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Abstract 16 

Polyelectrolyte complexes (PECs) are currently of great interest due to their applications towards 17 

developing new adaptive materials and their relevance in membrane-less organelles. These com-18 

plexes emerge during phase separation when oppositely charged polymers are mixed in aqueous 19 

media. Peptide-based PECs are particularly useful towards developing new drug delivery methods 20 

due to their inherent biocompatibility. The underlying peptide sequence can be tuned to optimize 21 

specific material properties of the complex, such as interfacial tension and viscosity. Given their 22 

applicability, it would be advantageous to understand the underlying sequence-dependent phase 23 

behavior of oppositely charged peptides. Here, we report microsecond molecular dynamic simu-24 

lations to characterize the effect of hydrophobicity on the sequence-dependent peptide confor-25 

mation for model polypeptide sequences that were previously reported by Tabandeh et al. These 26 

sequences are designed with alternating chirality of the peptide backbone. We present microsecond 27 

simulations of six oppositely charged peptide pairs, characterizing the sequence-dependent effect 28 

on peptide size, degree of hydrogen bonding, secondary structure, and conformation. This analysis 29 

recapitulates sensible trends in peptide conformation and degree of hydrogen bonding, consistent 30 

with experimentally reported results. Ramachandran plots reveal that backbone conformation at 31 

the single amino acid level is highly influenced by the neighboring sequence in the chain. These 32 
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results give insight into how subtle changes in hydrophobic side chain size and chirality influence 1 

the strength of hydrogen bonding between the chains and, ultimately, the secondary structure. Fur-2 

thermore, principal component analysis reveals that the minimum energy structures may be subtly 3 

modulated by the underlying sequence. 4 

 5 

INTRODUCTION 6 

 Polyelectrolyte Complexes (PECs) are a new class of tunable materials that are formed 7 

from the complexation of oppositely charged polyelectrolytes in aqueous media. When combined, 8 

the oppositely charged polymers can interact to form polymer-rich droplets, which can eventually 9 

merge to form a distinct phase of either liquid-like or solid-like character1. Recently, there has 10 

been a strong interest in understanding the dynamics and rheology of PECs due to their ability to 11 

self-assemble and respond to external stimuli. The mechanical properties of the formed PECs are 12 

defined by a complex combination of external and internal factors, such as the solution pH, tem-13 

perature, ionic strength, charge density, and molecular weight of the interacting polymers2. Gen-14 

erally, the ideal conditions for complexation are based on maximizing the number of interaction 15 

opportunities between the oppositely charged polymers. For example, this could mean maximizing 16 

the electrostatic interactions by mixing equal parts of oppositely charged polymers in a solution 17 

containing no external ions and at a pH that allows the charged groups to be fully ionized2d, 3. 18 

Additionally, shorter-range forces such as hydrogen bonds are another means of interaction1b, d. 19 

These factors, which affect how the polymers interact, can be used to guide the behavior of PECs 20 

towards functional properties. 21 

 Complexes with liquid-like properties are referred to as liquid coacervates and are currently 22 

being extensively studied due to their low interfacial tension with water, which can be applied to 23 

the design of effective drug delivery vehicles4 and new biocompatible materials5. Further, the pro-24 

cess behind the formation of liquid coacervates is currently being applied to explain the function 25 

and behavior of membrane-less organelles in cellular biology6. Complexes with solid-like proper-26 

ties are often referred to as solid precipitates and, unlike liquid coacervates, they are not as well 27 

studied due to their brittle nature, making them difficult to work with. The formation of solid-like 28 

complexes usually arises due to strong interactions between the oppositely charged polymers, 29 
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which limits the mobility of the constituent polymers and excludes more water than liquid coacer-1 

vates. Currently, there is an intense interest in understanding the phase behavior of polyelectrolyte 2 

complexes to link the primary sequences with macroscopic properties. Peptide-based PECs are a 3 

unique option to characterize the relationship between polymer structure and PEC properties, given 4 

the ability to design specifically patterned sequences. Further, the chirality of the individual amino 5 

acids is another method of guiding the phase behavior of the formed PEC1b, 2a. Studies have shown 6 

that alternating chirality along a peptide can help to disrupt backbone hydrogen bonds, limiting 7 

the interaction between the constituent peptides in the PEC and allowing the PEC to take on a more 8 

liquid-like behavior1b, 7.  9 

The properties of peptide-based PECs can also be modified by the incorporation of hydro-10 

phobic residues. Tabandeh et al8 directly examined the effect of hydrophobicity on polyelectrolyte 11 

complexation by characterizing the stability of six peptide-based polyelectrolyte complexes. These 12 

six systems consisted of anionic polyglutamate and cationic polylysine, where the constituent pep-13 

tides are intervened by either glycine, alanine, or leucine and the adjacent residues are of opposite 14 

chirality. When unmixed, these polyelectrolytes are all soluble in water and buffered solutions (at 15 

pH 7 it is assumed that the polypeptides are fully charged). Upon mixing, all six systems were 16 

observed to form a high-density phase consisting of the oppositely charged peptides where the 17 

phase-behavior of the high-density phase was observed to be correlated to the length of the variable 18 

side chain. Specifically, they found that the incorporation of longer side chains into the peptide 19 

pattern resulted in PECs that were less likely to form solid-like precipitates and concluded that the 20 

hydrophobic variable residues could discourage backbone hydrogen bonding and give rise to more 21 

liquid-like behavior (coacervate). Following their experimentally reported work, here we report 22 

microsecond all-atomistic molecular dynamic simulations to confirm the effect of hydrophobicity 23 

on complexation in the same six polyelectrolyte systems. We simulate the interaction between the 24 

oppositely charged peptides for all six systems in explicit water with no additional salt and observe 25 

spontaneous complexation in all six simulations. We characterize the extent of interaction between 26 

the peptides in terms of hydrogen bonding and find agreement with the results of the original study 27 

of Tabendeh et al. We also further characterize the underlying peptide chain conformations using 28 

principal component analysis in the coacervate phase. We show that the minimum energy structure 29 

is modulated by the underlying sequence. These methods show a high potential to screen peptide 30 
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conformation of intrinsically disordered peptides that form a high-density liquid phase in the 1 

phase-separated state. 2 

The polyelectrolyte community has a long history of investigating how sequence affects 3 

the macroscopic phase behavior of these PECs. Models to describe the LLPS of intrinsically dis-4 

ordered peptides have strong underpinnings in polymer solution theory9. The phase behavior of 5 

complex coacervates that are driven by oppositely charged macromolecules can be predicted with 6 

classic Voorn-Overbeek theory10, polymer field theories that include fluctuations such as the Ran-7 

dom Phase Approximation (RPA)11, self-consistent field theory (SCFT)12, and polymer reference 8 

interaction site model (PRISM)13 as thoroughly reviewed by Sing et al.14 Coarse-grained models 9 

such as the Restricted Primitive Model (RPM) represent the charged groups as hard spheres with 10 

explicit electrostatics have shown that shifting charge spacing can modulate the phase diagram15.  11 

Indeed, these models predict design rules for the critical point and critical density of these mixtures 12 

dependent on the degree and patterning of the hydrophobicity of these peptides16. While these 13 

theoretical tools describe the phase behavior, building atomistic detail into these models remains 14 

challenging.   15 

There is a critical need to build atomistic chemical detail into more coarse-grained models 16 

and force fields. Sequence-specific models have demonstrated the potential of theoretical ap-17 

proaches to predict qualitative changes in the phase behavior based on specific amino acid resi-18 

dues17. Molecularly specific coarse-grained models such as the MARTINI model, specifically 19 

MARTINI 318, have also demonstrated that lower resolution models can predict/describe salt-de-20 

pendent phase behavior for oppositely charged polypeptides. The potential of sequence-specific 21 

models, such as the MARTINI model, to predict LLPS for subtle differences in positioning and 22 

sequence for short peptides containing amino acids such as lysine, arginine, and tyrosine is an 23 

active area of interest.  For example, additional models for intrinsically disordered peptides include 24 

work by Mittal et al.17-19, Collepardo-Guevara et al.20, Lindorff-Larson et al.21, and more22.  While 25 

numerous coarse-grained simulations of liquid-liquid phase separation of intrinsically disordered 26 

peptides have been reported, there are comparably fewer studies of liquid phase separation with 27 

force fields that capture atomistic detail of peptides that exhibit LLPS at long time-scales19. While 28 

the role of chirality on the conformation of individual peptides has proven to be a determining 29 

factor in chain secondary structure7b, 23. Here, we explore the initial stage of complexation for 30 

model peptide sequences that are oppositely charged and have alternating chirality within the chain 31 
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using long-time atomistic molecular dynamics simulations. The computational investigations re-1 

ported herein set the groundwork for further computational studies to explore the complex inter-2 

play between chirality and chain structure and how this is modulated by specific and directional 3 

interactions with neighboring chains for these model peptides that form condensates. 4 

 5 

  6 

METHODS 7 

Here, we report on all atomistic molecular dynamics simulations of the same six polyelec-8 

trolyte systems experimentally characterized by Tabandeh et al. These six model systems are built 9 

from twelve different peptide patterns (Fig. 1). Six of these peptide sequences correspond to the 10 

polycationic peptide (Lysine-containing) of a single system, while the other six sequences repre-11 

sent the polyanionic peptide (Glutamate-containing) of a single system. The hydrophobicity of a 12 

given peptide is modulated by one of three possible residues (Glycine, Alanine, and Leucine). 13 

Figure 1. Schematic representation of the twelve peptide patterns. A single peptide system includes a combination of a pos-
itively (Lysine containing) and a negatively charged (Glutamate containing) peptide sequence. The top two models represent 
the first-generation pattern (equal charge density) while the bottom two models represent the second-generation pattern (dou-
ble charge density). The X represents a variable residue which can be either Glycine, Alanine or Leucine. Oppositely charged 
peptides within a given system contain the same variable residue. The !D"#character indicates that the labeled residue is of D-
chirality. All peptides are of alternating chirality, beginning with a D-chiral charged residue (DLYS or DGLU) and contain 
30 residues (D-chiral, L-chiral)15. 
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Three of the six peptide patterns for a given charge have a 1:1 ratio of charged residues to neutral 1 

residues, where the peptide alternates between charged and uncharged residues. The other three 2 

peptide patterns for a given charge have a 2:1 ratio of charged residues to neutral residues, where 3 

the peptide alternates between two charged residues and one neutral residue. These two groups of 4 

systems containing either single or double charge density are referred to as “first generation” and 5 

“second generation,” respectively. All twelve peptide sequences contain 30 residues and are of 6 

alternating chirality, where the first residue is D-chiral as shown in Table S1.  7 

 8 

SIMULATION DETAILS 9 

Singly Paired Peptide Systems 10 

 The initial coordinate files for all six peptide systems were built using the Discovery Studio 11 

Visualization tool24, where the oppositely charged peptides of a single system are fully extended 12 

and positioned perpendicular to each other. These initial coordinates were solvated in an ion-free 13 

water box and prepared as an NPT ensemble for simulations using AMBER1825 using CHARMM-14 

GUI26. Approximately 80,000 water molecules are needed to effectively solvate all six peptide 15 

structures. The six systems used the CHARMM36m27 force field for peptides with the TIP3P water 16 

model. The CHARMM36m force field includes parameters for D-chiral amino acids. These solv-17 

ated systems were minimized using the Steepest descent algorithm for 2500 steps followed by the 18 

conjugate gradient algorithm for an additional 2500 steps with a positional harmonic constraint 19 

applied to the peptides, as implemented in AMBER18. Subsequently, the systems were equili-20 

brated in a two-step process while employing cartesian harmonic restraints on the peptide to pre-21 

serve the orientation of the oppositely charged peptides for the production runs. The first equili-22 

bration step consisted of heating the entire system to a target temperature of 303.15 K from an 23 

initial temperature of 0 K over 1.0 ns. The second step employs constant pressure dynamics using 24 

an average pressure of 1.0 atm over 4.0 ns.  Hydrogen bonds were constrained using the SHAKE 25 

algorithm28. After equilibration, positional restraints were removed from the peptides and the sys-26 

tems were simulated for 0.2 μs. The collapsed conformations of the second-generation peptides 27 

were collected and resolvated to reduce the amount of water in the box for the remaining 0.8 μs. 28 

The temperature and pressure were controlled using the Langevin piston Nosé-Hoover method29 29 

with a damping coefficient of 1.0 ps-1 and the MC barostat with a target external pressure of 1.0 30 
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atm. Electrostatics were handled using the Particle Mesh Ewald (PME)30 method with a cut-off of 1 

12 Å. These systems were simulated on local machines using 4 CPUs and 4 GPUs, achieving an 2 

average performance of 26 ns/days for the initial 0.2 μs while the remaining 0.8 μs achieved an 3 

average performance of approximately 200 ns/day. Trajectory sampling was done at every 106 4 

steps (2*106 ps), resulting in 500 total snapshots representing 1 μs. Analyses were done on the later 5 

0.8 μs portion. System sizes and simulation parameters are summarized in Tables S1 and S2 in 6 

the supplementary information.  7 

 8 

Droplet Systems 9 

 Collecting the final collapsed structures of the positively and negatively charged strands 10 

from each of the six singly paired simulations, six new droplet configurations were constructed by 11 

randomly distributing these collapsed strands within a 189 Å3 box using Packmol31. For each con-12 

figuration, twenty positively and twenty negatively charged strands were placed within a single 13 

box to produce six independent systems, each containing forty charged peptides in total (~10mM). 14 

The TIP3P water model and CHARMM36m force field were used27. To prepare these configura-15 

tions for simulations using GROMACS32, solvation and parameterization were done using the web 16 

tool, CHARMM-GUI26, 33. Approximately 210,000 water molecules are needed to solvate these 17 

droplet systems. All six systems were minimized for 5,000 steps using the steepest descent algo-18 

rithm, as implemented in GROMACS34, with a force tolerance of 1000 kJ mol-1 nm. During mini-19 

mization, hydrogen bonds were constrained using the LINCS algorithm35. After minimization, the 20 

systems were subjected to a one-step equilibration process which consisted of heating the systems 21 

to the target temperature of 303.15 K from an initial temperature of 0 K over 1.25 ps using an NVT 22 

ensemble with the Nose-Hoover Thermostat36. After confirming that the systems were both ther-23 

mally and energetically stable, the systems were simulated for 1.0 μs. Here, the Parrinello-Rahman 24 

barostat37, with a pressure coupling time constant of 5.0 ps, is used to maintain constant pressure 25 

during the simulation. The Particle Mesh Ewald (PME)30 method was used to handle electrostatics 26 

with a cut-off of 12.0 Å. Trajectory sampling was done at every 105 steps (2*105 ps), resulting in 27 

5000 total snapshots representing 1 μs. Analyses were done on the later 0.6 μs portion. A summary 28 

of these simulation parameters can be found in Tables S1 and S3 in the supplementary information. 29 

 30 

ANALYSIS  31 
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Here we calculate various structural properties of the peptide chains.  The radius of gyration 1 

for a peptide is defined as the distribution of its mass around its axis of rotation and is computed 2 

as the root mean square distance of each atom from the center of mass of the peptide. Radius of 3 

Gyration, Rg , such	that	𝑅!" = ( ∑
#$%

&
𝑚#(𝑟

⃗
# − 𝑟

⃗
()")/( ∑

#$%

&
𝑚#), values for an individual peptide are cal-4 

culated for each frame of the trajectories.  Here, mi and ri and rc represent the mass of the ith atom, 5 

the position of the ith atom and the position of the center of mass of the peptide, respectively. 6 

Backbone hydrogen bonds are determined using the “hbonds” command from the Cpptraj pack-7 

age. Specifying a cutoff distance and angle, a hydrogen bond is determined to have occurred be-8 

tween an acceptor atom (F, O, and N atoms) and a donor atom (a hydrogen bonded to either F, O, 9 

and N atoms) if their distance and angle fall within 3.0 Å and 45°, respectively. Hydrogen bonds 10 

formed between the backbone atoms of the same peptide are categorized as intramolecular, while 11 

hydrogen bonds formed between the backbone atoms of separate peptides are characterized as 12 

intermolecular. To analyze the secondary structure content of a trajectory, a secondary structure 13 

type is assigned to each residue for each frame. These assignments were determined using the 14 

“secstruct” command from Cpptraj which uses the DSSP algorithm of Kabsch and Sander38 to 15 

assign one of eight possible secondary structure types based on the position of the backbone amide 16 

and carbonyl groups. Here, secondary structures are determined over the backbone atoms of all 17 

residues. Principal component analysis (PCA) is a popular dimensionality reduction technique that 18 

can be used to both study and visualize a high-dimensional dataset. The goal of this technique is 19 

to find the best subspace representation for a set of datapoints. PCA calculations are further de-20 

scribed in the supporting information. Highly populated regions of PCA space are believed to 21 

represent low-energy backbone conformations. These low energy conformations are then com-22 

pared between the six different systems. Backbone ϕ and ψ angles of the peptides are calculated 23 

using the “multidihedral” command of the Cpptraj package from AmberTools20. The output was 24 

adjusted so that each row contained a single (ϕ,ψ) angle pair for each residue in a given frame. 25 

These values were then plotted as 2D histograms. The free energy for each bin is calculated using 26 

the same formula in PCA energy maps.  All analyses were done using a combination of tools from 27 

the Cpptraj package of AmberTools2039, VMD40 and MDAnalysis41. Plots were generated using 28 

the matplotlib python package42.   29 

 30 
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Fourier Transform Infrared Spectroscopy 1 

To experimentally measure the secondary structure of the peptide-based PECs we used 2 

attenuated total reflection Fourier transform infrared spectroscopy (ATR-FTIR) using a Perki-3 

nElmer Spectrum 100. PECS were prepared in D20, by mixing oppositely charged polypeptides at 4 

a charged monomer concentration of 100 mM and an equal charge ratio. After mixing, the PECS 5 

were centrifuged for 15 minutes at 10,000 rpm to separate the complex phase from the supernatant. 6 

Subsequently, 50 scans were run on the complex phase from 650 cm−1 to 4000 cm−1 at a resolution 7 

of 4 cm−1. An air background scan was taken before each measurement and subtracted from the 8 

final spectrum. In addition, a D20 spectrum was taken and subtracted from the PEC measurements. 9 

The amide I spectral region containing the carbonyl stretching vibration was analyzed via decon-10 

volution using the Gauss function in Origin software. Additional details are available in Tabandeh 11 

et al.8  12 

 13 

 14 

 15 

 16 

 17 

Figure 2. Snapshots of (kG)15+(eG)15 all atom system over 1 μs. The two oppositely charged peptides are shown in Van 
der Waals representation and residues are colored by identity (Lys=blues, Glu=res, Gly=yellow). Surrounding water not 
shown. 
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RESULTS AND DISCUSSION 13 

1. Simulation Overview 14 

 Exploring the role of hydrophobicity on the complexation of oppositely charged peptides, 15 

we aim to recapitulate the findings of the work done by Tabandeh et al. in the context of micro-16 

second long all-atomistic molecular dynamic simulations. To this end, we start by first simulating 17 

the same six peptide systems as just single pairs of oppositely charged peptides within a salt-free 18 

water box. In these initial simulations, we observed the development of a collapsed dimer complex 19 

evolved from the formation of salt bridges, between the lysine and glutamate residues of the op-20 

positely charged peptides, and intramolecular hydrogen bonds between the backbone atoms. This 21 

progression is showcased in Fig. 2, which displays three sequential snapshots of the p(kG)+p(eG) 22 

system over its 1 μs trajectory. Analyzing these simple systems, we found sensible trends in hy-23 

drogen bonding, radius of gyration (Rg) and secondary structure fractions which support the ex-24 

perimental findings of the original study.  25 

Extending this study, we next simulated the aggregate behavior of these peptides using 1 26 

µs simulations of six new ‘droplet’ systems, each having peptide concentrations at 10 mM (details 27 

on the preparation of these systems can be found in the methods section and in Table 1 of the 28 

supplementary information). For these new systems, we observe the immediate diffusion of the 29 

oppositely charged peptides to form a single droplet phase within the first half of the trajectory 30 

(Fig. 3). These final droplets are shown in Fig. S7. Given the trends observed for the singly paired 31 

Figure 3. Time progression of p(kKlKkL)+p(eElEeL) system over 1 μs. The charged peptides are shown in ribbon 
representation and are colored by peptide identity. 
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systems, we speculated whether the same trends would persist in the droplet systems. To test this 1 

idea, we applied the same four analyses done on the singly paired systems towards these new 2 

droplet systems to directly compare the results. The main results for both the singly paired and 3 

droplet systems are summarized and discussed in the subsequent sections. 4 

 5 

1.1. Distance Between Centers of Mass Singly Paired Peptides 6 

 To monitor this complexation process, the distance between the center of mass for each 7 

peptide is collected over time, as shown in Fig. S1. We observe that this calculated distance de-8 

creases rapidly within the first few frames but fluctuates for the remainder of the trajectory. Inter-9 

estingly, the Ala-containing peptides of the second generation showcase larger fluctuations in dis-10 

tance, producing a significantly higher average distance at around 6.5 Å (Fig. S2). This suggests 11 

that a more complex method, in addition to regular MD, may be required to relax the system. 12 

Despite this anomaly, the other five systems showcase similar average distances within 3.5 Å and 13 

4.5 Å. Overall, visual inspection of these trajectories shows that all six systems can form a stable 14 

complex early in the simulation and maintain this complex for the remainder of the trajectory. 15 

While no clear trend can be drawn from the distance between the peptide’s centers of mass, we 16 

move on to explore how the variable residue can affect the conformation of its associated peptide. 17 
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 1 

 2 

1.2. Radius of Gyration  3 

 To characterize the extent of collapse of the charged peptides within each system, we meas-4 

ure the radius of gyration (Rg) for individual peptides over time (Fig. S3, S8) and compare these 5 

values using box plots as shown in Fig. 4. The Rg of a peptide measures the distribution of atoms 6 

from its axis of rotation and enables simple quantification of the general structure of the complexed 7 

peptides where decreasing Rg values are associated with peptide collapse and greater compaction.  8 

Figure 4. Variation in calculated radius of gyration values. A. Box and whisker plots of calculated Rg for a single 
peptide within a single paired system. Systems of equal charge density are shown in shades of red while systems 
containing double charge density are shown in shades of blue. B. Variation in calculated average Rg for droplet sys-
tems. Each box plot showcases the variation in the calculated average Rg values for a single peptide type (ie. All 
positive peptides (left) or all negative peptides (right) in a single water box). Systems of equal charge density are 
shown in shades of red while systems containing double charge density are shown in shades of blue.  
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To simplify the comparison between the droplet systems, the average Rg is calculated over each of 1 

the 20 identical peptides for each droplet system to form a single time series for the positively and 2 

negatively charged peptides (Fig. S8). These averages are then organized as box plots to compare 3 

the Rg distribution between the six droplet systems (Fig. 4B) and the six single systems (Fig. 4A). 4 

Raw histograms of the Rg values are also provided in the supplementary information (Fig. S10, 5 

S11). Using this method, we first note a smaller inter-quartile range for the droplet peptides, indi-6 

cating that these peptides exhibit less conformational flexibility in a crowded environment, likely 7 

due to the combined effect of steric hindrance between neighboring peptides and the formation of 8 

salt bridges between multiple peptides. Surprisingly, the median Rg changes only slightly between 9 

the first-generation systems of the singly paired and droplet simulations. This may be an effect of 10 

averaging over identical peptides, as more extended Rg values from peptides at the surface of the 11 

droplet are offset by more collapsed Rg values from buried peptides. We next note significantly 12 

higher average Rg values for alanine and leucine-based peptides of the second-generation when 13 

compared to their first-generation counterparts (i.e., p(kX)15 vs. p(kKxKkX)5) for both the single 14 

and droplet simulations. This could be attributed to the higher charge density of the second-gener-15 

ation peptides, which may inhibit their ability to collapse on themselves due to the combined effect 16 

of mutual charge repulsion and the formation of persistent salt bridges between the separate pep-17 

tides, which imparts local rigidity43. However, the Glycine-based peptides exhibit Rg values that 18 

diverge from this expectation, producing similar Rg values between both generations in the single 19 

peptide case and significantly higher Rg values in the packed case. Given Glycine’s small size, we 20 

speculate that this residue imparts minimal obstruction to hydrogen bond formation, as well as a 21 

smaller hydrophobic tendency for the chain to collapse. 22 

Originally, we had expected that Rg would increase with the hydrophobicity and charge 23 

density of the peptide pattern to reflect the extent of hydrogen bonding. In the singly paired simu-24 

lation, the calculated Rg does not clearly reflect this specific trend, showing overlapping distribu-25 

tions which make it hard to discern a clear trend in hydrophobicity. In the droplet simulations, the 26 

Rg values are more localized around a single value but don’t reflect this trend. However, we do 27 

observe a consistent trend between the two generations where the Ala-based peptides show either 28 

low or comparable Rg values to the Leu-based peptides in both the droplet and single simulations.  29 

 30 

1.3. Backbone Hydrogen Bonding 31 
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 The main interaction stabilizing PECs is electrostatic, but it well known that secondary 1 

interactions such as backbone hydrogen bonds are important factors in determining PEC stability1b. 2 

Given the ability of peptides to form backbone hydrogen bonds, these twelve peptide patterns were 3 

originally engineered to probe the role of hydrophobicity on the final physical properties of the 4 

formed PEC, with a heavy inclination towards modulating their ability to form backbone hydrogen 5 

bonds. To study this effect, we next calculate the time-averaged hydrogen bond counts for identical 6 

peptides over all six systems (Fig. S12) and organize these results as bar plots (Fig. 5) to under-7 

stand how the variable amino acid affects the engagement of these charged peptides in backbone 8 

hydrogen bonding.  Here we observe two distinct trends with respect to the length of the variable 9 

amino acid and the charge density of the peptide. The first trend involves a clear increase in the 10 

average count of formed intramolecular hydrogen bonds with respect to the length of the variable 11 

side chain in the first generation but a decrease in the second generation (Fig. 5A, C). This trend 12 

in emphasized through hydrogen bond contact maps of the singly paired systems in Fig. S4 where 13 

higher intramolecular hydrogen bond fractions are observed for the charged strands of the first-14 

generation sequences. This could suggest that longer side chains within the first generation help to 15 

stabilize the collapsed peptide, as suggested by smaller distributions of Rg as previously shown in 16 

Fig. 3A. We see the opposite trend in the second generation where the average intramolecular 17 

hydrogen bond count seems to decrease with increasing side chain length. This may offer an ex-18 

planation to the observed shift to larger Rg values for the second-generation systems. 19 

The second trend is a clear decrease in the number of intermolecular hydrogen bonds with 20 

respect to the variable side chain length for both generations. In the singly paired systems, we find 21 

higher intermolecular hydrogen bond counts in the second-generation systems which is expected 22 

from an increased electrostatic repulsion and stretching of the chains. Surprisingly, we see that the 23 

first-generation systems show higher average intermolecular hydrogen bond counts despite the 24 

double charge density of the second-generation systems. We hypothesize that the higher charge 25 

density of these peptides decreases the overall probability of intermolecular hydrogen bonding in 26 

the droplet systems due to the possibility of identically charged peptides to neighbor each other 27 

within the local structure of the droplet, an effect absent in the singly paired chains. 28 
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 2 

 3 

 4 

 5 

 6 

 7 

1.4. Secondary Structure Propensity 8 

 9 

Figure 5. Calculated average hydrogen bond counts. A. Average intramolecular hydrogen bond counts for the singly paired sys-
tems. B. Average intermolecular hydrogen bond counts for the single paired systems. Both calculations for the singly paired sys-
tems were taken over the last 0.8 µs. C. Average intramolecular hydrogen bond counts for the droplet systems. D. Average inter-
molecular hydrogen bond counts for droplet systems. Both calculations for the droplet systems were taken over the last 0.6 µs. 
Systems containing equal charge density are colored in red while systems containing double charge density are colored in blue. 
Averages and errors were calculated using block averaging. 
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Peptides have the unique ability to form regular secondary structure motifs facilitated by 1 

backbone hydrogen bonding. The district trends found in the hydrogen bonding analyses would 2 

suggest distinct trends in secondary structures. To confirm this, we calculated the secondary struc-3 

ture fractions for each system over the equilibrated subset of the microsecond trajectory and di-4 

rectly compare these results with the FTIR results from the work of Tabandeh et al (Fig. 6). The 5 

fraction values used here are derived from the secondary structure classification of individual res-6 

idues using the DSSP algorithm38. Here, we consider the eight reported structure types in terms of 7 

three general structure type: loops, strands, and helices. The loop type incorporates random coils 8 

(“None”), “Bends” and “Turns,” representing residues not engaged in strict secondary structure 9 

patterns such as helices or β-sheets. The strand type incorporates Extended and Bridge assign-10 

ments, representing residues that are classified to be engaged in either parallel or antiparallel β-11 

sheet structures (the DSSP algorithm classifies β-sheet structures as stretched of smaller β-bridge 12 

structures). The helix type combines the “3-10”, “Alpha” and “Pi” assignments to represent resi-13 

dues engaged in 3-10 helices, α-helices, and π-helices respectively.  14 

The calculated secondary structure fractions for the single and droplet systems are shown 15 

in Fig. 6A, B. Here, we observe that the prominent secondary structure types are loop-like with 16 

minimal engagement in ordered structures (helix and strand types). Given the timescale needed to 17 

observe amyloid structure in unbiased MD simulations, this is to be expected. However, we do 18 

observe a non-negligible fraction (>10%) of residues participating in strand structures during the 19 

1 μs trajectory. While these calculated β-sheet fractions are not directly comparable with the ex-20 

perimental FTIR results, we still observe a similar trend of decreasing ordered secondary structure 21 

content with increasing variable hydrophobic residue length. In the single systems, explicit random 22 

coil fractions appear to increase with increasing hydrophobicity and charge fraction starting from 23 

p(kA)+p(eA). Similarly, we observe an increase in loop propensity with increasing peptide hydro-24 

phobicity for the droplet systems. Overall, the calculated secondary structure fractions appear to 25 

be qualitatively aligned with the FTIR results if we generalize the eight specific secondary struc-26 

ture types into just three types (i.e. Loops, Helices and Strands). 27 

 To further characterize the conformation of the peptide complexes, we next calculated the 28 

distribution of backbone dihedral angles for the individual peptides over the same equilibrated 29 

time span (0.8 μs and 0.6 μs) and plot these distributions as Ramachandran (φ/ψ) plots for com-30 

parison (Fig. 7, S5, S6, S13, and S14). These plots can be used to visualize energetically feasible 31 



17 

backbone conformations at each residue and highlight potentially constrained backbone dynamics 1 

by considering the area of disallowed regions. Here, we use these plots to compare the effect of 2 

the variable residue of the peptide backbone by considering only the torsion angles of every sixth 3 

residue along the Lysine-containing strand of a given system (Fig. 7). This set of residues corre-4 

sponds to a variable residue group neighbored by two D-chiral Lysine (k-X-k) for all twelve pat-5 

terns, resulting in 4 and 80 dihedral angle pairs for the single and droplet systems respectively. 6 

Ramachandran plots for the negatively charged strands are not shown to avoid redundancy. 7 

We first considered the effect of the variable residue on torsion angle distributions for the 8 

singly paired systems in Fig. 7A-F. Here, we observed a shift in torsion angle distributions with 9 

variable residue. In Fig. 7A, we can see that the Glycine residues take on dihedral angles at four 10 

small clusters with (φ, ψ) values falling within the expected allowed regions for glycine residues 11 

in a folded protein44. Two of these clusters are located at φ > 0 and do not correspond to regular 12 

secondary structure patterns, emphasizing the conformational flexibility of the Glycine residue. 13 

Similarly, the Ramachandran plots for Alanine and Leucine residues (Fig. 7B, C) shows only a 14 

single main large cluster within (φ, ψ) values commonly associated with distinct secondary struc-15 

ture patterns that are subtypes of beta sheets and helices44. For Alanine, its main cluster can be 16 

roughly boxed within (-180 < φ < -60) and (100 < ψ < 180). Dihedral angles falling within this 17 

box correspond to several secondary structure types: Parallel β-pleated sheet, Antiparallel β-18 

pleated sheet, Collagen and Polyproline II helices 44. Similarly, Leucine’s main cluster falls within 19 

(-180 < φ < -60) and (-90 < ψ < 25). These dihedral angles correspond to either Right-handed 3-20 

10 helices, Right-handed 𝜋 helices, and Left-handed 𝛼 helices44. Due to the largely solvent-ex-21 

posed backbones, we expect that these peptides are engaged in transient structures, explaining their 22 

apparent conformational diversity.  23 

Interestingly, the dihedral distributions are significantly different for the same residue pat-24 

tern between the two generations. For example, Fig. 7A shows the dihedral distribution of four 25 

separate Glycine residues along the chain defined by the first-generation sequence (kG)15, while 26 

Fig. 7D shows the dihedral distribution of four separate Glycine residues along the chain defined 27 

by the corresponding second-generation sequence (kKgKkG)5. Despite measuring the dihedral an-28 

gle of four separate Glycine residues, each between two D-chiral Lysine’s, these two plots show 29 

different dihedral distributions. This would suggest that the backbone conformation of a given 30 

residue is influenced by factors beyond its immediate neighboring residues. We hypothesize that 31 
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both the differences along the entire sequence of a single chain and the effect of complexation 1 

between both chains may explain the observed difference in dihedral distribution for the same 2 

three residue pattern between both generations. 3 

We next considered whether the same shifts would be observed in the droplet simulations. 4 

Due to the larger number of residues being measured and the higher sampling frequency of these 5 

simulations, the resulting plots show larger variation in torsion angle values and are not directly 6 

comparable to the singly paired case. However, we still observe a shift in torsion angle distribu-7 

tions with variable residue identity (Fig. 7G-L). Further, highly populated torsion angles in the 8 

singly paired simulations appear to be conserved in the droplet simulations but are more pro-9 

nounced for the reasons stated previously. For p(kG), we see four large clusters in each quadrant, 10 

overlapping with the clusters observed in the singly paired systems, displaying the conformational 11 

freedom of Glycine. For p(kA), heavy clusters are observed in the upper left quadrant, while the 12 

p(kL) are heavy in the lower left quadrant and upper left. For all six plots, we can see that this 13 

subset of 80 residues shows dihedral angle distributions in the upper left quadrant and the lower 14 

left quadrant, corresponding to β-sheet and right-handed helices. We note that the left-handed helix 15 

population decreases, and the right-handed helix content becomes more prevalent as the size of the 16 

hydrophobic group increases.  17 

Overall, we observe characteristic dihedral distributions between all six systems. The dif-18 

ference between the generations is more subtle. Comparison of only a specific set of residues al-19 

lows qualitative comparisons between the systems, where favorable dihedral angles appears to 20 

shift towards the right half of the Ramachandran plot with an increase in variable residue length, 21 

but does not allow us to connect secondary structure propensities of the systems. To this end, we 22 

also plot the dihedral distributions of all residues (Fig. S13 and Fig. S14). Here, we can see both 23 

the conformations of both L-chiral and D-chiral residues. Observing these characteristic differ-24 

ences in dihedral angle distributions, we go on to explore whether we could also observe these 25 

different backbone conformations of the individual peptides in each of the six droplet systems by 26 

applying Principal Component Analysis (PCA) towards the atomic coordinates of the peptide 27 

backbone. 28 
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 1 

Figure 6. Calculated secondary structure fractions. A. Secondary structure fractions over all residues within a given singly paired systems (over 
the last 0.8 µs). Secondary structure assignments were determined using the DSSP algorithm, which reports eight possible structure types. 
Here, we interpret the eight structure types in terms of three general type: loops (“None”, “Bends”, “Turns”), strands (“Extended”, “Bridge”) 
and helices (“3-10”, “Alpha”, “Pi”). B. Calculated secondary structure fractions over all residues within each droplet system (over the last 0.6 
µs). C. FTIR results of the PECs from Tabandeh et al. showing an increase in random coil structure with hydrophobicity for both first genera-
tion and second-generation sequence pairs. Also, random coil structure increases from the first generation to the second. PECs are formed at a 
concentration of 100 mM monomer charge in D20 and centrifuged to separate the complex phase from the supernatant. ATR-FTIR is performed 
on the complex phase. The amide I region from 1600-1700 cm-1 is analyzed via deconvolution to obtain the b-sheet and random coil fractions 
(f) presented in this figure.  
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 1 

 2 

Figure 7. Dihedral Angle Variation. The top six plots (A-F) showcases the dihedral angle progression for the sixth residue of 
each positively charged strand within a single paired system. The bottom six plots (G-L) showcases the dihedral angle progres-
sion for the sixth residue of all 20 positively charged strands within a single droplet system. A. p(kG), B. p(kA), C. p(kL), D. 
p(kKgKkG), E. p(kKaKkA), F. p(kKlKkL), G. p(kG), H. p(kA), I. p(kL), J. p(kKgKkG), K. p(kKaKkA), L. p(kKlKkL). For 
all peptide patterns, the 6th residue is a variable amino acid adjacent to two D-chiral lysines (DL-X-DL).  
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2.5. Principal Component Analysis 1 

 2 

PCA is a common dimensionality reduction technique used in statistics where the goal is 3 

to transform features of a dataset onto a lower dimensional space (PCA space) which captures the 4 

directions of maximum variance. The independent directions which define this lower dimensional 5 

space are referred to as “Principal Components” and they represent the directions of maximum 6 

variance within the original dataset. In the context of molecular dynamics, the coordinates of each 7 

atom in a trajectory can be projected onto this lower dimensional subspace where its principal 8 

components represent the largest uncorrelated motions of the trajectory dataset45.  Here, we use 9 

the PCA method to compress the individual peptide motions of the droplet trajectory into a series 10 

of “conformations” based on their projection onto only the first two principal components. These 11 

projections onto the calculated 2D-PCA space are then used to create contour plots colored by the 12 

calculated free energy.  Fig. 8 shows the PCA space for the positively charged strands, and Fig. 9 13 

shows the PCA space for the negatively charged strands. Each figure showcases the calculated 14 

free-energy landscape of identical peptides for each of the six systems and an example snapshot 15 

of a conformation whose projection lies in the lowest energy basin. Further details can be found in 16 

the methods section. 17 

 The six free energy landscapes contain multiple low energy basins for backbone coordi-18 

nates that cluster together in PCA space, possibly indicating multiple stable conformations of the 19 

peptide backbone. Like the dihedral distributions, the Glycine-containing peptides appear to show-20 

case higher conformation variability relative to the other systems, having coordinates that cover a 21 

larger region of PCA space. While it is difficult to make comparisons between separate PCA 22 

spaces, we can make comparisons between the conformations of the lowest energy regions. In-23 

specting these low energy conformations, we derive qualitative trends in the extent of backbone 24 

folding where the Glycine strands appear more extended while the Ala-based and Leu-based 25 

strands are more collapsed. To confirm this observation, intramolecular hydrogen bond contact 26 

maps, and average Rg are calculated over the original frames corresponding to these low energy 27 

conformations in PCA space (Fig. S15 and Fig. S16). The calculated Rg values do not follow the 28 

trend for hydrophobic side chain length. However, the second-generation Rg values indicate the 29 

chains are more extended. However, they appear to re-capture some of the same trends seen in 30 
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hydrogen bonding despite using only a fraction of the total frames. Ultimately, the derived confor-1 

mations seem to highlight the previous trends seen and emphasize the key conformations of the 2 

backbones as an effect of the sequence pattern. We plan to further explore this method in high-3 

lighting the key differences in dynamics by comparing how these coordinates cluster in higher 4 

spaces. 5 

 6 

 7 

 8 

 9 

 10 

Figure 8. PCA analysis of all 20 positively charged strands within each packed peptide systems. A. p(kG)15, B. p(kG)15, C. 
p(kL)15, D. p(kKgKkG)5, E. p(kKaKkA)5, F. p(kKlKkL)5. Example conformations were taken from the bin with the lowest 
calculated energy (highlighted with a green dot) and are shown either above or below their corresponding energy map.  
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 2 

CONCLUSION  3 

Critical barriers toward realizing the detailed sequence-specific design of peptide-based 4 

PECs includes a bottom up understanding of how the inclusion of hydrophobic side chains affects 5 

Figure 9. PCA analysis of all 20 negatively charged strands within each packed peptide systems. A. p(eG)15, B. p(eA)15 , C. 
p(eL)15, D. p(eEgEeG)5, E. p(eEaEeA)5, F. p(eElEeL)5. Example conformations were taken from the frame of the reshaped tra-
jectory corresponding to the bin with the lowest calculated energy (highlighted with a white X) and are shown either above or 
below their corresponding energy map.  
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the backbone structure and mobility of the peptides. Here we show that the size of the intercalated 1 

hydrophobic group within a peptide sequence of alternating chirality, previously observed to ex-2 

hibit liquid-liquid phase separation, can modulate not only the intermolecular hydrogen bonding 3 

between strands, but also the underlying backbone conformation for neighboring residues. Thus, 4 

the size of the hydrophobic group can influence the overall secondary structure propensity of the 5 

sequence, with larger intercalated hydrophobic sidechains favoring decreasing β-sheet content.  6 

Decreasing β-sheet content in the higher density liquid phase should increase diffusion and mod-7 

ulate the local viscoelasticity. Such studies will give critical insight into the design of new peptide 8 

biomaterials from the sequence level up that can be used for diverse applications in bio-sensing, 9 

bio-mimetic, and bio-therapeutic materials.  10 

Given the observed trends observed in only six sequences, we hypothesize that additional 11 

peptides of similar alternating structure would also showcase notable trends in Rg and secondary 12 

structure propensities. By varying charge, hydrophobicity, and ‘blockiness’ of a given peptide, 13 

we next plan to screen a set of strategically designed charged peptide sequences to characterize 14 

in more detail how neighboring amino acid sequences can shift single chain secondary structure. 15 

This approach of peptide screening has already been shown to be a viable method towards the 16 

rational design of self-assembled materials46 and the prediction of structural ensembles47. Fur-17 

ther, this method has recently gained momentum due to the combined availability of powerful 18 

computing resources and machine learning methods. Regular molecular dynamics could lead to 19 

the coacervate droplets being stuck in a metastable state. Free energy approaches could be used 20 

to further relax the conformations of the peptides in the droplet48. However, theoretical tools, 21 

such as free energy methods, to characterize the underlying molecular pathway based on peptide 22 
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chemistry can be further developed and refined. We are currently exploring the potential of ad-1 

vanced free energy methods in molecular dynamics such as metadynamics49 to describe fluctua-2 

tions in peptide density and the formation of liquid droplets on the pathway to supramolecular 3 

fibers50. Overall, the trends observed here suggest an opportunity to rationalize the behavior of 4 

charged peptides in the context of varying hydrophobicity from the sequence level up. 5 

 6 

 7 
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