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Abstract. We develop a framework to design optimal entrainment signals that entrain an ensemble of het-
erogeneous nonlinear oscillators, described by phase models, at desired phases. We explicitly take
into account heterogeneity in both oscillation frequency and the type of oscillators characterized by
different Phase Response Curves. The central idea is to leverage the Fourier series representation
of periodic functions to decode a phase-selective entrainment task into a quadratic program. We
demonstrate our approach using a variety of phase models, where we entrain the oscillators into dis-
tinct phase patterns. Also, we show how the generalizability gained from our formulation enables us
to meet a wide range of design objectives and constraints, such as minimum-power, fast entrainment,
and charge-balanced controls.
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1. Introduction. One of the most pronounced attributes of the natural ecosystem is the
synchronization of physiological rhythms to daily or seasonal environmental cycles [43]. This
process of synchronizing oscillatory units to external periodic stimuli is known as entrainment
or frequency locking, which has been at the core of the sleep, temperature, and hormonal
cycles displayed by vertebrates [43, 25, 26]. Other instances of entrainment include enter-
tainment of pancreatic cells to the oscillatory blood glucose level [23], neocortical neurons
to the hippocampal theta rhythm [28], electrochemical oscillators to periodic input [18], and
environmental cycles driving plant growth [20]. Along with the entrainment, the phase at
which a system entrains with a periodic input is also of critical importance. For example,
irregularities in the circadian phase of entrainment result in delayed or advanced sleep-phase
syndromes |7, 44, 41]. For this reason, it is crucial to study entrainment and design periodic
signals that can entrain heterogeneous oscillators at desired entrainment phases.

Furthermore, in certain biological systems, specific collective behavior of the underlying
nonlinear oscillators is required to attain the appropriate functioning. For instance, synchro-
nization of cellular elements generates rhythms in nervous systems [5], and firing patterns of
neurons characterize memory formation [13]. Disruptions in the system’s natural structure
lead to pathological conditions such as Parkinson’s disease [39], epilepsy [19], and schizophre-
nia [30], in which excessive synchronization of neuronal activities can be detected. A desired
dynamical pattern in an oscillator population, such as in-phase synchronization, cluster for-
mation, or complete desynchronization, can be produced using phase-selective entrainment,
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that is, by entraining each oscillator at a specific phase. For example, all the oscillators in an
ensemble can be synchronized by entraining them at identical phases.

The computational and theoretical challenges in using the full state-space models for con-
trol design stem from (i) accessibility of partial states, such as local field potentials, for mea-
surement, which makes identification of the state-space model difficult [36], and (ii) the high
dimensionality which hinders the control design, assuming that the true model can even be
obtained. For this reason, phase models, describing the dynamics of phase defined in the vicin-
ity of the oscillator’s limit cycle, are frequently used to investigate oscillatory systems owing
to their simplicity [43, 25, 16]. These models are characterized by the natural oscillation fre-
quency and the Phase Response Curve (PRC) of the oscillator. PRC quantifies the variations
in the oscillator phase when an input is applied and can be measured experimentally [6, 42].

In literature, several methods have been proposed to entrain a single oscillator or an
ensemble of oscillators [48, 47, 41, 40]. The optimal control design to entrain an ensemble
of oscillators with identical PRCs is considered in [48]. The problems of fast entrainment
and entrainment of an oscillator with uncertain dynamics are also studied [47, 15, 41]. All of
the above methods focus only on entraining the oscillators; the phase of entrainment is often
not considered. The problem of phase-selective entrainment, which pertains to entraining
each oscillator at a certain phase, was analyzed with phase models [49]; the proposed method
was applicable for an oscillator population with identical PRCs and the designed entrainment
controls are not optimal.

These recent advancements, however, did not take the heterogeneities across oscillators into
account, which is a distinct feature in complex networks of biological and social systems [38, 27].
For instance, cortical pyramidal neurons in layer 5 and in layers 2 or 3 have different PRC
types |31, 34]. The periodically firing mitral cells in the olfactory bulb exhibit a broad range
of PRCs [4]. In [35], the experimentally obtained PRCs in the neocortex and thalamus region
are found to be different. In biology, the circadian system in Gonyaulax is composed of two
different types of oscillators having different phase response curves [21]. Half-center oscillators
(HCOs), which are integral to central pattern generator circuits and are modeled by a pair of
Morris-Lecar-type neurons connected by strong fast inhibitory synapses, also exhibit different
phase response curves [46].

In this paper, to overcome these current limitations and accommodate practical applica-
tions, we build upon the entrainment technique proposed in our previous work [49] and pro-
pose a general framework to design optimal stimuli that entrain an ensemble of heterogeneous
oscillators with non-identical PRCs at desired phases. Specifically, we decode the optimal
entrainment control design problem into a quadratic optimization program by exploiting the
periodicity of the system dynamics and using Fourier decomposition. This optimization formu-
lation offers increased flexibility in designing entrainment signals. Specifically, we can entrain
different types of oscillators while simultaneously ensuring minimum power and charge neutral-
ity of the input, and furthermore accommodate the trade-off between different objectives such
as control power and entrainment errors. For special cases, including single and two-oscillator
systems, analytic expressions of optimal controls can be derived by applying the proposed
theory. The proposed approach to transform the continuous-time optimal entrainment control
problem into a discrete optimization problem is scalable to optimally entrain a large oscillator
ensemble.
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The organization of the paper is as follows. In section 2, we discuss the phase coordinate
transformation for a nonlinear oscillator. In section 3, we leverage the phase model description
of an oscillator ensemble to develop the phase-selective entrainment conditions. Section 4 uses
the entrainment conditions developed in section 3 to transform the entrainment signal design
problem into a quadratic optimization program. In section 5, we extend the control design
methodology to a network of coupled heterogeneous oscillators. Finally, in section 6, we discuss
several details and implications of our work.

2. Phase models. Our method is based on the phase model description of a population of
oscillators with a common external input. Consider a n-dimensional (n > 2) system described
by a smooth ordinary differential equation

(2.1) T = f(x,u), z(0) = xo,

where x € R" is the state of the system, u € R is the control input, and the system has an
unforced attractive limit cycle v(¢) = (¢t + T") which satisfies ¥ = f(,0) on a periodic orbit
F={yeR":y=~(t) for 0 <t <T} CR"™ Suppose the deviations in x(¢) from the unforced
trajectory «y(t) caused by the application of weak external input u(t) are small. In that case,
we can obtain a reduced one-dimensional system that accurately captures the dynamics of the
original multi-dimensional system. The reduced one-dimensional model, known as the phase
model, can be inferred experimentally for a system with unknown dynamics [32, 17, 24]. In a
case where system dynamics are known, phase models can also be computed analytically using
the phase reduction theory [25]. The phase models are widely employed to study synchroniza-
tion phenomena of circadian rhythms [12], chemical oscillators [17, 16], and neurons [11].

Using phase reduction theory, the phase dynamics of each unit in an ensemble of N non-
identical uncoupled limit-cycle oscillators can be described by

(2.2) Ll;j(t) :wj—i-Zj(U)j)u(t), ] = 1,...,N,

where w; = 27/T} is the natural frequency of oscillator j with period T; and Z;(1);) is the
corresponding Phase Response Curve. PRC characterizes the response of the oscillator phase
to weak inputs. PRC can be determined experimentally for an oscillatory system with unknown
dynamics [6, 42| or numerically when oscillator dynamics are known [25].

3. Phase-selective entrainment. Entrainment occurs when an oscillator is synced with
a periodic external input, and the phase difference between the oscillator and the external
stimulus following entrainment is referred to as the phase of entrainment [26]. The goal of
phase-selective entrainment is to design an external periodic input that entrains a set of os-
cillators to form a prescribed phase distribution. The objective of phase-selective entrainment
has implications in treating neurological disorders, such as Parkinson’s disease, where desyn-
chronization of oscillators is required to mitigate tremors, and in circadian biology, where a
well-adjusted phase of entrainment is crucial for an organism’s fitness.

Here, we aim to engineer an optimal periodic input, e.g., minimum-power control, of a
given frequency {2 such that the oscillators in the ensemble are entrained at desired entrainment
phases ¢7, ..., % € [0,27). To begin, we introduce a slow phase variable by ¢;(t) = v;(t)—Qt,
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which is the phase difference between oscillator j and the external input w [49]. The time
evolution of the slow phase variable is then given by

(3.1) 65 = Aw; + Zi(0j + Qu(Qt),  j=1,...,N,

where Aw; = w; —(2is the frequency difference between oscillator j and the control input and is
called the frequency detuning. The phase difference dynamics in (3.1) is a time-varying system,
and thus difficult to analyze. However, the time dependency can be removed if the forcing
frequency Q) is sufficiently close to the natural frequencies of the oscillators, i.e., Aw; < 2
for j =1,...,N. This follows from the averaging theory that the phase drift ¢;(¢) will have
slower dynamics than the input signal if Aw; < €2, and the average effect of the input over
one cycle can adequately describe the evolution of ¢;(t) [14]. As a result, the phase difference
©;(t) follows a time-invariant dynamic equation

(3.2) ;= Awj + Ay j (),

where the interaction function with respect to the input w,

2m
(33 Masto) =5 [ 2,0+ pputo)an

is a 2m-periodic function, which quantifies the average phase shift due to periodic input over
time 7' = 27/Q. Upon entrainment, the phase difference between the oscillators and the
control input will become constant, resulting in ¢; = 0 for j = 1,..., N. Thus, in order to
entrain the oscillator j at a phase difference ¢7, the resulting interaction function A, ; must
satisfy

Awj + Ay j(9]) =
A, (7)) <

I

3.4
( ) ) j:]""‘7N7

0
0
where A, ; denotes the first-order derivative of A, ;. The condition A ;(¢}) < 0 is added to
ensure the stability of entrainment, and A;,j(go}'f) = 0 denotes the marginally stable case. It is
important to note that oscillator j will entrain at ¢} regardless of the initial phase difference
between the oscillator j and control input if go}f is the only phase satisfying (3.4), i.e., designed
interaction function A, ; intersects the horizontal line —Aw; only once with negative slope
(Figure 3.1(a)). In the case of multiple such intersection points, the entrainment phase will
depend on the initial phase difference between the oscillator j and control input as shown
in Figure 3.1(b), where the entrainment phase will be ¢ only if the initial phase difference
is in the grey region. If the initial phase difference is in the blue region, then the oscillator
will entrain at the phase gpg-. The dependency of the entrainment phase on the initial phase
can be eliminated by introducing additional constraints on the interaction function, which will
be discussed in Section 4.6. In the following, we leverage the Fourier series representation
of periodic functions to devise an optimal periodic input with desired frequency so that the
resulting interaction functions satisfy the entrainment constraints.
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Figure 3.1. Dependence of the entrainment phase on the initial phase difference. Panel (a) illustrates
the case when the interaction function results in a unique entrainment phase j for an oscillator with —Aw;
frequency detuning. For initial phases in the grey region, the entrainment phase will be @;. Panel (b) depicts
the case of multiple entrainment phases depending on the initial phase. For initial phases in grey (resp. blue),
the entrainment phase will be @} (resp. ¢).

4. Principle of optimal entrainment control design. In many applications, described in
Section 1, it is desirable to entrain oscillators at a specified phase configuration by design-
ing an optimal entrainment signal, such as minimum-power control. We accomplish this by
transforming the optimal control design into a convex optimization problem, with the control
power as the objective function and the entrainment conditions as constraints, by leveraging
the Fourier series representation of periodic functions.

4.1. Fourier representation of the interaction function. For an ensemble of oscillators
with given PRCs, each PRC can be approximated using the Fourier series with arbitrary
accuracy, owing to the fact that the PRC is a 2w-periodic function. Using Fourier series, we
can express the PRC of oscillator j as

(4.1) Z;i(0) = F;(0) = aoj + Z[an,j cos(nb) + by, j sin(nb)],

n=1

where the number of Fourier terms, 7;, determines the accuracy of the approximation; namely
| Z; — Fjll2 = ;;(Zj (0) — F;(0))%d0 < e. Additionally, the control input u(f) is a 27-periodic
function; thus, it can also be expressed using the Fourier series as

(4.2) u(®) =co+ Y _[encos(nf) + dy, sin(nd)),

n=1
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where the coefficients co, {c;,d;}]_;, and the number of harmonics r are to be determined.
Plugging (4.1) and (4.2) into (3.3) yields interaction function of oscillator j,

min(r,r;)

(4.3) Muj(9) = foj+ Y [fnjcos(ng) + gn;sin(ne)],

n=1

where the Fourier coefficients are given by

44 N _ QnjCp + bn,jdn _ bn,jcn — anzjdn
(4.4) foj=aoco,  frnj=——F—— Gnj= "o ——
2 2
We now define a new variable r* = max(r1,...,7ry), the maximum number of harmonics

among the PRCs represented via Fourier series. It can be argued that the minimum-power
control will have r* harmonics, i.e., r = r*. To see this, note that if the control contains more
than r* harmonics, then from (4.3) the interaction function contains only r; harmonics, and
the additional input harmonics will increase the input power. In contrast, a control with less
than r* harmonics results in a smaller number of candidate interaction functions that satisfy
entrainment criteria.

4.2. Optimization formulation for control design. Let ¢ be the index of the oscillator
with the largest number of Fourier harmonics in its PRC, i.e., r; = r*. Using (4.4), we can
express the Fourier coefficients of the input signal u(f) as a function of the Fourier coefficients
of the PRC and interaction function of oscillator 4, given by

Co = @X[ao i#0) Cn = anﬂ'a;%i - Onigns
ap; " ay i + bfm
fn,ibn,i — An,iGn,i Y2 )
ap; + b i+ 200

X[a%,i—l-b%’ﬁémv
(4.5)

dp, =2

where yo = 1 if the condition C' is true; otherwise yo = 0. This relation between the
input and the interaction function allows us to determine the input power in terms of the
Fourier coefficients of the interaction function. By defining = [v/2co,c1,d1,...,d,] and
y = [fo.i, f1i, 915 - - - gr,i), the input power can be expressed as P, = % . u?(0)do = %mT:L'
using Parseval’s theorem [22]. From (4.5), we further obtain P, = %a:Tw = %yTQy, where

Q € RZr+Dx(2r+1) 5 4 diagonal matrix with non-negative entries such that the k™ diagonal

entry,
2
TX 70 k=1
(46) [Q]kk _ ag ; 4[(10 ] ,
2 Xl e, o B>

and m = L%J

In addition to deriving the relationship between P,, and A, ;, we establish the relationship
between A,; and A, ; for j = 1,...,N and j # ¢. This will enable us to transform the
control design into an optimization problem with y (A, ;) as a decision variable. Specifically,
we observe that for an ensemble controlled by a single control input, the variation in oscillator
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interaction functions is attributable to the variability of the PRCs, as the interaction function
depends on the PRC and the control input, with the latter being identical for the ensemble.
In other words, if we know the interaction function of an oscillator, we can determine the
interaction functions of any other oscillators in the ensemble and represent each of them as a
function of the known interaction function. This can be done by first estimating the control
input from the known interaction function and then using the estimated control input to
evaluate the remaining interaction functions. Using (4.5) and (4.4), we get

a07j
f(]’.: f07X i ? f 7‘ =« 7‘f 7+B 7‘g 7'7
(4.7) J a0, 1 Xap,;70] n,j n,jJn,i n,jYn,i

Inj = _/Bn7jfn,i + Un,j9nis .] = 17 ) N7
where

n,iln,j — an,ibn,j
2 2
an,z’ + bn,i

Qp Q5 + bn,ibn,j
2 2
an,i + bn,i

b
Qnj = X[z +02 40 Dng =

X[a%,i-i—bgz,i#m ’

Consequently, we can express the entrainment conditions, (3.4), in the matrix form as

Ay = b,
(4.8) Y
Gy <0,
where the vector b = [-Awy, ..., —Awy] represents the frequency detuning for each oscillator

in the ensemble, and the matrices A, G € RVN*2 1) satisfy (A);y = Ay j(¢}) and (G)jy =
A, (7)), with (A); and (G); denoting the 4 row of the matrix A and G; namely,

B ao,j 1T — -T
ao,; ) 0
ai Cos(go;) — B, sin(go;'f) —aq jsin(p}) — Bi,; cos(p])
aq jsin(p¥) + B 5 cos(pl) aq cos(gpj-) — B1,5sin(y})
(A); = . ’ ;o (G)y= .
Q. j cos(rgo;) — Brj sin(np;f) —ray,;sin(re;) — rBy,; cos(rey)
|y sin(rg}) + Brj cos(r¢7) | | rauj cos(re}) — 1By sin(re}) |
Furthermore, we introduce h = [hi,...,hn]| (h; < 0) to confine the slope of the interaction

functions at the fixed points ¢7, j = 1,..., N, by imposing the condition Gy < h. This
constraint will ensure a minimum rate of convergence, |h;|, of the phase in the neighborhood
of go}f. As a result, the interaction function corresponding to the optimal power control, here-
after referred to as the optimal interaction function, can be obtained by solving the convex
optimization problem,

1
min -y’ Qy,
y 2
(4.9) st. Ay=b,

Gy < h.
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In general, a closed-form solution cannot be obtained for this quadratic convex optimization
problem with inequality constraints; numerical methods, such as interior-point or active-set
methods, can be employed to effectively determine a global minimizer [3|. The corresponding
minimum-power control can then be obtained by utilizing (4.5).

Remark 4.1. Our optimization framework provides the freedom to regulate the local speed
of entrainment while designing the optimal interaction function by appropriately modifying h.
By increasing the absolute values of hj, we can achieve faster entrainment due to the increased
slope of the interaction function at the fixed point cp;f at the cost of increased input power.

Remark 4.2. For some special cases, explicit optimal control expressions can be obtained
by (4.9) providing further insights into the underlying entrainment process by elucidating the
dependence of the control input on PRC and frequency detuning. For example, minimum-
power control to entrain a single oscillator at phase ¢* can be derived as u(f) = —% (6 +

©*) + ﬁZ/(H + ¢*), where |h| denotes the minimum local speed of entrainment (Gy < h),

Z' is the first-order derivative of PRC, and (-) is an average operator on 2w-periodic functions
(Appendix A). The obtained minimum-power control coincides with the one derived in [47]
using calculus of variations. It is worth noting that the closed-form optimal interaction function
to marginally entrain all the oscillators in the ensemble, i.e., satisfying Gy = 0 in (4.9), is the
minimum-norm solution given by

-t (e )}

4.3. Anti-phase entrainment of two oscillators. In the case of two oscillators, the regular
patterns of coordination are well represented by the relative phase between their periodic
motions [2]. For example, anti-phase entrainment of two weakly coupled oscillators plays a
crucial role in circadian biology where desynchronization of two oscillators in anatomically
defined ventrolateral and dorsomedial SCN subdivisions is used to understand SCN tissue
organization and signaling mechanisms in animals [9]. From (4.9), the optimal control to
entrain two oscillators in an anti-phase configuration is given by (Appendix B)

(4.10) u(6) = aZ(6 + o}) + bZ(6 + ),

where the coefficients a and b are functions of the Fourier coefficients of the PRC and frequency
detuning, and ¢] and @3 are the entrainment phase of each oscillator such that ¢35 — ¢] = .
Note that the optimal power control is simply a linear combination of the shifted PRCs.
Figure4.1 displays the minimum input power required to entrain two oscillators in an anti-
phase configuration. Remarkably, the variation of minimum-power with frequency detuning
resembles an inverted 3-d cone, which can be thought of as a 3-d version of Arnold Tongue [25].

4.4. Numerical examples. Here, we present two numerical examples showing the opti-
mality and capability of our technique to entrain oscillators with different PRCs. We first
demonstrate our proposed theory by entraining an ensemble of four Hodgkin-Huxley phase
oscillators [47] with identical PRCs using a periodic input of 10 rad/s frequency such that 7/2
phase difference is assigned between two successive, in terms of frequency, oscillators and the
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Figure 4.1. Minimum power of the optimal control for anti-phase entrainment of two oscillators. The
conic surface represents the theoretically estimated power of input in (4.10), for anti-phase entrainment of two
oscillators (h = 0). The blue surface denotes the difference between the power of theoretically predicted input
and the input obtained by numerically solving the optimization problem (4.9). Both oscillators have Hodgkin-
Huzley PRCs and the input frequency is 10rad/s.

slowest oscillator is entrained at phase 7/4 with the input. The frequencies of the oscillators
are uniformly distributed between [9.99,10.01] rad/s. The PRC is fitted using a Fourier series
with five harmonics, and the true and fitted PRCs are illustrated by the dashed blue and
solid red lines, respectively, in Figure 4.2(a). After obtaining the Fourier coefficients of the
PRC, we construct the matrices A, G, @ and the vector b, as described in Section 4, based on
the PRC Fourier coefficients, frequency detuning, and the desired entrainment phases. Each
entry, h;, of the vector h is set as —0.01. Following this, the optimal interaction function is
obtained by solving the quadratic program in (4.9), using the quadprog function in MATLAB.
The resulting entrainment phases produced by applying the minimum-power control obtained
using the optimal interaction function are depicted in Figure 4.2(d) (colored circles) with the
desired phases denoted by the cross sign. The corresponding control input and the interaction
function are displayed in Figures 4.2(b) and 4.2(d) by black lines.

The described methodology can achieve significant input power reduction compared to
the baseline technique, proposed in [49], which involves first designing a candidate interaction
function satisfying the entrainment conditions using a sum of scaled and shifted sigmoid func-
tions and then representing this function using Fourier series. To illustrate this, we repeat the
task of designing the control input to entrain the oscillators by using the baseline algorithm.
Figure 4.2(c) depicts the designed (dashed blue) and fitted (red line) interaction functions. The
control input is shown in Figure 4.2(b) using red color. The assigned phases of each oscillator
are shown in Figure4.2(c) with colored circles. Our method achieves a considerable, about
nine-fold input power reduction compared to the baseline method with input power reduces
to 0.09 from 0.81.
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Figure 4.2. A comparison of the input power between the proposed technique and the baseline technique.
(a) True (red line) and fitted PRC (dashed blue) of the four oscillators. For the purpose of the input power
comparison, we assume identical PRCs for the oscillators. Panel (b) displays the obtained control input using
the baseline technique (red line) and the presented algorithm (black line). Panels (¢) and (d) illustrate the
designed interaction function and the entrained phases (inset) using the baseline technique and the presented
algorithm, respectively. The black crosses and the colored circles denote the desired phases and phases upon
entrainment. Designing the control input optimally reduces the input power to 0.09 from 0.81.

The ability of our algorithm to entrain oscillators with different PRCs is illustrated in
Figure 4.3, where we entrain two oscillators with Type-1 and Type-2 PRCs at desired phases.
Neurons with Type-1 PRC move from rest to tonic spiking via a saddle-node bifurcation,
whereas Type-2 PRC neurons transition via a Hopf bifurcation [31, 10]. The phase of a Type-
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1 oscillator can only be advanced, while the phase of a Type-2 oscillator can be advanced or
delayed depending on the input timing [31]. Figure4.3(b) depicts a case where we design a
periodic input of frequency 10 rad/s to entrain two oscillators with natural frequencies 9.99
and 10.01 rad/s in an in-phase synchronization pattern. To obtain in-phase synchronization
between the oscillators, we select identical entrainment phases for each oscillator by choosing
(¢, ¢3) = (m,m). The slower oscillator has Type-1 PRC, while Type-2 PRC belongs to the
faster oscillator. The designed interaction function and the optimal control input are shown in
the left and right panels of Figure 4.3(b), where the inset figure displays the entrained oscillator
phase on a unit circle. For the same system, we also design a periodic input for anti-phase
synchronization of oscillators by entraining the oscillators at (7, ¢5) = (0, 7). The anti-phase
synchronization results are displayed in Figure4.3(c). Note that the obtained phase config-
urations are independent of the initial conditions of the oscillators since the horizontal lines
—Aw; ,j = 1,2, intersect the corresponding interaction functions only once with a negative
slope, resulting in a globally attractive fixed point for each oscillator.

Remark 4.3. Note that the entrainment control discussed above is optimal for the given
input frequency €2. In practice, for example, for applications involving synchronization or
desynchronization of a network of oscillators, stable phase relations among oscillators are of
importance while the entrainment frequency is not a concern. In our framework, the depen-
dence of the optimal control on the input frequency can be readily eliminated by treating €2
as a decision variable in (4.9), formulated as

. 1 7
min - Sy Qy,
Yl _
(4.11) st. [A —1] M = by,
Yy
<
G o M <h,
where —1,0 € R?"*! are vectors of —1 and 0, respectively, and by = [~w1, ..., —wx].

Up to this point, we have provided a convex optimization framework for designing opti-
mal control that entrains an ensemble of oscillators with different PRCs to the desired phase
configuration. It is important to note that the feasible region of the quadratic program in
(4.9) depends on the nonlinearity of PRCs and the number of oscillators. For instance, as the
number of Fourier terms required to approximate the PRCs grows, so does the feasible region
and the possibility of the existence of an optimal solution. In contrast, the feasible region is
adversely affected by the number of oscillators in the ensemble. To overcome the circumstances
when the feasible region is an empty set or too small to find a solution, in the next section,
we propose a relaxation in the quadratic program to soften the entrainment conditions by
allowing tolerable phase assignment errors using proper regularization in the optimization.

4.5. Regularized phase-selective entrainment of an oscillator ensemble. As the number
of oscillators to be entrained increases or the nonlinearity of the PRCs decreases, the feasible
set of the optimization problem (4.9) gets smaller, potentially resulting in the case where
interaction functions satisfying (3.4) do not exist. This situation can be alleviated by relaxing
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Figure 4.3. Regulating the phase difference between two oscillators with Type-1 and Type-2 PRCs using
convez optimization framework. (a) PRCs of the two oscillators. The left panels in (b) and (c) show the
designed interaction functions to achieve in-phase entrainment, (©3,p3) = (w,7), and anti-phase entrainment,
(¢1,95) = (0,7), respectively. The right panels of (b) and (c) illustrate the control inputs, and the entrained
oscillator phases on a unit circle (inset) for in-phase and anti-phase entrainment, respectively. We choose
(wi,w2) = (9.99,10.01) rad/s shown in (purple,orange) with Q = 10 rad/s. Each entry of vector h is set as
—0.01 for both phase patterns.
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the constraints in (4.9), thereby expanding the feasible region. For example, we can enlarge
the feasible region by allowing the interaction functions to pass through the neighborhood of
the desired phase differences, ¢7,..., ¢, with a negative slope. To this end, we introduce
slack variables, d1,...,d5, such that

A, (0 —0;) <0,  j=1,...,N.

The slack variable ; corresponds to the phase entrainment error of oscillator j. To avoid
large entrainment errors, we modify the objective function to penalize the slack variables.
Correspondingly, the optimal interaction function can be obtained by

L7 T
= DY)
min 5 (y' Qy +A6°4)
(4.12) st. A(d)y =b,
G(d)y < h,
where the vector § = (01,...,0x5)7 contains entrainment phase errors, A is a regularization

parameter, and y comprises the Fourier coefficients of the interaction function. The regular-
ization parameter A can be used to regulate the phase-assignment errors at the expense of
increased input power. Increased value of A, for example, results in smaller phase-assignment
errors but increased input power. In Figure4.4, we illustrate the input power and phase as-
signment errors for synchronizing an ensemble of 10 oscillators at 7/4 entrainment phase for
3 distinct values of A € {1,10,100}.

The matrices A(6) and G(0) satisty (A(0));y = Au,j(¢] —d;) and (G(0));y = A;, (¥ —5),
with (A(d)); and (G(9)); denoting the j* row of the A(5) and G(J). It is important to note
that the regularized optimization problem in (4.12) is not convex because the constraints are
non-convex functions. As a result, the optimal solution of (4.12) depends on the initial values
of the vectors y and 4.

When PRCs are not sufficiently nonlinear, i.e., containing a small number of harmonics,
the technique in [49] may result in large phase entrainment errors. The introduced non-
convex optimization formulation will lead to reduced errors by constructing optimal interaction
functions that minimize both the input power and entrainment errors.

Remark 4.4. In certain therapeutic applications, such as deep-brain stimulation, it is cru-
cial that external inputs, e.g., currents, applied to stimulate the neurons, are charge-balanced
(CB) [42]. Non-charge-balanced stimuli will cause an accumulation of charge over time, which
will potentially damage the neural tissues or the surrounding electrodes. The CB constraint
can be expressed as fOT u(t)dt = 0, where T is the duration of the stimulation [8]. This simply
implies ¢y = 0 (4.2) and can be directly incorporated in our optimization formulation in (4.12)
or (4.9) by constraining the first element of the decision vector, i.e., yM = 0.

Figure 4.5 demonstrates one such simulation where we entrain an ensemble of 10 oscillators
with uniformly distributed frequencies, with the oscillator 1 being the slowest and 10 being the
fastest, into two different phase configurations. Oscillators 1-5 have Type-1 PRCs (purple lines,
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Figure 4.4. Trade-off between the phase assignment error and input power. The top and bottom figures
in panel (a) display the phase entrainment errors for different values of the regularization parameter \ when
we design a periodic input of 10 rad/s to synchronize 10 oscillators at /4 phase with the input. The top
figure of panel (b) shows the corresponding control input power, while the bottom figure displays the obtained
control inputs. Each oscillator have Type-1 PRC with different amplitudes, i.e., Z;(y)) = (1 +0.1(¢ — 1))(1 —
cos(1))e2s=m/3=D und the frequencies of the oscillators are uniformly distributed in [9.99,10.01] rad/s.

slower oscillators have smaller amplitude PRCs); oscillators 6-10 have Type-2 PRCs (orange
lines). Figure4.5(b) displays the designed interaction functions to synchronize the oscillator
at phase 7/4. The corresponding control input and phases after entrainment are shown in the
bottom panel. In Figure 4.5(c), we entrain the ensemble to form two anti-phase clusters at
m/4 and 57/4. Each entry of vector h and the regularization parameter A are set as —0.01
and 10, respectively. The phase assignment errors, d;, are on the order of 1072,

4.6. Global phase assignment. In our framework, oscillator j will entrain at phase ¢}
only if the initial phase offset between the oscillator and the input lies in the region of attraction
of the 7, stable fixed point of (3.2) (Figure3.1). This implies that the entrainment phase
will be independent of the initial phase offset if there is a single stable fixed point, which will
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Figure 4.5. In-phase synchronization and cluster-formation in an oscillator ensemble with heterogeneous
PRCs using non-convez optimization framework. (a) PRCs of the oscillators in the network. The top panels
of (b) and (c) display the designed optimal interaction functions to synchronize the oscillators at phase /4
and to construct two clusters at w/4 and 57 /4 with 5 oscillators in each cluster. The bottom panels of (b) and
(c) illustrate the respective control input (left) and the achieved phase pattern on a unit circle (right). All the
oscillators have identical initial phases at 0 and the frequencies are uniformly distributed in [9.99,10.01] rad/s
with the oscillator 1 being the slowest and 10 being the fastest; the periodic input is of frequency 10 rad/s.
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occur if Ay () intersects the horizontal line —Aw; exactly twice in the interval ¢ = [0,27)
(the intersection point with the positive slope results in an unstable fixed point).

One naive approach to ensure that each A, j(¢) intersects the horizontal line —Aw; twice
would be to derive analytic constraints on the Fourier coefficients of A, ;j(¢) and incorporate
them in the optimization problem. However, determining the analytic form of the constraints
is a challenge in its own right. To bypass this difficulty, we propose a sampling-based method
to ensure that the resulting phase patterns are unique, i.e., independent of the initial state
of the oscillators. The proposed sampling-based method yields interpretable conditions while
avoiding the difficulty of deriving analytic constraints.

The central idea is to sample the function p;j(p) = Ay j(¢) + Aw; at M uniformly distrib-
uted points in the domain ¢ = [0,27) and constrain the number of times p;(¢) changes the
sign to be equal to 2. This constraint will ensure precisely two intersection points between
Ay j(p) and the horizontal line —Aw;. Let 14,925, ..,¢ums be the sampling points, then
the unique phase pattern condition can be written in the closed-form as

M-1
(4.13) H(=pj(pr,s)pj(r1,s) =2 j=1,...,N,
=1

E

Number of sign changes of p;(¢)

where H is a logistic function, H(z) = He%%, with a high enough « to approximate a
Heaviside step function [1]. H(—p;j(¢k,s).pj(¢r+1,s)) will be 1 if the function p;(y¢) changes
sign between ¢y s and @gy15, and will be 0 otherwise. By incorporating (4.13) as additional
constraints in the optimization problem (4.12), we can obtain optimal interaction functions
that give us the desired phase pattern regardless of the initial phases.

Figure 4.6 illustrates the effect of including uniqueness constraints (4.13) to entrain the os-
cillator population at two anti-phase clusters using a periodic input of frequency 0.975 rad/s.
We consider two groups of oscillators, having 49 and 50 oscillators with mean frequencies of
0.95 and 1 rad/s, respectively, and the ensemble with smaller frequency has a smaller ampli-
tude PRC (purple line, Figure 4.6(a)). In the absence of uniqueness conditions (Figure 4.6(c)),
the interaction functions of the second oscillator population (orange color) result in two sta-
ble fixed points, producing two distinct clusters. However, when we include the constraints
(4.13), the obtained interaction functions intersect the corresponding horizontal line —Aw;
only once with a negative slope (Figure4.6(d)), giving us the desired phases from arbitrary
initial conditions. Figure4.6(b) illustrates the corresponding control input when uniqueness
constraints are included (red color) or not included (black color). Inner circles in the left panels
of Figures 4.6(c) and (d) denote the initial phase of each oscillator with input.

Remark 4.5. In neuroscience, the typical inputs are pulsatile, for example, deep brain
stimulation (DBS) in Parkinsonian patients. To make use of the designed optimal entrainment
waveforms, we present a simple technique to implement them as a pulse train. The core idea
of our approach is to apply a high-frequency pulse train, such as 200 Hz [45, 37|, of narrow
pulse width (1 ms), with the pulse amplitude being determined by the reference signal, i.e.,
control generated by our algorithm, at the instant when pulse is applied (see Appendix C for
more details). The designed pulses are then applied to the two numerical examples presented
in Section 4.4 and the resulting entrainment phases are shown in Figure C.2.
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Figure 4.6. Cluster formation in an ensemble of 99 oscillators with Type-1 PRCs. (a) PRCs of the
oscillators in the ensemble with each oscillator having the PRC with identical color. (b) Devised periodic control
inputs to form clusters. The Red (black) line depicts the input when unique entrainment phase conditions
(4.13) are added (resp., not added). Left panels of (c) and (d) display the designed interaction functions.
The right panels of the (¢) and (d) show the achieved phase pattern upon entrainment (outer circle) with the
wnner circle denoting the initial phase of each oscillator. 49 oscillators with mean frequency 0.95rad/s are in

cluster-1 (purple). Cluster-2 (orange) contains 50 oscillators with mean frequency 1rad/s ; forcing frequency
Q=0.975rad/s.
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5. Phase-selective entrainment of coupled oscillators. Thus far, our analysis is focused
on the cases of uncoupled oscillators. The extension to the entrainment of coupled oscillators
is natural and compelling. This can be directly achieved following the developed framework
presented in Section 4. Here, we consider a network of N symmetrically coupled oscillators
with the phase dynamics of oscillator j, j = 1,..., N, expressed as [29]

N
(5.1) i) = wj + Y oge(uy (£) = wi(®)) + Z; (W )u(€2t),

k=1

k#j
where the coupling input to oscillator j from oscillator k is characterized by the coupling
function aji (= ;). If there is no interaction or connection between oscillators j and k, then
the coupling functions «j, and ay; are trivially zero. Following the discussion in Section 3,

the dynamics of the averaged phase difference between the oscillator j and periodic input can
be written as

N
(5.2) 9 = Dwj + Y aj(pi(t) = er(t) + Aug(ey).
k=1
k#j
Consequently, the interaction functions that entrain the coupled oscillator network at
phases ¢7, ..., ¢} must satisfy

N
Awj+ Y il — k) + Auy(@]) =0,

5.3 k=1
(5:3) k#j

A;’j(cp}‘)—l—ﬁ;gO, j=1,...,N,

where & is the largest eigenvalue of the matrix with (i, j)** element as Zf[:k# %%k(@f -
) to ensure the stability of the entrainment phases. Using (5.3), the optimal control can be
determined by repeating the procedure outlined in Section 4, with the vectors b and h being
modified to include the coupling effects. Specifically, we have b = [—Aw; — Zjlvzk 21 01k(p7 —
©5)s- e —Awy — Zivzk#N anig(ey —¢r)l and h = [hy — K,..., hx — K], where the constants
hj <0,j=1,...,N, can be used to regulate the local speed of entrainment.

Unique entertainment phases are obtained from arbitrary initial phases if the system of
equations (5.3) has only one solution ¢7, ..., ¢} for the designed interaction functions. When
oscillators are uncoupled, it is relatively simple to determine a unique solution to the entrain-
ment conditions, as each oscillator has its own entrainment condition independent of the phase
of the other oscillators (Figure 3.1). For the coupled ensemble, the condition to ensure a unique
entrainment phase for an oscillator depends on the phases of other oscillators and the coupling
functions, rendering the analysis computationally intractable. Nonetheless, our control input
will entrain the coupled ensemble, and the entrainment phases will be desired if the initial
phases lie in the region of attraction of the desired entrainment phases.

As a numerical example, we entrain a network of 10 coupled oscillators connected in the
manner illustrated in Figure5.1(a). Frequencies of the oscillators are uniformly distributed in
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Figure 5.1. Phase-selective entrainment of a coupled oscillatory network. (a) Network topology (b) PRCs of
the oscillators in the network. The top panels of (¢) and (d) display the designed optimal interaction function
to achieve uniform phase distribution in [r/4,57/4] and to construct two clusters at w/4 and 57/4 with 5
oscillators in each cluster. The bottom panels of (c¢) and (d) illustrate the respective control input (left) and the
achieved phase pattern on a unit circle (right). All the oscillators in the network have identical initial phases at
0. Oscillator’s frequencies are uniformly distributed in [9.99,10.01] rad/s with the oscillator 1 being the slowest
and 10 being the fastest; the periodic input is of frequency 10 rad/s. Network is coupled with sinusoidal coupling
function such that c;; = 0.0002sin(yp; — ;).

[9.99,10.01]rad/s and PRCs are shown in Figure 5.1(b), where PRCs with smaller amplitudes
belong to the slower oscillators. We entrain the oscillators in two particular phase configura-
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tions: uniform entrainment phases in [r/4, 57/4] and two clusters at 7/4 and 57 /4 with each
cluster having 5 oscillators. The optimal interaction functions corresponding to the uniform
phase distribution and cluster formation are displayed in the top panels of the Figure5.1(c)
and (d), respectively, while the bottom panels depict the respective control input (left) and
resulting entrainment phases (right).

6. Conclusions. In this paper, we present a framework for optimal entrainment of an en-
semble of heterogeneous oscillators to form desired stable phase patterns by leveraging the
phase model description of oscillators. We show that complex tasks of phase-selective entrain-
ment can be reduced to a compact, tractable quadratic optimization problem. This approach
not only enables us to entrain oscillators with heterogeneous PRCs but also provides a new
paradigm to design optimal entrainment controls for versatile objectives, which expands the
scope of the state-of-the-art techniques that are limited to control oscillators with identical
PRCs. In addition, the presented control technique is theoretically robust and practically ap-
plicable as we only require the natural frequencies and PRCs of the ensemble, both of which
can be measured experimentally with high precision. The optimization framework permits the
incorporation of additional experimental restrictions on the control input, such as maximum
amplitude. Such a degree of freedom is essential when controlling biological ensembles, where
physiological and experimental constraints restrict the range of possible inputs. Furthermore,
the optimality of control inputs, e.g., minimum-power stimuli, is critical from both a theo-
retical and physiological viewpoint. From the physiological aspect, such optimal controls are
ideal for treating neurological disorders, where strong inputs may damage brain cells; and from
the theoretical perspective, they are required when employing phase models as weak forcing
is an underlying assumption for phase model validity. We believe the framework presented
here provides an alternative and effective set of numerical tools for examining how variation
in oscillator properties, such as natural frequency and PRC, affects the range of entrainment.

Appendix A. Entrainment of a single oscillator.

To entrain an oscillator with a periodic input of frequency €2 at phase ¢* with minimum
entrainment speed |h|, first, we design the optimal interaction function using (4.9). Afterward,
we evaluate the Fourier coefficients of control input using (4.5). On a closer inspection, we
note if the PRC contains more than 1 non-zero Fourier coefficients, an optimal control signal
to entrain the oscillator at a phase ¢* always exists and is given by

(A1) u(®) = —<AZ°;>Z(9 o)+

<Z,2>Z’(9+ ¢"),

where (-) is an average operator on 27-periodic functions, and Z’ is the first-order derivative

of PRC Z. It can be shown using Fourier series representation that (ZZ’) = 0, which gives
us input power (u?) = (AZ“;i + % The optimal input power is proportional to the square
of the local entrainment speed for a given frequency detuning. Furthermore, for marginal
entrainment, i.e., h = 0, the square root of input power y/(u?) is proportional to the frequency
detuning demonstrating the relationship between the range of entrainment and minimum input
power, also known as Arnold Tongue [25]. For given input power, the range of input periods

over which entrainment occurs is called the “range of entertainment” [33].
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Proof. Suppose the inequality constraint in the optimization problem (4.9) is inactive, i.e.,
Gy = h < h. Then, the optimal entrainment function can be obtained by

min %yTQy
(A.2) a 3
s.t. [A} Yy = [Aw} .
The minimizer of (A.2) is given by [3]
. Gl - Toh
(A.3) y=Q '[GT AT (M Q' [GT AT]> [_Aw] :

The matrices G, A € R"> ™1 are constructed such that Gy = A/ (¢*) and Ay = A, (¢*), the
matrix @ is given by (4.6), and r is the number of PRC Fourier harmonics. After substituting
the values of matrices G, A, and Q,

0 1
—sin(p*)  cos(p*)

cos(¢”)  sin(p?) [<Z’2> or {h ]

y:Qfl . .

—rsin(re*) cos(re*)
| rcos(re*)  sin(re*) |

After some further simplifications, the elements of vector y can be obtained as

Aw
b=~
2 32
_aptby [ Aw . . *
fn= 5 ( ) COS 1P 7<Z/2>nsm ne |,
Gn = a, + by < Aw sinnp* + Ln cos mp*>
"2 (22) (27) |
Consequently, using (4.5), the input Fourier coefficients can be expressed as
Aw
Co = —<72>a0,
Aw ) nh .
Cp = _7<Z2> (an cosne™ + by, sinne*) + W (bn cos np® — ay, sinng”),
Aw . . X nh X . X
d, = _W (by, cos ne* — a, sinngp™) — W (an cosne® + by, sinnp™) .

The control input, u(0) = co+> . _; ¢, cos nf+d,, sin nd, can be written as a linear combination
of shifted PRC and derivative of PRC after substituting the estimated Fourier coefficients,
giving us

Aw

u(f) = —<Z—2>Z(«9 + %)+

77 Z'(0 + *).
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Correspondingly, the power of input signal (u?) = (AZ‘*; + 7 ;,22> . Note that the value of h

is unknown in the expression of control input. However, h < h < 0 = h? > h?, so the
minimum-power control will be obtained when inequality constraint is active, i.e., Gy = h,
which gives us

A |
w(f) = ——-Z(0 + %) +

77 Z'(0 + o*).

(27)

Appendix B. Anti-phase entrainment of two oscillators.

Our objective is to design a optimal power control of frequency (2 such that a system of
two oscillators with frequencies wy,ws is entrained at phases ¢7 and ¢35, where @5 — @] = 7.
We assume that the Fourier approximation of PRC contains a sufficient number of harmonics
to ensure a nonempty feasible region in (4.9). To begin, suppose the inequality constraints

in (4.9) are inactive, i.e. Gy = [Z—;] , where hi,hy < 0 (we take hi,hy = 0, and PRCs are

assumed to be identical). Then, the optimal interaction function coefficients can be obtained
by

min %yTQy
hi
(B.1) y @l o
SR D7
—ALL)Q
The minimizer of (B.1) is given by [3]
[
(B2) y=qjcm ar](|%qrer ar)) | M
' A —Awi
—Awy
Using (B.2), the minimum control power
1 I
1 T — — G -1 B h_2
§y Qy = [hl h2 —Aw1 —AwQ] <[A] Q [GT AT]> —Aw1
—Awg
After substituting the expressions of matrices G, A, and @, we get
/ -1
(2% 0 0 -

5 2 .
1 . 3
§yTQy:[h1 hy —Awy —Aws] g >,
0
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where

a2 < a0+ b2 ° a2 +b
a:i—’—Z(_l) A ) B Z 2

We can further simplify the expression by using the block matrix inversion formula. After
taking the inverse and simplifying the above expression, we get

1 . 1 - [ ][] 1 2 o] [~Aw
gy Qv =7 [ hl [_5 @ [h) 5 Ao Al T | | A,
(222 (22)? Z p
where v = =~ — B2, and § = = — a?. Note that the matrix 25 (7% is a positive-
o 2

definite matrix which means that the control power will be minimum when h; = hy = 0. We
can obtain optimal interaction function coefficients, by substituting h; = ho = 0 in (B.2), a

/ —1
(Z;) 0 0 0
(2%
_-l1aT g1 | B 3 0 0 0 14T
y=0[¢" A 0o o & A | 794 2b
2
0 0 a 2 —Aw;
where
_ 1 (2%)
a= 5 <<Zz>2 - a2) (— 5 Awy + aAw2> ,
1 2
b= (— <22 >Aw2 + oeAw1> .

(&)

By further solving the above equation, we get

fO = a(2)<a+ b)a
a,%—}—bz

fn= % (acosnp] + bcosngs) ,
2 b2
Gn = In O ;_ % (asinnp] + bsinnes) ,
where [fo, f1,91,-- -, fr, gr] are the elements of vector y. Following the derivation in Appendix

A, we can write the control input as
(B.3) uw(@) =aZ(0+ p]) +bZ(0 + ¢3).

From the control input expression, we can also obtain control power (u?) = a?{Z?) +b?(Z?) +
2aba.
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Appendix C. Implementability of the optimal input as a pulse train.

Here, we provide a simple procedure for implementing the proposed optimal input as a
pulse train, which are standard DBS inputs. We illustrate this approach on the examples
presented in Section 4.4. The pulse train frequency and pulse width are taken as 200 Hz and
1ms, which are typical settings for a high frequency DBS |37, 45] and the pulse amplitude is
determined by the sampled value of reference signal, i.e., control generated by our algorithm,
at the instant when pulse is applied (see Figure C.1 ).

0.6 M\

06 / \ J
’ ~=| (AR

0404 .

J Vo

u(t)

0.2

0.4

| | | |
0.3 0.4 0.5 0.6
Time (s)

Figure C.1. Implementation of the optimal input (black) as a pulse train (blue). The inset figure displays
a zoomed view.

Note that the generated pulse train, say p(t), will have less power than the optimal input.
To incorporate this loss of power, we further multiply p(¢) by a constant ¢ such that the pulse
train energy is no less than the optimal input to ensure the entrainment of oscillators to the
pulse train. The resulting pulse train, ¢ x p(t), is then applied to the examples of Section 4.4
and the final entrainment phases are shown in Figure C.2 where the cross mark denotes the
desired phases.
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