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Abstract— We propose a computational framework for opti-
mal control design of oscillator networks. We first introduce a
new system representation to eliminate challenges arising from
the periodic nature of oscillators. The representation allows
us to consider the general problem of pattern formation for
oscillators as a classical point-to-point steering. We then develop
a novel control design technique that offers the flexibility to
blend the time-optimal and energy-optimal considerations with
a parameter of choice. We demonstrate the applicability of the
proposed framework to a variety of neuroscience applications.

I. INTRODUCTION

The majority of our physiological activities, such as sleep-
cycles [1], memory formation [2], and central nervous system
rhythms [3], are governed by the collective behavior of inter-
active oscillating neurons. Often, for these complex systems
to function properly, specific dynamical patterns, such as
synchrony or, in some cases, dyssynchrony, must be formed.
Disruptions in these natural dynamical patterns could quickly
lead to pathological conditions, necessitating techniques to
design external stimuli that can quickly and efficiently regu-
late the neuronal oscillators toward desirable configurations.
Parkinson’s disease, for example, is associated with excessive
neuronal synchronization, and desynchronization is needed
to mitigate tremors, which is typically accomplished by
injecting a high-frequency current [4]. In this neurological
treatment, it is of clinical importance to desynchronize the
neurons as fast as possible yet with minimal electric power
to prevent damage to neural tissues.

The immense scale of the oscillatory systems observed in
nature and the uncertainty associated with their dynamics
often present great challenges to the control of oscillators.
The theory of phase model reduction provides a compelling
tool to facilitate tractable control design by representing
the dynamics of an oscillator around its stable limit cycle
with a one-dimensional model that describes the evolution
of the phase of oscillation [5]. The main advantage of
employing phase models is that it reduces the complexity of
the oscillator dynamics while maintaining the interpretability
of the model with a small number of parameters. Various
control-theoretic methods leveraging the phase model de-
scription of oscillators have been proposed. These methods
include the design of time-optimal control of a single neural
oscillator [6], [7] and minimum-power control to regulate
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the spiking behavior of neurons [8], [9], [10]. A procedure
for designing an optimal energy input that desynchronizes
the neural population by maximizing the Lyapunov exponent
was also developed in [11].

Despite recent progress, the existing control methods
mostly focus on designing either a time-optimal or energy-
optimal control solution (where only a single oscillator is
considered in the time-optimal case) [10], [6], [8], [11].
In addition, certain practical issues originating from the
periodicity of the oscillator’s phase during implementations
have not been addressed. In this paper, we present a general
computational optimal control framework, including both
system representation and control design, to construct desired
dynamical patterns for an ensemble of coupled oscillators.
In Section II, we first introduce a new representation of the
oscillators’ phase dynamics to avoid the 2π-ambiguity arising
from the periodic evolution of phase. Then, in Section III,
we build upon the idea of iterative control design [12], [13],
[14] to develop a novel mechanism that allows the user to
effectively blend time optimality and energy optimality by
regulating a single parameter, which offers great flexibility
for the optimal control design. In Section IV, we demonstrate
the applicability of the proposed framework through a wide
range of control examples for ensembles of oscillators.

II. A NEW REPRESENTATION OF OSCILLATOR
DYNAMICS FOR PHASE ASSIGNMENT

A. Phase models

For a nonlinear oscillator exhibiting stable limit-cycle
oscillation, we consider a reduced-order one-dimensional
phase model in the form of

θ̇ = ω + z(θ)u (1)

where θ, ω = 2π
T , and T denote the phase, the natural

frequency, and the period of the oscillator, respectively. z(θ)
is the Phase Response Curve (PRC) of the oscillator, which
is a 2π−periodic function describing the infinitesimal change
in phase due to an external input [15]. These phase models
can be inferred experimentally for a system with unknown
dynamics [16].

B. Representation of phase dynamics for a single oscillator

Given an oscillator described by equation (1), the phase
assignment problem is to construct a control input u that
drives the oscillator from a given initial phase θ0 to a
desired final phase θd in a given time T . A major practical
challenge in designing such control inputs arises from the
2π-periodicity of phase, which creates an infinite number



of possible final states, i.e., all the final states 2mπ + θd,
m ∈ Z+, corresponds to the desired phase θd. Oscillator
control techniques often leave it up to the practitioner to
(manually) identify the final state with an appropriate value
of m [10]. When the number of oscillators to be controlled is
large and the oscillators are coupled, determining a suitable
value of m for each oscillator becomes extremely difficult,
yet failure to do so can result in considerably large and
undesirable controls. This limitation poses great challenges
on practical implementations and control designs, especially
for a large-scale ensemble of coupled oscillators.

To overcome the aforementioned limitation, our approach
is to map the system dynamics onto another space so that
all of the possible final phases merge into a single point.
More specifically, we consider a differentiable mapping g :
R → S, where S denotes a unit circle, such that g(θ(t)) =
(sin(θ(t)), cos(θ(t)))′ with θ(t) representing the phase of the
oscillator. Due to the introduced mapping, all possible final
phases 2mπ + θd are mapped, or coincide, to a new and
unique state (x1, x2)

′ := (sin(θd), cos(θd))
′. Now, we begin

to establish the dynamics of new states with

ẋ1(t) = x2(ω + z(θ)u)

ẋ2(t) = −x1(ω + z(θ)u).
(2)

To eliminate the explicit dependency of the new state vari-
ables on the phase variable θ, we leverage the fact that
z(θ) is a 2π−periodic function and thus can be written,
without loss of generality, as a truncated Fourier series,
which allows us to express the PRC as a function of the new
state variables, i.e., z(θ) = h(sin(θ), cos(θ)). By substituting
the PRC representation into the equation (2), we obtain the
dynamics of the system in the new state space, i.e.,[

ẋ1

ẋ2

]
=

[
ωx2 + x2h(x1, x2)u

−ωx1 − x1h(x1, x2)u

]
. (3)

C. Representation of phase dynamics for an ensemble of
coupled oscillators

We now generalize the above presented approach to a
population of oscillators. For a network of n weakly coupled
oscillators, the dynamics of the phase of the ith oscillator,
i = 1, . . . , n, can be expressed as

θ̇i(t) = ωi +
n∑

1=j ̸=i

kij(θi(t)− θj(t)) + zi(θi)u (4)

where θi, ωi, and zi(θi) are the phase, natural frequency,
and the PRC of the oscillator i, respectively [17], [18]. The
interaction between two oscillators i and j is characterized
by the coupling function kij , where if there is no interaction
between the oscillators i and j then the coupling functions
kij and kji are trivially zero.

Given a network of coupled oscillators as described by
equation (4), the objective of the phase assignment problem
is to design a broadcast control input that steers the system
from a given initial phase Θ0 = (θ1,0, θ2,0, . . . , θn,0)

′ ∈ Rn

to a desired final phase Θd = (θ1,d, θ2,d, . . . , θn,d)
′ ∈ Rn

in a given time T . By following a similar procedure as in

Section II-B, we define a differentiable mapping g such that

g :

θ1
...
θn

 7→


sin(θ1)
cos(θ1)

...
sin(θn)
cos(θn)


and let xxx = (x1,1, x1,2, . . . , xn,1, xn,2)

′ ∈ R2n be the new
state variables, where xi,1 = sin(θi) and xi,2 = cos(θi)
for i = 1, 2, . . . , n. To transform system dynamics given
by equation (4) to the new state space, we first represent
the PRC of each oscillator i as a function of the new state
variables (as in Section II-B), i.e.,

zi(θi) := hi(sin(θi), cos(θi)) = hi(xi,1, xi,2) = hi(xxx).

Similar to PRC, the coupling functions between oscillators
are 2π−periodic functions of their phase differences and can
be expressed as kij(θi−θj) = hij(sin(θi−θj), cos(θi−θj)),
where the phase differences can be further described in terms
of xxx, i.e.,

sin(θi − θj) = xi,1xj,2 − xi,2xj,1

cos(θi − θj) = xi,1xj,1 + xi,2xj,2.

With these preparations, we now obtain the following dy-
namics of the oscillator system in the new state space

ẋ1,1

ẋ1,2

...
ẋn,1

ẋn,2

=


x1,2(ω1 + f1(xxx) + h1(xxx)u)
−x1,1(ω1 + f1(xxx) + h1(xxx)u)

...
xn,2(ωn + fn(xxx) + hn(xxx)u)

−xn,1(ωn + fn(xxx) + hn(xxx)u)

 (5)

where fi(xxx) =
∑n

1=j ̸=i hij(xi,1, xi,2, xj,1, xj,2).
Up to this point, we have introduced a new state-space

representation for the dynamics of the oscillator ensemble.
The proposed representation eliminates the 2π-ambiguity
arising from the periodic nature of the oscillator’s phase
and allows us to completely avoid the problem of manually
determining an appropriate final state (for phase assignment).
In the following, we present a general optimal control
framework which allows us to blend the consideration of
time optimality with energy optimality. In our framework,
we also relax the consideration of a fixed control horizon
and let the algorithm search for a (favorable) optimal control
solution with a varying final time T ∈ [Tmin, Tmax].

III. ITERATIVE OPTIMAL CONTROL SYNTHESIS
FOR AN ENSEMBLE OF OSCILLATORS

We consider the problem of steering an oscillator ensemble
from a given initial phase Θ0 = (θ1,0, θ2,0, . . . , θn,0)

′ ∈ Rn

to a desired final phase Θd = (θ1,d, θ2,d, . . . , θn,d)
′ ∈ Rn.

This problem, in the proposed state space, is equivalent to
steering the system, as described in (5), from the initial state
xxx0 = g(Θ0) to the corresponding desired state xxxd = g(Θd).
We start by discretizing the continuous-time system in (5)
using the zero-order hold assumption, i.e., u(t) ≡ uk ∈ R,
t ∈ [kτ, (k + 1)τ ] where τ > 0 denotes the time step
size, and obtain a discrete-time evolution of the system



in the form xxxk+1 = F (xxxk, uk, τ). We utilize high-order
Taylor expansion, similar to [19], to symbolically calculate
F and the Jacobian of F , which prepares for the following
linearization of the system at each time step.

Now, given an initial state xxx0, a nominal control input
U := [u0, u1, . . . , uN−1]

′, and the resulting state trajectory
xxx0,xxx1, . . . ,xxxN , with N being the number of time steps, for
small perturbations of the nominal input U and the nominal
step size τ , we consider the discrete-time linearization of the
system, i.e.,

δxxxk+1 = Akδxxxk +Bkδuk + Ckδτ, δxxx0 = 0 (6)

where Ak := ∂F
∂x

(xxxk, uk, τ), Bk := ∂F
∂u

(xxxk, uk, τ), Ck :=
∂F
∂τ

(xxxk, uk, τ), and δxxxk, δuk, δτ denote the incremental
changes of the nominal state trajectory, the nominal input,
and the nominal step size, respectively. Iterating (6), we have

δxxx1 = B0δu0 + C0δτ

δxxx2 = A1B0δu0 +B1δu1 +A1C0δτ + C1δτ

...
δxxxN = AN−1 . . . A1B0δu0 + · · ·+BN−1δuN−1

+AN−1 . . . A1C0δτ + · · ·+ CN−1δτ.

Then, given that the perturbations δτ and ∆U :=
[δu0, δu1, . . . , δuN−1]

′ are sufficiently small, we utilize the
above linearizations to approximately describe the terminal
state of the system trajectory, i.e.,

x̃xxN ≈ xxxN +HU∆U +Hτ1δτ (7)

where x̃xxN is the resulting terminal state of the trajectory
due to the perturbed input U + ∆U and the adjusted step
size τ + δτ , HU :=

[
AN−1 . . . A1B0 · · · BN−1

]
, Hτ :=[

AN−1 . . . A1C0 · · · CN−1

]
, and 1 :=

[
1 · · · 1

]′ ∈ RN .

The central idea of our control method is to leverage the
locally faithful approximation in (7) so as to gradually alter
the input U and the step size τ , by determining appropriate
values of ∆U and δτ , to step-by-step optimize some desired
control objective (described below). Using this idea, we
lay out in the following a (two-part) sequence of iterations
to synthesize optimal control inputs for an ensemble of
oscillators. We first focus on steering the system to the
desired target state then fine-tune the control input and
the step size in order to achieve a minimum-time and/or
minimum-energy control.

A. Iterative Steering

To step by step steer the system closer to the desired state,
in each iteration, we consider the following optimization

minimize
∆U, δτ

∥xxxN +HU∆U +Hτ1δτ − xxxd∥22

subject to Umin ≤ U +∆U ≤ Umax

∆Ulb ≤ ∆U ≤ ∆Uub

Tmin ≤ N(τ + δτ) ≤ Tmax

δτlb ≤ δτ ≤ δτub

(8)

where Umin, Umax, Tmin, Tmax denote the control and time
limits, and ∆Ulb, ∆Uub, δτlb, δτub denote sufficiently tight
lower and upper bounds of the control perturbation and the
adjustment of step size so as to ensure the appropriateness of
the approximation in (7). We use the solution of the quadratic
program (8) to update (or improve) the current control and
the current step size. This process is then repeated, which is
outlined in the following algorithm.

Algorithm 1 Steering oscillators to the desired phases
Require: Desired final phases Θd for an ensemble of oscil-
lators and an initial (arbitrary) input U .
1: Compute the corresponding final state xxxd = g(Θd).
2: Apply the input U to the system and store all Ak, Bk, Ck.
3: Calculate HU and Hτ .
4: Solve for ∆U∗ and δτ∗ of the optimization problem (8).
5: Update the input and the step size via U = U +∆U∗ and
τ = τ + δτ∗.
6: Repeat steps 2− 5 until ∥xxxN − xxxd∥2 ≤ ϵ1,tol.

Note that we provide the algorithm flexibility to adjust
both the control input and the total time horizon to achieve
the steering task. If a particular control horizon is required,
one can simplify problem (8) accordingly (by removing δτ ,
Hτ1, and the last two constraints).

B. Optimal Steering

Once the system reaches sufficiently close to the desired
target by the end of Algorithm 1, we consider the following
optimization to step-by-step fine-tune the control solution

minimize
∆U, δτ

α∥U +∆U∥2 + (1− α)(N(τ + δτ))2

subject to xxxN +HU∆U +Hτ1δτ = xxxd

Umin ≤ U +∆U ≤ Umax

∆Ulb ≤ ∆U ≤ ∆Uub

Tmin ≤ N(τ + δτ) ≤ Tmax

δτlb ≤ δτ ≤ δτub

(9)

where Umin, Umax, Tmin, Tmax and ∆Ulb, ∆Uub, δτlb, δτub
serve similar purposes as in the first part. α ∈ [0, 1] is a
blending factor that allows us to balance the penalty between
control energy and total time. Similar to the first part, the
procedure to achieve a time and/or energy-optimal control
solution is outlined in Algorithm 2.

Algorithm 2 Minimizing control energy and time horizon
Require: A nominal input U steering the system to xxxd and
a blending factor α ∈ [0, 1].
1: Apply the input U to the system and store all Ak, Bk, Ck.
2: Calculate HU and Hτ .
3: Solve for ∆U∗ and δτ∗ of the optimization problem (9).
4: Update the input and the step size via U = U +∆U∗ and
τ = τ + δτ∗.
5: Repeat step 1−4 until ∥∆U∗∥2 ≤ ϵ2,tol and |δτ∗| ≤ ϵ3,tol.



The importance of the above blending factor is that it
allows us to investigate the trade-off between the energy
consumption and the duration of the control, with α = 1
corresponding to the minimal-energy consideration and α =
0 being the minimal-time. This mechanism provides us the
flexibility to find the right balance for optimality depending
on the application of interest.

In summary, the presented optimal control framework
strategically transforms the steering problem into an iterative
sequence of quadratic programs. We begin this process with
Algorithm 1 to steer the oscillator system to the desired
target. Then, using the input thereof as a nominal control, we
employ Algorithm 2 to optimize the control input as well as
step size and eventually obtain a minimal time-energy point-
to-point control solution. Note that the presented frame-
work is also applicable to scenarios where relative phase
differences among the oscillators, not the absolute phase of
each oscillator, are of particular interest, though with some
necessary extensions which are included in the Appendix.

IV. NUMERICAL IMPLEMENTATION

In this section, we illustrate the flexibility of the presented
control framework in achieving synchronization, resynchro-
nization, and other pattern formations of neurons.
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Fig. 1. Synchronization of 5 sinusoidal neurons using energy-optimal
control and time-optimal control. (a) The orange line denotes the energy-
optimal control for the simultaneously spiking of neurons; while the purple
line is the time-optimal control input (|u| ≤ 2) for fast synchronization.
(b) Phase trajectories when no control is applied (dashed black lines), when
energy-optimal control is applied (orange), and when time-optimal control
is applied (purple).
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Fig. 2. Trade-off between input power and synchronization time is
determined by the blending factor α. Control energy is computed by∑N

k=0 u
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A. Minimal-energy synchronization of neurons

The essence of a neuron’s firing dynamics can be captured
by considering the evolution of the neuron’s phase [17]. As
a convention, a neuron is said to spike or fire at time T if its
phase evolves from θ(0) = 0 to θ(T ) = 2nπ, n ∈ N0. Note
that the spike of a neuron corresponds to multiple locations
in the phase model but only a single state, i.e., sin(θ) = 0,
cos(θ) = 1, in our proposed representation. This advantage
allows us to avoid the manual task of selecting the exact
target phase (in multiples of 2π) for the neurons as in [10]
and focus our attention on the optimal control design.

The typical objectives for synchronization of neurons are
to design a minimum-energy control input that fires all
neurons together before a specified time T , or an input
that fires all neurons together in the shortest duration with
some given input bounds. In this example, we consider
synchronization of five neurons having sinusoidal PRC,
commonly used to represent Type II neuron models like
Fitzhugh–Nagumo model [20], with dispersed frequencies
(ω1, ω2, ω3, ω4, ω5) = (1, 2, 3, 4, 5). Note that given these
natural frequencies, in the absence of any control input,
all the neurons will fire at T = 2π. We consider two
objectives: one is to design a minimum-energy control that
synchronizes the neurons before the time T = 2π− 0.2 and
the second objective is to achieve the fastest synchronization
with |U | ≤ 2. To this end, in the proposed state space, we
first apply Algorithm 1 (stopping criteria ϵ1,tol = 0.01) to
steer each oscillator to the desired target state (0, 1)′. Then,
we employ Algorithm 2 to obtain the minimum-time (α = 0)
and the minimum-energy (α = 1) controls.

Figure 1 illustrates the two optimal controls and their
effects on the phase evolution of the neurons. We observe
that the energy-optimal control uses the entire allowable time
horizon while the time-optimal control is of bang-bang nature
(a usual property of time-optimal controls). In addition,
by varying α we have the flexibility to balance between
the consideration of minimum energy and minimum time.
Figure 2 displays the trade-off between input energy and
synchronization time for various α, illustrating that energy
saving comes with a cost of an increase in control duration.
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Fig. 3. Spatial pattern formation in a network of sinusoidally coupled neu-
rons with uniformly distributed frequencies in [1, 10] rad/s and sinusoidal
PRCs. (a) The connectivity structure of the network. (b) Initial phases of the
neurons. (c) Starting with the phases in (b), the pattern “A” is created. (d)
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line) and energy-optimal (orange line) control inputs driving the system
from (b) to (c) (Top panel); similarly, from (c) to (d) (Bottom panel).

In the following, we present different pattern formations
for a large network of coupled oscillators where manually
determining the final phase of each oscillator for the purpose
of optimal control design becomes unmanageable.

B. Pattern formation in an ensemble of coupled neurons

Distinct spatial patterns of neuronal activity levels in the
brain are associated with memory formation [21]. Motivated
by this, we consider the problem of designing energy-optimal
and time-optimal control inputs which steer an ensemble of
coupled neurons between some spatially desired patterns. To
accomplish this, we require the control inputs to enhance
the firing of a spatially selected group of neurons while
simultaneously inhibiting the firing of the remaining neurons.
Following the convention in the previous example, we equate
neuron firing to phase 2mπ, and neuron inhibition can thus
be associated with phase (2m + 1)π, where m ∈ Z+.
Equivalently, in the proposed state-space, a neuron can be
fired or inhibited by steering it to the state (0, 1)′ or (0,−1)′,
respectively. We consider a network of 15 weakly coupled
sinusoidal PRC neurons, as in Figure 3(a), where kij(θj −
θi) = 0.1 sin(θj − θi) if a connection exists between node i
and j, otherwise 0. The neurons are spatially distributed in
a 5×3 grid according to Figure 3(b) with neuron 1 (Bottom
left circle) being the slowest and neuron 15 (Top right circle)
being the fastest. The natural frequencies of the neurons are
uniformly distributed in [1, 10].

We start with a uniform phase distribution as in Figure 3(b)
and fire spatially selected neurons such that the pattern “A”
is created; similarly, we create pattern “B” from the initial
pattern “A.” For both of these patterns, we design minimum-
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-0.5
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0.5

1(a) (b)

Fig. 4. Desynchronization of a population of 100 identical neurons with
sinusoidal PRCs. (a) The designed control input. (b) The inner circle
displays the uncontrolled final (orange) and initial (grey) phases of the
neurons; while the outer circle depicts the final controlled phases.

energy input that generates the desired pattern before T =
20s by first steering the system to its desired state using
Algorithm 1 and then applying Algorithm 2 with α = 1.
We also construct control inputs that generate the desired
spatial firing pattern in the shortest duration (|U | ≤ 3) by
applying Algorithm 2 with α = 0 after steering the system
to its desired states. The purple lines (similarly orange) in
Figure 3(e) depict the corresponding time-optimal control
(similarly energy-optimal) inputs to generate pattern “A” (top
panel) and “B” (bottom panel). Note that similar to the
previous example the energy-optimal input uses the entire
allowable time horizon while the time-optimal input is of
bang-bang nature.

C. Desynchronization in an ensemble of neurons

It has been suggested that pathological synchronization of
neurons in the brain causes Parkinson’s disease [11], [22].
Deep Brain Stimulation (DBS), a well-established technique
for alleviating such tremors, is known to desynchronize the
pathologically synchronized neurons [4]. Here, we show a
possible application of our control framework to desynchro-
nize a population of neurons through the means of a numer-
ical simulation. We consider a population of 100 identical
neurons with sinusoidal PRCs (ω = 10) and design a control
input to distribute the phases of the neurons in the range
[0, 1.5π) at time T = 1.9πs. This is done by assigning a
phase difference of 1.5π/100 between successive oscillators.
To achieve this, we slightly modify the control technique to
regulate only the relative phases (see Appendix). The control
input and the final phases are depicted in Figure 4(a) and (b),
respectively.

V. CONCLUSIONS

In this paper, we introduced a new state-space represen-
tation for an oscillator’s dynamics which eliminates the 2π-
ambiguity of the oscillator’s phase and a flexible optimal
control design technique that allows the user to blend the
consideration of time with control energy. The combined de-
velopment offers a rather general computational framework
for optimal control design of oscillator networks, which has
been demonstrated through a wide range of examples. Owing
to its generalizability and simple implementation, our work
could open new pathways toward tractable control design for
practical applications of networks of oscillators.
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APPENDIX

In the main text, we presented a control framework for
obtaining a specified desired phase for each oscillator in
an ensemble. Nonetheless, in certain applications, such as
uniform desynchronization of neurons, the relative phases
between the oscillators, rather than the absolute phase of
each oscillator, is of particular interest. To this end, we adapt
the presented control framework to regulating the relative

phase differences, ∆θi\j := θi − θj , between oscillators.
In the proposed state space, ∆θi\j can be conveniently and
uniquely described by

sin(∆θi\j) = sin(θi − θj) = xi,1xj,2 − xi,2xj,1

cos(∆θi\j) = cos(θi − θj) = xi,1xj,1 + xi,2xj,2.

Now, to characterize the relative phase differences between
the successive oscillators in an ensemble of n oscillators, we
consider R : R2n → R2(n−1), where

R : xxx 7→


x1,1x2,2 − x1,2x2,1

x1,1x2,1 + x1,2x2,1

...
xn−1,1xn,2 − xn−1,2xn,1

xn−1,1xn,1 + xn−1,2xn,1

 . (10)

Let ∆Θ∗ = (∆θ∗1\2,∆θ∗2\3, . . . ,∆θ∗n−1\n)
′ ∈ R2(n−1)

be some desired phase differences between successive
oscillators. Our goal is to steer a population of oscillators
from a given initial phase Θ0 = (θ1,0, θ2,0, . . . , θn,0)

′ ∈ Rn

to some final phase such that the desired phase difference
∆Θ∗ is obtained. This problem, in the proposed
state space, is equivalent to steering the system, as
described in (5), from the initial state xxx0 = g(Θ0)
to a final state xxxN such that R(xxxN ) = v∗ where v∗ :=
(sin(∆θ∗1\2), cos(∆θ∗1\2), . . . , sin(∆θ∗n−1\n), cos(∆θ∗n−1\n))

′.

By leveraging the fact that changes of the system trajectory
can be adjusted to be minor in each iteration, i.e., ∥δxδxδxk∥2 are
small, we approximately describe the value of R(xxxN +δxδxδxN )
by considering the linearization of R at xxxN , i.e.,

R(xxxN + δxδxδxN ) = R(xxxN ) + JR(xxxN )δxδxδxN

= R(xxxN ) + JR(xxxN )(HU∆U +Hτ1δτ)

where JR(xxxN ) denotes the Jacobian of R evaluated at xxxN .
Then, instead of considering problem (8), we consider

minimize
∆U, δτ

∥R(xxxN ) + JR(xxxN )(HU∆U +Hτ1δτ)− v∗∥22

subject to Umin ≤ U +∆U ≤ Umax

∆Ulb ≤ ∆U ≤ ∆Uub

Tmin ≤ N(τ + δτ) ≤ Tmax

δτlb ≤ δτ ≤ δτub
(11)

to gradually regulate R(xxxN ) toward the desired value v∗. The
procedure for the relative phase assignment is as follows.

Algorithm 3 Regulating phase differences among oscillators
Require: Desired phase differences ∆Θ∗ between successive
oscillators and an initial (arbitrary) input U .
1: From ∆Θ∗, compute the corresponding desired value v∗.
2: Apply the input U to the system and store all Ak, Bk.
3: Calculate HU and Hτ .
4: Solve for ∆U∗ and δτ∗ of the optimization problem (11).
5: Update the control input via U = U + ∆U∗ and τ =
τ + δτ∗.
6: Repeat step 2− 5 until ∥R(xxxN )− v∗∥2 ≤ ϵ4,tol.


