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Abstract—Human-in-the-loop heating, ventilation, and air conditioning
(HVAC) control-based methodologies have gained much attention due to
continual discomfort compliance of occupants in residential and
commercial buildings; spawning thermal comfort research interest in
leveraging emerging advanced technologies to address the prolonged
problem of discomfort and energy efficiency. In the past, thermal comfort
studies have been conducted to determine the thermal sensation,
preference, and comfort based on the American Society of heating,
refrigerating, and airconditioning engineers (ASHRAE) Global Thermal
Comfort Database Il and customized dataset through machine learning.
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that includes sets of objective indoor climatic observations with corresponding subjective evaluations by the building occupants who were
used as subjects in experiments. Environmental parameters and occupants’ skin temperature have been used to develop machine learning
algorithms to predict thermal comfort indices in both indoor and outdoor settings. However, none of these studies have investigated
merging environmental parameters and thermal images to predict thermal comfort indices of occupants. In this study, the holistic
understanding of individuals thermal comfort environment was considered by fusing analog environmental sensors and thermal images
captured at the time of the subjective measurement. Wavelet-scattering features were obtained from the occupants’ thermal image
surroundings and joined to the environmental parameters. This research developed different machine learning models, processing
methods and evaluated the results based on the fused dataset. The results show the possibility of real-time prediction of occupancy and
thermal preference through classical machine learning, and stacked models with high accuracy. The proposed framework achieved an

estimated 45% mean energy savings during a ten-day energy analysis.
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|. INTRODUCTION

HE importance of the heating, ventilation, and air conditioning
(HVAC) system in building thermal regulation cannot be over
emphasized. Thermal comfort and energy efficiency remains
the top two functions of the HVAC system. Thermal comfort is
the state of mind that establishes thermal satisfaction with the
thermal environment. Thermal comfort has metrics like the
thermal preference, sensation, acceptability, and satisfaction
and accessed by subjective measurements [1]. Fanger [2] a

pioneer expert in the field of thermal comfort and
environment perception, developed an index for measuring
indoor thermal comfort. According to Fanger, the

requirements for steady-state thermal comfort are when: 1)
the body is in heat balance; 2) mean skin temperature and
sweat rate, influencing this heat balance, are within certain
limits; and 3) no local discomfort exists [3]. A lot of studies
composing of real-world and chamber experiments have
supported the findings of Fanger. Other Researchers have
critiqued the predicted mean vote (PMV) model based on
input parameters, building type, and geographic application
range [3], [4], [5]. This has led to the exploration of machine
learning techniques to predict thermal comfort. The
motivation for this work is to find a new method by which the
HVAC systems in buildings can be controlled based on
occupancy
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Fig. 1. Indoor and outdoor temperature graph.

and thermal preference. To do this, wavelet-scattering features
of time-stamped thermal images captured during survey
collection is fused with analog sensors streaming
environmental parameters in real time. To achieve this,
thermal images of subjects are captured every minute as
subjective measurements of thermal comfort indices are
collected and at the same time analog sensors stream data.
The main contributions of this article are as follows.

1) Collection of accurate multisensor analog readings and
infrared images using corresponding timestamp with
hardware integration and development.

2) To develop machine learning models for estimating real-
time occupancy based on fused dataset of thermal
imagery and analog sensors.

3) To develop machine learning models for predicting real-
time thermal preference based on fused dataset of
thermal imagery and analog sensors.

We propose occupancy and thermal preference machine
learning models based on the combination of thermal image
and sensor parameters for improved performance. The fusion
of the timestamped thermal images helps to better understand
the thermal environment of occupants in a given space and
how it affects an individual’s thermal comfort at a given time.
Ten days temperature data of the HVAC laboratory in North
Carolina Agricultural and Technical State University (NCAT)
were collected from March 7 to March 17, 2022 and were
plotted together with the outdoor temperature during the
period as shown in Fig. 1. It was discovered that this room
never reaches occupants comfort level because the line for
comfort level reaches 70 °F which is the occupants’ comfort
level only six times throughout the ten days period. It is
approximately 6 min that it reaches occupants comfort level in
the laboratory, and this proves why this research is significant.
The system was on and off all day long whether occupied or
not but occupants were comfortable a few times. The
thermostat is outside the classroom therefore if the HVAC
system understands when there are people around and their
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comfort preferences, energy can be conserved. It can be
observed from the graph on March 13th that the room was
below 60 °F. This emphasizes the need to explore a new
technique to control HVAC system of the room based on
infrared cameras and have it run according to occupancy and
occupants’ thermal preferences. The upward end of the spike
in the graph indicates when the HVAC system is running and
thus the spikes in one day represents how much the HVAC
system ran. It also emphasizes the need for a variable air
volume (VAV) system control, the classrooms that do not have
a thermostat, clearly never reach occupant comfort. Also, the
laboratories typically have zero occupancies on weekends.
During these “no occupancy” periods, the preferred mode of
the system should be “drift mode.” Drift mode is when a room
naturally heats up or cools down to a temperature setpoint
that is not in the “comfort range,” thus saving energy.
Precautions should be taken to not allow the room to get too
cold (it could freeze water pipes) or too hot or humid (which
could create mold). Ideally, allowing drift between 60 °F and 80
°F saves energy when not occupied. Traditional thermostats do
not allow this drift to happen, hence the need for an expensive
HVAC control system with programming capabilities for
classroom and laboratory temperature scheduling every
semester which mostly never happens. This illustrates that the
system of using infrared cameras to predict comfort level and
occupancy is a better system. This research demonstrates that
a smart diffuser system with infrared cameras, allows
“pockets” of control (energy savings) within a space or room.

This article is organized as follows: Section Il introduces the
available techniques for occupancy detection and thermal
preference prediction. The technical details of the
methodology including data collection, data integration,
feature extraction, and modeling techniques used for the study
are discussed in Section lll. The results and discussion of the
proposed methodology are further described in Section IV.
Section V presents a summary of conclusions in this work,
energy analysis, and future research ideas.

Il. RELATED WORK

Pilot research on thermal comfort was conducted by Fanger
in the 1970s where the formulation of the PMV model and
input parameters were introduced. The PMV was developed
using principles of heat balance and experimental data
collected in a controlled climate chamber under steady state
conditions [1]. Fanger’s equations are used to calculate the
PMV of a group of subjects for a particular combination of air
temperature, mean radiant temperature, relative humidity, air
speed, metabolic rate, and clothing insulation (CLO). The
adaptive model, on the other hand, was developed based on
hundreds of field studies with the idea that occupants
dynamically interact with their environment [4]. Outdoor
climate influences indoor comfort because humans can adapt
to different temperatures during different times of the year is
the foundational knowledge that the adaptive model is based
on. Occupants control their thermal environment by means of
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clothing, operable windows, fans, personal heaters, and
sunshades [2], [3]. The PMV model can be applied to air-
conditioned buildings, while the adaptive model can be
applied only to buildings where no mechanical systems have
been installed [4]. Over the past decade, researchers in the
field of thermal comfort have conducted experiments to
investigate machine learning models to predict the metrics of
thermal comfort namely thermal preference, sensation,
acceptability, satisfaction, and so on. Mostly features utilized in
the training of these machine learning models included skin
temperature of various parts of the body, parameters from
environmental sensors, wearable sensors, and activity meters
(61, [71, [8], [9], [10], [11], [12], [13], [14], [15], [16], [17], [18],
[19], [20], [21], [22], [23], [24]. Machine learning models
trained on skin temperature features are prone to errors since
it becomes quite impossible for occupants in a building to
remain in a specific posture for skin temperatures to be
extracted. Moreover, distance calculations from thermal
cameras needs to be incorporated into these models because
the temperature of an object varies depending on the distance
from the camera. In a recent study conducted by Zhou et al,
machine learning models to predict thermal sensation were
developed based on quality-controlled database. Amongst the
major findings from this research suggested that the multilayer
perceptron (MLP) algorithm achieved higher accuracy in the
prediction of thermal sensation [6]. Previous researchers
designed experiments or leveraged resources from the
ASHRAE database | and Il to investigate the thermal sensation
of occupants in a building [10], [11], [12]. Narrowing down to
the thermal comfort metrics under investigation in this
research, there has been numerous works done on thermal
preference [26], [27], [28], [29], [30]. Kim et al. [26] predicted
individuals’ thermal preference using occupant heating and
cooling behavior [25]. Cosmo and Simha [27] also designed an
experiment to collect thermal preference votes of individuals
to train machine learning models. In another study by Aguilera
et al. [28], ANN, Naive Bayes (NB), and fuzzy logic machine
learning models were trained to predict thermal preference on
three categories based on air temperature and relative
humidity as features. Martins and coauthors trained a thermal
preference artificial neural network (ANN) model for older
people based on dry bulb temperature, radiant temperature,
relative humidity, air speed, corrected metabolic rate, clothing
level, and health status [30]. Currently, to the best of the
authors’ knowledge, no literature has explored the possibility
of joining thermal images and environmental sensor data for
occupancy detection and thermal preference prediction for
smart HVAC control.

In this study, we are interested in investigating machine
learning models trained on combined time stamped thermal
imagery and environmental parameters dataset to predict
occupancy and individuals’ thermal preference in a building.
Using various data sources, we aim to leverages the
advantages of different environmental sensors and thermal
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cameras to increase accuracy and mitigate uncertainty. Since
each sensor has its own weaknesses, combining the dataset
from each sensor creates a complete system improving the
reliability of prediction of thermal preferences. This provides
top notch data analysis integrating sensory information to
make inferences regarding the surrounding thermal
environment. This combined information gathered from
various sensors have advantage over each sensor being
considered individually.
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Fig. 2. Methodology diagram of the framework.
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Fig. 3. Experiment setup. (a) Temperature and humidity sensor. (b) Carbon
dioxide sensor. (c) Wall mounted lepton 3.5. (d) Arduino Uno interphased with
environmental sensor. (e) Optrix Pl 160. (f) Corner mounted lepton 3.5.

I1l. MATERIALS AND METHODS

The occupancy and thermal preference-based methodology
for smart HVAC control is illustrated in Fig. 2. We implemented
ten state-of-the-art machine learning algorithms for occupancy
detection and thermal preference prediction. This analysis
allows us to understand which relevant features and machine
learning models perform well with occupancy detection and
thermal preference prediction.

A. Data Collection

To explore the possibility of fusing environmental
parameters with thermal imagery and survey of subjective
thermal preference votes, an experiment was designed. In the
experimentation, thermal images were captured with the
Lepton 3.5 infrared camera and at the same time
environmental parameters stream and surveys were
completed online by subjects. Surveys were conducted each
time a thermal image was captured. The data gathered
included time-stamped thermal images with corresponding
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environmental parameters and thermal preference votes. The
laboratory for this experimentation was an air-conditioned
room. The data collection hardware consisted of carbon
dioxide concentration sensor, temperature, and humidity
sensor interfaced with an Arduino Uno microcontroller
connected to a desktop computer as shown in Fig. 3. The data
collection software was a CoolTerm software and a Google
form survey, which resided on the desktop computer. The data
collection is followed with data preparation before the data is
fed into classification models. The thermal preference
experiment was carried out in the Artificial intelligence and
Visualization laboratory at NCAT from February to
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Fig. 4. Wavelet-scattering feature extractor.

September of 2021. Fifteen subjects in the age range of 19-34
years, comprising nine males and six females were recruited to
aid in the data collection. Environmental data (within the
laboratory) were collected using carbon dioxide, temperature,
and humidity sensors. The temperature and humidity sensors
are calibrated with the Optrix Pl 160 camera which
interrogated the same area these sensors had been placed.
Data were collected from these sensors interfaced with an
Arduino Uno microcontroller and connected to a desktop
computer. Environmental data were streamed every minute
with the help of the CoolTerm software at the same time as
subjects completed a Google form survey about their thermal
sensation, comfort, acceptability, and preferences. The
environmental data and the survey data were combined based
on the timestamp for further analysis. The 222 thermal images,
environmental studies and target data of thermal preference
votes were utilized in this study. Additionally, the experiment
for the occupancy dataset was carried out in the Graham Hall
HVAC laboratory at NCAT from February to March of 2022.

B. Feature Extraction

Feature extraction is an important step in the workflow of
classification machine learning model development. This is
because the performance of the machine learning model is
widely dependent on the extraction of relevant discriminating
features for training. For each x € Iy, (Where x represents an
image in a set of images In. N is the total number of samples
contained in the set.) wavelet-scattering features up to the
third order are computed. In the wavelet-scattering
framework, which was first introduced by Bruna and Mallat
[31], a succession of operations involving convolutions,
nonlinearity, and averaging are performed to extract features
which are invariant to translation, rotation, scaling, and
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deformation. The modulus computes a lower frequency
envelope, thus squeezing the energy from the images.
Integrating the modulus as presented in (1) of the convolution
results in L1 norm which is invariant [31]. This is achieved by
leveraging wavelets as filters to convolve thermal image,
applying the modulus and then averaging to obtain invariant
features as shown in Fig. 4
z

[x % 9a(t)|dt = lIx * Alls (1)

where x is a time stamped image and 9 is a wavelet filter. A
three-layer wavelet scattering with a 100-by-100 invariance
scale is constructed as the feature extractor.

Sox(t,Ao), S1ix(t,A1), Sax(t,A2) represent the zeroth-order, first-
order, and second-order scattering coefficients. Ag A1, and A2
are the center frequency of zeroth-order, first-order, and
second-order wavelets, respectively. At the beginning of the
wavelet-scattering feature extraction, the original time-
stamped image is convolved with the low-pass wavelet 8 to
obtain the average of the input image as shown in the
following equation:

Sox =x * 8. (2)

The application of the modulus shifts the energy in the
higher frequency bands toward the lower frequency bands in
the next decomposition. First-order scattering coefficients are
obtained by convolving modulus with lowpass as shown below
in the following equation:

Slx(l,l])z‘x*\p(;\”|*¢. (3)

Similarly, following second-order

scattering coefficients:

equation presents

Sox (A1, A2) = X x Wiy Wiy % D
(4)

The MATLAB wavelet toolbox was used to compute the
wavelet-scattering features [32]. The coefficients which were
the scattering features are down sampled to reduce
computational complexity.

C. Feature Reduction

Principal component analysis is used as a dimension
reduction technique to find a few orthogonal linear
combinations of the scattering features called principal
components. Most of the variance in the dataset are captured
by the first and second principal components.

D. Training Data and Data Preprocessing

Data integration from multisensor sources was possible by
combining wavelet-scattering features of thermal images from
thermal camera, environmental sensors, and survey forms
based on timestamp leveraging a python script. A feature
matrix Axm (N is the number of observations and M is the
number of features for each observation) is constructed for
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training of machine learning thermal preference prediction
model. A feature row, Aq,2,..NL{1,2,...M € Anm for each
observation anm therefore composes of detailed relevant
scenery information from wavelet scattering obtained from
thermal images, physiological information on activity and
clothing level, and environmental parameters from sensors.
The multiclass labels for occupant thermal preference are
represented as yi € Y. Furthermore, a feature matrix Bn,m (M is
the number of features for each observation) is also
constructed for occupied and not-occupied class training for
observations for the occupancy dataset. A feature vector,
B(1,2,..,N}{1,2,...M} € Bn,Mm for each observation bnm therefore
composes of detailed relevant scenery information from
wavelet scattering obtained from thermal images and
environmental parameters from sensors. The binary class
labels for occupancy are represented as y; € Y. The two
datasets were cleaned to remove missing values. Duplicated
observations were identified and removed from the datasets.
Observations that were significantly different from other data
points were removed to avoid distortion of the analysis. The
CLO and metabolic equivalent of task (MET) values from
ASHRAE of clothing insulation, and metabolic activity levels in
the thermal preference dataset were substituted for the
variables. Data transformation was necessary for both
occupancy and thermal preference dataset due to the different
units and scales of the features, the dataset is transformed
using the standard scaler to ensure mean of the data is zero
and the standard deviation is one.

E. Feature Classification Using Machine Learning Models

In this section, various state-of-the-art supervised
classification machine learning models were explored to
classify both the occupancy dataset and the thermal
preference dataset. Description of each of this machine
learning models is presented in the subtitles below:

1) K-Nearest Neighbors: The K-nearest neighbors is a
nonparametric classification algorithm that utilizes neighbor
point information to predict target class. A sample is classified
by the popularity vote of its nearest neighbors. The distance
between and training samples and new samples to be
classified is computed and the class is predicted based on the
most common nearest neighbors’ class labels. The distance
computation can be a Euclidean and Manhattan distance. The
KNN classification algorithm has been successfully applied in
the classification of features in thermal comfort analysis.

2) Classification and Regression Tree: Classification and
regression tree (CART) is also a nonparametric algorithm that
seeks to find the best split to subset the data, and they are also
known as decision trees. Evaluation of the quality of splits is
based on metrics such as Gini impurity, information gain, or
mean square error (MSE). Decision tree algorithm has the
tendency to overfit since all samples are tightly fit within the
training data.
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3) Support Vector Machine: A support vector machine
(SVM) is a supervised learning algorithm useful for
classification and regression problems, including signal-
processing image classification, natural language processing,
and speech. The SVM algorithm is generally suited for binary
problems so multiclassification problems are reduced to series
of binary problems. The objective of the SVM algorithm is to
find a hyperplane that, to the best degree possible, separates
data points of one class from those of another class. The
support vectors are the extreme points in the dataset. The
distance between a support vector and a hyperplane should
be as far as possible. Thus, the hyperplane has the maximum
distance to the support vectors of any class. The sum of the
shortest distance to the closest positive point to the
hyperplane and shortest distance from the hyperplane to the
closest negative point is called the distance margin. This is also
the distance between the two support vectors. Datasets are
transformed to a higher dimension in problems where a
hyperplane cannot be used to separate easily. Kernel functions
map the data to a different, often higher dimensional space
with the expectation that the classes are easier to separate
after this transformation.

4) Extra Tree: Extra tree is an ensemble machine learning
technique that combines predictions from decision tree.

5) Extreme Gradient Boosting: Extreme gradient boosting
also known as XGBoost it is a specific implementation of the
gradient boosting method which uses more accurate
approximations to find the best tree model. XGBoost is
exceptionally successful particularly with structured data. The
most important are computation of second-order gradients
that is second partial derivatives of loss function provides more
information about the direction of gradients and minimization
of the loss function. Advanced regularization improves model
generalization. Amongst the algorithms, advantages over
other machine learning models are faster training and the
ability to be parallelized or distributed across clusters.

6) Gradient Boosting: Gradient boosting is a boosting
algorithm. The principle behind boosting algorithms is first we
built a model on the training dataset, then a second model is
built to rectify the errors present in the first model. The goal is
to build models sequentially to reduce the errors of the
previous model by building a new model on the errors or
residuals of the previous model. Gradient boosting uses the
loss function of a base model like the decision tree as a proxy
for minimizing the error of the overall model.

7) Random Forest: Random forest is also an ensemble
machine learning technique but differ from extra tree
algorithm by choosing the optimum splits. Random forests
grow many classification trees. A new object is classified from
an input vector by putting the input vector down each of the
trees in the forest. Each tree gives a classification, and we say
the tree “votes” for that class. The forest chooses the
classification having the most votes (over all the trees in the
forest). The random forest is unexcelled in accuracy among
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current algorithms, runs efficiently on large datasets, and
handles thousands of variables. Estimates of important
variables in the classification model can be provided by this
algorithm. Random forest algorithms have three main
hyperparameters, which need to be set before training. The
hyperparameters node size, the number of trees, and the
number of features sampled are set before training. A random
forest classifier is not likely to overfit the model because the
uncorrelated trees lower the overall variance and prediction
error.

8) Adaptive Gradient Boosting: Adaptive boosting also
known as AdaBoost is an ensemble learning method that uses
an iterative approach to learn from the mistakes of weak
classifiers and turn them into strong ones. Boosting basically
reduce the bias error which arises when models are not able
to identify relevant trends in the data.

9) Multilayer Perceptron Neural Networks: A multilayer
perceptron is called Neural Networks. A perceptron, a neuron’s
computational model, is graded as the simplest form of a
neural network. Frank Rosenblatt invented the perceptron at
the Cornell Aeronautical Laboratory in 1957. The aim of this
learning problem is to use data with right labels for making
more accurate predictions on future data and then helps for
training a model. The perceptron mainly consists of four parts
that is the input values or layer, weights and bias, net sum, and
activation function.

10)  Gaussian Naive Bayes: NB are a group of supervised
machine learning classification algorithms based on the Bayes
theorem for calculating probabilities and conditional
probabilities with an assumption of independence among
predictors. NB classifier assumes that the presence of a
particular feature in a class is unrelated to the presence of any
other feature and are particularly useful for very large
datasets. NB algorithm is suitable for real-time prediction,
multiclass prediction, recommendation system, sentiment
analysis, and spam filtering.

11)  Stacking Ensemble: Stacking is an ensemble learning
technique where the predictions of multiple base or level

Train Base Classifiers. Make Predictions .
predictions |

Training
+  mefa
classifier

predictions

= e ——
Fig. 5. Stacking ensemble model.

one classifiers multiple classifiers are used as new features to
train a meta-classifier for higher predictive performance. The
algorithm for the stacking ensemble is presented in Algorithm
1. The visual representation of stacking procedure is presented
in Fig. 5.

Algorithm 1 Stacking Ensemble

IEEE SENSORS JOURNAL, VOL. 23, NO. 14, 1 JUNE 2023

Input: Training data D ={A,, yi}/"-1

(anm € Anm——> AIEA, yiEY)
Output: Ensemble Classifier G for
Baseclassi f iers = 1,T do.
Store predictions as D'= {P(D1 ), P(D>')... P(Dr )}
Append Training data to new dataset of classifier
predictions (D U D).

end for
Learn a meta classifier G based on D. Introduce a
permutation scheme to find metaclassifier and

combinations of base classifiers for optimal accuracy.

F. Experiments

Experiments were conducted at two different locations at
North Carolina A and T to evaluate the performance of the
proposed methodology in the prediction of occupancy and
thermal preference. Two kinds of data were collected in
different indoor environments.

1) Occupancy Prediction: The occupancy dataset was collected
in the Graham Hall HVAC laboratory between February and
March 2022. This dataset consisted of time-stamped thermal
images captured every minute when the laboratory was
occupied or not. At the same time, environmental parameters
corresponding to the time stamped thermal images were
streamed every minute. The 2419 images with corresponding
environmental parameters were collected. The detail
description of the occupancy prediction dataset is presented in
Table I. Fig. 7 presents thermal images captured in the
laboratory. The method of cross-validation was implemented
by dividing training dataset into ten stratified folds. The first
nine folds were used to train a model, and the holdout tenth
fold is used as the test set. This process is repeated and each
of the folds is given an opportunity to be used as the holdout
test set. A total of ten models were fit and evaluated, and the
performance of the model was calculated as the mean of these
runs. Stratified k-fold sampling is a variation of k-fold which
places approximately the same percentage of samples of each
target class as in the complete dataset in each of the training
and testing sets. Furthermore, the method of hold-out
validation was implemented by splitting up the occupancy and
thermal preference dataset into a train and test set. The model

was trained on the training set and the test set was used to
TABLE |
ToTAL NUMBER OF SAMPLES OBTAINED FOR EACH
SENSOR FOR OCCUPANCY DATASET

sensor Occupied | Not occupied | Total

Temperature 915 1504 2419

Humidity 915 1504 2419

Carbon dioxide 915 1504 2419

Lepton 3.5 915 1504 2419
TABLE Il
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OCCUPANCY TRAINING AND TESTING DATASET

Category name | [pdex | Training samples | Testing samples

Occupied 0 1548 162

Not occupied 1 387 322
TABLE 11l

ToTAL NUMBER OF SAMPLES OBTAINED FOR EACH SENSOR
FOR THERMAL PREFERENCE DATASET

Sensor Cooler | No change | Warmer | Total
Temperature 59 67 96 222
Humidity 59 67 96 222
Carbon dioxide 59 67 96 222
Lepton 3.5 59 67 96 222

see how well the model performed on the unseen data. In this
study, 80% of data was used for training and the remaining 20%
of the data was used for testing for the hold-out method as
presented in Table Il.

2) Thermal Preference Prediction: Thermal preference dataset
was collected in the Artificial Intelligence Laboratory
in Hall between February 2021 and September 2021. Fig. 6
presents Hines Hall Artificial Intelligence Laboratory Set Up, 3-
D Laboratory layout, analog sensors, Flir Lepton 3.5, and
thermal images captured in the Hines Hall laboratory. The 222
timestamped  thermal images with  corresponding
environmental parameters and survey response on the
thermal preference of subjects recruited for the experiment
was collected. The detail description of the occupancy
prediction dataset is presented in Table Ill. The thermal
preference dataset is divided into 80% for model training and
20% for testing. Stratified sampling and hold out validation are
used separately when splitting the data into the training and
test sets for the thermal preference dataset too. Table IV
presents the details for the training and testing samples.

IV. RESULTS

A. Performance Analysis
Performance of the classification algorithms for occupancy
and thermal preference prediction has been measured and
compared in terms of recall, precision, fl1-scores, accuracy, and
area under the curve (AUC) for both stratified cross validation
and hold out validation methods. Recall is the proportion of
the actual positive class members that are correctly identified
in a classification machine learning problem as presented in

the following equation:

True Positives
Recall = (5)
True Positives + False Negatives

Precision is the proportion of positive identifications that are
correct and is defined as follows:
True Positives

Precision = (6) True

Positives + False Positives
TABLE IV
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THERMAL PREFERENCE TRAINING AND TESTING DATASET

Category name | [pdex | Training samples | Testing samples
Warmer 0 71 19
No change 1 54 13
Cooler 2 47 12

The fl-score is the harmonic mean of precision and recall,
which is defined in the following equation:
2 * Precision * Recall
Fi= (7)
Precision + Recall

The AUC is the measure of the ability of a classifier to
distinguish between classes and is used as a summary of the
ROC curve. Cohen’s kappa is a metric often used to assess the
agreement between two raters. It can also be used to assess
the performance of a classification model. Cohen’s kappa takes
imbalance in class distribution into account and provides a
more objective description of the model performance in
problems where accuracy fails because of severe class
imbalance. The kappa coefficient gives an indication if a
classifier is performing over the performance of a classifier that
simply guesses at random according to the frequency of each
class. Landis and Koch (1977) provided a way to characterize
the kappa coefficient values [33]. According to the authors’
scheme a valueless than zero is indicating no agreement, 0—
0.20 as slight, 0.21-0.40 as fair, 0.41-0.60 as moderate, 0.61—
0.80 as substantial, and 0.81-1 as almost perfect agreement
[33]. The Cohen’s kappa coefficient is expressed in the relation
in the following equation:

PO — pe
kK= (8)
1—pe

where pois the relative observed agreement among raters and
pe is the hypothetical probability of chance agreement, using
the observed data to calculate the probabilities of each
observer randomly seeing each category.

B. Occupancy Prediction

The results show that with an accuracy of 99.2% for tenfold
cross validation, extra trees algorithm has the best
performance among the tested algorithms for occupancy
prediction as presented in Table V. Also, AdaBoost Algorithm
has the best accuracy for the hold-out method. The ten-fold
cross validation method is a computationally intensive process;
it took a fraction of a second to implement a hold-out
AdaBoost occupancy model while the ten-fold cross validation
of the same algorithm was executed in more than 78 s. The first
principal component, second principal component,
temperature, humidity, third principal components, and
minute are the top six important features for occupancy
prediction based on the AdaBoost feature importance. Table VI
presents the hyperparameter tuned for all occupancy
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prediction models. Table VII presents the results from the
implementation of the stacking methodology discussed in
Section Ill. The highest accuracy was achieved when K-nearest
neighbor, extra tree, and CART were utilized as base learners
and SVM as the meta classifier for the occupancy prediction.
C. Thermal Preference Prediction

XGBoost algorithm achieved the best performance for
thermal preference prediction with mean accuracy and F1
score of 80.5% and 79.90% for ten-fold cross validation,
respectively as presented in Table VIII. Furthermore, XGBoost
achieved the best performance accuracy and F1 score of
86.70% and 86.10%, respectively for hold-out validation of
thermal preference prediction. The temperature, minute,
humidity, first, second, and forth principal components are the
top six important features for thermal preference prediction
based on the XGBoost feature importance. Table IX presents
the hyperparameter tuned for all thermal preference
prediction models.

The SVM classifier was again utilized as the meta classifier in
the stacking methodology in all combinations for thermal
preference prediction. Table X presents the results. The highest
accuracy was achieved when AdaBoost, extra tree, and random
forest were utilized as base learners and SVM as the
metaclassifier for the thermal preference prediction. It was
observed that the predicted probabilities were more efficient
as compared to the predicted class labels for the stacking
ensembles. An improvement of about 9% more when
compared to the highest accuracy of the individual models.

V. DISCUSSIONS

This work introduced a novel methodology for occupancy
and thermal preference prediction based on fusion of time
stamped thermal images and environmental parameters for
automated HVAC control. Wavelet features obtained from
scenery thermal images were fused with temperature,
humidity, and carbon dioxide concentration based on
timestamps to ascertain the thermal environment of building
occupants. The occupancy of a building was classified into one
of two classes (that is whether the building is occupied or not).
Thermal preference of individuals is classified into one of three
classes: should the thermal environment be cooler, no change,
or warmer. Through the experiments, we have shown the
possibility of real-time prediction of occupancy and thermal
preference through classical machine learning, ensemble, and
stacked models with high accuracy.

The performance analysis reiterates that the
waveletscattering coefficients for different classes contain
detailed information. Wavelet scattering performs well even
with smaller dataset, unlike deep learning that requires huge
dataset and a lot of time to train. The architecture of the
waveletscattering network was optimally designed by selecting
an ideal invariance scale for improved results in occupancy and
thermal preference prediction. Additionally, hyperparameters
for all machine learning models were tuned for best results.

IEEE SENSORS JOURNAL, VOL. 23, NO. 14, 1 JUNE 2023

Previous work done by other authors extracted temperature
values from the thermal images for modeling through sensor
equations provided by manufacturers of the thermal cameras
which may be prone to errors. The wavelet-scattering feature
extraction methodology investigated in this study does not
require the utilization of temperature values of occupants
which alleviates the errors likely to be introduced.

In the area of thermal preference research, a recent work by
Martins et al. [30] trained an ANN model based on dry bulb
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TABLE V
EVALUATION METRICS OF TEN DIFFERENT OCCUPANCY MODELS WITH TEN-FOLD CROSS VALIDATION AND HOLD OUT METHODS
Model Accuracy | Fl | Precision | Recall | AUC | Kappa Coefficient | Time (s)
KNN 0.991 0.991 0.991 0.991 | 0.989 0.980 8.496
CART 0.985 0.985 0.985 0.984 | 0.983 0.969 9.143
SVM 0.985 0.985 0.985 0.985 | 0.992 0.969 15.445
ET 0.992 0.992 0.992 0.992 | 0.996 0.982 16.552
XGB 0.991 0.990 0.991 0.991 | 0.996 0.981 39.008
GB 0.990 0.990 0.989 0.989 | 0.996 0.976 58.592
RF 0.991 0.991 0.990 0.991 | 0.998 0.981 63.518
ADABOOST 0.985 0.985 0.985 0.985 | 0.996 0.967 78.449
MLP 0.990 0.990 0.990 0.989 | 0.998 0.977 184.662
GNB 0.971 0.925 0.926 0.926 | 0.963 0.842 189.029
* KNN 0.986 0.986 0.986 0.986 | 0.982 0.967 0.016
*CART 0.971 0.971 0.971 0.971 | 0.969 0.935 0.016
*SVM 0.979 0.979 0.979 0979 | 0.975 0.953 0.037
*ET 0.970 0.970 0.970 0.970 | 0.978 0.977 0.220
*XGB 0.983 0.983 0.983 0.983 | 0.981 0.962 0.134
*GB 0.981 0.981 0.981 0.981 | 0.977 0.958 0.409
*RF 0.983 0.983 0.983 0.983 | 0.981 0.963 1.972
*ADABOOST 0.988 0.988 0.988 0.988 | 0.986 0.972 0.138
*MLP 0.979 0.979 0.979 0979 | 0976 0.953 2.019
*GNB 0.975 0.975 0.975 0.975 | 0974 0.944 0.001
“** Evaluation for Hold Out method.
TABLE VI
HYPERPARAMETER TUNING FOR OCCUPANCY MODELS
Models Hyper Parameters Tuned
KNN n neighbors = 1
CART criterion = entropy, max depth = 7, min samples leaf = 1, min samples split =5
SVM gamma = 1,C =1, kernel = rbf, probability = True
ET criterion = gini, max depth = 15, max features = sqrt, min samplessplit = 2, n estimators = 50.
XGB max depth = 12, learning rate = 0.1, colsample bytree = 0.5, min chid weight = 1,n estimators = 100
GB learning rate = 1, maxgepth = 5,n estimators = 250
RF n estimators = 110, max features = 1
ADABOOST | algorithm = SAMME.R,learning rate = 1.0, n estimators = 1000
MLP alpha = 0.05, max iter = 200, activation = tanh,learning rate = constant, solver = adam.
TABKE VI Occupancy-Stack-6 | CART and ET 0.971
STACKING MODELS FOR OCCUPANCY PREDICTION
Stacked Models Base Classifiers Accuracy Qccupancy-Stack-7 CART and RF 0.986
Occupancy-Stack-1 KNN and CART 0.971 Occupancy-Stack-8 AdaBoost and ET 0.971
Occupancy-Stack-2 KNN and AdaBoost 0.980
Occupancy-Stack-9 | AdaBoost and RF 0.986
Occupancy-Stack-3 KNN and ET 0.971 Occupancy-Stack-10 | ET and RF 0.985
Occupancy-Stack-4 KNN and RF 0.986 Occupancy-Stack-11 | KNN, DT and AdaBoost 0.994
Occupancy-Stack-5 | CART and AdaBoost 0.986

Authorized licensed use limited to: The Ohio State University. Downloaded on March 04,2024 at 01:16:35 UTC from IEEE Xplore. Restrictions apply.

11793



11794

Occupancy-Stack-12 | KNN, CART and ET ‘ 0.994 ‘
temperature, radiant temperature, relative humidity, air
speed, corrected metabolic rate, clothing level, and health
status for older people’s thermal preference prediction. The
average accuracy of the individualized models was reported to
be 74%, Cohen’s kappa coefficient of 0.61 and AUC of 0.83 [30].
Another recent work published by Liu et al. [28], four machine
learning models namely, SVM, CART, RF, and KNN were
investigated. The highest performing model was random forest
with accuracy performance of 85% with self-adaptive behavior,
indoor temperature, and relative humidity [28]. Previous study
by Aguilera et al. [29] trained ANN, NB and Fuzzy logic

Environmental sensors

Fig. 6. Hines Hall Artificial Intelligence Laboratory Set Up. (a) 3-D Laboratory
layout, analog sensors, and Flir Lepton 3.5. (b) and (c) Thermal images.

o

Fig. 7. Graham Hall HVAC laboratory.

machine learning models to predict thermal preference on
three categories based on air temperature and relative
humidity as features, the reported best AUC performance of
73% during evaluation was from NB. If the proposed approach
is integrated in the HVAC control of the laboratory mentioned
earlier during the problem statement, 45% more energy would

be
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TABLE VIII
EVALUATION METRICS OF THERMAL PREFERENCE MODELS WITH TEN-FOLD CROSS VALIDATION AND HOLD OUT METHODS
Model Accuracy | | Precision | Recall | AUC | Kappa Coefficient | Time (s)

KNN 0.767 0.761 0.778 0.767 | 0.825 0639 3.329
CART 0.722 | 0707 | 0.720 0.706 | 0.780 0.547 3.715
SVM 0712 | 0708 | 0723 0.712 | 0.856 0.557 4.441

ET 0776 | 0772 | 0782 0.783 | 0.909 0.662 5.259
XGB 0.805 0.799 | 0.818 0.805 | 0.920 0.696 22.284

GB 0.770 | 0779 | 0.798 0.779 | 0.907 0.664 36.251
RF 0.793 0.790 | 0.803 0.785 | 0.910 0.667 39.460
ADABQOST 0.695 0.698 | 0.739 0.695 | 0.870 0.537 47.547
MLP 0.767 0.748 | 0.763 0.762 | 0.855 0.604 74716
GNB 0.663 0.651 0.681 0.663 | 0.846 0.472 75.096

* KNN 0.733 0.730 | 0.761 0.733 | 0.788 0.591 0.010
*CART 0.689 0.683 | 0.680 0.689 | 0.784 0.529 0.010
*SVM 0.622 | 0.611 0.617 0.622 | 0.830 0.427 0.494
*ET 0.756 | 0742 | 0.785 0.756 | 0.952 0.626 0.655
*XGB 0.867 0.861 0.901 0.867 | 0.959 0.800 0.186
*GB 0.822 | 0818 | 0.823 0.822 | 0.937 0.732 0.154
*RF 0.622 | 0611 0.617 0.622 | 0.830 0.427 0.154
*ADABOOST | 0.800 | 0794 | 0.815 0.800 | 0.882 0.696 0.078
*MLP 0.756 | 0742 | 0.784 0.756 | 0.910 0.626 0.655
*GNB 0.778 0.775 |  0.803 0.776 | 0.886 0.660 0.010

“# BEvaluation for Hold Out method.
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TABLE IX

HYPERPARAMETER TUNNING FOR THERMAL PREFERENCE MODELS
Models Hyper Parameters Tunned
KNN n neighbors = 1
CART criterion = entropy, maz depth = 8, minsamples leaf = 2, min samplessplit =5
SVM gamma = 1,C = 1, kernel = poly, probability = True
ET min samplessplit = 2,n estimators = 10.
XGB mazx depth = 12,learning rate = 0.1, colsample bytree = 0.5, min chid weight = 1,n estimators = 100, subsample = 0.75
GB learningrate = 1, mazxgepth = 5,n estimators = 250
RF n estimators = 40, max features = 2
ADABOOST | algorithm = SAMME.R,learning rate = 1.0, n estimators = 100
MLP alpha = 0.0001, max iter = 200, activation = relu,learning rate = adaptive, solver = adam.

Fig. 8. Energy Savings for ten days period.
ceiling diffusers.

saved. Instead of conditioning the laboratory at all times, full

conditioning would thus be based on the presence of
occupants and thermal preference. There are two limitations
to this study: first, the work presented did not take into
consideration the thermal preference of occupants who are
closer to ceiling diffusers. There exists a possible relationship Preference-Stack-2

TABLE X

STACKING MODELS FOR THERMAL PREFERENCE PREDICTION

Stacked Models Base Classifiers Accuracy
Preference-Stack-1 KNN and AdaBoost 0.899
KNN and ET 0.899
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Preferencey-Stack-3 | KNN and RF 0.899
Preference-Stack-4 AdaBoost and ET 0.899
Preference-Stack-5 AdaBoost and RF 0.899
Preference-Stack-6 ET and RF 0.899
Preference-Stack-7 KNN, ET and AdaBoost 0.932
Preference-Stack-8 KNN, AdaBoost and RF 0.930
Preference-Stack-9 KNN, ET and RF 0.936
Preference-Stack-10 | AdaBoost, ET and RF 0.946

Proximity to ceiling diffusers will therefore be incorporated as
a parameter in future work. Second, thermal preferences
presented in this study are subjective votes collected from
individual occupants in a room. The subjective measurements
of a group of occupants are therefore not accounted for in this
work. Also, some of the subjective measurements may be
prone to errors which the authors do not have control over.

VI. CONCLUSION

This study proposed an HVAC control methodology based on
occupancy and thermal preference. Preliminary experiments
and performance evaluations have been conducted and it can
be concluded that fusion of multisensor readings provides a
holistic understanding of an individual’s thermal environment.
Individualized thermal preference prediction is necessary for
improved thermal comfort and energy efficiency. The
experiments illustrate that the occupancy and thermal
preference models can provide accurate predictions for smart
HVAC control. In so doing, the thermal environment will be
conditioned only when is occupied and the thermal preference
of occupants demands attention for comfort. Future work will
expand thermal preference dataset to train deep learning
models for comparative analysis. Additionally, we plan to
include features like proximity to vents and adaptive human
behaviors to the proposed framework. Furthermore, the
subjective measurements of group of occupants would be
incorporated in the framework as mean votes to ascertain how
that affects the evaluation metrics. We analyzed the energy
savings to be achieved with the occupancy and thermal
preference prediction framework in place. Data collected from
the HVAC system were leveraged to estimate energy usage.
The size of the laboratory is approximately 1500 square
footage and according to the rule of thumb the range is
between 150-250 sf/ton for elementary, high school, and
college building usage type. The extreme number in the range
is used for computation because it is an old building with no
insulation. There is no heat transfer through the corridor
because is conditioned and the only heat transfer is on the
exterior wall. The estimated maximum overall tonnage and
electrical usage is six tons which is equivalent to 72000 British
thermal unit per hour (Btu/h) equivalent to 21.096 KW.
Similarly, this means estimated 0.3516 and 0.00586 KW energy
is consumed every minute and second, respectively, in the
laboratory. Computation of energy usage during the ten days

IEEE SENSORS JOURNAL, VOL. 23, NO. 14, 1 JUNE 2023

period is achieved by the aggregation of the widths of the
peaks in Fig. 1 daily. The daily energy savings achieved by the
study approach is presented in Fig. 8. An estimated 45% energy
savings was realized during the ten days of analysis.
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