and m2 = (m2,1,m2,2,m2,3)0

with m1,1 =
R
K !x(t,�)d�, m1,2 =

R
K ✏x(t,�)d� and

m2,1 =
R
K !

2
x(t,�)d�, m2,2 =

R
K !✏x(t,�)d�, m2,3 =R

K ✏
2
x(t,�)d�, respectively. Furthermore, we can derive the

dynamics of the ensemble moments using (9). For instance,
the first-order moment dynamics of the Bloch ensemble in (10)
can be computed as

ṁ1,1(t) =

Z

K

⇥
!
2⌦z + !✏(u1(t)⌦y + u2(t)⌦x)

⇤
x(t,�)d�

= ⌦zm2,1 + (u1(t)⌦y + u2(t)⌦x)m2,2

ṁ1,2(t) =

Z

K

⇥
!✏⌦z + ✏

2(u1(t)⌦y + u2(t)⌦x)
⇤
x(t,�)d�

= ⌦zm2,2 + (u1(t)⌦y + u2(t)⌦x)m2,3. (11)

Now, we formally define the space of moment sequences
in order to properly introduce the objective function and
performance measure for the proposed RL-based control of
infinite-dimensional the moment system.

Lemma 1. There is a one-to-one correspondence between
functions in L

1([a, b],Rn) and functions in L
1([0, 1],Rn).

Proof. This can be easily shown through a linear transforma-
tion � = a+ �̃(b� a), which maps �̃ 2 [0, 1] bijectively onto
� 2 [a, b] and yields

mk(t) =

Z b

a
�
k
x(t,�)d�

=

Z 1

0
(a+ �̃(b� a))kx(t, a+ �̃(b� a))d�̃.

(12)

The moment sequences mapped onto the interval [0, 1] are
referred to as the scaled moment sequence, denoted by m̃(t).

Theorem 1. Let the system defined on L
1([0, 1],Rn) and the

transformation defined by L : L1([0, 1],Rn) ! M as in (8).
Then any m̃(t) 2 M is a square summable sequence for all
t 2 R, i.e., m̃(t) 2 `

2.

Proof. For any time t and m̃(t) 2 M with m̃k(t) defined as
in (8) for k = 0, 1, . . ., by using Hölder’s inequality, we have

Z 1

0
�
k
x(�)d�  k�kkpkxkq,

where [p, q] 2 [1,1] and 1/p + 1/q = 1. Take p = 1 and
q = 1, we derive

m̃k(t) =

Z 1

0
�
k
x(t,�)d�  kxkL1 ·

Z 1

0
|�|kd� =

kxkL1

k + 1
.

Taking squares on both sides of the inequality and summing
up from k = 0 to 1 gives

1X

k=0

m̃
2
k(t)  (kxkL1)2 ·

1X

k=0

1

(k + 1)2
< 1,
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where kxkL1 < 1. As a result, given a compact set K and
an ensemble state x(t, ·) 2 L

1, the corresponding moment
sequence m̃ 2 M ✓ `

2.
For the ease of exposition, we use the original notation m(t)

to denote the scaled moment sequence in the rest of the paper.

B. Performance measure for controlling ensemble moments

The presented moment representation of ensemble systems
transforms an uncountably-infinite ensemble system in (6) to
a countably-infinite moment system in (9). We will exploit
this reduction and utilize the moment system to facilitate
the synthesis of RL-based control policies. We will further
demonstrate that, unlike traditional discretization techniques
presented in [23], this moment-based RL formulation for
optimal control of ensemble systems averts the issue of curse-
of-dimensionality [34].

To fix ideas, we consider the problem of steering an
ensemble system from an initial profile x0

.
= x(t0,�) to a final

profile xF . Then, the associated moment sequences to x0 and
xF are given by the moment transformation, i.e., m0 = L(x0)
and mF = L(xF ), respectively. To quantify the performance
of this task, we define the performance measure,

J =

Z 1

0
hm̂(t), m̂(t)i`2 + hu(t), u(t)iRl dt, (13)

involving the trade-off between the terminal error of steer-
ing and the control energy, where hm̂(t), m̂(t)i`2 and
hu(t), u(t)iRl are inner products on `

2 and Rl, respectively,
and m̂(t) = m(t) �mF . A general optimal control problem
of an ensemble system as in (6) can then be formulated as
optimizing, e.g., minimizing, J in (13) subject to the moment
dynamics presented in (9). Note that J is well-defined because
m(t) 2 M ⇢ `

2 according to Theorem 1. Such an optimal
control problem remains highly challenging as the moment
system is infinite-dimensional.

Remark 2. Instead of defining the performance measure in
terms of the ensemble moments, the direct approach is to define
the measure in terms of the error in the ensemble profiles (e.g.,
x(t,�) � xF ). Assuming perfect knowledge of the ensemble
system dynamics, an open-loop optimal control solution was
proposed in [23]. Specifically, this problem was made tractable
by discretizing the parameter space K to implement the
iterative procedure [23]. Hence, as the number of systems
sampled from K increases, the learning problem becomes
computationally intractable leading to the resurfacing of the
curse-of-dimensionality issue [34].

As solving an optimal control problem involving a clas-
sical nonlinear system as in (2) typically requires finding
a solution to the associated Hamilton-Jacobi-Bellman (HJB)
equation [34], which in general cannot be solved analytically.
In the next section, we will formally introduce a moment-
based RL learning algorithm to systematically and effectively
approximate and learn optimal control policies for ensemble
systems through their truncated moment systems.

IV. LEARNING STRATEGY FOR ENSEMBLE CONTROL

The development of a moment system associated with an
ensemble system as introduced in III-A motivates the ensuing
investigation of the ensemble control paradigm through mo-
ment dynamics. Controlling an ensemble system is difficult
in nature because precise aggregated measurements from a
large ensemble are often unavailable. Besides, RL generally
does not scale well with multiple environments. On the other
hand, while computing moments from data is possible, it
is computationally infeasible to evaluate infinite orders of
moments, which uniquely represent the original ensemble
states, at each sampling time. To mitigate this computational
intractability, we investigate if a finite-order (approximate)
moment system could be used for the design of feedback
regulators to fulfill a control task given. Specifically, in the
following, we approximate the ensemble states as well as the
performance measure in (13) using ensemble moments up to
order M and develop a learning algorithm using the truncated
moment sequences. We then show that while our algorithm
outputs a slight performance drop when the truncated mo-
ments are used to design control policies, it circumvents the
numerical inefficiency and infeasibility issues that occur when
learning a broadcast control policy for a large ensemble of
systems, as reported in [23].

A. Approximating objectives and rewards via truncation

The dynamics of the truncated moment system of order M
follow

ṁ(t) = f̄M (m(t)) +
lX

i=1

ui(t)ḡM,i(m(t))

= f̄M (m(t)) + ḡM (m(t))u(t),

(14)

where m = (m0
0,m

0
1, . . . ,m

0
M )0 denotes the truncated ensem-

ble moments of order M , and f̄M and ḡM are the correspond-
ing truncated drift and control vector fields. The performance
measure J with respect to the truncated moment sequence
and the utility function r are given by

J =

Z 1

0
r(m(t), u(t))dt, (15)

r(m, u) = (m�mF )
0
QM (m�mF ) + u

0
Ru, (16)

where QM � 0 is now a finite-dimensional positive definite
matrix, and mF denotes the truncated moment sequence of the
target state. We then have the Hamiltonion for the truncated
moment system following [34], [35] as

HM (m, u,� Vm) = �ṁ · V 0
m

�
�
(m�mF )

0
QM (m�mF ) + u

0
Ru
�
,

(17)

where Vm is the partial derivative of the value function with
respect to m of appropriate dimension. The HJB equation with
respect to the optimal value function V

⇤ yields an optimal
control sequence u

⇤, which satisfies the relation

0 = min
u2U

{r(m⇤
, u) + ṁ · V 0

m} (18)

= ṁ · V ⇤0
m +

�
(m⇤ �mF )

0
QM (m⇤ �mF ) + u

⇤0
Ru

⇤�
.
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Now, using the first-order necessary condition [45], we obtain
the desired relationship between the optimal control law and
the optimal value function as

u
⇤(t) = �1

2
R

�1
ḡM (m(t))0V ⇤

m(m(t)). (19)

Remark 3. Note that while the moment system (9) is infinite-
dimensional, we consider the performance measure (15) and
define the optimal value function in terms of the truncated
moment sequence, which is of finite dimension. Therefore, the
optimal value function learned as a solution of the equation
(18) will not yield an optimal policy for the moment system.
However, it will be demonstrated with numerical examples in
Section V that this learning strategy yields an approximately
optimal control solution for given ensemble control tasks.

Remark 4. The advantage of using the moment system instead
of the original ensemble system comes from the fact that
(i) sample moments can be efficiently computed using the
aggregated measurement data and (ii) m 2 `

2 guarantees a
quantifiable approximation of a truncated moment system to
the infinite moment system. The analysis on the truncation
of the moment sequences is presented in Section V-E. On
the other hand, although direct discretization of the ensemble
system by sampling the parameter in K to obtain a finite
collection of systems may be a natural approach, the opti-
mal strategy for controlling the sampled subsystems has no
guarantee to be optimal or even a feasible control policy for
the entire ensemble.

Next, we present the algorithm and implementation details
to learn the optimal policy in (19) by using the moment-based
RL approach.

B. Implementation: discretization and value approximation
We exploit the function approximation property of a pa-

rameterized network with linear readout, taking the form
N(z) = ✓

0
 (z), where N(z) is the network output, z is the

input data, ✓ is a vector of weights (parameters) and  (z) is a
vector of activation functions of appropriate dimensions. Our
goal is to approximate the value function V

⇤
m(m(t)) that forms

a solution to the HJB equation (18) with the parametrized
model such that V

⇤
m(m(t)) ⇡  (m(t))0✓⇤ for some ideal

weight vector ✓⇤.
To this end, we first introduce temporal discretization, which

defines an equidistant partition of the simulation time tF by

tk+1 � tk = tF /(N + 1), 0  k  N.

Here the time interval [0, tF ] is divided into N + 1 subin-
tervals [tk, tk+1], 0  k  N, 0 = t0 < t1 < t2 <

· · · < tN+1 = tF . During the process of simulation, a
set of state-cost training pairs is collected along the tra-
jectory, and ✓

(i) 2 Rs is chosen to minimize the error
between sample costs r(m(tk), u(m(tk))) and approximated
cost, i.e., V (i)(m(tk+1)) � V

(i)(m(tk)) ⇡ ( (m(tk+1))0 �
 (m(tk))0)✓(i), k = 0, . . . , N , in a least square sense. Al-
though the value function to be approximated is generally
non-convex, an advantage of such a linear parametric rep-
resentation is to offer a closed-form solution. By simulating

the system from t0 = 0 to tN+1 = tF and collecting
the instantaneous costs along the trajectory, we solve the
minimization problem defined as

✓
(i) = argmin

✓
k ✓ � rk, (20)

for each iteration i = 0, 1, . . ., where

r =

2

6664

r(m(t1), u(m(t1)))
r(m(t2), u(m(t2)))

...
r(m(tN+1), u(m(tN+1)))

3

7775
2 RN+1

,

 =

2

6664

 (m(t1))0 �  (m(t0))0

 (m(t2))0 �  (m(t1))0

...
 (m(tN+1))0 �  (m(tN ))0

3

7775
2 R(N+1)⇥s

.

In what follows, we detail our iterative learning approach
using a approximate dynamic programming algorithm for the
moment systems. The initial moment profile m0 remains un-
changed in each iteration, and the control trajectory generated
in the i

th iteration is defined by u
(i)(t). The proposed learning

algorithm is summarized as Algorithm 1 below.

Algorithm 1 Learning Algorithm for Moment Systems
Input: x(t0,�), x(tF ,�), E, T , M , K, ✓(0),  , "
Output: ✓

Initialization : Calculate m(t0), m(tF ), and V
(0)(m).

for i = 0 to E do

2: for t  T do

u
(i)(t) = � 1

2R
�1

ḡM (m(t))0V (i)
m ,

4: Simulate the system with control law u
(i)(·)

Generate the corresponding moment trajectory m and
the instantaneous running cost r(m, u) = (m �
mF )0QM (m�mF ) + u

0
Ru

6: if km�mFk < " then

break
8: end if

end for

10: Update ✓(i+1) through

✓
(i+1) = argmin

✓
k ✓ � rk,

end for

12: ✓ = ✓
(i+1)

return ✓

Remark 5. The update rule in the algorithm describes the
relationship that V

(i+1) is generated through the trajectory
of m using u

(i), and u
(i+1) is the control sequence that is

applied in the next iteration, which is based on the updated
value function V

(i+1).

We will update ✓ at the end of every episode through
the minimization scheme using least-squares regression as in
(20). A block diagram of the proposed learning algorithm for
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Aggregated measurements
Y(t) := {(�, x(t, �)) � � � K}

Ensemble System 
d
dt

x(t, �) = f(�, x(t, �)) +
l

∑
i=1

gi(�, x(t, �))ui(t)

The th moment k

mk(t) �
M�1
∑
i=1

�k
i x(t, �i) + �k

i+1x(t, �i+1)
2 ��i

��i = �i+1 � �i

Value iteration: 
V (i)(m) = �(i) � �(m)

Controller 

u(i)(t) = � 1
2 R�1ḡM(m(t))� V (i)

m

Fig. 4. Block diagram of the proposed algorithm. We evolve the ensemble system to generate aggregated measurement Y (t). From the
aggregated measurements, we approximate the first M order moments, where each of the kth order moment in equation (8) is approximated
using the trapezoid rule [46]. The rewards (approximated through  (m)) are collected along the trajectories to update ✓(i), which in turns
improves the estimate of the optimal control policy.

moment dynamics is depicted in Fig. 4. We pick the moment-
based value function in the ith iteration V

(i)(m) to be a
quadratic function given by

V
(i)(m) =

1

2
(m�mF )

0
S
(i)(m�mF ) =  (m)0✓(i),

where S
(i) is a constant-valued positive-definite matrix, which

has only s = M(M + 1)/2 independent parameters. The sec-
ond equality above comes from stacking the upper triangular
part of the columns of the matrix S

i into a vector ✓(i) [47].
During the learning process, the truncated moment sequences
m, the performance measure r, the matrix formed by the
activation functions  and the approximation of the value
function V are all computed from data, making this learning
framework totally data-driven.

Remark 6. It is clear that system dynamic f̄M does not show
up in the update rule above, which is a result of differentiating
the HJB equation with respect to control u(t) in systems of
control-affine form. Therefore, the method is valid without the
knowledge of the drift dynamics for the moment system. For
completeness, interested readers can refer to the convergence
analysis in the work of [37] and [47].

C. Rationale for learning policies using moment systems

Using moment systems to synthesize feedback controls has
significant advantages over using the original ensemble system
in both model-free and model-based aspects as addressed
in Remarks 2 and 4. More importantly, the moment-based
RL method for learning optimal policies is scalable, which
is a missing element in classical RL algorithms applied to
ensemble systems. This can be demonstrated in terms of the
number of learning parameters and convergence performance
as shown in Fig. 5(a). As we increase the ensemble (sample)
size from 10 to 300 systems, the number of parameters that
requires tuning remains constant in the proposed strategy using
the moment system for a given truncation order; however, the
number of parameters significantly grows when the original
ensemble systems are used after discretization of the parameter
space K. This gigantic increase in the number of parameters
to be trained not only jeopardizes the efficiency of the learning

algorithm, but also make the the entire learning process unsuc-
cessful. To solve for equation (20), we require the regressor
matrix  to have a dimension of at least N+1 > s to generate
a meaningful solution ✓ provided that  is persistently exciting
[48]. For example, in Fig. 5(b), we observed that the RL
algorithm for approximating the value function V as a function
of ensemble system states did not converge when the number
of systems in the ensemble increased. In this case, where
the RL algorithm was used to learn a value function for
the ensemble system without any moment-transformation, the
total number of parameters required to approximate the value
function increased exponentially, aggravating the curse-of-
dimensionality issues of the RL algorithm. On the contrary,
when the learning problem is formulated using the moment
systems, the learning algorithm was stable and had better
convergence properties.

Note that the selection of an appropriate order of truncation
that sufficiently approximates the ensemble system dynamics
is an important design step in the moment-based RL approach.
In the next section, we present various examples, involving
different ensemble control tasks for linear, bilinear, and non-
linear ensemble systems, where we illustrate that low orders of
truncation are sufficient to yield excellent control performance.
To the best of our knowledge, this work is the first RL-based
control framework offering tractable strategies for synthesizing
optimal feedback policies for ensemble systems.

V. SIMULATION ANALYSIS

In this section, we illustrate the capability of our moment-
based RL framework in synthesizing controls for diverse
classes of ensemble systems.

A. Example 3: Ensemble of harmonic oscillators
Consider an ensemble of linear dynamical systems given by

d

dt
x(t,�) = A(�)x(t,�) +Bu(t), (21)

where A(�) =
⇣

0 ��
� 0

⌘
, B = ( 1 0

0 1 ), and � 2 [�1, 1]. It
was shown that this ensemble system is ensemble controllable
[8]. We considered the task of steering this ensemble from the
initial profile x0 = (1, 1)0 to the target profile xF = (0, 0)0 for
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Fig. 5. (a) Parameters needed to approximate the value function
using an RL algorithm when truncated moment systems are used
(blue) and when discretized harmonic oscillator ensembles are used
(red). (b) Convergence analysis of learning algorithms that are based
on moment system (blue) and the original system (red). The x-axis
represents the number of iterations and the blue and red y axes are
the Euclidean norm of the parameters obtained via RL algorithms
with the moment system and the ensemble system, respectively.

Fig. 6. (a) Trajectories of the controlled ensemble harmonic oscillators
(N = 100). The final states recorded in the figure demonstrates
the target state (marked as a red dot) and simulated endpoint of the
ensemble (marked as colored ⇥). (b) Errors with respect to target state
along the trajectories. (c) The feedback control trajectories learned
using 10 moments.

all � by minimizing the performance measure defined in (13)
with order of moment system defined by M = 20. For simula-
tions, we sampled 100 Harmonic oscillators from the ensemble
with their frequencies uniformly distributed in [�1, 1]. The
associated moment system follows, for 0  k  M � 1,

ṁk(t) =
d

dt

Z

⌦
�
k
x(t,�)d� =

Z

⌦
�
k(A(�)x+Bu)d�,

for which the control policy was derived using (19) as

u(t) = �R
�1

 
B

MX

k=0

Z

⌦
�
k
d�

!0

Vm. (22)

In Fig. 6, we show the state trajectories as well as the
control policies learned via Algorithm 1. Following our RL
framework, the ensemble was successfully steered from the
initial profile to the desired target profile.

B. Example 4: Ensemble of Bloch systems

Consider an ensemble of Bloch systems, modeling the time-
evolution of a sample of nuclear spins immersed in an external

magnetic field, given by

ẋ(t,�) = (!⌦z + � [u1(t)⌦y + u2(t)⌦x])x(t,�), (23)

where x(t,�) 2 R3, ! = 0.6, � 2 [0.9, 1.1] models the
inhomogeneity in the applied control fields u1 and u2 [1],
and ⌦x,⌦y,⌦z are defined as in Example 2.

We considered the design of an inversion pulse
(u1(t), u2(t))0 that drives the ensemble from the initial
state x0 = (0, 0, 1)0 to the target state xF = (0, 0,�1)0. We
used the same performance measure as in Example 3 with
the order of moments chosen by M = 10, QM 2 R30⇥30

with diagonal entries being 10�10, and R is the 2⇥ 2 identity
matrix. In Fig. 7 (a) and (b), state trajectories of the ensemble
are shown. The control inputs learned using the proposed
approach is shown in Fig. 7(c), which are applied to the
moment system resulting in the states shown in Fig. 7(d).

North Pole

South Pole

(a) (b)

(c)

(d)

Fig. 7. The control task of an ensemble of 20 Bloch systems. (a) and
(b) are the simulated trajectories from the initial state (north pole) to
the target state (south pole). (c) The state trajectories of x, y, and z.
The zoomed-in figure shows the trajectories of the ensemble in the
x and y direction in the last 200 seconds of the simulation. (d) The
control input learned through the reinforcement learning framework.
The left and right zoomed-in figures show the initial and final 200
seconds of the entire simulation period, respectively.

C. Example 5: Ensemble of nonlinear systems

In this example, we considered steering an ensemble of
nonlinear systems of the form, ż(t,�) = f(z,�) + g(�)u(t)
with � 2 [0.5, 1], where

z = (x, y)0, f = �
� y
�y�sin x

�
, g = (0,�)0, (24)

from the initial x0 = (2, 1)0 to the final state xF = (1, 0)0 for
all �. We developed the control policy using the associated
moment system of order M = 20. The same performance
measure as in Examples 3 and 4 was used with the ij

th entry
of the matrix QM 2 R40⇥40 was selected as QM(i,j) = 0
for all i 6= j and QM(i,j) = 1 for all i = j, and R was set
as 2 ⇥ 2 identity matrix. As shown in Fig. 8(a), the learned
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control sequence steered the entire ensemble approximately to
the neighborhood of the target state. The x, y trajectories and
controls are shown in Fig. 8(b) and Fig. 8 (c), respectively.

Fig. 8. The trajectory snapshots of the ensemble systems for Example
3. (a) State trajectories of an ensemble of 300 nonlinear systems
described in equation (24). The zoomed-in figure on the top-right
corner of (a) shows the neighborhood of the desired final states xF of
the ensemble. The simulated end states of the trajectories are marked
with colored ⇥. (b) The state trajectories in the x and y direction
respectively. (c) The control input learned through the reinforcement
learning framework. Note that the control vector field g is zero in
the first entry, so we only the control u1 to fulfill the steering task.

D. Example 6: Pattern formation
In this example, we present a more complex task of pattern

formation in an ensemble of harmonic oscillators modeled in
(21). For our simulation experiment, we used 20 harmonic
oscillators with � uniformly distributed in [0.6, 0.8]. The target
pattern xF is a circle of radius 1 centered at the origin; namely,
x(tF ,�j) = (cos((j � 1)/2⇡), sin((j � 1)/2⇡)), 1  j  20,
and the entire ensemble was initialized at (5, 5) at t = 0. The
results in Fig. 9(a) demonstrates that the proposed algorithm
learned the controls to achieve this challenging pattern shaping
task via feedback controls in Fig. 9(b).

Fig. 9. An ensemble of 20 harmonic oscillators with dispersion in ! 2
[0.6, 0.8]. (a) Trajectories of the ensemble of 20 harmonic oscillators.
The inset demonstrates the final state reached (marked in ⇥) and the
desired final state (solid curve). (b) The control input learned through
the RL framework using M = 10.

E. Decreasing error with increasing truncation terms
To analyze the influence of the truncation of the moment

terms on the quality of the learned control input, we studied
the control tasks in Examples 4-6 again with the same range of
� and a consistent ensemble size of 50. The learning algorithm

was employed for various order of moments M ranging from
2 to 50. As recorded in Fig 10, we observed that the least
absolute errors (LAE) given by ⌃|m̃F � mF |, where m̃F

denotes the approximated final moment profile computed via
trapezoid rule, decreased as the order of moment M increases.
This result was expected because the higher the order of
moments considered, the truncated moment sequence m(t)
approximates the ensemble profile better. This improvement
in approximation is reflected in the learned control sequence,
which is capable of steering the entire ensemble closer to the
target state. This is due to the property of m 2 `

2, whereby
given the truncated moment sequence m with order up to M ,
it is guaranteed that as M ! 1, m ! m.

Fig. 10. Least absolute error is plotted with an increasing number
of truncation order M . From the figure, the error becomes stable
after M = 20 for the nonlinear and bilinear ensemble. For linear
ensemble, smaller errors can be observed even when we take more
truncation orders.

VI. PERFORMANCE ANALYSIS

It is worth mentioning that the performance of our algorithm
is robust to the size of the aggregated measurement. Here,
we provide an illustrative example using a population of
harmonic oscillators described in Section V-A. Once the range
of the dispersion parameter � is known, this method can be
extended to a greater number of systems. In the following
analyses, we look at how the controls learned and the final
regulation error varies under two cases: (i) when the size
of the population is varied, and (ii) when varying amount
of aggregated measurements were available at each sampling
instant.

For the first case, we applied our method to a total number
of 10 harmonic oscillators with moments calculated up to the
10th order. The controls learned is shown in Fig 11(a). The
same control input was then applied to ensembles with varying
number of systems, i.e, the control input was applied to
ensembles ranging from 10 to 100 systems, whose dispersion
parameters were selected from the interval K = [0.9, 1.1].
The average error in the final state is recorded in Fig. 11(b),
demonstrating the successful control of the ensemble. This was
calculated as 1/n

Pn
1 |xF �xf |, where xF is the desired final

state, xf is the simulated final state, and n is the number of
harmonic oscillators in each ensemble.

In the second case, we checked the control performance
of the moment-based control policy when the set of states
measured is limited. In equation (7), we define the aggregated
measurement at time t as Y (t), in which the observation set
Kt varies with time. That is to say, the number of data that
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Fig. 11. Performance analysis of the same input applied to increasing
size of ensemble. (Left) Control input learned using 10 harmonic
oscillators and 10 moments. The task is the same as a single harmonic
oscillator described in (21). (Right) Number of harmonic oscillators
v.s. average error of the final states. The error along x and y directions
are not as noticeable as the one along z direction. (Bottom-right) The
control input learned through the RL framework.

we observe at the sampling time ti may not be the same
at tj for i 6= j. To analyze the influence of such partial
and incomplete measurements on our learning framework, we
simulated the time-evolution of an 100-oscillator ensemble
with only a limited number of tractable (observable) oscillators
at each time instance.

As shown in Fig. 12, we were able to fulfill the task of
steering the population to the neighborhood of the desired
states despite missing over 80 percent of the observations. The
reason is that although the states available are decreasing, we
found that the computed sample moments up to arbitrarily high
order (in this examples, we set M = 20) were good approx-
imations of the actual moments. Throughout the simulation,
we randomly dropped the observations for (a) 10 oscillators
and (b) 95 oscillators at each time instance. The comparison of
trajectories learned are shown in Fig. 13. Note that the success
of driving the ensemble to the neighborhood of the desired
states owes to the small range of the dispersion parameters; in
this case � 2 [0.9, 1.1]. When the range of � was increased,
an increasing number of moments were required to steer the
population, and a lower tolerance for missing measurements
was observed.

Fig. 12. Performance analysis with limited measurements. The total
number of ensemble is 100, whereas only limited number of oscil-
lators are observable. The average error is calculated the same way
as our previous analysis. In this figure, we can see that the error is
acceptable even when 80% of the measurements from the oscillators
are missing. The error grows drastically when 90% of the oscillators
are not observable.

VII. CONCLUSIONS

In this paper, we propose a moment-based RL scheme to
learn a control sequence for steering a population of dynamical

Fig. 13. Controlled trajectories of ensemble Harmonic oscillators
when data corresponding to (a) 10 oscillators are missing (b) 95
oscillators are missing.

systems. By introducing the notion of moments, along with
tools from RL, we were able to design a control sequence for
steering the moments of the ensemble, which are representa-
tive of the entire population, from an initial state to a desired
final state. The proposed algorithm bypasses the derivation of
a closed form solution to the control sequence, but learns the
control directly from data. Moreover, the three examples with
linear, bilinear, and nonlinear ensemble systems demonstrate
the feasibility of the proposed method. Furthermore, we also
demonstrated that controlling the moments of the ensemble is
similarly effective in controlling the original systems, which
is helpful when parts of the snapshots of the ensemble are
missing or only partial feedback information of the population
is available.

Using our framework, we can also form a desired pattern
for the ensemble via feedback using our approach. To achieve
a unique pattern transfer, the patterns (characterized by the
distribution of the final states in the parameter space) must be
uniquely represented by the moment sequence so that steering
the moment sequence results in the transformation to the
desired patterns. In addition, the performance of RL method
using a moment-based framework is robust to missing data,
which addresses a common problem in many practical appli-
cations. The method also scales well with increasing ensemble
size, and this allows for the possibility of utilizing feedback for
nonlinear ensembles in diverse fields. The numerical analysis
demonstrated that the truncation error converges with increas-
ing order of moments. However, a formal quantification of
the computational errors due to truncating the moments and
approximations in computing the moments are not presented
here and will be part of our future research.
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