Journal of Computational Science Education Volume 15 Issue 1

Using Unity for Scientific Visualization as a Course-
based Undergraduate Research Experience

I[dunnuoluwa Adeniji
Kean University
Argonne National Laboratory
iadeniji@kean.edu

Melissa Menzel
Kean University
menzelm@kean.edu

Lark Bancairen
Kean University
bancaila@kean.edu

Cymantha Blackmon
Kean University
blackmoc@kean.edu

Joseph Insley
Argonne National Laboratory
Northern lllinois University
Insley@anl.gov

ABSTRACT

We have developed a series of course-based undergraduate
research experiences for students integrated into course
curriculum centered around the use of 3D visualization and
virtual reality for science visualization. One project involves the
creation and use of a volumetric renderer for hyperstack images,
paired with a biology project in confocal microscopy. Students
have worked to develop and test VR enabled tools for confocal
microscopy visualization across headset based and CAVE based
VR platforms. Two applications of the tool are presented: a
rendering of Drosophila primordial germ cells coupled with
automated detection and counting, and a database in development
of 3D renderings of pollen grains. Another project involves the
development and testing of point cloud renderers. Student work
has focused on performance testing and enhancement across a
range of 2D and 3D hardware, including native Quest apps.
Through the process of developing these tools, students are
introduced to scientific visualization concepts, while gaining
practical experience with programming, software engineering,
graphics, shader programming, and cross-platform design.

KEYWORDS

Unity, Visualization, course-based undergraduate research
experiences

1 INTRODUCTION

Significant study has been made in the impact on the student
experience of course-based undergraduate research experiences
(CURES), in which activities focused on following the research
process and performing inquiry is used in addition to or in place
of traditional laboratory activity [4]. Positive benefits of CUREs

Michael Casarona
Kean University
casaromi@kean.edu

Matthew G. Niepielko
Kean University
mniepiel@kean.edu

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. To copy otherwise, or republish, to post on servers or to redistribute
to lists, requires prior specific permission and/or a fee. Copyright © JOCSE, a supported
publication of the Shodor Education Foundation Inc.

© 2024 Journal of Computational Science Education
https://doi.org/10.22369/issn.2153-4136/15/1/7

March 2024

Leonard Bielory
Kean University
Rutgers University — Center of
Environmental Prediction
Hackensack Meridian School of Medicine
Ibielory@kean.edu

Nan Perigo
Kean University
nperigo@kean.edu

David Joiner
Kean University
djoiner@kean.edu

have been seen in professional identity, research skills, project
ownership, and higher retention [2, 3, 8, 11].

Our context for implementation is a computational science
and engineering program at Kean University, a regional
university in northern New Jersey. The program is part of a 5-year
combined BS/MS honors program in the School of Integrative
Science and Technology.

The projects presented in this paper involve development or
enhancement of software in Unity Game Engine [10]. The four
CUREs that the computational science students have been
working on presented in this paper center around volumetric
rendering of hyperstack data, and performance testing and
implementation of point cloud renderers in Unity using VR
hardware.

2 METHODS
2.1 Hyperstack Image Rendering

VR is increasingly being used for visualization of hyperstack data
in scientific and medical imaging [9]. It has shown potential for
use specifically with confocal microscopy along with other data
[16].

We have worked with students implementing a technique for
rendering hyperstacks by using transparency and shading within
Unity’s rendering pipeline, as opposed to traditional raytracing,
for a process that is performant, easy to implement, and is cross
platform compatible across laptop and VR hardware.

Our focus with student research projects has been on two sets of
data, the first involving the formation of primordial germ cells in
fruit fly embryos. Students were given the task of developing
tools to count the number of cells in the embryo, with cells
overlapping in 3D and requiring a 3D object detection approach.
The second data set is a developing database of 3D scans of pollen
grains. While multiple databases exist of 2D images of pollen
grains for the purpose of both human and Al training for pollen
detection, there are far fewer databases of 3D pollen scans, a
notable exception being the recently introduced 3D Pollen
Project [19]. As part of a project to provide 3D images of
common US pollen species, our students use Unity to render

35

Volume 15 Issue 1

hyperstack images of pollen grains to increase availability of 3D
pollen data.

2.2 Point Cloud Rendering

An increasing amount of scientific data is rendered as point
clouds, both due to the use of higher quality 3d scanners as well
as traditional glyph renderings of large point-based computations.
Creating point clouds in Unity has traditionally used geometry
shaders [15]. In cases where geometry shaders are not supported,
some software has instead used point shaders with a pointsize
parameter [17]. Other work in the area has focused on techniques
for efficient point decimation for faster loading and display,
with typical renderings done at a level of one million points [5].

We set out to have students compare different techniques for point
cloud rendering, as well as perform cross platform testing.
Students were assigned the task initially of working with the
Keijero point cloud model, and testing it with data sets of varying
size, as well as across platforms, testing on Windows,
Android, and OS X using where possible Direct X, OpenGL,
Vulkan, and Metal graphics APIs, using both PC, Oculus Rift,
Oculus Quest, and Oculus Quest 2 hardware. Over the course
of this project, additional geometry-based shaders were
developed and tested as well.

3 CURES PROJECTS
3.1 Hyperstack Image Rendering Projects

3.1.1 Primordial Germ Cells rendering network
viewer

This project has focused on creating multi-user spaces in VR to
view and share 3D models of primordial germ cell data from a
confocal microscope. Primordial Germ Cells (PGCs) are
embryonic precursors that pass on both genetic and epigenetic
information to succeeding generations [5]. While broadly
applicable to any hyperstack image data, the particular
application is driven by a project developing automated analysis
tools for detecting cells, and the need to validate results in a 3D
view. We have pursued a multi-user environment to allow remote
viewing of data by multiple simultaneous viewers, based on
Photon 2 Unity Networking. A web-based front end lets users
upload these images and other pertinent data, and configuration
files for a pre-built unity scene are automatically created.
Additional tools are also in development to allow users more fine-
grained control over the generated VR models, including the
ability to save changes. By advancing these elements, the project
aims to offer a comprehensive, user-friendly platform for 3D
hyperstack image model visualization and collaboration.

3.1.2 3D Pollen Database

Seasonal allergic rhinitis (SAR) is a common inflammatory
condition caused by pollen grains released by trees, grasses,
weeds, or molds [6]. Many people are affected by the cold-like
symptoms caused by these various pollen species [12]. Therefore,
streamlining the identification and distribution of real-time pollen
conditions is important because it can provide allergy sufferers
with useful information to help reduce pollen exposure. We apply
confocal microscopy to capture diversities in pollen grain
structures, which can be further used in 3D analysis of pollen
structures. Whereas other types of microscopes can only allow the
external characteristics of samples to be seen, confocal
microscopy allows a sample to be imaged in slices along its z-axis
which are then used to create 3D and cross-sectional images. This
allows the images to not only display the external morphologies

36

Journal of Computational Science Education

and characteristics that are unique to each pollen species, but also
the internal morphologies and characteristics.
Max Projection Pollen Diversity Cross Section

ifoli A palmeri P. pratensis

— A. longifolia C. dactylon p
U. diocia (Gol%en {Bermdzda (Careless L. styracifiua (Kentucky
Acacia) Grass) Weed) (Sweet Gum) Bluegrass)

(Nettle)

X
strumarium
(Common
Cocklebur)

Figure 1. Confocal microscopy captures diversity in pollen
structures. A-M) Max project confocal images (first
column), captures differences in species’ structures. A’-M’)
Enlarged sections (second column) of the broken white boxes
in the first column highlight key features for each pollen
species. A-M) Image cross sections (third column), reveals
additional differences between pollen species’ structures.

The initial data used is shown in Figure 1. Each pollen species
shown can be identified by their distinctive characteristics.
Specifically, Kentucky Bluegrass (A) has one aperture, Sweet
Gum (C) has many holes with spikes, Careless weed (E) has many
circular indentations, Bermuda Grass (G) has one aperture and a
disc shape, Golden Acacia (I) is split into many cube-shaped
sections, Nettle (K) has an irregular shape, and Common
Cocklebur (M) has small spikes on the exterior.

The goal of this project is to collect, database, and
disseminate multiple 3D renderings of pollen grains for further
analysis.

March 2024

Journal of Computational Science Education

3.1.3 Hyperstack rendering clipping shader

implementation.

A portion of Unity game and object rendering relies heavily on
the computer graphics shader attached to objects to apply per-
pixel calculations on GPU hardware and to allow for modification
of the look and feel of objects based on shading and lighting
effects. Shaders are used to create a wide variety of visual effects
for both static and dynamic user interfaces. Built-in Unity shaders
are typically focused on the needs of gaming, and visualization
can often be simplified or made more computationally efficient
by directly writing shader code that allows per-pixel (fragment)
calculation of viewed effects based on data at known points
(vertices).

In the case of our hyperstack images, a custom vertex-
fragment shader is used to add transparency to pixel values below
a threshold and modify the transparency of viewed pixels based
on their intensity value.

Clipping is a standard technique used in 3D visualization
software. It can be implemented in Unity at the shader level
provided the origin of the clip plane in world space, the normal of
the clip plane relative to the clip plane origin, and the position of
the pixel rendered in world space.

This student project was to implement and test the efficiency
of clipping in the shader with a combination of a dot product and
the CG clip function, or in a more advanced approach a step
operation in place of clip to create a variable that can be used to
create a more blended view (e.g., rendering the positive side of
the clip plane with a different transparency value). This has been
added to our custom shader in the hyperstack renderings in the
two projects mentioned above.

4 Point Cloud Rendering Projects

4.1.1 HACC simulation visualization
Traditional large scientific data exploration predominantly relies
on 2D and 3D visualization tools. However, a transformative shift
is occurring as lower cost virtual reality (VR) hardware emerges,
offering immersive experiences. This study showcases the
development of a data pipeline from conventional visualization
tools like Paraview to Unity Game Engine and the Oculus Quest
2 headset.

The primary goal is to explore this transition, with a focus
on enabling a more comprehensive understanding of complex
datasets.

S STUDENT PROJECT RESULTS
5.1 Hyperstack Image Rendering

Student work on hyperstack image rendering focused on
techniques for image preparation for rendering. Our pipeline was
to open the hyperstacks in Image J and save each z-slice as an
individual jpeg. Images were imported into the Unity editor as
RGBA 32 bit sprites with alpha as transparency and read/write
selected. The images were then projected onto quads, using an
unlit 2 sided transparent shader. The shader was designed to clip
any pixels below a set threshold and apply an alpha level
proportional to the total brightness of the pixel. The quads were
spaced in the scene evenly according to their height in z.

5.1.1 Primordial Germ Cells rendering network

viewer
A network-based visualization tool has been created, with a web-
based management interface so that users can easily download the

March 2024

Volume 15 Issue 1

visualization tool, as well as create and manage cell models. This
will eventually allow for additional custom analytics tools to be
run simultaneously with the model creation so that prevalent cell
data can be highlighted through automated analysis and then
confirmed visually. The scene created for the networked viewer
is displayed in Figure 2.

e S W];{JL/:‘?
v Ee

Figure 2. 3D cell model in networked visualization
application. Cell images are loaded into the lab environment
and compiled into a 3D model. The user interface (UI)
located on the board displays all relevant cell information as
well as the slider interface that is able to transform the 3D
cell model. The lab scene provides a comfortable
environment for working with the model as well as provides

a professional feeling to the application.

5.1.2 3D Pollen Database

An early rendering is shown in Figure 3, with data from a
rendering of a Ragweed pollen grain. Input data for rendering was
1576x1576x60, with 100+ FPS performance on a TensorBook w/
GeForce 3080. Other performance measures were 30+ FPS for an
Oculus Quest Pro connected with link cable, and 20+ FPS for a
native Quest Pro app with data downgraded to 1024x1024x60. Of
note was that as we moved from a high-end workstation to a
native Quest app, images larger than 1024x1024 noticeably
degraded performance.

Further images were limited to 1024x1024, and
communication with the biology team resulted in additional
student projects focused on production of pollen data. Figure 4
shows a scan of a Golden Acacia pollen grain. Input data for
rendering was 1024x1024x90, with 300+ FPS performance on a
TensorBook w/ GeForce 3080. Other performance measures were
60+ FPS for an Oculus Quest Pro connected with link cable, and
40+ FPS for a native Quest Pro app.

Figure 3. Hyperstack rendering of confocal scan of a
Ragweed pollen grain.

37

Volume 15 Issue 1

In summary, the study found that confocal microscopy can be
used to produce detailed images of pollen grain species and
provide 3D images that can be reconstructed in Unity.

Figure 4. Hyperstack rendering of confocal scan
of a Golden Acacia pollen grain.

5.1.3 Hyperstack rendering clipping shader
implementation

A clip plane effect was added to the shaders used in the
hyperstack viewer, and results can be seen in Figure 5. Clipping
was implemented by calculating the world space position of each
vertex p,,s in the shader, and setting shader properties for the base
(in world space coordinates) BWS and normal 7 (relative to the
base) of the clipping plane, at which point the clip function could
be applied to (ﬁws - Bws) - fi. Addition of clipping plane had no
impact on performance with the GeForce 3080 test, Link Cable,
or native Quest app.

Figure S. Hyperstack rendering of confocal scan of a Golden
Acacia pollen grain with clipping plane applied.

38

Journal of Computational Science Education

5.2 Point Cloud Rendering

One challenge with developing point cloud rendering approaches
that work across a wide range of platforms, including Windows,
Mac, and VR headsets, is the difference in graphics API
availability for those platforms, with DirectX being windows
specific, Vulkan working on Windows or Android, OpenGL
supported by Windows, Android, and Intel-based Macs, and
Metal supported by Macs. Metal is the only graphics API
supported for the M series of Macs [1].

Figure 6 shows a test of the point cloud rendering process,
applied to a 10,000,000-point Sierpinski Trapezoid calculated
using an iterated function system. The cloud rendered on a
TensorBook with a GeForce 3080 at 100+ FPS. Similar
performance on other hardware include Quest Pro connected with
link cable and 10 million points at 30+ FPS. A natively compiled
Quest Pro app with 1,000,000 points ran at 10+ FPS.

Figure 6. Point cloud of a 10-million-point
Sierpinski Tetrahedron

Geometry shaders have proven to have wide cross platform
compatibility and good performance on all hardware tested except
for M series chip-based Macs. Future student projects will
investigate workarounds for rendering on newer Macs restricted
to the Metal graphics API.

5.2.1 HACC simulation visualization

This project applied virtual reality to the identification of patterns
and clusters within point cloud data, in particular a set of data
generated by a Hardware/Hybrid Accelerated Cosmology Code
(HACC) simulation (Figure 7, Figure 8).

Figure 7. Scene view of HACC data in the VR environment

March 2024

Journal of Computational Science Education

In addition to enhancing scientists' comprehension of their
datasets, this study emphasizes the integration of VR into the
broader field of large data exploration, which includes features
like data interaction, manipulation, and in-depth analysis. This
study employs a custom import script designed for transferring
particle data generated by a HACC simulation into Unity. The
files we work with contain a sample of approximately 4 million
particles (out of up to 2 trillion simulated), from which we load a
selected subset. The point cloud data is presently rendered as a
point topology mesh using a custom geometry shader.

Through the immersion of users in virtual environments, this
study significantly amplifies the identification of patterns and
clusters when compared to conventional methods. In addition, we
achieved an average PC frame rate of approximately 1012.3
frames per second (FPS) when visualizing 10,000 particles on an
Alienware Aurora R15 with a GeForce 3090. When considering
the entire dataset of approximately 4 million particles, we attained
an average PC frame rate of approximately 235.9 FPS. Beyond
static visuals, a custom time lapse technique animates data,
providing insights into pattern evolution.

Figure 8. Headset view of HACC data
in the VR environment

6 DISCUSSION

VR driven scientific visualization can provide a source of rich,
authentic research-based activities for students learning skills in
computational science. As a real-world example for students,
scientific visualization using Unity in VR has many features we
have found beneficial to students. Unity’s C# language is similar
to Java, which is the primary language used for our students’
computer science coursework.

In training students to use Unity for visualization projects,
we have developed an offering of our freshman research course
sequence focused on Unity programming. Materials used in this
are a combination of public materials available at
https://learn.unity.com [18], in particular the ubiquitous “Roll-A-
Ball” lesson, as well as hosted materials written for the course,
available at https://joinerda.github.io/ [14], in particular the
“Hello Unity,” “Using GetComponent,” and “Lorenz Butterfly”
tutorials, which allow for covering of Unity in a computational
science context. Typically, students then brainstorm ideas on
projects. Past course offerings have included projects on using
VR to hand count primordial germ cells, as well as non-
visualization projects such as creating a lab safety simulation.
When adding in discussions of VR, class projects have focused
on the concepts of grabbing, rotating, scaling, and activating
(pressing) objects — activities that are ubiquitous across modern
VR toolkits.

March 2024

Volume 15 Issue 1

Interested students continue in sophomore, junior, and senior
years with independent research, working specifically on
visualization projects.

7 REPRODUCIBILITY

For adding virtual reality hardware support to our Unity models,
we are using the XR Interaction Toolkit (XRI), which provides a
player object that can be used with a variety of VR systems.
Students are instructed to use XRI version 2.3.2 or later, and to
include the samples when installing, as the samples includes a
working player controller and locomotion system that they can
quickly copy and paste from the sample scene into their scene
rather than configuring from scratch. Students need the ability to
plug their headset into their laptop in order to install the apps they
create, so at least one USB port needs to be available, and an
appropriate cable. Students use the personal edition of Unity
Game Engine, though depending on the use case there are also
options to request a Unity license for education through Unity’s
grant program. Students use the community edition of Microsoft
Visual Studio C# compiler.

For installing to Quest, Unity needs to be configured for
Android build. Recent versions of Unity do not require extensive
additional installation of Android toolkits, and installation can be
managed solely through the Unity Hub. ASTC Texture
compression is selected in the build settings.

Dependencies for XR Interaction Toolkit include the AR
Foundation, XR Plugin Management, Oculus XR Plugin, and
OpenXR Plugin (if using Oculus Link through a cable) packages.
Version information and package requirements are as follows:
Unity Version for tests: 2021.3.8f1, AR Foundation 4.2.8, Oculus
XR Plugin 3.0.2, OpenXR Plugin 1.4.2, XR Interaction Toolkit
2.3.2, Android Graphics API OpenGLES3.2, Linear color space,
OpenXR Plugin used for PC, Oculus Plugin used for Android,
Multi-Pass Rendering for both plugins.

Drosophila primordial germ cells were labeled and detected
using immunofluorescence and was carried using polyclonal anti-
Vasa (Boster Bio, cat #DZ41154) and secondary Alexa Fluor 568
(anti-rabbit, ThermoFisher, cat #A10042) as previously
described in detail [7]. Confocal microscopy was carried out
using the Leica STELLARIS 5 white light laser system
and Leica LIGHTNING following previously established
protocols [7]. For pollen images, dry pollen samples were
mounted in ProLong Glass (Life Technologies) and
imaged wusing pollen’s autofluorescent properties that are
produced when exposed to UV.

ACKNOWLEDGMENTS

We thank Kean University, The Center for Aerobiological
Research, and Kean’s Center for Biological Imaging for
providing pollen slides and imaging facilities. Work on this
project was supported by NSF IUSE-HSI 2247157 and the
primordial germ cell project was supported by NIH
RI15HD102960. This research used resources of the Argonne
Leadership Computing Facility, which is a DOE Office of
Science User Facility supported under Contract DE-ACO02-
06CHI11357.

REFERENCES

[1] Apple Developer Forum. 2022. Are OpenGL and OpenCL
supported on Apple silicon? Retrieved from
https://developer.apple.com/forums/thread/694866.

[2] Aysha Alneyadi, Iltaf Shah, and Syed Salman Ashraf.
2019. An innovative bioanalytical research project course
to train undergraduate students on liquid chromatography—

39

(6]

[7]

(8]

9]

Volume 15 Issue 1

mass spectrometry, Biochem. Mol. Biol. Educ. 47, 3, 228—
238.

Sara E. Brownell, Mary Pat Wenderoth, Roddy Theobald,
Nnadozie Okoroafor, Mikhail Koval, Scott Freeman,
Cristina L. Walcher-Chevillet, and Alison J. Crowe. 2014.
How students think about experimental design: novel
conceptions revealed by in-class activities. BioScience 64,
2,125-137.

Alaina J. Buchanan and Ginger R. Fisher. 2022. Current
status and implementation of science practices in course-
based undergraduate research experiences (CUREs): A
ystematic literature review,” CBE—Life Sci. Educ. 21, 4,
arg3.

Ryan M. Cinalli, Prashanth Rangan, and Ruth Lehmann.
2008. Germ cells are forever. Cell 132, 4, 559-562.
Arianna Dondi, Salvatore Tripodi, Valentina Panetta,
Riccardo Asero, Andrea Di Rienzo Businco, Annamaria
Bianchi, Antonio Carlucci, Giampaolo Ricci, Federica
Bellini, Nunzia Maiello, et al. 2013. Pollen-induced allergic
rhinitis in 1360 Italian children: Comorbidities and
determinants of severity,” Pediatr. Allergy Immunol. 24, 8,
742-751.

Dominique A Doyle, Florencia N Burian, Benjamin
Abharoni, Annabelle J Klinder, Melissa M Menzel, Gerard
Carlo C Nifras, Ahad L Shabazz-Henry, Bianca Ulrich
Palma, Gisselle A Hidalgo, Christopher J Sottolano, et al.
2023. Germ granule evolution provides mechanistic insight
into drosophila germline development. Mol. Biol. Evol. 40,
8, msadl74.

Jennifer C. Drew and Eric W. Triplett. 2008. Whole
genome sequencing in the undergraduate classroom:
outcomes and lessons from a pilot course. J. Microbiol.
Biol. Educ. 9, 1,3-11.

Corentin Guérinot, Valentin Marcon, Charlotte Godard,
Thomas Blanc, Hippolyte Verdier, Guillaume Planchon,
Francesca Raimondi, Nathalie Boddaert, Mariana Alonso,
Kurt Sailor, et al.. 2022. New approach to accelerated
image annotation by leveraging virtual reality and cloud
computing. Front. Bioinforma. 1, 777101.

40

Journal of Computational Science Education

[10] John K. Haas. 2014. A history of the unity game engine.
Retrieved from https://digitalcommons.wpi.edu/igp-
all/3207

[11] D. I. Hanauer, J. Frederick, B. Fotinakes, and S. A. Strobel.
2012. Linguistic analysis of project ownership for
undergraduate research experiences. CBE—Life Sci. Educ.
11, 4,378-385.

[12] Abdullah Aburiziza, Mohammed A Almatrafi, Aishah Saud
Alonazi, Mawaddah Hani Zatari, Samah Ali Alqouzi,
Rasha Abdulaziz Mandili, Wedad Taher Hawsawi, and
Rehab Hejji Aljohani. 2008. The prevalence of nasal
symptoms attributed to allergies in the United States:
Findings from the burden of rhinitis in an America survey.
Allergy Asthma Proc. 29, 6, 600-8.

[13] Elias Neuman-Donihue, Michael Jarvis, and Yuhao Zhu.
2023. FastPoints: A state-of-the-art point cloud renderer for
Unity. Retrieved from https://arxiv.org/abs/2302.05002

[14] David Joiner. n.d. David Joiner — Computational Science
Educator. Retrieved from https://joinerda.github.io/

[15] Santana Nufez, José Miguel, Trujillo Pino, Agustin Rafael,
Ortega Trujillo, and Sebastian Eleazar. 2019. Visualization
of large point cloud in unity. Eurographics Tech. Rep. Ser.
Retrieved from http://hdl.handle.net/10553/70567

[16] C. Stefani, A. Lacy-Hulbert, and T. Skillman. 2018.
Confocal VR: immersive visualization for confocal
microscopy. J. Mol. Biol. 430, 21, 4028-4035.

[17] Keijiro Takahashi. 2017. Pcx. Retrieved from
https://github.com/keijiro/Pcx.

[18] Unity. 2023. Learn game development w/ Unity; Courses &
tutorials in game design, VR, AR, & Real-time 3D.
Retrieved from https://learn.unity.com/.

[19] Oliver J. Wilson. 2023. The 3D Pollen Project: An open
repository of three-dimensional data for outreach,
education and research. Rev. Palaeobot. Palynol. 312,
104860.

March 2024

