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Abstract

In this paper, we study some relationships between polyhedral convex sets and gener-
alized polyhedral convex sets. In particular, we clarify by a counterexample that the
necessary and sufficient conditions for the separation of a convex set and a polyhedral
convex set obtained by Ng et al. (Nonlinear Anal. 55:845-858, 2003; Theorem 3.1)
are no longer valid when considering generalized polyhedral convex sets instead of
polyhedral convex sets. We also introduce and study the notions of generalized polyhe-
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1 Introduction

Polyhedral convex sets and related concepts have been studied broadly in the frame-
work of convex analysis in both finite dimensions and infinite dimensions. Among
many notable results involving polyhedral convex sets, necessary and sufficient con-
ditions for a separation of a convex set and a polyhedral convex set play a crucial
role in developing generalized differentiation involving polyhedral convex sets with
applications to optimization. An important result was established by Ng and Song (see
[10, Theorem 3.86], [12, Theorem 3.1]) providing necessary and sufficient conditions
for separating a convex set and a polyhedral convex set in locally convex topological
vector spaces. This is a generalization of a well-known result obtained by Rockafellar
in finite dimensions; see [15, Theorem 20.2]. The result by Ng and Song was then
used in [4] to obtain comprehensive generalized differentiation calculus for nonsmooth
functions and multifunctions in locally convex topological vector spaces.

Given the crucial role of polyhedral convex sets in convex analysis and applications,
aconcept called generalized polyhedral convex sets has been introduced and studied in
infinite dimensions; see [1, 8, 20] and the references therein. In a series of recent papers,
Luan, Yao, and Yen have established new results on generalized polyhedral convex
sets and generalized polyhedral convex functions in locally convex topological vector
spaces and have provided many applications in convex optimization, linear vector
optimization, piecewise linear vector optimization, etc. These developments also shed
new light on many known results involving polyhedral convex sets. In particular, we
refer the reader to the paper by Luan et al. [7] in which several constructions such as
sum of sets, sum of functions, directional derivative, infimal convolution, normal cone,
subdifferential, conjugate function involving polyhedral convex sets and generalized
polyhedral convex sets were thoroughly investigated.

The notion of polyhedral convex set was employed to define polyhedral convexity
of extended-real-valued functions by requiring the epigraphs of such functions to be
polyhedral convex. Similarly, a multifunction is said to be polyhedral convex if its
graph is a polyhedral convex set in the product space. Polyhedral convex functions
and multifunctions have been extensively investigated in the literature in both theoret-
ical aspects and applications to optimization; see [10, 13—15, 17] and the references
therein. These notions inspire us to define a new notion called the generalized poly-
hedral convex multifunction by requiring that the graph of the function in question is
a generalized polyhedral convex set.

The remarkable role of polyhedral convex sets and generalized polyhedral convex
sets raises an important question asking for the clarification whether a certain result
which holds for polyhedral convex sets also holds for generalized polyhedral convex
sets or not. One of the main goals of this paper is to answer the question. In particular,
we provide a counterexample showing that the aforementioned separation result by
Ng and Song for polyhedral convex sets is no longer true for generalized polyhedral
convex sets in general, and thus this counterexample somehow discourages the possi-
bility for full generalizations of the results in [4] to the case of generalized polyhedral
convex sets. The second main goal of this paper is to study polyhedral convex multi-
functions and generalized polyhedral convex multifunctions and derive new calculus
rules of generalized differentiation in the case where one multifunction involved is

@ Springer



768 Journal of Optimization Theory and Applications (2023) 199:766-786

polyhedral convex, while the other multifunction is generalized polyhedral convex.
We explore the notion of coderivative introduced by Mordukhovich and show that in
the afore-mentioned setting coderivative calculus rules are satisfied without requiring
any qualification condition, which was needed in the general convex and noncon-
vex cases from [4, 9, 10, 16]. We also study generalized differentiation of optimal
value functions generated by polyhedral convex and generalized polyhedral convex
multifunctions. When developing these generalized differentiation calculus rules, we
recover a number of known results obtained by Luan et al. [7] for polyhedral convex
and generalized polyhedral convex functions.

This paper is organized as follows. In Sect. 2, we study some relationships between
polyhedral convex sets and generalized polyhedral convex sets in locally convex Haus-
dorff topological vector spaces. Section 3 is devoted to generalized differentiation for
polyhedral convex multifunctions and generalized polyhedral convex multifunctions.
Generalized differentiation of optimal value functions generated by polyhedral convex
multifunctions and generalized polyhedral convex set-valued mappings is investigated
in Sect. 4. The final section gives some concluding remarks.

2 Relationships Between Polyhedral Convex Sets and Generalized
Polyhedral Convex Sets

The main goal of this section is to study some relationships between polyhedral con-
vex sets and generalized polyhedral convex sets. We first establish a necessary and
sufficient condition for a generalized polyhedral convex set to be a polyhedral convex
set. Then we show by a counterexample that the necessary and sufficient conditions for
the separation of a convex set and a polyhedral convex set obtained by Ng and Song
in [12, Theorem 3.1] are no longer valid when considering generalized polyhedral
convex sets instead of polyhedral convex sets.

Let X be a locally convex Hausdorff topological vector space over the reals with
its topological dual denoted by X*. For simplicity of presentation, we assume that all
spaces under consideration are locally convex Hausdorff topological vector spaces.
The cone generated by a nonempty subset Q2 of X (resp., the closure of 2) is denoted
by cone(2) (resp., 2). Thus, cone(Q2) = {rx |t > 0, x € Q}. In the sequel, letR :=
(=00, 00].

Definition 2.1 (a) A subset P of X is said to be a polyhedral convex set or a convex
polyhedron if there exist x{, ..., x5 € X*and ay, ..., @y € R such that

P={xeX | x)<e foralli=1,....,m}.

(b) A subset Q of X is said to be a generalized polyhedral convex set or a generalized
convex polyhedron if there exist x{, ..., x;, € X*, a1, ..., o, € R, and a closed
affine subspace M of X such that

O={xeX|xeM, (xf,x)<a; forall i =1,...,m}. (1
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It follows from the definitions that a generalized polyhedral convex set can be
represented as the intersection of a polyhedral convex set and a closed affine subspace.

The proposition presented below establishes a condition that is both necessary and
sufficient for the polyhedral convexity of a generalized polyhedral convex set of the
form (1). This condition is based on the dimensionality of the closed affine subspace
M involved.

Proposition 2.1 Let Q be a nonempty generalized polyhedral convex set given by
0= {x eX|xeM, (x/,x)<a; foral i= 1m}

where x{, ..., xy € X*, a1, ...,an € R, and M is a closed affine subspace. Then Q
is a polyhedral convex set if and only if codim M < oo.

Proof <:Let L := M — M and observe that L is the unique closed linear subspace
parallel to M. Since M has finite codimension, dim X/L = k for some positive
integer k. Consider the quotient mapping ®: X — X /L. Choose a € M and get
[a] € X/L with ®(M) = [a]. Suppose that [b1], ..., [bx] form a basis for X /L. Then
we have the representation

k
[al =" Bilbil.
i=1

where B1,...,8r € R. For each i € {1,...,k}, we consider the linear mapping
gi: X/L — R with

k
gi( Y milbil) = .
i=1

By [18, Lemma 1.20 and Theorem 1.21] (note that the same results and proofs are

valid for linear mappings defined on R"), g; is continuous foralli € {1, ..., k}. Thus,

the function u} := g; o ® is linear and continuous for all i € {1,..., k}. Hence,

ui € X*and uj #Oforalli € {1,..., k}. We will now prove that
M={xeX|u(x)=p, Vie{l,....,k}}. )

For all x € M, we have ®(x) = ®(a) = [a] = Y i_, Bilbi]. Then, u’(x) =
gi(®(x)) =B foralli € {1,...,k}. Therefore,

McCi{xeX|uf(x)=p8, Vie{l,...,k}}.
To prove the reverse inclusion, taking any x in the right-hand side of (2), one has
ur(x) = pi foralli e {1,...,k}. Thus, g;(®(x)) = g foralli € {1, ..., k}, which

means that
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k
(x) =Y Bilbil = d(a).

i=1

Thus, ®(x — a) = [0]. Hence, x — a € L. This implies that x € M. We have thus
proved that the equality (2) is valid. Now, Q can be represented as

O={xeX|W,x)y=8 fori=1,...k (x,x) <o fori=1,...,m}.
Therefore, the set Q is a polyhedral convex set.
= Suppose that Q is a polyhedral convex set. Then there exist zJ, ..., 2z}, € X*
and y1, ..., yp € Rsuch that
O={xeX|(f.x)<y forall i=1,...,p}

Choosing xo € Q gives xo € M and (z],xo) < y; foralli = 1,...,p. Let¢; =
Yi —(zf,xo)fori =1,..., p. Thenc; > Oforalli =1,..., p and we have

O-xo={yeX|(.y)<c}CL:=M-—x.
Let Ly :=(/_, kerz}. Then L} C Q — xo C L. It follows that
codimL < codimL; < oo,

which completes the proof. O
The next corollary is a direct consequence of Proposition 2.1.

Corollary 2.1 A closed linear subspace M of X is a polyhedral convex set if and only
if M has finite codimension.

Next, we present an example of a generalized polyhedral convex set that is not a
polyhedral convex set.

Example 2.1 Let X = {5 and let
Q = {x = (x,) | xx = Oforall k € N}.

Then Q is a generalized polyhedral convex set. In fact, it is a closed linear subspace of
X. Since codim Q = oo, the set Q is not a polyhedral convex set by Proposition 2.1.

Definition 2.2 Let ©2; and 2, be a nonempty convex sets in X. We say that Q; and
Q> can be separated by a closed hyperplane that does not contain 2, if there exist
x* € X* and o € R such that

(x*,x) <a < (x*, y) wheneverx € Qi,y € Q,

and there exists y € € such that @ < (x*, ).
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In the setting of Definition 2.2, define H = {x € X* | (x*, x) = a},
Hi={xeX"| " x)>a}, Ho={xe X" | {x* x) <al.
Since x* is obviously nonzero, H is a closed hyperplane. We have
QCH-, 2 CHy, 0 ¢H

Definition 2.3 (See [10, Definition 2.168]) Let €2 be a convex subset of X. The quasi-
relative interior of S is the set

qri(Q2) := {x € Q| cone(2 — x) is a linear subspace of X}.

In [7] and the references therein, several important results for polyhedral convex
sets have been generalized for generalized polyhedral convex sets. We present below
a number of important results which hold for polyhedral convex sets but do not hold
for generalized polyhedral convex sets. The first one is a convex separation theorem
involving a polyhedral convex set and a convex set in X; see [10, Theorem 3.86] and
[12, Theorem 3.1].

Theorem 2.1 Let P be a nonempty polyhedral convex set and let Q2 be a nonempty
convex set in X. Suppose that qri(2) # 9. Then P and Q2 can be separated by a closed
hyperplane that does not contain Q2 if and only if P N qri(2) = (.

This result plays a crucial role in developing generalized differentiation for
nonsmooth functions and multifunctions in the case where some functions and multi-
functions involved are generated by polyhedral convex sets.

The following example will show that the conclusion of Theorem 2.1 may not hold
true when instead of P one takes a subspace M of infinite codimension.

Example 2.2 Let Qy = {x € ¢» | x has finitely many nonzero coordinates},

. 1111 . 111
y_ 721478"" , &= 92’39"' ’

and M = {uz | n € R}. Clearly, y € £ and z € ¢5. Put Q@ = y + Q. Then, Q
is an affine subset of £,. Hence, 2 is convex and qri(2) = iri (2) = Q2. We have
M N Q = @. Indeed, if M N Q2 # @, then for some u € Qp, we have y +u € M.

T for all k > k, which is a

- 1
Thus, there is 4 € R and k& € N such that eyl e

contradiction. As Q = qri(€2), it follows that M N qri(2) = @.

Next, we will prove that there is no closed hyperplane which does not contain 2
and separates M and 2. Suppose on the contrary that there exists a closed hyperplane
‘H C X such that H does not contain 2 and separates M and 2. Then there is
x* € €r\ {0} and @ € R such that H = {x € €» | (x*, x) = «}. Since H separates 2
and M and H does not contain 2, we have

sup (x*, x) < a < inf (x*, x) (3)
xeM xe
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and there exists w € Q such that o < (x*, w). As (x*, x) < « for all x € M, one has
(x*, nz) < o forall u € R. Thus, (x*, z) = 0. Then, the relation (3) is equivalent to

0 <« < inf (x*, x).
xeR

So, we have
0<a=<(x"y+ " u

for all u € Qp. This implies —(x*, y) < (x*, u) for all u € Q. Since Q is dense
in £;, the latter property yields —(x*, y) < (x*, v) for all v € £;. This means that
x* = 0, which contradicts the choice of x*. Hence, there is no closed hyperplane not
containing €2 which separates M and 2.

Remark 2.1 In Example 2.2, the set Q2 is not closed. However, the assertion of Theo-
rem 2.1 may still be false when a subspace M of infinite codimension plays the role
of P and € is a closed set in X. Indeed, by [7, Remark 2.12], there exists a locally
convex topological vector space X with two closed linear subspaces L and M such
that L + M = Xbut L+ M # X.Takinganya € X\ (L+ M) andsettingQ2 =a+1L,
one sees that €2 is a closed affine set. Hence, iri (2) = qri(2) = Q. First, we will
show that M N = . Suppose on the contrary that there is some u € M N Q. Then,
u € Mand u = a + v for some v € L. Therefore,a = u — v € L + M, which
is a contradiction. Thus, M N Q2 = @. Next, we will prove that M and Q2 cannot be
separated by any hyperplane. Suppose on the contrary that there exist a nonzero linear
functional x* € X* and a real number « such that

sup (x*, x) < a < inf (x*, y). 4)
xXeM yeQ

If there is some X € M such that (x*, x) = B # 0, then by taking t = (« + 1)/8, we

have tx € M and (x*, tx) = ¢+ 1 > «, which contradicts the fact that sup (x*, x) <
xeM
a. Hence (x*, x) = 0 for all x € M. Thus, (4) yields

0 < (x* a) + inf (x*, z).
zel

Since (x*, a) is fixed, the latter implies that (x*, z) = O for all z € L. Therefore, we
have shown that (x*, x +z) = Oforall x € M and z € L. Recallingthat L + M = X,
we can infer that (x*, u) = O for all u € X. This contradicts the choice of x*. We
have thus proved that M N qri(2) = @ and that M and €2 cannot be separated by any
hyperplane.
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3 Generalized Differentiation for Polyhedral Convex Multifunctions
and Generalized Polyhedral Convex Multifunctions

In this section, we study generalized differentiation for polyhedral convex and gener-
alized polyhedral convex multifunctions in locally convex topological vector spaces.
The main concept under consideration is the coderivative defined by Mordukhovich
(see [9]) for multifunctions. The counterexample in Example 2.2 shows that analogues
of the generalized differentiation results involving polyhedral convex sets in [10] may
not hold for generalized polyhedral convex sets. Herein, we establish new positive
results showing that qualification conditions needed for coderivative calculus (see,
e.g., [4,9, 10, 16]) are no longer required in our setting. Our developments shed new
light on the theory of polyhedral convexity and generalized polyhedral convexity from
the existing literature including [1, 7, 8, 10, 13—15, 17].

Given a nonempty convex set €2 in X, recall that the normal cone to the set 2 at
x € Qis given by

N@E Q) ={x*eX*| (x*,x—%) <0 forall x € Q}.

Lemma 3.1 Let P be a polyhedral convex set and let M be a closed affine subspace
in X. Then

N(&x; PN M) :N()E;P)—i—N()‘c;M):N()E;P)—{—LJ‘ forall x e PN M,

where L is the linear subspace parallel to M.

Proof Fix any x € PN M.Thenx € PN qri(tM) = PN M,so PN qri(M) # @. 1t
is follows from [10, Theorem 3.87] that

NXx; PNM)=N(G; P)+ N, M).
Since N(x; M) = L1, this completes the proof. O

Lemma 3.2 Let P and P, be two convex polyhedra in X. Then
N@x; PrNP) =N(x; P1)+ N(x; Pb) forall x € PLN Ps.
Proof If P = {x eX|(x,x) <a forall i= 1,...,m},then
N(x; P) = cone{x] | i € I(X)},

where I(x) :={i |i=1,...,m, (x], X) = a;}. Clearly, the desired formula follows
from this observation. O

Next, we present a new proof for the important result obtained by Luan et al. [7,
Theorem 4.10].
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Theorem 3.1 Let P be a polyhedral convex set and let Q be a generalized polyhedral
convex set. Then

NG PNQ)=NG; P)+ NG Q) forall e PNO.

Proof Fix a point x € P N Q. Since Q is a generalized polyhedral convex set, we
have the representation Q = P; N M, where P; is a polyhedral convex set and M is
a closed affine subspace. Then by Lemmas 3.1 and 3.2 we have

NG PNQOQ)=NE; (PNP)NM)=N(Gx; PNP)+N(G; M)
=N@x;P)+ Nx; PI)) + Nx;M)=Nx; P)+ Nx; PPNM)
=N(x; P)+ N(x; Q).

This completes the proof. O

In what follows, let X and Y be locally convex Hausdorff topological vector spaces
over the reals. For a multifunction F': X = Y, one defines the graph and the effective
domain of F, respectively, by

gph(F) == {(x,y) e X x Y | y € F(x)}

and dom(F) := {x eX|Fx) # @}.

Definition 3.1 Let F: X = Y be a multifunction.

(a) F is said to be convex if gph(F) is a convex setin X x Y.

(b) F is said to be polyhedral convex if gph(F) is a polyhedral convex setin X x Y.

(c) Fissaidtobe generalized polyhedral convexif gph(F)isa generalized polyhedral
convex setin X x Y.

It follows from definitions that the following implications hold for a multifunction
F:X=VY:

polyhedral convexity ‘ - ’ generalized polyhedral convexity ‘ - ’ convexity ‘

Thus, we can use tools of convex analysis to study generalized differential properties of
generalized polyhedral convex multifunctions and polyhedral convex multifunctions.

Definition 3.2 Let F: X = Y be a convex multifunction and let (x, ¥) € gph(F).
The multifunction D*F (x, y): Y* = X* with the values

D*F(x,y)(v*) := {u* € X* | ", —v*) € N((x.y); gph(F))}, v* e Y*, (5)
is called the coderivative of F at (x, y).
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Example 3.1 Given a subset ® of X, define Ag: X = Y by

0 ifxeO,

Bo@ =1y ity ¢o.

Then gph(Ag) = ® x {0}. Suppose that ® is a convex set and x € ®. We have
N((x,0); gph(Ag)) = N(x; ®) x Y and hence

D*Ag(x,0)(v*) = N(x; ®) forall v* € Y™ 6)

For any convex multifunctions Fi, F>: X = Y, we can show that that their sum,

which is defined by setting (F1 + F>)(x) = Fi(x) + Fa(x) forall x € X, is a

convex multifunction with dom(F; + F>) = dom(F;) N dom(F3). Our first calculus

result concerns representing the coderivative of F| 4+ F; at a given point (x,y) €
gph(F; + F3>). To formulate this result, consider the set

S@E,3) ={01L3) €Y XY [y =31+, 3i € KX, i =1,2}. (N

The following theorem gives us the coderivative sum rule for polyhedral convex mul-
tifunctions and generalized polyhedral convex multifunctions.

Theorem3.2 Let Fi: X = Y be a polyhedral convex multifunction and let
Fr: X = Y be a generalized polyhedral convex multifunction. Then the equality

D*(Fi + F2)(x, y)(v*) = D*Fi(x, 1) (v*) + D*F2(%, y2) (v™)
holds for every v* € Y* whenever (y1, ¥2) € S(x, y), where S is defined in (7).
Proof Let (y1, y2) € S(x,y) and v* € Y* be given arbitrarily. Fix any
u* € D*(Fi + F2) (X, y)(v™). (®)

Then the inclusion (u*, —v*) € N((x, ¥); gph(F1+ F»))is valid. Consider the convex
sets

Qi={x,y,»eXxYxY | y1 € Fi(x)},
Q= {1, ) eX XY XY | e Fx)

and deduce from the normal cone definition that
(u*, —v*, —v*) € N((x, y1, y2): Q1 N Q). 9

Observe that ; = ( gphF;) x Y and thus it is a polyhedral convex setin X x ¥ x ¥
by the assumption made on Fj. Similarly, €2, is a generalized polyhedral convex sets
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in X x Y x Y by the condition imposed on F>. Then we can employ Theorem 3.1 and
get

(*, —v*, —v*) € N((X, 31, $2); @1 N Q2) = N((X, 1, 32); Q1) + N((X, 31, 2); 22).
Therefore, we obtain the relationships
(M*, _U*s _U*) = (MT, _U*, O) + (uév 09 _U*)3

where (u}, —v*) € N((X, y;); gphF;) fori = 1, 2. This implies by the coderivative
definition that

u* =uj +uz € D*F (X, y1)(") + D*Fa (%, 2) (v").
So, we have proved that
D*(Fi + F)(X, y)(v*) C D*Fi(X, 1) (v*) + D* Fa (%, y2) (v").

To prove the reverse inclusion, take any uf € D*Fi(x,y))(v*) and uj €
D*F>(%, 32)(v*). Then

(@f, =), (x =%, 5 = ¥)) <0
for every x € X and y; € F;(x) withi = 1, 2. It follows that
(@], —v*,0), (x =%, y1 = J1, y2 = 32)) <0
and
(7,0, —v"), (x — %, y1 — J1, y2 — 32)) < 0.
Adding these inequalities side-by-side yields
(@*, —v*, —v"), (c =%, y1 = J1, 32— 72)) <0

forevery x € X and y; € Fi(x) withi = 1,2, where u* := u + u}. Hence one gets
the inclusion (9), which clearly implies that

(u*, —v*) € N((, y); gph(F1 + F)).

Hence (8) is valid, and thus we have verified the claimed sum rule. O

Let f: X — R = (—o00, 00] be an extended-real-valued function. Recall that the
epigraph and the effective domain of f are given, respectively, by

epi(f) :=={(x,0) e X xR | f(x) < a}
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and dom(f) :={x € X | f(x) < oo}.

Definition 3.3 Let f: X — R be an extended-real-valued function.

(a) f is said to be convex if epi(f) is a convex setin X x R.

(b) f is said to be polyhedral convex if epi(f) is a polyhedral convex set in X x R.

(c) fissaidtobe generalized polyhedral convex if epi( f) is a generalized polyhedral
convex setin X x R.

If f is convex, then the subdifferential 9 f (x) of f at x € dom(f) is defined by
setting

0f () = [x* € X* | (x*,x — %) < f(x) — f(X) forall x € X}
= {x* e X*| (x*, —1) € N((X, f(X)); epi(f)}.

Theorem 3.2 allows us to obtain the next subdifferential sum rule for polyhedral
convex functions and generalized polyhedral convex functions.

Corollary 3.1 Let fi, f»: X — R be two extended-real-valued functions. Suppose
that f\ is a polyhedral convex function and f> is a generalized polyhedral convex
function. Then

a(f1 + [2)(x) =3 f1(x) + 3 f2(x) forevery x € dom(f1) N dom(f2).
Proof Fix any x € dom( f1) N dom(f3). Let F;(x) := [ f;j(x), oo) for all x € X and

get gph(F;) = epi(f;) fori = 1, 2. Thus, Fj is a polyhedral convex multifunction
and F> is a generalized polyhedral convex multifunction. In addition,

D*F;(x, fi(X))(1) = 8 fi(¥) for i =1,2.

Lety := f1(x) 4+ f2(x). Then S(x, y) = {(f1 (x), fz(i))}, where S(x, y) is defined
in (7). Applying Theorem 3.2 gives

A(f1 + f)(X) = D*(F1 + F2)(x, ) (1)
= D*Fi(x, fi() (1) + D*Fa(x, f2(3) (1)
=0 f1(x) + 9 f2(X).

This completes the proof. O

Consider the composition of two mappings F: X = Yand G: Y = Z.Itfollows
from the definition that G o F is convex provided that both F and G have this property.
Given z € (G o F)(x), we consider the set

M@E.2)=F®NG Q. (10)

The following theorem establishes the coderivative chain rule for multifunctions.
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Theorem3.3 Let F: X = Y and G: Y = Z be multifunctions. Suppose that F is
a polyhedral multifunction and G is a generalized polyhedral multifunction or vice
versa. Then for any (x,7) € gph(Go F) and w* € Z* we have the coderivative chain
rule

D*(G o F)(X,2)(w*) = D*F(X,y) o D*G (¥, 2)(w™) arn

whenever 'y € M(x, 7).

Proof Picking u* € D*(G o F)(x,z)(w*) and y € M(x, z) gives us the inclusion
(u*, —w*) € N((x, 2); gph(G o F)), which means that

(u*,x —x) —(w*,z—2) <0 forall (x,z) € gph(G o F). (12)
Define two convex subsets of X x ¥ x Z by
Q= (gph(F)) x Z and Q2 := X x ( gphG).
We can directly deduce from (12) and the definitions that
w*, 0, —w*) € N((X,y,2); 21 N Q). (13)
Applying Theorem 3.1 together with the conditions made on F} and F; tells us that
@*, 0, —w*) € N((¥,y,2); Q1 N Q) = N((X, ,2); 1) + N((¥, ¥, 2); Q)(14)
and thus there exists a vector v* € Y* such that we have the representation
@*, 0, —w*) = (", —v*, 0) + (0, v*, —w™) (15)

with (u*, —v*) € N((x, y); gph(F)) and (v*, —w™*) € N((¥, 2); gphG). This shows
by the coderivative definition in (5) that

u* € D*F(x,y)(v™) and v* € D*G(y,2)(w™), (16)

and so we get the inclusion “C" in (11). The reverse inclusion can be proved as follows.
Givenany u* € D*F (x, y)oD*G (7, Z)(w™), one can find some v* € Y* such that (16)
holds. Then (15) is fulfilled and, moreover, one has (u*, —v*,0) € N((x, ¥, 2); 21)
and (0, v*, —w™) € N((x, y, 2); 7). Since the inclusion

N((x,y,2); €21 + N((x,y,2); $22) C N((X, y,2); 1 N§2)

is valid whenever F' and G are merely convex multifunctions, one gets (13), which
implies (12). Hence, u* € D*(G o F)(x, 7)(w™). The proof is complete. O

The next rule for computing subdifferentials of the composition of a polyhedral
convex function and an affine mapping is a corollary of the preceding theorem.
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Corollary 3.2 Let B: X — Y be an affine mapping given by
Bx):=AXx)+b for x € X,

where A: X — Y is a continuous linear mapping and b € Y. If f: Y — Risa
polyhedral convex function, then

A(f o B)(x) = A" f())) forall X € dom(f o B), (17)
where y = B(X).
Proof Let F(x) := {B(x)} for x € X and let G(y) := [ f(y), 00) for y € Y. Then
(G o F)(x) =[(f o B)(x),00) forall x € X. (18)

By our assumptions, F : X = Y is a generalized polyhedral multifunction and
G : Y = Ris a polyhedral multifunction. Applying the coderivative chain rule from
Theorem 3.3, we can get the desired result. Indeed, take any x € dom(f o B) and put
= B(¥),Z = f(¥).Then (¥,Z) € gph(GoF)andy € M(¥,%2) = F(X)NG~'(2).
Therefore, by (11) we have

D*(G o F)(F.2)(~1) = D*F(¥.5) 0 D*G(3.D)(~1)
= D*F(%,7) (0f())
= A*(3f ().

which together with (18) implies the equality in (17). O

Let F: X = Y be a multifunction and let ® C Y be a given set. The preimage or
inverse image of ® under the mapping F is defined by

F'@) ={xeX|Fx)no 4}

The theorem below gives us a formula to compute the normal cone to F~!(®) at a
point of interest via the normal cone to ® and the coderivative of F at certain points.

Theorem 3.4 Let F: X = Y be a multifunction and let ® C Y. Suppose that F is
a polyhedral convex multifunction and © is a generalized polyhedral convex set, or
F is a generalized polyhedral convex multifunction and ® is a polyhedral convex set.
Then for any X € F~1(®) and y € F(X) N © we have the representation

N(E: F1(©)) = D*F(%.5)(N(G: ©)). (19)

Proof Similarly asin Example 3.1, let us consider the indicator mappings Ag: ¥ = Y
and Ap-1g): X = Y. Note that

Ap10)(®) = (Mg o F)(x) forall x € X. (20)
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Then the representation (19) can be obtained by using Example 3.1 and Theorem 3.3
with G := Ag. Indeed, given any x € F~1(®) and ye F(x)NB,wesetz =0¢€Y.
It can be easily verified that (x,7) € gph(G o F) and y € M(X, 7), where the last
set is defined by (10). By our assumptions, F is a polyhedral convex multifunction
and G is a generalized polyhedral convex multifunction or vice versa. So, fixing any
w* € Y*, by Theorem 3.3 and formula (6) we can infer that

D*(G o F)(%,%)(w*) = D*F(%, 5) o D*G(J, Z)(w*)
= D*F(X, H)(N(; ©)).

Since the relation D*(G o F)(x, 2)(w*) = D* (AFq(@)) (x, 2)(w*) is valid by (20),
this together with (6) establishes (19). O

Next, consider a function f: X — R and define the sublevel sets
L, ::{xeX|f(x)§y}, y € R.
Our goal is to establish a formula for the normal cone to the sublevel sets associated

with a generalized polyhedral convex function. To continue, for x € dom(f) we use
the following notation

rAdf(x) if x>0,

+OIS(X) = !aOOf(JE) if 1 = 0.

Here 9 f (x) denotes the singular subdifferential of f at X defined by
ICf(X) = {x" e X* | (x*,0) € N((X, f(X)); epi(f)}.

It follows from the definition that for the epigraphical mapping Es: X — R given by
Ef(x) :=[f(x),00) forall x € X we have

D*E;(%, f(X))(A) = 2O f(¥) forall ¥ € dom(f), A > 0. 1)

Corollary 3.3 Let f: X — R be a generalized polyhedral convex function with X €
dom(f) and f(x) = y. Then

N@E L) = Jroof®.

A>0
Proof Let ® := (—oo,y] and F(x) := Ey(x) for x € X. Then one has £, =

F~1(®). Since gph(F) = epi(f), we see that F is a generalized convex polyhedral
multifunction. In addition, ® is a polyhedral convex set. Observe also that

N(f(x); ®) = N(y; (=00, y]) = [0, 00).
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Therefore, by Theorem 3.4 and (21) we have

N(%; L)) = N (¥; F71(®)) = D*F(%, f(X)(N(5; ©))
= U D*F(x, f(X)(X)

2>0
= Ur0df@),
20

which completes the proof of the corollary. O

In a more general setting, consider m functions f;: X — R together with y; € R
fori =1,...,m.Lety := (y1,..., ¥Yn) and define

L, = {xeX|fl~(x)§)/,' foralli:l,...,m}.

Let/ :={l,...,m}. Givenx € [ dom(f;), define

iel
@) :={iell| fix)=n}

The next theorem extends the result in Corollary 3.3 to the case where the functions
involved are continuous.

Theorem3.5 Let fi: X — Rfori = 1,...,m, and lety = (y1,...,¥m) € R",
m > 2. Suppose that among fi, i = 1,...,m, there are at least m — 1 polyhedral
convex functions and the remaining one is generalized polyhedral convex. Then for
any x € L, we have

N(; L)) = {Ziem M OIfE) | A =0 forallie 1(;)}

_ (22)
+ 2 g1 N(x; dom(fy)).

Proof Consider the multifunction F: X = R™ given by
F(x) == [fi1(x),00) x - x [fn(x),00), x € X.

It can be shown that F is a generalized polyhedral convex multifunction. Consider the
set ® := (—o00, y1] X - -+ X (—00, ¥, ] and observe that ® is a polyhedral convex set
inR™. Clearly, £, = F~1(0).

Define the following subsets of X x R™:

Q= {0, A1, Am) | A1 = i)} = epi(f1) x R™7,
Qo :={(x, A1, ... Am) [ 22 = fa(0)},

Qp ={C, A, Aw) | A = fin(0)).

By our assumptions, among these sets there are atleast m — 1 polyhedral convex sets and

the remaining one is a generalized polyhedral convex. Note also that gph(F) = () ;.
iel
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By induction, from the last equality and Theorem 3.1 we have

N((E A1) fn®): eph(F) = DN ((E A, S (): ).

iel

Thus, by the special construction of 2;, i € I, one has
O, =hts ooy =) € N(G fi@), ..o, fu(3)); gph(F))
if and only if there exists x; fori =1, ..., m such that
(', —hi) € N((X, fi(X)); epi(f)

foreachi € I and x* =} x7. It follows that
iel

D*F(x, fi(X), ..., ()1, ..., ) = Z)\i ©afi(x), (23)

iel
provided that A; > O for all i € 1. We also see that
N((f1(x), ..., fm(x)); ®) = {(M, ...,Am)|ki >0Viel, A =0ifi ¢ I()E)}.
By Theorem 3.4 we have

N(%; L£,) = N(; F1(©))
=D*F(x, fi(®), ..., fuCN(N(f1(X), ..., fu(X)); ©)).

Therefore, taking into account that 3% f; (x) = N(x; dom(f;)) foreveryi € I, we
can obtain (22) from (23). O

The following corollary provides a simplified version of (22) in the case where f; is
continuous at x for every i € .

Corollary 3.4 Under the assumptions of Theorem 3.5, assume in addition that all the
functions f; fori € I are continuous at X € L. Then we have

NG L)) = Z )Liaf(i)|A520 forall i € I(x) ¢ . (24)
i€l (%)
Proof Foreachi € I, since f; is continuous at X, we have X € int( dom(f;)). Thus,
3% f;(X) = N(x; dom(f;)) = {0}.
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Moreover, as 9 f; (x) # ¢ by the continuity of f;, we see that
Ai © 0 fi(x) = ;0 fi (X)

whenever A; > 0. Therefore, the equality (24) follows directly from (22). O

4 Generalized Differentiation for Optimal Value Functions

In this section we consider the optimal value/marginal function given by
px) =inf {p(x, y) | y € F(x)} (25)

forallx € X,where F: X = Y isamultifunctionand¢: X xY — Ris an extended-
real-valued function. For simplicity of the presentation, we assume that @ (x) > —oo
for all x € X.

Theorem 4.1 Let pu be an optimal value function of the form (25). Suppose that ¢ is a
polyhedral convex function and F is a generalized polyhedral convex multifunction, or
@ is a generalized polyhedral convex function and F is a polyhedral convex multifunc-
tion. For any x € dom(u), consider the solution set S(X) = {)7 e F(x) | nx) =
o, )7)}. If S(X) is nonempty, then for any y € S(x) we have

Iu(E) = U [u+ D*F (X, ) ()] (26)
(u,v)€d9(x,y)

Proof The inclusion “>” in (26) holds when ¢ is merely a convex function and F is
merely a convex multifunction. Indeed, given w* from the right-hand side of (26), we
can find (u, v) € d¢(x, y) such that w* —u € D*F(x, y)(v). Hence, (w* —u, —v) €
N((x,y); gph(F)). It follows that

((U)* — U, —v)v (-x - )E’ y - 5’)) < V(-x’ Y) € gph(F)
Then we have
(w*, x = %) < ((u,v), (x,y) — (£, 3) < o, y) — o, )

forany x € X and y € F(x). Taking the infimum of the right-hand side of the
inequality (w*, x — x) < ¢(x, y) — ¢(x, ) and using the condition y € S(x) yield

(w*, x — X) < p(x) —pE) VYxeX.
This means that w* € du(x).
Let us verify the inclusion “C" in (26) under the assumptions that ¢ is a polyhedral

convex function and F is a generalized polyhedral convex multifunction. Pick an
element y € S(x) and let w* € 9 (x) be given arbitrarily. For any x € X, we have
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(w*, x —X) < pu(x) —pn(x) = pnx) —ex,y)
<ox,y) — e, y)

for all y € F(x). This implies that, whenever (x, y) € X x Y, the next inequality
holds:

(W', x = %)+ (0,y = 3) < [p(x, ) +8((x, y): gph(F))] — [(X, §) + 8((F, ); gph(F))].

Hence, considering the function f(x, y) := ¢(x, y) +§((x, y); gph(F)) for (x, y) €
X xY,wehave (w*,0) € 3 f(x, y).Letting h(x, y) := §((x, y); gph(F))for(x,y) €
X x Y, we see that

epi(h) = gph(F) x [0, 00)

is a generalized polyhedral convex set. Since ¢ is a polyhedral convex function, by
the subdifferential sum rule in Theorem 3.1 one has

(w*,0) € df(x,y) = dp(x, §) + dh(x, §) = dp(X, y) + N((?Z, »); gph(F)).
This shows that (w*, 0) = (u}, v]) + (43, v3) for some (u], v{) € dp(x, y) and
(u3,v3) € N((X, 3); gph(F)).

It follows that v = —vf; hence (1}, —v}) € N((X,y); gph(F)). Thus, we get
us € D*F(x, y)(v]) and therefore

w* =uj +u5 € ui + D*F(x, y)(v]).

So, the inclusion “C" in (26) is valid.
The verification of the inclusion “C" in (26) under the assumptions that ¢ is a
generalized polyhedral convex function and F is a polyhedral convex multifunction
can be done in the same way. Namely, in the above notations, it suffices no note that
epi(h) is a polyhedral convex set. As ¢ is a generalized polyhedral convex function,
we can apply the subdifferential sum rule in Theorem 3.1 to get the desired result.
The proof of the theorem is completed. O

From Theorem 4.1 we get the following useful chain rule for convex compositions.
Corollary 4.1 Let f: X — R be a real-valued convex function and ¢: R — R be a
nondecreasing convex function. Take x € X and let y = f(x) € dom(¢). If f isa

generalized polyhedral convex function and ¢ is a polyhedral convex function or vice
versa, then

WpoNH® = |J ro0f®. 27)

r€39(5)
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If we assume in addition that f is continuous at X, then

WpoH® = |J 2f®. (28)

r€39(Y)

Proof Clearly, the composition ¢ o f is a convex function. Let ¢(x, y) := ¢(y) for
(x,y) € X x Rand F(x) := [f(x),00) for x € X. Since ¢ is nondecreasing, one
has

o = inf = inf )
(@o fHx) yelrpl(x)fb(y) yelg(x)w(x,y)

Hence we can let ¢ o f play the role of the optimal value function p in Theorem 4.1. As
f is a generalized polyhedral convex function and ¢ is a polyhedral convex function
or vice versa, by Theorem 4.1 we have

dpo HX) = |J DFE HO.

r€09(y)

Taking again into account that ¢ is nondecreasing yields A > 0 for every A € d¢ (y).
It follows that

dpoN@= |J DFEHM= | r00r@,

r€3P(Y) r€39(Y)

which implies (27).
The simplified version (28) under the continuity of f at x follows from the obser-
vation in the proof of Corollary 3.4. O

5 Concluding Remarks

In the first main part of the paper, we provided a full answer to an open question raised
by Mordukhovich and Nam in [10, Exercise 3.118]. Our answer clarifies that the
necessary and sufficient conditions for the separation of a convex set and a polyhedral
convex set obtained by Ng and Song in [12, Theorem 3.1] are no longer valid when
considering generalized polyhedral convex sets instead of polyhedral convex sets.

In the second main part of the paper, we developed new calculus rules of generalized
differentiation for polyhedral convex and generalized polyhedral multifunctions with
specifications for nonsmooth functions. In this setting, the qualification conditions via
the notion of quasi-relative interior introduced by Borwein and Lewis [3] are no longer
needed as shown by the related results in [10] for operations on convex multifunction
and polyhedral convex multifunctions.

In our future work, we plan to explore the role of relative interior and generalized
relative interiors (see [2, 5, 6, 11, 19]) including the quasi-relative interior in developing
convex generalized differentiation which aims to unify convex analysis in finite and
infinite dimensions.
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