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Occupancy and Thermal Preference-Based HVAC 
ControlStrategyUsingMultisensor Network 

 Yaa T. Acquaah , Balakrishna Gokaraju, Senior Member, IEEE, Raymond C. Tesioro, III, 

Gregory Monty, and Kaushik Roy 

Abstract—Human-in-the-loop heating, ventilation, and air conditioning 
(HVAC) control-based methodologies have gained much attention due to 
continual discomfort compliance of occupants in residential and 
commercial buildings; spawning thermal comfort research interest in 
leveraging emerging advanced technologies to address the prolonged 
problem of discomfort and energy efficiency. In the past, thermal comfort 
studies have been conducted to determine the thermal sensation, 
preference, and comfort based on the American Society of heating, 
refrigerating, and airconditioning engineers (ASHRAE) Global Thermal 
Comfort Database II and customized dataset through machine learning. 
The ASHRAE Database II is an open-source database 
that includes sets of objective indoor climatic observations with corresponding subjective evaluations by the building occupants who were 

used as subjects in experiments. Environmental parameters and occupants’ skin temperature have been used to develop machine learning 

algorithms to predict thermal comfort indices in both indoor and outdoor settings. However, none of these studies have investigated 

merging environmental parameters and thermal images to predict thermal comfort indices of occupants. In this study, the holistic 

understanding of individuals thermal comfort environment was considered by fusing analog environmental sensors and thermal images 

captured at the time of the subjective measurement. Wavelet-scattering features were obtained from the occupants’ thermal image 

surroundings and joined to the environmental parameters. This research developed different machine learning models, processing 

methods and evaluated the results based on the fused dataset. The results show the possibility of real-time prediction of occupancy and 

thermal preference through classical machine learning, and stacked models with high accuracy. The proposed framework achieved an 

estimated 45% mean energy savings during a ten-day energy analysis. 

Index Terms—Energy efficiency, heating, ventilation and air conditioning (HVAC), machine learning. 
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I. INTRODUCTION 

HE importance of the heating, ventilation, and air conditioning 

(HVAC) system in building thermal regulation cannot be over 

emphasized. Thermal comfort and energy efficiency remains 

the top two functions of the HVAC system. Thermal comfort is 

the state of mind that establishes thermal satisfaction with the 

thermal environment. Thermal comfort has metrics like the 

thermal preference, sensation, acceptability, and satisfaction 

and accessed by subjective measurements [1]. Fanger [2] a 

pioneer expert in the field of thermal comfort and 

environment perception, developed an index for measuring 

indoor thermal comfort. According to Fanger, the 

requirements for steady-state thermal comfort are when: 1) 

the body is in heat balance; 2) mean skin temperature and 

sweat rate, influencing this heat balance, are within certain 

limits; and 3) no local discomfort exists [3]. A lot of studies 

composing of real-world and chamber experiments have 

supported the findings of Fanger. Other Researchers have 

critiqued the predicted mean vote (PMV) model based on 

input parameters, building type, and geographic application 

range [3], [4], [5]. This has led to the exploration of machine 

learning techniques to predict thermal comfort. The 

motivation for this work is to find a new method by which the 

HVAC systems in buildings can be controlled based on 

occupancy 

T 
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Fig. 1. Indoor and outdoor temperature graph. 

and thermal preference. To do this, wavelet-scattering features 

of time-stamped thermal images captured during survey 

collection is fused with analog sensors streaming 

environmental parameters in real time. To achieve this, 

thermal images of subjects are captured every minute as 

subjective measurements of thermal comfort indices are 

collected and at the same time analog sensors stream data. 

The main contributions of this article are as follows. 

1) Collection of accurate multisensor analog readings and 

infrared images using corresponding timestamp with 

hardware integration and development. 

2) To develop machine learning models for estimating real-

time occupancy based on fused dataset of thermal 

imagery and analog sensors. 

3) To develop machine learning models for predicting real-

time thermal preference based on fused dataset of 

thermal imagery and analog sensors. 

We propose occupancy and thermal preference machine 

learning models based on the combination of thermal image 

and sensor parameters for improved performance. The fusion 

of the timestamped thermal images helps to better understand 

the thermal environment of occupants in a given space and 

how it affects an individual’s thermal comfort at a given time. 

Ten days temperature data of the HVAC laboratory in North 

Carolina Agricultural and Technical State University (NCAT) 

were collected from March 7 to March 17, 2022 and were 

plotted together with the outdoor temperature during the 

period as shown in Fig. 1. It was discovered that this room 

never reaches occupants comfort level because the line for 

comfort level reaches 70 ◦F which is the occupants’ comfort 

level only six times throughout the ten days period. It is 

approximately 6 min that it reaches occupants comfort level in 

the laboratory, and this proves why this research is significant. 

The system was on and off all day long whether occupied or 

not but occupants were comfortable a few times. The 

thermostat is outside the classroom therefore if the HVAC 

system understands when there are people around and their 

comfort preferences, energy can be conserved. It can be 

observed from the graph on March 13th that the room was 

below 60 ◦F. This emphasizes the need to explore a new 

technique to control HVAC system of the room based on 

infrared cameras and have it run according to occupancy and 

occupants’ thermal preferences. The upward end of the spike 

in the graph indicates when the HVAC system is running and 

thus the spikes in one day represents how much the HVAC 

system ran. It also emphasizes the need for a variable air 

volume (VAV) system control, the classrooms that do not have 

a thermostat, clearly never reach occupant comfort. Also, the 

laboratories typically have zero occupancies on weekends. 

During these “no occupancy” periods, the preferred mode of 

the system should be “drift mode.” Drift mode is when a room 

naturally heats up or cools down to a temperature setpoint 

that is not in the “comfort range,” thus saving energy. 

Precautions should be taken to not allow the room to get too 

cold (it could freeze water pipes) or too hot or humid (which 

could create mold). Ideally, allowing drift between 60 ◦F and 80 
◦F saves energy when not occupied. Traditional thermostats do 

not allow this drift to happen, hence the need for an expensive 

HVAC control system with programming capabilities for 

classroom and laboratory temperature scheduling every 

semester which mostly never happens. This illustrates that the 

system of using infrared cameras to predict comfort level and 

occupancy is a better system. This research demonstrates that 

a smart diffuser system with infrared cameras, allows 

“pockets” of control (energy savings) within a space or room. 

This article is organized as follows: Section II introduces the 

available techniques for occupancy detection and thermal 

preference prediction. The technical details of the 

methodology including data collection, data integration, 

feature extraction, and modeling techniques used for the study 

are discussed in Section III. The results and discussion of the 

proposed methodology are further described in Section IV. 

Section V presents a summary of conclusions in this work, 

energy analysis, and future research ideas. 

II. RELATED WORK 

Pilot research on thermal comfort was conducted by Fanger 

in the 1970s where the formulation of the PMV model and 

input parameters were introduced. The PMV was developed 

using principles of heat balance and experimental data 

collected in a controlled climate chamber under steady state 

conditions [1]. Fanger’s equations are used to calculate the 

PMV of a group of subjects for a particular combination of air 

temperature, mean radiant temperature, relative humidity, air 

speed, metabolic rate, and clothing insulation (CLO). The 

adaptive model, on the other hand, was developed based on 

hundreds of field studies with the idea that occupants 

dynamically interact with their environment [4]. Outdoor 

climate influences indoor comfort because humans can adapt 

to different temperatures during different times of the year is 

the foundational knowledge that the adaptive model is based 

on. Occupants control their thermal environment by means of 
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clothing, operable windows, fans, personal heaters, and 

sunshades [2], [3]. The PMV model can be applied to air-

conditioned buildings, while the adaptive model can be 

applied only to buildings where no mechanical systems have 

been installed [4]. Over the past decade, researchers in the 

field of thermal comfort have conducted experiments to 

investigate machine learning models to predict the metrics of 

thermal comfort namely thermal preference, sensation, 

acceptability, satisfaction, and so on. Mostly features utilized in 

the training of these machine learning models included skin 

temperature of various parts of the body, parameters from 

environmental sensors, wearable sensors, and activity meters 

[6], [7], [8], [9], [10], [11], [12], [13], [14], [15], [16], [17], [18], 

[19], [20], [21], [22], [23], [24]. Machine learning models 

trained on skin temperature features are prone to errors since 

it becomes quite impossible for occupants in a building to 

remain in a specific posture for skin temperatures to be 

extracted. Moreover, distance calculations from thermal 

cameras needs to be incorporated into these models because 

the temperature of an object varies depending on the distance 

from the camera. In a recent study conducted by Zhou et al, 

machine learning models to predict thermal sensation were 

developed based on quality-controlled database. Amongst the 

major findings from this research suggested that the multilayer 

perceptron (MLP) algorithm achieved higher accuracy in the 

prediction of thermal sensation [6]. Previous researchers 

designed experiments or leveraged resources from the 

ASHRAE database I and II to investigate the thermal sensation 

of occupants in a building [10], [11], [12]. Narrowing down to 

the thermal comfort metrics under investigation in this 

research, there has been numerous works done on thermal 

preference [26], [27], [28], [29], [30]. Kim et al. [26] predicted 

individuals’ thermal preference using occupant heating and 

cooling behavior [25]. Cosmo and Simha [27] also designed an 

experiment to collect thermal preference votes of individuals 

to train machine learning models. In another study by Aguilera 

et al. [28], ANN, Naive Bayes (NB), and fuzzy logic machine 

learning models were trained to predict thermal preference on 

three categories based on air temperature and relative 

humidity as features. Martins and coauthors trained a thermal 

preference artificial neural network (ANN) model for older 

people based on dry bulb temperature, radiant temperature, 

relative humidity, air speed, corrected metabolic rate, clothing 

level, and health status [30]. Currently, to the best of the 

authors’ knowledge, no literature has explored the possibility 

of joining thermal images and environmental sensor data for 

occupancy detection and thermal preference prediction for 

smart HVAC control. 

In this study, we are interested in investigating machine 

learning models trained on combined time stamped thermal 

imagery and environmental parameters dataset to predict 

occupancy and individuals’ thermal preference in a building. 

Using various data sources, we aim to leverages the 

advantages of different environmental sensors and thermal 

cameras to increase accuracy and mitigate uncertainty. Since 

each sensor has its own weaknesses, combining the dataset 

from each sensor creates a complete system improving the 

reliability of prediction of thermal preferences. This provides 

top notch data analysis integrating sensory information to 

make inferences regarding the surrounding thermal 

environment. This combined information gathered from 

various sensors have advantage over each sensor being 

considered individually. 

 

Fig. 2. Methodology diagram of the framework. 

 

Fig. 3. Experiment setup. (a) Temperature and humidity sensor. (b) Carbon 
dioxide sensor. (c) Wall mounted lepton 3.5. (d) Arduino Uno interphased with 
environmental sensor. (e) Optrix PI 160. (f) Corner mounted lepton 3.5. 

III. MATERIALS AND METHODS 

The occupancy and thermal preference-based methodology 

for smart HVAC control is illustrated in Fig. 2. We implemented 

ten state-of-the-art machine learning algorithms for occupancy 

detection and thermal preference prediction. This analysis 

allows us to understand which relevant features and machine 

learning models perform well with occupancy detection and 

thermal preference prediction. 

A. Data Collection 

To explore the possibility of fusing environmental 

parameters with thermal imagery and survey of subjective 

thermal preference votes, an experiment was designed. In the 

experimentation, thermal images were captured with the 

Lepton 3.5 infrared camera and at the same time 

environmental parameters stream and surveys were 

completed online by subjects. Surveys were conducted each 

time a thermal image was captured. The data gathered 

included time-stamped thermal images with corresponding 
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environmental parameters and thermal preference votes. The 

laboratory for this experimentation was an air-conditioned 

room. The data collection hardware consisted of carbon 

dioxide concentration sensor, temperature, and humidity 

sensor interfaced with an Arduino Uno microcontroller 

connected to a desktop computer as shown in Fig. 3. The data 

collection software was a CoolTerm software and a Google 

form survey, which resided on the desktop computer. The data 

collection is followed with data preparation before the data is 

fed into classification models. The thermal preference 

experiment was carried out in the Artificial intelligence and 

Visualization laboratory at NCAT from February to 

 

Fig. 4. Wavelet-scattering feature extractor. 

September of 2021. Fifteen subjects in the age range of 19–34 

years, comprising nine males and six females were recruited to 

aid in the data collection. Environmental data (within the 

laboratory) were collected using carbon dioxide, temperature, 

and humidity sensors. The temperature and humidity sensors 

are calibrated with the Optrix PI 160 camera which 

interrogated the same area these sensors had been placed. 

Data were collected from these sensors interfaced with an 

Arduino Uno microcontroller and connected to a desktop 

computer. Environmental data were streamed every minute 

with the help of the CoolTerm software at the same time as 

subjects completed a Google form survey about their thermal 

sensation, comfort, acceptability, and preferences. The 

environmental data and the survey data were combined based 

on the timestamp for further analysis. The 222 thermal images, 

environmental studies and target data of thermal preference 

votes were utilized in this study. Additionally, the experiment 

for the occupancy dataset was carried out in the Graham Hall 

HVAC laboratory at NCAT from February to March of 2022. 

B. Feature Extraction 

Feature extraction is an important step in the workflow of 

classification machine learning model development. This is 

because the performance of the machine learning model is 

widely dependent on the extraction of relevant discriminating 

features for training. For each x ∈ IN, (where x represents an 

image in a set of images IN. N is the total number of samples 

contained in the set.) wavelet-scattering features up to the 

third order are computed. In the wavelet-scattering 

framework, which was first introduced by Bruna and Mallat 

[31], a succession of operations involving convolutions, 

nonlinearity, and averaging are performed to extract features 

which are invariant to translation, rotation, scaling, and 

deformation. The modulus computes a lower frequency 

envelope, thus squeezing the energy from the images. 

Integrating the modulus as presented in (1) of the convolution 

results in L1 norm which is invariant [31]. This is achieved by 

leveraging wavelets as filters to convolve thermal image, 

applying the modulus and then averaging to obtain invariant 

features as shown in Fig. 4 

Z 

 |x ∗ 9λ (t)|dt = ∥x ∗ λ∥1 (1) 

where x is a time stamped image and 9λ is a wavelet filter. A 

three-layer wavelet scattering with a 100-by-100 invariance 

scale is constructed as the feature extractor. 

S0x(t,λ0), S1x(t,λ1), S2x(t,λ2) represent the zeroth-order, first-

order, and second-order scattering coefficients. λ0,λ1, and λ2 

are the center frequency of zeroth-order, first-order, and 

second-order wavelets, respectively. At the beginning of the 

wavelet-scattering feature extraction, the original time-

stamped image is convolved with the low-pass wavelet 8 to 

obtain the average of the input image as shown in the 

following equation: 

 S0x = x ∗ 8. (2) 

The application of the modulus shifts the energy in the 

higher frequency bands toward the lower frequency bands in 

the next decomposition. First-order scattering coefficients are 

obtained by convolving modulus with lowpass as shown below 

in the following equation: 

 S1x  (3) 

Similarly, following equation presents second-order 

scattering coefficients: 

 S2x  

  (4) 

The MATLAB wavelet toolbox was used to compute the 

wavelet-scattering features [32]. The coefficients which were 

the scattering features are down sampled to reduce 

computational complexity. 

C. Feature Reduction 

Principal component analysis is used as a dimension 

reduction technique to find a few orthogonal linear 

combinations of the scattering features called principal 

components. Most of the variance in the dataset are captured 

by the first and second principal components. 

D. Training Data and Data Preprocessing 

Data integration from multisensor sources was possible by 

combining wavelet-scattering features of thermal images from 

thermal camera, environmental sensors, and survey forms 

based on timestamp leveraging a python script. A feature 

matrix AN,M (N is the number of observations and M is the 

number of features for each observation) is constructed for 
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training of machine learning thermal preference prediction 

model. A feature row, A{1,2,...,N},{1,2,...,M} ∈ AN,M for each 

observation an,m therefore composes of detailed relevant 

scenery information from wavelet scattering obtained from 

thermal images, physiological information on activity and 

clothing level, and environmental parameters from sensors. 

The multiclass labels for occupant thermal preference are 

represented as yi ∈ Y. Furthermore, a feature matrix BN,M (M is 

the number of features for each observation) is also 

constructed for occupied and not-occupied class training for 

observations for the occupancy dataset. A feature vector, 

B{1,2,...,N},{1,2,...,M} ∈ BN,M for each observation bn,m therefore 

composes of detailed relevant scenery information from 

wavelet scattering obtained from thermal images and 

environmental parameters from sensors. The binary class 

labels for occupancy are represented as yi ∈ Y. The two 

datasets were cleaned to remove missing values. Duplicated 

observations were identified and removed from the datasets. 

Observations that were significantly different from other data 

points were removed to avoid distortion of the analysis. The 

CLO and metabolic equivalent of task (MET) values from 

ASHRAE of clothing insulation, and metabolic activity levels in 

the thermal preference dataset were substituted for the 

variables. Data transformation was necessary for both 

occupancy and thermal preference dataset due to the different 

units and scales of the features, the dataset is transformed 

using the standard scaler to ensure mean of the data is zero 

and the standard deviation is one. 

E. Feature Classification Using Machine Learning Models 

In this section, various state-of-the-art supervised 

classification machine learning models were explored to 

classify both the occupancy dataset and the thermal 

preference dataset. Description of each of this machine 

learning models is presented in the subtitles below: 

1) K-Nearest Neighbors: The K-nearest neighbors is a 

nonparametric classification algorithm that utilizes neighbor 

point information to predict target class. A sample is classified 

by the popularity vote of its nearest neighbors. The distance 

between and training samples and new samples to be 

classified is computed and the class is predicted based on the 

most common nearest neighbors’ class labels. The distance 

computation can be a Euclidean and Manhattan distance. The 

KNN classification algorithm has been successfully applied in 

the classification of features in thermal comfort analysis. 

2) Classification and Regression Tree: Classification and 

regression tree (CART) is also a nonparametric algorithm that 

seeks to find the best split to subset the data, and they are also 

known as decision trees. Evaluation of the quality of splits is 

based on metrics such as Gini impurity, information gain, or 

mean square error (MSE). Decision tree algorithm has the 

tendency to overfit since all samples are tightly fit within the 

training data. 

3) Support Vector Machine: A support vector machine 

(SVM) is a supervised learning algorithm useful for 

classification and regression problems, including signal-

processing image classification, natural language processing, 

and speech. The SVM algorithm is generally suited for binary 

problems so multiclassification problems are reduced to series 

of binary problems. The objective of the SVM algorithm is to 

find a hyperplane that, to the best degree possible, separates 

data points of one class from those of another class. The 

support vectors are the extreme points in the dataset. The 

distance between a support vector and a hyperplane should 

be as far as possible. Thus, the hyperplane has the maximum 

distance to the support vectors of any class. The sum of the 

shortest distance to the closest positive point to the 

hyperplane and shortest distance from the hyperplane to the 

closest negative point is called the distance margin. This is also 

the distance between the two support vectors. Datasets are 

transformed to a higher dimension in problems where a 

hyperplane cannot be used to separate easily. Kernel functions 

map the data to a different, often higher dimensional space 

with the expectation that the classes are easier to separate 

after this transformation. 

4) Extra Tree: Extra tree is an ensemble machine learning 

technique that combines predictions from decision tree. 

5) Extreme Gradient Boosting: Extreme gradient boosting 

also known as XGBoost it is a specific implementation of the 

gradient boosting method which uses more accurate 

approximations to find the best tree model. XGBoost is 

exceptionally successful particularly with structured data. The 

most important are computation of second-order gradients 

that is second partial derivatives of loss function provides more 

information about the direction of gradients and minimization 

of the loss function. Advanced regularization improves model 

generalization. Amongst the algorithms, advantages over 

other machine learning models are faster training and the 

ability to be parallelized or distributed across clusters. 

6) Gradient Boosting: Gradient boosting is a boosting 

algorithm. The principle behind boosting algorithms is first we 

built a model on the training dataset, then a second model is 

built to rectify the errors present in the first model. The goal is 

to build models sequentially to reduce the errors of the 

previous model by building a new model on the errors or 

residuals of the previous model. Gradient boosting uses the 

loss function of a base model like the decision tree as a proxy 

for minimizing the error of the overall model. 

7) Random Forest: Random forest is also an ensemble 

machine learning technique but differ from extra tree 

algorithm by choosing the optimum splits. Random forests 

grow many classification trees. A new object is classified from 

an input vector by putting the input vector down each of the 

trees in the forest. Each tree gives a classification, and we say 

the tree “votes” for that class. The forest chooses the 

classification having the most votes (over all the trees in the 

forest). The random forest is unexcelled in accuracy among 
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current algorithms, runs efficiently on large datasets, and 

handles thousands of variables. Estimates of important 

variables in the classification model can be provided by this 

algorithm. Random forest algorithms have three main 

hyperparameters, which need to be set before training. The 

hyperparameters node size, the number of trees, and the 

number of features sampled are set before training. A random 

forest classifier is not likely to overfit the model because the 

uncorrelated trees lower the overall variance and prediction 

error. 

8) Adaptive Gradient Boosting: Adaptive boosting also 

known as AdaBoost is an ensemble learning method that uses 

an iterative approach to learn from the mistakes of weak 

classifiers and turn them into strong ones. Boosting basically 

reduce the bias error which arises when models are not able 

to identify relevant trends in the data. 

9) Multilayer Perceptron Neural Networks: A multilayer 

perceptron is called Neural Networks. A perceptron, a neuron’s 

computational model, is graded as the simplest form of a 

neural network. Frank Rosenblatt invented the perceptron at 

the Cornell Aeronautical Laboratory in 1957. The aim of this 

learning problem is to use data with right labels for making 

more accurate predictions on future data and then helps for 

training a model. The perceptron mainly consists of four parts 

that is the input values or layer, weights and bias, net sum, and 

activation function. 

10) Gaussian Naïve Bayes: NB are a group of supervised 

machine learning classification algorithms based on the Bayes 

theorem for calculating probabilities and conditional 

probabilities with an assumption of independence among 

predictors. NB classifier assumes that the presence of a 

particular feature in a class is unrelated to the presence of any 

other feature and are particularly useful for very large 

datasets. NB algorithm is suitable for real-time prediction, 

multiclass prediction, recommendation system, sentiment 

analysis, and spam filtering. 

11) Stacking Ensemble: Stacking is an ensemble learning 

technique where the predictions of multiple base or level 

 

Fig. 5. Stacking ensemble model. 

one classifiers multiple classifiers are used as new features to 

train a meta-classifier for higher predictive performance. The 

algorithm for the stacking ensemble is presented in Algorithm 

1. The visual representation of stacking procedure is presented 

in Fig. 5. 

Algorithm 1 Stacking Ensemble 

Input: Training data D ={Ai, yi}i
n

=1 

(an,m ∈ AN,M −→ Ai ∈ A, yi ∈ Y) 

Output: Ensemble Classifier G for 

Baseclassi f iers = 1,T do. 

Store predictions as D′ = {P(D1
′ ), P(D2

′ )... P(DT
′ )} 

Append Training data to new dataset of classifier 

predictions (D ∪ D′). 

end for 

Learn a meta classifier G′ based on D′. Introduce a 

permutation scheme to find metaclassifier and 

combinations of base classifiers for optimal accuracy. 

 

F. Experiments 

Experiments were conducted at two different locations at 

North Carolina A and T to evaluate the performance of the 

proposed methodology in the prediction of occupancy and 

thermal preference. Two kinds of data were collected in 

different indoor environments. 

1) Occupancy Prediction: The occupancy dataset was collected 

in the Graham Hall HVAC laboratory between February and 

March 2022. This dataset consisted of time-stamped thermal 

images captured every minute when the laboratory was 

occupied or not. At the same time, environmental parameters 

corresponding to the time stamped thermal images were 

streamed every minute. The 2419 images with corresponding 

environmental parameters were collected. The detail 

description of the occupancy prediction dataset is presented in 

Table I. Fig. 7 presents thermal images captured in the 

laboratory. The method of cross-validation was implemented 

by dividing training dataset into ten stratified folds. The first 

nine folds were used to train a model, and the holdout tenth 

fold is used as the test set. This process is repeated and each 

of the folds is given an opportunity to be used as the holdout 

test set. A total of ten models were fit and evaluated, and the 

performance of the model was calculated as the mean of these 

runs. Stratified k-fold sampling is a variation of k-fold which 

places approximately the same percentage of samples of each 

target class as in the complete dataset in each of the training 

and testing sets. Furthermore, the method of hold-out 

validation was implemented by splitting up the occupancy and 

thermal preference dataset into a train and test set. The model 

was trained on the training set and the test set was used to 
TABLE I 

TOTAL NUMBER OF SAMPLES OBTAINED FOR EACH 
SENSOR FOR OCCUPANCY DATASET 

    

    

    

    

    
TABLE II 
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OCCUPANCY TRAINING AND TESTING DATASET 

    

    

    
TABLE III 

TOTAL NUMBER OF SAMPLES OBTAINED FOR EACH SENSOR 
FOR THERMAL PREFERENCE DATASET 

     

     

     

     

     
see how well the model performed on the unseen data. In this 

study, 80% of data was used for training and the remaining 20% 

of the data was used for testing for the hold-out method as 

presented in Table II. 

2) Thermal Preference Prediction: Thermal preference dataset 

was collected in the Artificial Intelligence Laboratory 

in Hall between February 2021 and September 2021. Fig. 6 

presents Hines Hall Artificial Intelligence Laboratory Set Up, 3-

D Laboratory layout, analog sensors, Flir Lepton 3.5, and 

thermal images captured in the Hines Hall laboratory. The 222 

timestamped thermal images with corresponding 

environmental parameters and survey response on the 

thermal preference of subjects recruited for the experiment 

was collected. The detail description of the occupancy 

prediction dataset is presented in Table III. The thermal 

preference dataset is divided into 80% for model training and 

20% for testing. Stratified sampling and hold out validation are 

used separately when splitting the data into the training and 

test sets for the thermal preference dataset too. Table IV 

presents the details for the training and testing samples. 

IV. RESULTS 

A. Performance Analysis 

Performance of the classification algorithms for occupancy 

and thermal preference prediction has been measured and 

compared in terms of recall, precision, f1-scores, accuracy, and 

area under the curve (AUC) for both stratified cross validation 

and hold out validation methods. Recall is the proportion of 

the actual positive class members that are correctly identified 

in a classification machine learning problem as presented in 

the following equation: 

True Positives 

 Recall = . (5) 

True Positives + False Negatives 

Precision is the proportion of positive identifications that are 

correct and is defined as follows: 

True Positives 

Precision = . (6) True 

Positives + False Positives 
TABLE IV 

THERMAL PREFERENCE TRAINING AND TESTING DATASET 

    

    

    

    
The f1-score is the harmonic mean of precision and recall, 

which is defined in the following equation: 

2 ∗ Precision ∗ Recall 

 F1 = . (7) 

Precision + Recall 

The AUC is the measure of the ability of a classifier to 

distinguish between classes and is used as a summary of the 

ROC curve. Cohen’s kappa is a metric often used to assess the 

agreement between two raters. It can also be used to assess 

the performance of a classification model. Cohen’s kappa takes 

imbalance in class distribution into account and provides a 

more objective description of the model performance in 

problems where accuracy fails because of severe class 

imbalance. The kappa coefficient gives an indication if a 

classifier is performing over the performance of a classifier that 

simply guesses at random according to the frequency of each 

class. Landis and Koch (1977) provided a way to characterize 

the kappa coefficient values [33]. According to the authors’ 

scheme a valueless than zero is indicating no agreement, 0–

0.20 as slight, 0.21–0.40 as fair, 0.41–0.60 as moderate, 0.61–

0.80 as substantial, and 0.81–1 as almost perfect agreement 

[33]. The Cohen’s kappa coefficient is expressed in the relation 

in the following equation: 

ρ0 − ρe 

 κ =  (8) 

1 − ρe 

where ρ0 is the relative observed agreement among raters and 

ρe is the hypothetical probability of chance agreement, using 

the observed data to calculate the probabilities of each 

observer randomly seeing each category. 

B. Occupancy Prediction 

The results show that with an accuracy of 99.2% for tenfold 

cross validation, extra trees algorithm has the best 

performance among the tested algorithms for occupancy 

prediction as presented in Table V. Also, AdaBoost Algorithm 

has the best accuracy for the hold-out method. The ten-fold 

cross validation method is a computationally intensive process; 

it took a fraction of a second to implement a hold-out 

AdaBoost occupancy model while the ten-fold cross validation 

of the same algorithm was executed in more than 78 s. The first 

principal component, second principal component, 

temperature, humidity, third principal components, and 

minute are the top six important features for occupancy 

prediction based on the AdaBoost feature importance. Table VI 

presents the hyperparameter tuned for all occupancy 
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prediction models. Table VII presents the results from the 

implementation of the stacking methodology discussed in 

Section III. The highest accuracy was achieved when K-nearest 

neighbor, extra tree, and CART were utilized as base learners 

and SVM as the meta classifier for the occupancy prediction. 

C. Thermal Preference Prediction 

XGBoost algorithm achieved the best performance for 

thermal preference prediction with mean accuracy and F1 

score of 80.5% and 79.90% for ten-fold cross validation, 

respectively as presented in Table VIII. Furthermore, XGBoost 

achieved the best performance accuracy and F1 score of 

86.70% and 86.10%, respectively for hold-out validation of 

thermal preference prediction. The temperature, minute, 

humidity, first, second, and forth principal components are the 

top six important features for thermal preference prediction 

based on the XGBoost feature importance. Table IX presents 

the hyperparameter tuned for all thermal preference 

prediction models. 

The SVM classifier was again utilized as the meta classifier in 

the stacking methodology in all combinations for thermal 

preference prediction. Table X presents the results. The highest 

accuracy was achieved when AdaBoost, extra tree, and random 

forest were utilized as base learners and SVM as the 

metaclassifier for the thermal preference prediction. It was 

observed that the predicted probabilities were more efficient 

as compared to the predicted class labels for the stacking 

ensembles. An improvement of about 9% more when 

compared to the highest accuracy of the individual models. 

V. DISCUSSIONS 

This work introduced a novel methodology for occupancy 

and thermal preference prediction based on fusion of time 

stamped thermal images and environmental parameters for 

automated HVAC control. Wavelet features obtained from 

scenery thermal images were fused with temperature, 

humidity, and carbon dioxide concentration based on 

timestamps to ascertain the thermal environment of building 

occupants. The occupancy of a building was classified into one 

of two classes (that is whether the building is occupied or not). 

Thermal preference of individuals is classified into one of three 

classes: should the thermal environment be cooler, no change, 

or warmer. Through the experiments, we have shown the 

possibility of real-time prediction of occupancy and thermal 

preference through classical machine learning, ensemble, and 

stacked models with high accuracy. 

The performance analysis reiterates that the 

waveletscattering coefficients for different classes contain 

detailed information. Wavelet scattering performs well even 

with smaller dataset, unlike deep learning that requires huge 

dataset and a lot of time to train. The architecture of the 

waveletscattering network was optimally designed by selecting 

an ideal invariance scale for improved results in occupancy and 

thermal preference prediction. Additionally, hyperparameters 

for all machine learning models were tuned for best results. 

Previous work done by other authors extracted temperature 

values from the thermal images for modeling through sensor 

equations provided by manufacturers of the thermal cameras 

which may be prone to errors. The wavelet-scattering feature 

extraction methodology investigated in this study does not 

require the utilization of temperature values of occupants 

which alleviates the errors likely to be introduced. 

In the area of thermal preference research, a recent work by 

Martins et al. [30] trained an ANN model based on dry bulb 
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TABLE VII 
STACKING MODELS FOR OCCUPANCY PREDICTION 

   

   

   

   

   

   

   

   

   

   

   

TABLE V 
EVALUATION METRICS OF TEN DIFFERENT OCCUPANCY MODELS WITH TEN-FOLD CROSS VALIDATION AND HOLD OUT METHODS 

        

        

        

        

        

        

        

        

        

        

        

        

        

        

        

        

        

        

        

        

        

 

TABLE VI 
HYPERPARAMETER TUNING FOR OCCUPANCY MODELS 
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temperature, radiant temperature, relative humidity, air 

speed, corrected metabolic rate, clothing level, and health 

status for older people’s thermal preference prediction. The 

average accuracy of the individualized models was reported to 

be 74%, Cohen’s kappa coefficient of 0.61 and AUC of 0.83 [30]. 

Another recent work published by Liu et al. [28], four machine 

learning models namely, SVM, CART, RF, and KNN were 

investigated. The highest performing model was random forest 

with accuracy performance of 85% with self-adaptive behavior, 

indoor temperature, and relative humidity [28]. Previous study 

by Aguilera et al. [29] trained ANN, NB and Fuzzy logic 

 

Fig. 6. Hines Hall Artificial Intelligence Laboratory Set Up. (a) 3-D Laboratory 
layout, analog sensors, and Flir Lepton 3.5. (b) and (c) Thermal images. 

 

Fig. 7. Graham Hall HVAC laboratory. 

machine learning models to predict thermal preference on 

three categories based on air temperature and relative 

humidity as features, the reported best AUC performance of 

73% during evaluation was from NB. If the proposed approach 

is integrated in the HVAC control of the laboratory mentioned 

earlier during the problem statement, 45% more energy would 

be 
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Fig. 8. Energy Savings for ten days period. 

saved. Instead of conditioning the laboratory at all times, full 

conditioning would thus be based on the presence of 

occupants and thermal preference. There are two limitations 

to this study: first, the work presented did not take into 

consideration the thermal preference of occupants who are 

closer to ceiling diffusers. There exists a possible relationship 

between thermal preference of occupants and distance from 

ceiling diffusers. 
TABLE X 

STACKING MODELS FOR THERMAL PREFERENCE PREDICTION 

   

   

   

TABLE VIII 
EVALUATION METRICS OF THERMAL PREFERENCE MODELS WITH TEN-FOLD CROSS VALIDATION AND HOLD OUT METHODS 

        

        

        

        

        

        

        

        

        

        

        

        

        

        

        

        

        

        

        

        

        

 

TABLE IX 
HYPERPARAMETER TUNNING FOR THERMAL PREFERENCE MODELS 
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Proximity to ceiling diffusers will therefore be incorporated as 

a parameter in future work. Second, thermal preferences 

presented in this study are subjective votes collected from 

individual occupants in a room. The subjective measurements 

of a group of occupants are therefore not accounted for in this 

work. Also, some of the subjective measurements may be 

prone to errors which the authors do not have control over. 

VI. CONCLUSION 

This study proposed an HVAC control methodology based on 

occupancy and thermal preference. Preliminary experiments 

and performance evaluations have been conducted and it can 

be concluded that fusion of multisensor readings provides a 

holistic understanding of an individual’s thermal environment. 

Individualized thermal preference prediction is necessary for 

improved thermal comfort and energy efficiency. The 

experiments illustrate that the occupancy and thermal 

preference models can provide accurate predictions for smart 

HVAC control. In so doing, the thermal environment will be 

conditioned only when is occupied and the thermal preference 

of occupants demands attention for comfort. Future work will 

expand thermal preference dataset to train deep learning 

models for comparative analysis. Additionally, we plan to 

include features like proximity to vents and adaptive human 

behaviors to the proposed framework. Furthermore, the 

subjective measurements of group of occupants would be 

incorporated in the framework as mean votes to ascertain how 

that affects the evaluation metrics. We analyzed the energy 

savings to be achieved with the occupancy and thermal 

preference prediction framework in place. Data collected from 

the HVAC system were leveraged to estimate energy usage. 

The size of the laboratory is approximately 1500 square 

footage and according to the rule of thumb the range is 

between 150–250 sf/ton for elementary, high school, and 

college building usage type. The extreme number in the range 

is used for computation because it is an old building with no 

insulation. There is no heat transfer through the corridor 

because is conditioned and the only heat transfer is on the 

exterior wall. The estimated maximum overall tonnage and 

electrical usage is six tons which is equivalent to 72000 British 

thermal unit per hour (Btu/h) equivalent to 21.096 KW. 

Similarly, this means estimated 0.3516 and 0.00586 KW energy 

is consumed every minute and second, respectively, in the 

laboratory. Computation of energy usage during the ten days 

period is achieved by the aggregation of the widths of the 

peaks in Fig. 1 daily. The daily energy savings achieved by the 

study approach is presented in Fig. 8. An estimated 45% energy 

savings was realized during the ten days of analysis. 
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