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ABSTRACT
We consider the cybersecurity challenges arising from communica-
tions between autonomous vehicles and smart infrastructures. In
particular, we consider coordination between vehicles and Reduced
Speed Work Zones (RSWZ). Malicious or tampered communica-
tions between these entities can have catastrophic consequences.
We discuss methods for the analysis of such attacks. In particular,
we show how to generate con�gurable, e�ective vehicular trajecto-
ries for exploring such attacks and how to utilize such trajectories
in identifying impactful attacks and evaluating defenses.

CCS CONCEPTS
• Security and privacy! Intrusion/anomaly detection and
malware mitigation; • Computer systems organization !
Real-time systems.
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1 INTRODUCTION
Global transportation is getting revolutionized by the rise of Con-
nected Autonomous Vehicles (CAVs) equipped with advanced tech-
nologies, enabling them to self-navigate. These vehicles include the
ability to communicate with other vehicles (V2V), various infras-
tructure components (V2I), and various other connected devices
(V2IoT). This connectivity, cumulatively referred to as V2X is foun-
dational for the future of autonomous vehicles.

A critical application of V2I communications in CAV is the in-
terface with RSWZ. The interface has arisen in response to the
critical demand for expanding urban centers and progressive trans-
portation frameworks. Vehicles can integrate real-time data from
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work zone infrastructures via V2I communication mechanisms,
allowing them to respond to shifts in advance, assure safe naviga-
tion, and boost smooth tra�c movements. Unfortunately, the V2I
communication can expose major cybersecurity vulnerabilities. For
instance, a rogue or malicious RSWZ component can send mislead-
ing messages to vehicles; even if all the components are benign,
the communication is susceptible to attacks whereby a malicious
third party can intercept the communication and send wrong or
misleading messages to either of the communicating agents.

A critical challenge in the study and analysis of cyber-attacks
on V2I communication is the absence of an infrastructure for gen-
erating realistic scenarios. In particular, the scenarios must enable
exploration of various corner cases of communication, comprehen-
sion of various cyber-attacks and their impact, and evaluation of
defense mechanisms. Note that this is impossible with real datasets
since the amount of such data is limited, and they are constrained
to the speci�c parameter values that were realized during data
collection. Indeed, to our knowledge, there is no extensive dataset
incorporating vehicular trajectory and communication information
with RSWZ.

In this paper, we show how to create and analyze a real-time
trajectory generation model that highlights the dynamics of a CAV
in action speci�cally targeting the communication between the CAV
and the RSWZ. Using incoming V2I signals, the CAV is designed to
either reduce its speed or come to a complete stop. Note that such
a �exible trajectory generation tool is non-trivial, since it needs to
account for both benign scenarios as well as the reaction of the CAV
to various malicious communications. We discuss the challenges
involved and our approach to addressing these challenges.

2 BACKGROUND AND RELATEDWORK
Vehicle trajectory generation is critical in autonomous driving be-
cause it allows vehicles to negotiate complex tra�c settings such
as the RSWZ by precisely predicting vehicle trajectories.

Considerable research has been dedicated to the domain of re-
alistic trajectory generation within urban environments. Many
simulators, such as Simulation of Urban MObility (SUMO) [6] and
Cars Learning to Act (CARLA) [4], aid in the generation of typical
autonomous vehicle trajectories. Pérez et al.[8] introduced diverse
techniques, including straight sketches, Bezier curves, circumfer-
ence parameter equations, and fuzzy logic controllers, aimed at
enhancing trajectory tracking in urban settings. Another avenue of
exploration involves neural network architectures, as exempli�ed
by Cai et al.[2], who proposed a novel approach utilizing spatiotem-
poral features extracted from front car images. Their custom neural
network architecture, the VTGNet, integrates components such as
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MobileNet-V2 for feature extraction and LSTMs, along with a self-
attention mechanism for trajectory prediction. Similarly, Atmeh
et al.[1] advocate a neural network composition incorporating a
Recurrent Neural Network and two Feedforward Neural Networks.

WhileMachine Learning has garnered prominence in autonomous
driving, Dever et al.[3] outlined the feasibility of generating param-
eterized classes of viable system trajectories through interpolation
algorithms, o�ering a computationally e�cient real-time trajec-
tory generation approach. Addressing e�ciency concerns, Zhang
et al.[10] devised a two-phase optimization procedure encompass-
ing a di�erential curvature-based driving guideline generation fol-
lowed by an optimal trajectory computation. Fassbender et al.[5]
presented a trajectory generation strategy relying on on-board
sensors and Sequential Quadratic Programming.

Nolte et al.[7] advocated model predictive control (MPC) in a
two-staged manner for vehicle trajectory generation. Alternatively,
kinematic models, as demonstrated by Minh Vu et al.[9], harnessed
position quintic polynomial, speed quartic polynomial, and sym-
metric polynomial functions for trajectory synthesis. Our approach
draws inspiration from this paper, employing kinematic represen-
tation of vehicle states.

3 APPROACH AND DISCUSSION
Algorithm 1 gives a high-level overview of our trajectory genera-
tion tool. Note that it only provides a structure and overall control
�ow of the algorithm; many details have been elided in the pre-
sentation for pedagogical reasons. The key idea of the algorithm
is to account for the communication from RSWZ for the vehicle
to determine whether to accelerate or decelerate. However, the
amount of acceleration/deceleration is governed by two factors:

• Kinematics: We employed kinematic equations to accu-
rately model the vehicle’s state throughout its trajectory.
Within this framework, we integrate speci�c parameters,
including the vehicle’s velocity at the previous time step, the
current time step within the trajectory’s duration, and the
vehicle’s preceding actions, such as acceleration or decelera-
tion.

• Pseudorandomness: The pseudo-random approach is em-
ployed to dictate the various actions the vehicle would “take”,
such as accelerating rapidly or gradually. This randomness
was infused into the acceleration patterns the vehicle exhib-
ited.

Our trajectory simulation is organized into three distinct phases:
acceleration, random trajectory, and deceleration.

• During the acceleration phase, we establish four distinct
acceleration scenarios to capture the vehicle’s initial accel-
eration at the onset of the trip. This phase is limited to a
maximum duration of 25% of the entire trip’s duration, en-
suring a smooth transition into the subsequent phases.

• Transitioning to the random trajectory phase, the vehicle’s
actions are determined by a combination of pseudo-randomness
and rule-based parameters. This phase o�ers the vehicle the
�exibility to execute various actions, including rapid or grad-
ual acceleration, fast or slow deceleration, or maintaining
a consistent speed. During this random trajectory phase,

Algorithm 1 Pseudocode for Trajectory Calculation

1: Initialize velocity (v), acceleration (a), position (x), and time (t)
arrays, and pseudorandom number generator.

2: Initialize entry 0 of velocity array with init_v
3: for 8 = acc_t_start to acc_t_end do
4: Update trajectory information
5: end for
6: Initialize a dictionary for V2I communications
7: while 8 < ran_t_end do
8: if 8 in v2i then
9: Read in V2I communication
10: if comm[0] == ’RS’ then
11: Decelerate the vehicle if needed and traverse the Work

Zone
12: else if comm[0] == ’S’ then
13: Decelerate the vehicle to a stop and wait for the speci-

�ed duration
14: end if
15: Store the V2I communication
16: else
17: if counter % 20 == 0 then
18: Apply an acceleration based on certain conditions
19: else
20: Maintain previous acceleration
21: end if
22: Update trajectory information
23: end if
24: end while
25: for 8 = dec_t_start to dec_t_end do
26: Decelerate the vehicle to a stop by the end of the trip
27: end for

the V2I communications become crucial. If the V2I com-
munication issues an “RS”, the vehicle should decelerate if
its current speed is over the speed limit and then navigate
through the work zone at the desired velocity. Conversely,
if the communication signals an “S” command, the vehicle
must decelerate to a halt, remain stationary for the given
duration, and then resume its journey. In cases where no
V2I instructions are received, the vehicle should travel at
a steady speed, though there may be random instances of
acceleration or deceleration.

• The �nal phase, comprising the last 10% of the trip’s duration,
involves the deceleration phase. Here, the vehicle executed
a controlled deceleration to gradually reduce its speed to 0
m/s, ensuring a safe conclusion to the simulated trip.

Note that the trajectory generation framework integrates V2I
communication, leveraging both Reduced Speed (RS) and Stop (S)
V2I messages. These messages convey crucial instructions to the
vehicle regarding its control strategies in response to speci�c situ-
ations. The integration enables us to explore the in�uence of V2I
communications on CAV’s trajectories, encompassing both legiti-
mate and potentially malicious interactions.
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Figure 1: Reduce Speed Attack Scenario

Figure 2: Ignore Stop Attack Scenario

4 ATTACK EXPLORATION
We developed a diverse array of methods to illustrate the spec-
trum of V2I attacks feasible within CAV trajectories. Central to
our investigation are seven distinct parameters that attackers could
maliciously manipulate. These parameters are summarized in ta-
ble 1. The attacks, depending on the di�erent parameter settings,
varied from entirely ignoring V2I communication to minor tweaks
like altering the distance to the work zone in a Reduced Speed V2I
message or changing the stop duration at the work zone in a Stop
V2I message. This wide range of parameter changes covers a broad
array of potential attack situations, revealing the vulnerabilities and
potential consequences of malicious V2I communications within
CAV trajectories.

Fig. 1 depicts the velocity of the CAV during both compromised
and standard trajectories in a Reduced Speed Attack Scenario. At
175 seconds, an ’RS’ signal is sent to the CAV. In the attack situation,
the speed in the work zone is manipulated to 5 m/s, in contrast to
the normal 10 m/s, as illustrated by the red curve. Fig. 2 displays
the CAV’s velocity for both compromised and standard trajectories
during a Stop Attack Scenario. At 260 seconds, an “S” signal is
relayed to the CAV. The attack involves disregarding the “S” signal
completely, as highlighted by the red curve. Here, the CAV persists
at a speed of 20 m/s, neglecting the Work Zone’s directive, leading
to an eventual crash.

Table 2 showcases several methods through which the V2I com-
munication can be compromised. It’s important to mention that
this table doesn’t cover all potential attack scenarios; we’ve focused
on highlighting the most common and impactful attacks.

Table 1: Attackable Parameters for V2I Communication

Reduced Speed (RS) Stop (S)

V2I communication ("RS") V2I communication ("S")
Distance to Work Zone (dist_to_WZ) Distance to Work Zone (dist_to_WZ)
Length of Work Zone (len_of_WZ) Duration of stop at Work Zone (duration)

Reduced Speed in Work Zone (reduced_speed)

Table 2: Summary of Attack Scenarios

Term Attack Scenario De�nition

eq Benign Scenario
stop Perturb the Distance to (dist_to_WZ) and Duration of the Stop (duration) at the Work Zone.

dur_wz_stop Perturb the Duration of the Stop (duration) at the Work Zone.
dwz_stop Perturb the Distance (dist_to_WZ) to the Work Zone.
rswz Perturb the Distance to (dist_to_WZ), Length of (len_of_WZ), and Speed Value (reduced_speed) in Work Zone.
lwz_rs Perturb the Length of (len_of_WZ) Work Zone.
dwz_rs Perturb the Distance to (dist_to_WZ) Work Zone.
swz_rs Perturb the Reduced Speed Value in Work Zone.

5 CONCLUSION
In this paper, we explored the problem of cybersecurity of CAVs
interacting with infrastructure components in RSWZ. To our knowl-
edge our work is the �rst such exploration platform for cybersecu-
rity implications of RSWZ and CAV coordination. We demonstrated
the challenges in designing �exible trajectories to enable such ex-
ploration and our approach to address these problems. We showed
how to explore cyber-attacks using the generated trajectories.

In future work, we will advance our trajectory generation tool
and explore more cyber-attacks.Wewill also explore the integration
of the algorithm with driving and automotive simulators to enable
more intuitive interface.
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