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Abstract: Decoding the connectivity structure of a network of nonlinear oscillators from
measurement data is a difficult yet essential task for understanding and controlling network
functionality. Several data-driven network inference algorithms have been presented, but the
commonly considered premise of ample measurement data is often difficult to satisfy in practice.
In this paper, we propose a data-efficient network inference technique by combining correlation
statistics with the model-fitting procedure. The proposed approach can identify the network
structure reliably in the case of limited measurement data. We compare the proposed method
with existing techniques on a network of Stuart-Landau oscillators, oscillators describing
circadian gene expression, and noisy experimental data obtained from Rössler Electronic
Oscillator network.
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1. INTRODUCTION

The majority of our physiological activities are determined
not by a single component, but by the interaction of
multiple elements. For example, large networks of co-
regulated genes determine the cellular phenotype (Mar-
golin et al., 2006), or interactions between cellular oscilla-
tors in the suprachiasmatic nucleus (SCN) generate circa-
dian rhythms (Abel et al., 2016). Typically, such groups of
interacting elements are modeled using a network, where
elements form the vertices and their interactions are rep-
resented by edges. In practice, the time series data from
each node might be accessible, and a common objective is
to infer the network connectivity structure. Inferring the
connections between the nodes is critical for understanding
how the functionality of the whole system depends on its
connectivity structure and thus allows us to effectively con-
trol the network function, which has implications across
multiple disciplines (Singhal et al., 2023; Vu et al., 2023).

Owing to such practical significance, various techniques
for decoding the network connectivity structures using
measured data have been proposed. Information-theoretic
measures such as correlation, dynamic time wrapping dis-
tance, and mutual information, have been used to deter-
mine the connectivity structure (Care et al., 2019; Philips
et al., 2022; Margolin et al., 2006). From a system-theoretic
viewpoint, rigorous conditions on exact identification have
also been provided for networks of linear systems by as-
suming a fixed network topology such as tree topology
(Materassi and Innocenti, 2010). For inference of complex
large-scale networks, one common approach is to deter-
mine the connectivity structure by fitting the measured
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data to a preset dynamic model of the network (Casadiego
et al., 2017; Wang et al., 2018; Panaggio et al., 2019).
These approaches are referred to as parametric methods
and offer an interpretable quantification of connectivity
via the strength of the connection between the nodes.

Despite these advancements, two practical limitations are
often overlooked: (i) As the network size grows, so does the
amount of data required to fit the network model, which
may be unattainable in certain applications. For example,
the high dimensionality of gene transcripts often exceeds
the number of available samples (Bühlmann et al., 2014),
and long-term recordings are difficult to obtain in biologi-
cal systems due to various physiological constraints (Abel
et al., 2016) (ii) Commonly, only a subset of the nodes in
a network can be measured (Hirata and Aihara, 2010), ne-
cessitating some adjustments to the current methodologies
in order to properly recover the connectivity structure of
the observed part by capturing the influence of the unob-
served nodes on the observed network. Motivated by these
practical considerations, we first propose a data-efficient
inference technique that can infer the network connectiv-
ity more accurately than the conventional parametric ap-
proaches, given limited measured data. More specifically,
we present a two-stage network inference method in which
we use, in the first step, the sparsity assumption to elimi-
nate low-probability connections in the network and thus
reduce the effective network size, and in the second step,
we fit the measured data to the reduced network model.
Then, we modify the proposed technique to incorporate
the effects of unobserved nodes when reconstructing the
connectivity structure of a partially observable network.
We compare the proposed technique with the standard
parametric methods on a network of Stuart-Landau oscil-
lators, and oscillators describing circadian gene expression.
We also test the proposed technique on experimental data
obtained from Rössler Electronic Oscillator network.



2. THEORY AND ALGORITHM

2.1 Problem Formulation

Consider a network of N limit-cycle oscillators in which
the dynamics of each oscillator i, i = 1, . . . , N , consists of
its own dynamics and the effect due to coupling with other
oscillators, i.e.,

Ẋi(t) = fi(Xi(t)) +
N∑
j=1
j ̸=i

Kij(Xi(t), Xj(t)), (1)

where Xi(t) ∈ Rn (n ≥ 2) is the state of the oscillator i
at the time t; fi and Kij , i, j = 1, . . . , N, denote the self
dynamics of oscillator i and the coupling function between
the oscillators i and j, respectively (Kij can be different
from Kji). If there is no coupling between i and j, then
Kij and Kji are trivially zero. Given that time series data
from the measurement of the oscillators is available, the
objective is to recover the (nonzero) coupling functions
that describe the connectivity structure of the network.

2.2 2-Step network inference algorithm

One common practice to decode the network topology is
to leverage the phase-model description of the oscillator
network. For a network with sufficiently weak coupling
inputs, the evolution of each oscillator can effectively
be captured by a nonlinear 1-dimensional phase model
(Pietras and Daffertshofer, 2019), i.e.,

φ̇i(t) = ωi +

N∑
j=1
j ̸=i

αij(φj(t)− φi(t)), (2)

where φi, ωi ∈ R are the phase and natural frequency of
the oscillator i, and αij is a 2π-periodic coupling function
between the oscillators i and j. For a smooth coupling
function αij(∆φij), ∆φij = φj − φi, the function is often
represented by a truncated Fourier series

αij(∆φij) ≈ a
(0)
ij +

r∑
m=1

a
(m)
ij cos(m∆φij)+b

(m)
ij sin(m∆φij),

(3)

where {a(m)
ij } and {b(m)

ij } are the unknown coefficients,
and r is the number of Fourier terms that can be chosen
sufficiently large to accurately approximate the coupling
function. From (2) and (3), the phase dynamics of the
oscillator i can be written as

φ̇i(t) = ω̄i +
N∑
j=1
j ̸=i

r∑
m=1

a
(m)
ij cos(m∆φij) + b

(m)
ij sin(m∆φij),

(4)

where ω̄i := ωi+
∑N

j=1,j ̸=i a
(0)
ij . This Fourier representation

of coupling functions transforms the nonlinear dynamics
into a linear in parameters (LIP) form. Given time series
data of each oscillator (e.g., measured voltages) in the net-
work, the oscillator’s phase, φi(t), can be estimated using
standard phase-estimation algorithms such as peak-finding
or wavelet transform (Mitrou et al., 2017). The derivative
of the oscillator phase, φ̇i, can also be evaluated, for exam-
ple, by using forward difference approximation. Now, with

the estimated values, (4) becomes a linear equation with

unknown coefficients. The coefficients ω̄i, a
(m)
ij , and b

(m)
ij

can then be obtained by solving the least-square problem
Yi = AiZi + ϵi for each node i in the network, where
Yi ∈ RM is a vector of the estimated φ̇i at each time step,
with M being the number of steps, Ai ∈ RM×2(N−1)r+1 is
a matrix formed by the Fourier basis functions evaluated
at each sampled point, and Zi ∈ R2(N−1)r+1 is a vector

containing the unknown coefficients ω̄i, a
(m)
ij , and b

(m)
ij . The

first element of Zi denotes ω̄i, and the remaining 2(N−1)r

elements are a
(m)
ij and b

(m)
ij , respectively. The unmodeled

dynamics and measurement noise are represented by ϵi.
Once the coefficients are computed, we can readily obtain
the coupling functions, αij , i, j = 1, . . . , N , describing the
network connectivity structure.

In one form or another, the above described method serves
as the foundation for many parametric network inference
approaches. The predominant distinction between differ-
ent techniques arises from the types of models considered
(in our approach, for example, we utilize the concept of
phase models). Regardless of the considered model, as the
network size N increases, so does the number of unknowns
in the considered model, necessitating a large amount of
data to obtain a reliable inference of the model parameters.
In the case of limited data, one needs more effective and
data-efficient approaches. To this end, we propose a 2−step
method to infer the connectivity structure of the network
that enhances the parametric inference by incorporating
correlation statistics. More specifically, for each node i, we

first obtain a set of nodes, N
(i)
c , that have a high proba-

bility of forming connections (with node i) by discarding
the nodes with a low probability. We then solve the above
described least-square problem by only considering the

connections to set N
(i)
c . By doing so, we effectively reduce

the number of unknown parameters for node i and improve
the accuracy of the inferred coefficients when only limited
measurement data is available.

Step-1: We estimate the correlation between the time
series of node i and node j, j = 1, . . . , N , j ̸= i.
Let C(i) be the resulting correlation vector, i.e., C(i) =[
c(xi, x1), . . . , c(xi, xN )

]′
, where c(xi, xj) is the Pearson

correlation coefficient between xi and xj , the respective
time series. Note that if two nodes i and j are not
connected, then their respective time series data will be
uncorrelated, resulting in a smaller c(xi, xj). In light of

this, we define N
(i)
c as the set of all the nodes that

have highly correlated time series data with node i, i.e.,

N
(i)
c = {j : |c(xi, xj)| ≥ k, j ̸= i}, where k > 0 is a

user-defined threshold. If multiple time series recordings

of the network are available, the set N
(i)
c can be defined as

N
(i)
c = {j : 1

L

∑L
l=1|c(xi,l, xj,l)| ≥ k, j ̸= i}, where L is

the number of recordings, and xi,l denotes the time series
of node i in the recording l.

Using only correlation statistics, one might not be able
to distinguish between direct and indirect interactions.
For example, if there is a direct connection from, say,
node i to node j, and node j and k in the network,
then the time series data of node i and k will also be
(indirectly) correlated. As a result, N

(i)
c will contain the



Fig. 1. An illustration of the proposed 2-step network in-
ference method. (a) True network of 5 Stuart-Landau
oscillators. (b) Inferred connectivity by estimating
the correlation between the recorded time series. The
heat-map displays the estimated correlation values.
(c) Inferred connectivity via parametric methods,
where insufficiency of data leads to missed links (dot-
ted green) and falsely recovered links (dotted red). (d)
The proposed method combines correlation statistics
with parametric inference to reduce the number of
estimated parameters and result in an accurate esti-
mation of network connectivity.

nodes that are both directly and indirectly connected to
node i, as illustrated in Figure 1. For this reason, the
following additional analysis is considered to differentiate
between directly and indirectly connected nodes.

Step-2: After identifying the set of potentially connected
nodes, both directly and indirectly, to node i, we simplify
the phase dynamics of the oscillator i as

φ̇i(t) = ω̄i+
∑

j∈N(i)
c

r∑
m=1

a
(m)
ij cos(m∆φij)+b

(m)
ij sin(m∆φij).

(5)
Given the estimated phases, (5) can be formulated as a
least-square problem of Yi = AiZi + ϵi, as previously
described. It is important to note that due to step-1, the
unknown coefficient vector here has a smaller dimension,

i.e., Zi ∈ R2card(N(i)
c )r+1, where card(N

(i)
c ) < N−1 is the

cardinality of setN
(i)
c . We then impose an l1-regularization

on the least-square problem to promote sparsity in the
solution, i.e.,

Ẑi = argmin
Zi

∥Yi −AiZi∥22 + λi∥Zi∥1, (6)

where the regularization parameter λi can be estimated
using cross validation. Note that a group penalty, such
as group lasso (Yuan and Lin, 2006), can be employed in

lieu of a direct l1 penalty. However, the main objective
of this study is not to identify the optimal penalty for
network inference, but rather to combine non-parametric
network approaches with parametric techniques. Using the
estimated coefficient vector Ẑi, we compute the estimated
strength of the connection between oscillator i and other
oscillators j, i.e.,

β̂ij =


√√√√ r∑

m=1

(âmij )
2 + (b̂mij )

2 if j ∈ N (i)
c

0 otherwise

(7)

which will be used, along with some user-defined cutoff
threshold, to determine the network’s connectivity struc-
ture.

2.3 Performance Evaluation Metric

To evaluate the performance of various network inference
techniques with our proposed method, we use the area
under the receiver operating characteristic curve (ROC
curve) which plots the true positive rate (TPR) against
the false positive rate (FPR) for various classification
thresholds; that is, various cut-off values used to convert

the estimated coupling matrix [β̂ij ] into binary outputs,
i.e. the presence or absence of a link.With this metric, a
greater area under the ROC curve (AUC score) indicates
that the inference method is better at recognizing true
and false connections. TPR measures the proportion of
correctly identified connections to the number of total
connections in the true network, i.e.,

TPR =
TP

TP + FN
where TP (True Positive) is the number of correctly
identified links and FN (False Negative) is the number of
links in the true network that were missed by the inference
algorithm; whereas FPR is defined as:

FPR =
FP

FP + TN
where FP (False Positive) is the number of falsely detected
connections and TN (True Negative) is the number of cor-
rectly identified negative links. For more details, readers
are referred to (Hanley and McNeil, 1982).

3. NUMERICAL SIMULATIONS

In this section, we illustrate the effectiveness of the pro-
posed network inference approach and compare its perfor-
mance to that of other network inference techniques.

3.1 Stuart-Landau (SL) Oscillator Network

We consider a network of 100 SL oscillators, in which each
oscillator is described by

ẋi(t) = axi − ωyi − (x2
i + y2i )xi + αij

100∑
j=1

(xj − xi),

ẏi(t) = ωxi + ayi − (x2
i + y2i )yi + αij

100∑
j=1

(yj − yi),

where xi(t) and yi(t) are the states of oscillator i, i =
1, . . . , 100, and αij denotes the coupling strength if there



exists a connection between node i and j, otherwise
αij = 0. The coefficients a and ω are the amplitude and
frequency of the oscillation, respectively. For this oscillator
(Nakao, 2016), the phase of the oscillation at time t can

be calculated by φi(t) = arctan
(

yi(t)
xi(t)

)
.

Fig. 2. Connectivity inference of SL oscillator networks. (a)
Representation of a 100-node network. (b) Mean ROC
curve and AUC scores (inset) employing the proposed
approach (black), sparse regression (red), and ICON
(blue); variation in the ROC curve, over 10 different
networks, is shown using the shaded region. (c) Mean
AUC scores (where the bars denote the minimum
and maximum values) when the threshold in step-
1 is varied to retain different percentages of highly
correlated nodes for each node i.

We evaluate and compare the proposed method with
the standard sparse-regression technique and the ICON
method (Wang et al., 2018), where functional approxima-
tions along with truncated SVD were utilized to deter-
mine the network topology. Inference of network topology
could become infeasible when the network is synchronized
(Shandilya and Timme, 2011) since the observed phase
differences are constant and no longer provide additional
information. To avoid network synchronization, we gener-
ate data using 5 different initial conditions, and for each
time, we record the data for 10 cycles with a sampling rate
of 150 points per cycle.

Figure 2 compares the network inference accuracy of the
three techniques when only a small data set is available,
i.e., the measured data is not sufficient to recover the
accurate network topology with an AUC score of 1. For
this limited data set, we select the cutoff threshold for
step-1, such that 70% of the most correlated nodes are
retained for the inference in step-2. The proposed method
achieves a mean AUC score of 0.8, an improvement of
76%, compared to the other best-performing method,
which is based on enhancements above the baseline of
0.5 for random guesses. We also evaluate the effect of
varying the threshold in step-1 on the inference accuracy
of the proposed technique for different network structures.

The threshold for step-1 is selected such that the x%,
x = 10, . . . , 90, of the most highly correlated nodes, for
each node, are retained. As illustrated in Figure 2(c), the
proposed method outperforms ICON and sparse regression
algorithms for all threshold levels.

3.2 Circadian Gene Expression Network

We consider a network of 100 oscillators that has been
used to describe circadian oscillations (Leloup et al., 1999).
A 3-dimensional model describing the dynamics of each
oscillator is given by

Ṁi(t) = vsi
Kn

1

Kn
1 + Pn

ni

− vmi

Mi

Mi +Km

Ṗci(t) = ksMi − vd
Pci

kd + Pci

− k1Pci + k2Pni

Ṗni(t) = k1Pci − k2Pni ,

where Pci , Pni
, and Mi are the states of the oscillator

i, {n,K1,Km, vd, ks, kd, k1, k2} = {4, 1, 0.5, 1, 0.41, 0.13,
0.41, 0.5} are the constant parameters, and vmi

is uni-
formly distributed in [0.3655, 0.3745]. The connections of
the oscillator i with other oscillators are represented by
vsi , where vsi = 0.83 +

∑100
j=1 αij(Mj − Mi) and αij are

the strengths of the connections.

Fig. 3. Reconstruction of circadian oscillator networks.
(a) A network of 100 circadian oscillators. (b) The
Mean ROC curve with the variation, across 10 dif-
ferent networks, described by the shaded region and
the corresponding AUC scores (inset) employing the
proposed approach (black), ICON (blue), and sparse
regression (red). (c) Quality of reconstruction as a
function of the number of samples, with the bars
denoting the (min-max) range of AUC scores.

We simulate the circadian 100-oscillator network for 3
different initial conditions, each for 10 cycles, to generate
the measurement data (sampling rate: 48 points/cycle).
The phase of the recorded signal Mci , i = 1, . . . , 100, is
extracted by the wavelet transform using the open-source
Python-based Biological Oscillations Analysis Toolkit
(Schmal et al., 2022). The proposed approach, ICON,
and sparse regression are used to reconstruct the network



topology from the estimated phase data. This process is
then repeated 10 times for different network structures.
The resulting mean AUC scores along with the mean ROC
curves are displayed in Figure 3(b). In our method, the
threshold in step-1 is chosen to retain 50% of the most
correlated nodes, for each node. By focusing on inferring
the connection of the highly-correlated nodes, our results
demonstrate a 170% improvement over the other best-
performing method (sparse regression); the mean AUC
is improved from 0.6 to 0.77 (i.e., from the enhancement
of 0.1 to 0.27 above the baseline 0.5). We also evaluate
the reconstruction accuracy across the 10 networks when
different amounts of data are considered. Figure 3(c) illus-
trates that the proposed method achieves a more accurate
inference than the other methods for all sample sizes.

3.3 Experimental Data-set for a Network of Rössler
Electronic Oscillators

In experimental settings, measurement noise is an uncon-
trolled element that affects the recorded time series. To
evaluate the robustness of the proposed approach against
measurement noise, we consider the experimental time
series recordings obtained from a network of 28 Rössler
electronic oscillators. The publicly accessible data set
comprises time series recordings for 20 distinct network
topologies, and for each network configuration, time series
recordings were obtained for varying coupling strengths
between oscillators (Vera-Ávila et al., 2020).

1 5 10 15 20
0.55

0.6

0.65

0.7

0.75

0.8

0.5

0.6

0.7

0.8

0.9

(AUC)2-Step Appraoch Sparse Regression ICON

In
cr

ea
se

d 
co

up
lin

g 
st

re
ng

th

5 10 15 201 5 10 15 201 5 10 15 201

M
ea

n 
A

U
C

 s
co

re

Network index

(a)

(b)

Fig. 4. Network reconstruction using noisy experimental
data-sets. (a) Heat maps displaying estimated AUC
values for 20 different network topologies and varying
coupling strengths for each network topology. (b) The
mean AUC scores across coupling strengths for each
network topology, in the cases of the proposed method
(black), ICON (blue), and sparse regression (red).

For all 20 network topologies and associated coupling
strengths, we evaluate and compare the proposed tech-
nique with Sparse Regression and ICON. The results
are summarized in Figure 4. The proposed method out-
performs sparse regression and ICON across all network
topologies and coupling strengths, as illustrated in Fig-
ure 4(a). The mean AUC scores across different coupling
strengths for each network topology are plotted in Fig-
ure 4(b), where we observe a minimum improvement of

21% over the best-performing methods between sparse
regression and ICON; the maximum improvement is 230%.
The threshold in step-1 is chosen such that 50% of the most
correlated nodes are retained, for each node.

4. PARTIALLY OBSERVED NETWORKS

In many applications, as described in Section 1, it may be
unfeasible to record the trajectories of all the nodes due to
sensing restrictions. When only a subset of nodes can be
observed, the inference algorithm may perceive the effect
from unobserved nodes as additional connections between
the observable nodes, thus promoting the recovery of false
interactions. For this reason, it is essential to account for
the influence of the unobserved nodes when determining
the connectivity structure of a partially observed network.

In an N -node network, we define No as the set of measur-
able nodes with No < N . Then, the coupling to node i will
have two components: one due to the measurable nodes∑

j∈No αij(∆φij) and one from the unmeasurable nodes∑
j∈{1,...,N}\No αij(∆φij). In this scenario, the approach

of leveraging phase measurements to write the dynamics
of node i as a linear equation of unknown parameters
will fall short due to the lack of measurement φj when
j ∈ {1, . . . , N} \No. We handle this issue by viewing the
coupling functions to node i from the unobservable nodes
as an unknown input ui(t) and express the phase dynamics
of node i in the form of

φ̇i(t) = ωi +
∑
j∈No

αij(φj(t)− φi(t)) + ui(t). (8)

Because each coupling function is a periodic function, the
unknown input ui(t) =

∑
j∈{1,...,N}\No αij(∆φij(t)) will

be of periodic nature and can thus be captured by Fourier
series, i.e.,

ui(t) = ci0 +

ri∑
m=1

cim cos(
2πm

T
t) + dim sin(

2πm

T
t), (9)

where T is the length of the recorded time series. This
simple modification allows us to estimate the effects of the
unobserved nodes and thus account for their influences
when determining network structures.

Now, by following the ideas introduced in Section 2, we
estimate the set of highly correlated nodes to each node i,

N
o(i)
c ⊂ No, and then leverage the equations (8), (9) and

(5) to rewrite the node i dynamics as

Yi = [Ai Ai,u]

[
Zi

Zi,u

]
+ ϵi, (10)

where the matrix Ai,u contains the basis functions cor-
responding to the input ui, and the vectors Zi and Zi,u

are the unknown coefficients which indicate connections to
highly correlated nodes in N

o(i)
c and the effects of the un-

known input ui(t), respectively. We apply l1-regularization
to solve the above least-square problem and obtain the
connections among the observed nodes.

We illustrate the idea through a numerical simulation on a
network of 50 Kuramoto oscillators where the phase of os-
cillator i is described by φ̇i(t) = ωi+

∑50
j=1 αij sin(φj−φi).

The natural frequencies of the oscillators are uniformly
distributed in [3, 5], and the coupling strengths αij are



TPR: 100%   FPR: 0%(a) (b)

Fig. 5. Recovering the network connectivity when only
a subset of the nodes can be measured. (a) The
underlying network where only the nodes shown in
black (red) can be (cannot be) measured. (b) The
recovered network between the measured nodes.

normally distributed with a mean and variance of 0.04
and 0.004. For this 50-node network, we only record the
phase trajectories of 25 randomly selected oscillators and
apply the proposed framework to recover the connectivity
structure among the recorded oscillators. The underlying
network and the recovered network are shown in Figure 5.

5. CONCLUSION

In this paper, we introduced a data-efficient network re-
construction technique that combines correlation statis-
tics with parametric inference and a simple modification
of the technique to effectively incorporate the effects of
unobserved nodes in the network. The combined develop-
ment offers an effective computational framework for infer-
ence of oscillator networks, which has been demonstrated
through a wide range of examples. Networks composed of
limit-cycle oscillators are used as the mathematical setting
for our investigation; however, the presented ideas are also
applicable to networks of general nonlinear systems.
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