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This paper develops and benchmarks an immersed peridynamics method to simulate 
the deformation, damage, and failure of hyperelastic materials within a fluid-structure 
interaction framework. The immersed peridynamics method describes an incompressible 
structure immersed in a viscous incompressible fluid. It expresses the momentum equation 
and incompressibility constraint in Eulerian form, and it describes the structural motion 
and resultant forces in Lagrangian form. Coupling between Eulerian and Lagrangian 
variables is achieved by integral transforms with Dirac delta function kernels, as in 
standard immersed boundary methods. The major difference between our approach 
and conventional immersed boundary methods is that we use peridynamics, instead of 
classical continuum mechanics, to determine the structural forces. We focus on non-
ordinary state-based peridynamic material descriptions that allow us to use a constitutive 
correspondence framework that can leverage well-characterized nonlinear constitutive 
models of soft materials. The convergence and accuracy of our approach are compared to 
both conventional and immersed finite element methods using widely used benchmark 
problems of nonlinear incompressible elasticity. We demonstrate that the immersed 
peridynamics method yields comparable accuracy with similar numbers of structural 
degrees of freedom for several choices of the size of the peridynamic horizon. We also 
demonstrate that the method can generate grid-converged simulations of fluid-driven 
material damage growth, crack formation and propagation, and rupture under large 
deformations.

 2023 Elsevier Inc. All rights reserved.

1. Introduction

Under extreme loading conditions, structural deformations can cause material damage and, ultimately, failure. Conven-
tional continuum mechanics models are formulated in terms of local definitions of strain, which are evaluated using the 
derivatives of the deformation field, but such derivatives become ill-defined along propagating crack surfaces, where the 
deformation field becomes discontinuous. These discontinuities make it challenging to simulate structural mechanics in the 
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face of material failure using conventional continuum approaches, particularly if the failure event involves an evolving crack 
front that is not known in advance but instead must be determined by the model. Nonetheless, many continuum approaches 
to describing material failure have been developed, including linear elastic fracture mechanics [1] using the finite element 
(FE) method, and substantial work has created numerical methods for simulating fracture, such as the cohesive zone model 
[2] and the extended finite element method [3], although these formulations can present challenges themselves in terms of 
implementation and efficient computation [4].

As an alternative to local approaches to fracture mechanics, Silling introduced a non-local formulation of solid mechanics 
called peridynamics [5], which avoids the use of derivatives in determining strains and instead considers interactions among 
all material points within a finite horizon. Such non-local models can be better suited for simulating material failure than 
conventional continuum mechanics formulations because they can tolerate discontinuous deformation fields. Silling’s first 
theory of peridynamics is now known as bond-based peridynamics (BB-PD). BB-PD asserts that the forces acting between two 
interacting particles in a material body are completely determined by the relative positions of the particles in the reference 
and current configurations (i.e., the reference and deformed bonds). This formulation further requires that the resulting bond 
forces are parallel to the deformed bonds in the current configuration. The assumptions of BB-PD impose strong restrictions 
on the types of materials that can be modeled. Specifically, the BB-PD theory can only describe isotropic materials with a 
Poisson’s ratio of ν = 1

3 for plane stress and ν = 1
4 for plane strain [6]. Trageser and Seleson [7] demonstrated that these 

restrictions are the consequence of Cauchy’s relations for isotropic materials in the BB-PD model.
Silling et al. [8] subsequently introduced state-based peridynamics, which overcomes many of the limitations of bond-

based formulations. State-based peridynamics adopts the concept of peridynamic states. Examples of peridynamic states 
include the force vector state and the deformation vector state, which are detailed in Sec. 2.1. Whereas a constitutive model 
in a standard continuum mechanics formulation relates the (local) stress and the (local) strain, a constitutive model in 
the state-based peridynamic theory is a relationship between the force vector state and the deformation vector state. In 
ordinary state-based peridynamics (OSB-PD), the force vectors between any two particles may differ in magnitude but are 
always parallel to the deformed bond. In contrast, the force vectors in non-ordinary state-based peridynamics (NOSB-PD) 
can differ both in magnitude and direction, which is far more general than BB-PD or OSB-PD and is helpful for developing 
peridynamic models for real materials. In addition, the force vectors can be determined using non-local analogues of the 
stress and strain tensors in classical continuum mechanics, resulting in so-called constitutive correspondence models, which 
allow these methods to generate non-local generalizations of existing continuum material models.

This paper integrates NOSB-PD [8,9] with an immersed fluid-structure interaction (FSI) framework [10] to simulate the 
deformations of incompressible hyperelastic materials under FSI. We focus on the constitutive correspondence model in 
NOSB-PD because it enables simulations using well-characterized constitutive models of soft materials within the PD frame-
work. There has been relatively limited previous work to couple PD models with FSI frameworks to simulate failure in both 
stiff [11,12] and flexible [13–16] materials under fluid-driven loading conditions. These studies use BB-PD [13,15] or OSB-PD 
[11,12,14,16], however, and we are unaware of prior work using NOSB-PD within an FSI framework.

To treat FSI, we use the framework of the immersed boundary (IB) method [17]. The IB method for FSI was introduced 
by Peskin in the 1970’s to simulate the dynamics of heart valves [18,19], and it has been subsequently used in a broad 
range of applications, including cardiovascular dynamics [20–30], esophageal transport [31,32], aquatic locomotion [33–38], 
and insect flight [39,40]. The IB method uses Lagrangian variables for the deformations, stresses, and resultant forces of the 
immersed structure and Eulerian variables for the momentum, viscosity, and incompressibility of the coupled fluid-structure 
system. Coupling between Lagrangian and Eulerian variables is mediated by integral transforms with Dirac delta function 
kernels in the continuous formulation. In discretized IB formulations, the singular delta function is replaced by a regularized 
delta function [17]. This coupling approach enables nonconforming discretizations of the fluid and immersed structures 
[10,41]. Conventional IB methods use the framework of nonlinear continuum mechanics to compute the elastic body forces 
of the immersed structure [41–44]. In this work, the constitutive correspondence model of NOSB-PD is used to compute 
structural forces instead of continuum mechanics.

The key contribution of this work is that it develops an immersed peridynamics (IPD) method using NOSB-PD to enable 
simulations including nonlinear hyperelastic material responses, even with discontinuities in the displacement field (i.e., 
material damage and failure), which is challenging with continuum-based IB methods. A second contribution of this study 
is that it investigates the performance of NOSB-PD models of hyperelastic materials. To date, there has been a relatively 
limited amount of research on the use of PD to simulate such rubber-like materials [45]. The IPD method developed here 
considers a hyperelastic structure immersed in the surrounding fluid. We consider several standard benchmark cases that 
were first introduced to test solvers for conventional formulations of large-deformation elasticity through a variety of solid 
mechanics benchmarks in both two and three spatial dimensions, including the compressed block [46], Cook’s membrane 
[47], and the torsion test [48], which make it straightforward to compare the quasi-static results under FSI to classical 
quasi-static solid mechanics benchmarks. All benchmarks show that the accuracy of the structural deformations obtained by 
the proposed method is comparable to that yielded by a stabilized finite element method [46] and a stabilized immersed 
finite element-finite difference method [49] for incompressible nonlinear elasticity. Consequently, this work advances our 
understanding of the fidelity of hyperelastic structural responses within the PD framework. Material responses under fluid 
traction boundary conditions are also investigated using both static and dynamic versions of an elastic band test [49]. A 
modified elastic band with and without an initial crack is used to simulate purely fluid-driven material failure. Some test 
cases involve interactions between flexible and fixed structures.
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Fig. 1. Peridynamic material points, bonds, and horizons in the reference and current configurations.

2. Non-ordinary state-based peridynamics

This section presents a NOSB-PD formulation [8,9] that can be used with material models that are characterized by strain 
energy functionals, such as those often used with continuum mechanics descriptions of hyperelastic materials. We describe 
the continuous formulation of the peridynamic model that we use in our IPD method for FSI

2.1. Peridynamic states

The dynamics of an elastic body occupying the region "s
t at time t are described using material (reference) coordinates 

X ∈ "s
0, and the deformation mapping χ : ("s

0, t) #→ "s
t relates the reference and deformed coordinate systems, so that 

x = χ(X, t) is the physical position of the material point X at time t . In peridynamics, each material point X interacts 
with all material points within a finite region around X called the horizon and denoted HX . Here, we choose HX to be 
the sphere of radius ε > 0 centered at X, but other choices of the horizon shape have also been used in practice (e.g., a 
cube of side length 2ε).1 Each material point X interacts with every point X′ in its horizon HX through a bond, which is 
defined in the reference frame by ξ = X′ − X, and which deforms to ξ +η = x′ − x in the deformed frame, with x′ = χ(X′, t)
and x = χ(X, t). See Fig. 1. u and u′ represent the displacements of the material points labeled by X and X′ from the 
reference configuration to the deformed configuration, respectively, so that x = X + u and x′ = X′ + u′ . The deformed bond 
is x′ − x = (X′ + u′) − (X + u) = (X′ − X) + (u′ − u) = ξ + η. The definition of the deformation vector state Y is motivated by 
this consideration:

Y = Y[X, t]〈ξ 〉 = χ(X + ξ , t) − χ(X, t) = x′ − x. (1)

Thus, Y[X, t]〈ξ〉 is the deformation of the bond ξ associated with material point X at time t .
The force vector state associated with a bond ξ acting on material point X at time t is denoted by

T = T[X, t]〈ξ 〉. (2)

Constitutive models in state-based peridynamics provide the values for the force vector state field based on the deformation 
state and possibly other variables:

T = T̂(Y,$), (3)

in which $ denotes all variables that determine the force state other than the deformation state. There are several restric-
tions on the force vectors based on different material models. For example, the force vector state of an ordinary material is 
defined by

T = t M, (4)

in which M is the deformed direction vector state that is the unit directional vector of the deformed vector state Y and t
is the scalar force state. In ordinary peridynamic material models, the force vectors are parallel to its deformed bond. If the 
force vectors are not parallel to its corresponding bond in the deformed configuration, the material description is called non-
ordinary. Here, we primarily focus on NOSB-PD for nonlinear material responses because it allows us to leverage existing 
hyperelastic constitutive laws for soft materials. Fig. 2 illustrates possible force vector states for bond-based, ordinary state-
based, and non-ordinary state-based peridynamics. Silling et al. [8] provide additional details about peridynamic states.

1 In the peridynamics literature, the horizon size is commonly denoted by δ, but here we reserve that symbol for the Dirac delta function.
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Fig. 2. Force vector states for bond-based, ordinary state-based, and non-ordinary state-based peridynamics.

2.2. Kinematics and balance laws

In a state-based peridynamic model, the basic equation of motion is

ρ0
∂2u
∂t2 (X, t) =

∫

HX

(
T[X, t]〈ξ 〉 − T[X′, t]〈−ξ 〉

)
dX′ + b(X, t), (5)

in which ρ0 is the mass density of the material and b(X, t) is an external force density. The pairwise bond force function 
FPD(X′, X, t) is

FPD(X′,X, t) = T[X, t]〈ξ 〉 − T[X′, t]〈−ξ 〉, (6)

which accounts for contributions of the material model at both X and X′ to balance linear momentum. Note that force 
balance is automatically satisfied for arbitrary force vector states:

FPD(X,X′, t) = T[X, t]〈ξ 〉 − T[X′, t]〈−ξ 〉 = −
(
T[X′, t]〈−ξ 〉 − T[X, t]〈ξ 〉

)
= −FPD(X′,X, t), (7)

which is consistent with Newton’s third law of motion. Conservation of linear momentum is guaranteed in all three peridy-
namic models for any definition of the force vector states:

∫

"s
0

∫

HX

(
T[X, t]〈ξ 〉 − T[X′, t]〈−ξ 〉

)
dX′dX =

∫

"s
0

∫

"s
0

(
T[X, t]〈ξ 〉 − T[X′, t]〈−ξ 〉

)
dX′dX,

=
∫

"s
0

∫

"s
0

T[X, t]〈ξ 〉dX′dX −
∫

"s
0

∫

"s
0

T[X′, t]〈−ξ 〉dX′dX,

=
∫

"s
0

∫

"s
0

T[X, t]〈ξ 〉dX′dX −
∫

"s
0

∫

"s
0

T[X, t]〈ξ 〉dXdX′,

=
∫

"s
0

∫

"s
0

T[X, t]〈ξ 〉dX′dX −
∫

"s
0

∫

"s
0

T[X, t]〈ξ 〉dX′dX,

= 0.

(8)

Note that T[X, t]〈ξ〉 = T[X′, t]〈−ξ〉 = 0 for all X′ /∈ HX , so that the integration domain can be taken as the entire solid 
domain "s

0.
Balance of angular momentum holds if

∫

HX

(
Y[X, t]〈ξ 〉 × T[X, t]〈ξ 〉

)
dX′ = 0. (9)

Eq. (9) is automatically satisfied if the force vector T is aligned with its corresponding deformed bond Y; however, the force 
vector in NOSB-PD is not parallel to its relative position vector in general, so there is a need to define the force vector state 
in a way that satisfies the conservation of angular momentum.

2.3. Constitutive correspondence

In classical continuum mechanics, the local deformation gradient tensor is

Flocal = ∂χ

∂X
, (10)
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which determines the local spatial deformation of a point. The local stress and strain tensors are computed using the 
local deformation gradient tensor with various choices of constitutive models. For a hyperelastic material model, the first 
Piola-Kirchhoff stress tensor is determined from a strain energy functional ( by

P = ∂( (Flocal)

∂Flocal
. (11)

Developing a peridynamic model that corresponds to classical nonlinear hyperelasticity in cases that do not involve mate-
rial failure requires constructing non-local analogues of the deformation gradient tensor and stress. The non-local deformation 
gradient tensor is

Fnon-local =




∫

HX

ω(|ξ |)
(
Y〈ξ 〉 ⊗ ξ

)
dX′



K−1, (12)

in which ω(|ξ |) is a non-negative scalar valued function called the influence function, which controls the influence of peri-
dynamic points away from the current point, and K is the shape tensor,

K =
∫

HX

ω(|ξ |) (ξ ⊗ ξ) dX′. (13)

If the deformation mapping χ is continuously differentiable and HX ⊂ "s
0, then, by a Taylor expansion, Eq. (12) can be 

written as

Fnon-local =




∫

HX

ω(|ξ |) ((χ(X + ξ , t) − χ(X, t)) ⊗ ξ) dX′



K−1,

=




∫

HX

ω(|ξ |)
((

∂χ

∂X
ξ + O (|ξ |2)

)
⊗ ξ

)
dX′



K−1,

=




∫

HX

ω(|ξ |) (ξ ⊗ ξ) dX′



K−1 ∂χ

∂X
+ O (ε2),

= Flocal + O (ε2).

(14)

Consequently, away from the boundary of the structural domain, the non-local deformation gradient tensor is a second-
order accurate approximation to the local deformation gradient tensor used in the conventional continuum theory. Near 
the boundary of the domain, the shape of the peridynamic horizon or the influence function is not symmetric, however, 
and the non-local deformation gradient tensor is only a first-order approximation to the local deformation gradient tensor 
[50]. Notice that the non-local deformation gradient tensor is not defined only on a particular bond. Rather, it provides an 
averaged description of all interacting bonds in the horizon of a material point. The integral operators in the peridynamic 
theory allow for descriptions of discontinuities in materials, such as cracks and fractures. To simplify notation for the 
remainder of the paper, we denote the non-local deformation gradient tensor in NOSB-PD by F.

In the NOSB-PD constitutive correspondence introduced by Silling et al. [8], the force vector state is defined by

T[X, t]〈ξ 〉 = ω(|ξ |)PK−1ξ , (15)

in which the first Piola-Kirchhoff stress tensor P is computed using the non-local deformation gradient tensor instead of the 
local deformation gradient tensor in Eq. (11). Note that Eq. (15) guarantees the balance of angular momentum [8,9,51]. In 
brief, once the non-local deformation gradient F is determined, the first Piola-Kirchhoff stress tensor P can be obtained from 
a classical constitutive material model, which thereby allows the peridynamic force vector to be determined. This relation 
between the conventional stress tensor in continuum mechanics and the peridynamic force vector state is the so-called 
constitutive correspondence [8].

2.4. Failure and damage

In peridynamics, the formation and propagation of a crack occurs as bonds break between the Lagrangian material points. 
In this study, a critical stretch criterion is used to determine if a bond breaks. Other failure criteria have also been suggested, 
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including strain-based criteria [52] and energy-based criteria [53]. Bond breakage is modeled as an irreversible process: once 
a bond breaks, it cannot be reformed. The bond stretch is

s = |ξ + η|
|ξ | . (16)

If the bond stretch exceeds its critical value sc, there is no longer interaction between the two material points connected 
by the bond, i.e., the bond breaks. To track the connectivity between two material points that are initially connected by the 
bond ξ under deformations, we use an indicator function I(ξ , t) [54]:

I (ξ , t) =
{

1, s ≤ sc,

0, s > sc.
(17)

We use a modified influence function ω̂(|ξ |, t) = ω(|ξ |)I (ξ , t) that takes the value of 0 if the bond ξ breaks. This also implies 
that the deformation gradient tensor and force vector state, Eqs. (12) and (15), must be modified after a bond breaks in the 
material horizon.

The local damage at a material point X at time t can be computed by the bond connectivity within the peridynamic 
horizon HX as [54]

ϕ(X, t) = 1 −
∫
HX

I(ξ , t)dX′
∫
HX

dX′ , (18)

which is a volume-weighted ratio of the number of eliminated bonds to the number of initial bonds at a material point 
within the horizon. Note that the local damage is equal to 0 if its initial bonds are all active and its value is equal to 1 if all 
bonds are broken.

3. Immersed peridynamics method

This section presents the continuous and discrete IPD formulations for simulating FSI with and without material damage 
and failure.

3.1. Continuous formulation

The continuous IPD formulation considers an Eulerian computational domain " that consists of a time-dependent fluid 
subdomain "f

t and solid subdomain "s
t that are indexed by time t . We use both fixed spatial coordinates x ∈ " and reference 

coordinates X ∈ "s
0, with "s

0 indicating the region occupied by the solid structure at time t = 0. The dynamics of the fluid-
structure system are described by

ρ
Dv
Dt

(x, t) = −∇p (x, t) + µ∇2v (x, t) + f (x, t) , (19)

∇ · v (x, t) = 0, (20)

f (x, t) =
∫

"s
0

F(X, t) δ (x − χ(X, t)) dX, (21)

∂χ

∂t
(X, t) = V(X, t) =

∫

"

v(x, t) δ (x − χ(X, t)) dx = v (χ(X, t), t) , (22)

in which ρ is the mass density, µ is the viscosity, v(x, t) is the Eulerian velocity, V(X, t) is the velocity of the structure, 
p(x, t) is the Eulerian pressure field, f(x, t) is the Eulerian structural force density generated by the deformations of the 
structure, and F(X, t) is the Lagrangian structural force density. The operators ∇, ∇2, and ∇· are with respect to spatial 
(current) coordinates, and D

Dt = ∂
∂t + v · ∇ is the material time derivative in current coordinates. Eqs. (19) and (20) are the 

incompressible Navier-Stokes equations. The Eulerian and Lagrangian variables are coupled by integral transforms with Dirac 
delta function kernels in Eqs. (21) and (22). Notice that Eq. (22) implies that the no-slip boundary condition holds along the 
fluid-solid interface. Eq. (22) also implies that the structure is exactly incompressible, because its motion is determined by 
v (x, t), which satisfies the incompressible constraint, Eq. (21), throughout the entire computational domain ". See Fig. 3.

Some cases in the present study include both fixed and elastic parts. We approximately impose the zero-displacement 
constraint ∂χ

∂t (X, t) = 0 by an approximate Lagrangian multiplier force Fc of the form:

Fc(X, t) = κ (X − χ (X, t)) − ηV(X, t), (23)

in which κ ≥ 0 is a stiffness penalty parameter and η ≥ 0 is a damping penalty parameter. Note that as κ → ∞, χ(X, t) → X, 
and ∂χ

∂t (X, t) → 0, and we recover the exactly stationary model. Adding a damping term reduces numerical oscillations that 
can occur with finite values of κ .

6
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Fig. 3. Lagrangian and Eulerian coordinate systems in the immersed peridynamics formulation with peridynamic material points, bonds, and horizons. The 
computational domain is divided into the solid and fluid subdomains, "s

t and "f
t at time t , respectively. The peridynamic point X ∈ "s

0 interacts with its 
neighborhood in the finite region called horizon, which is denoted by HX ⊂ "s

0 .

3.2. Discrete formulation

3.2.1. Eulerian discretization
The incompressible Navier-Stokes equations are discretized in space using the second-order finite difference scheme on a 

staggered Cartesian grid [55]. For simplicity, we describe the spatial discretization in two spatial dimensions. The extension 
to three spatial dimensions is straightforward. The computational domain " = [0, L]2 is discretized by an N × N Cartesian 
grid with a uniform grid spacing h = L/N in the x- and y-directions. Let (i, j) label the Cartesian grid cell for integer 
values of i and j and 0 ≤ i, j < N . The discrete Eulerian velocity v = (v1, v2) is defined by vector components that are 
normal to the edges of the Cartesian grid cells at positions, xi− 1

2 , j =
(
ih,

(
j + 1

2 h
))

and xi, j− 1
2

=
((

i + 1
2 h

)
, jh

)
. In three 

spatial dimensions, the discrete velocity is determined by the components of the velocity at the faces of the grid cells. The 
components of the discretized elastic body force density f = ( f1, f2) are defined at the same locations as the velocity. The 
pressure p is approximated at the centers of the Cartesian grid cells at positions xi, j =

((
i + 1

2

)
h,

(
j + 1

2

)
h
)
. The nonlinear 

advection term v · ∇v is computed using a version of the piecewise parabolic method [56].

3.2.2. Lagrangian discretization
For simplicity, we discretize the structure using a uniformly distributed point cloud, or lattice. In such a description, we 

assign uniform discrete volume elements to each material point. Let HXl ⊂ "s
0 be the set of interacting neighborhoods of 

radius ε centered at the Lagrangian marker Xl ∈ "s
0. Then it is natural that the spatial integrals in the continuous NOSB-PD 

formulation are discretized as volume-weighted sums. The volumes associated with interacting PD points near the boundary 
of HXl are partially located inside of the ε-ball. However, the contributions of interacting PD nodes are added up to calculate 
overall quantities, such as PD net body forces, which can cause a larger amount of the discrete PD volumetric force to act 
on a PD node in the discrete IPD formulation compared to the exact evaluation of the PD force. The accuracy of numerical 
solutions is improved by using a volume correction method [57,58]:

V (l)
m =






Vm if |ξ | ≤ ε − -X
2 ,

1
-X

[
ε −

(
|ξ | − -X

2

)]
Vm if |ξ | ≤ ε,

0 otherwise,

(24)

in which ξ is the bond connecting material points Xl and Xm in the reference configuration and Vm is the volume occupied 
by material point Xm . In our computations, we use the same corrected volumes in both two and three spatial dimensions.

Now we focus on computing the Lagrangian force density F, Eq. (21), in the IPD formulation, which uses the NOSB-PD 
constitutive correspondence model to obtain the internal elastic body force. The non-local deformation gradient tensor F, 
Eq. (12), and shape tensor K, Eq. (13), at material point Xl are discretized into finite sums,

Fl =
∑

Xm∈HXl

ω (|Xm − Xl|) Y〈Xm − Xl〉 ⊗ (Xm − Xl)K−1
l V (l)

m , (25)

Kl =
∑

Xm∈HXl

ω (|Xm − Xl|) (Xm − Xl) ⊗ (Xm − Xl) V (l)
m , (26)

in which Xm is a neighborhood of Xl in the peridynamic horizon HXl . Likewise, the discretized force vector state of material 
point Xl is

T[Xl, t]〈Xm − Xl〉 = ω(|Xm − Xl|)PlK
−1
l (Xm − Xl) , (27)

7



K.H. Kim, A.P.S. Bhalla and B.E. Griffith Journal of Computational Physics 493 (2023) 112466

and the pairwise bond force function is

FPD (Xl,Xm, t) = ω(|Xm − Xl|)
(
PlK

−1
l + PmK−1

m

)
(Xm − Xl) , (28)

in which Pm and Km are the discretized first Piola-Kirchhoff stress tensor and shape tensor of particle Xm , respectively. The 
discretized first Piola-Kirchhoff stress tensor is computed by the classical constitutive relations, such as the Saint-Venant or 
neo-Hookean material models, but using the discretized non-local deformation gradient tensor here instead of the classical 
deformation gradient tensor. Consequently, the net internal body force density at material point Xl is

F(Xl, t) =
∑

Xm∈HXl

FPD(Xl,Xm, t) V (l)
m . (29)

This peridynamic net bond force is used as an elasticity model for the immersed structure at material point Xl at time t .
To control the contribution of each Lagrangian point in the peridynamic horizon, we use the influence function defined 

by

ω(r) =






C
(

2
3 − r2 + r3

2

)
if r < 1.0,

C (2−r)3

6 if r ≤ 2.0,

0 otherwise,

(30)

in which r = 2|ξ |
ε and C = 15

7π in the two spatial dimensions or C = 3
2π in the three spatial dimensions. Seleson et al. [59]

provide a detailed discussion about the role of influence functions in the peridynamic theory.
Simulating a failure process during the deformation requires the modification of the discretized non-local deformation 

tensor and peridynamic force vectors based on the connectivity of internal bonds in an immersed structure at each time. 
Therefore, for models that involve material failure in our IPD simulations, we replace the influence function in the integral 
equations, Eqs. (25)–(28), to the modified influence function ω̂ = ωI as explained in Sec. 2.4.

3.2.3. Lagrangian-Eulerian coupling
In the continuous equations, coupling between Eulerian and Lagrangian variables is achieved by integral transforms with 

Dirac delta function kernels, as in Eqs. (21)–(22). In the discrete formulation, the singular delta function is replaced by a 
regularized delta function δh , which is formed as a tensor product of one-dimensional kernel functions,

δh(x) = /2
i=1δh(xi) = 1

h2 φ
( x1

h

)
φ

( x2

h

)
, (31)

in which φ(r) is a basic one-dimensional kernel function [17]. We use the four-point IB kernel function introduced by Peskin 
[17] unless otherwise mentioned.

The immersed body "s
t is discretized as a collection of Lagrangian points. Then the volume integral, Eq. (21), is approxi-

mated by

( f1)i− 1
2 , j =

∑

l

Fl,1 δh

(
xi− 1

2 , j − χ (Xl, t)
)

h2, (32)

( f2)i, j− 1
2

=
∑

l

Fl,2 δh

(
xi, j− 1

2
− χ (Xl, t)

)
h2, (33)

in which Fl =
(

Fl,1, Fl,2
)

is the Lagrangian force density at a Lagrangian marker of index l. Note that the Lagrangian force 
density is computed by NOSB-PD in the proposed method. We use the notation

f = S [χ (·, t)] F, (34)

in which S [χ (·, t)] is the discrete force-spreading operator. The structural body interacts with the surrounding fluid by 
spreading the force to the Eulerian grid and moves with the local fluid velocity. Similarly, Lagrangian and Eulerian velocities 
are related by

Vl,1 (X, t) =
∑

i, j

(v1)i− 1
2 , j δh

(
xi− 1

2 , j − χ (X, t)
)

h2, (35)

Vl,2 (X, t) =
∑

i, j

(v2)i, j− 1
2
δh

(
xi, j− 1

2
− χ (X, t)

)
h2, (36)

in which Vl =
(

Vl,1, Vl,2
)

is the Lagrangian velocity at a Lagrangian marker Xl . We use the notation

8
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V = J [χ (·, t)] v, (37)

in which J is the discrete velocity restriction or interpolation operator. In the present formulation, S and J are adjoint 
operators if evaluated using the same structural configurations [41].

3.3. Computational algorithm

We now briefly outline the key steps of the implementation of the IPD method used in the computational examples in 
Sec. 4. Let vn and χn be the fluid velocity and discrete deformation at time tn = n-t , respectively, in which -t is the time 
step size. We use a second-order time stepping scheme [41], as follows:

χn+ 1
2 − χn

-t/2
= J

[
χn] vn, (38)

ρ

(
vn+1 − vn

-t
+ N

(
n+ 1

2

))
= −∇h pn+ 1

2 + µ∇2
h

(
vn+1 + vn

2

)
+ fn+ 1

2 , (39)

∇h · vn+1 = 0, (40)

fn+ 1
2 = S

[
χn+ 1

2

]
Fn+ 1

2 , (41)

χn+1 − χn

-t
= J

[
χn+ 1

2

](
vn+1 + vn

2

)
, (42)

in which N
(

n+ 1
2

)

= 3
2 vn · ∇hvn − 1

2 vn−1 · ∇hvn−1 is an explicit approximation to the nonlinear advection term.
Given the initial positions of the Lagrangian markers, the discrete shape tensor is determined by the bond connections 

between material points in the reference configuration. Then, as the structure moves, the discretized non-local deformation 
gradient tensor and pairwise bond force function are computed in each time step to account for structural deformations 
and changes in connectivity (bond breakage). The net bond force is determined by classical constitutive relations with 
the discrete peridynamic tensors. The discrete Lagrangian force density Fn+ 1

2 is computed at each Lagrangian marker via 
Eq. (29). The computational algorithm is performed as follows:

Step 1. Given vn and χn . Update χn+ 1
2 using Eq. (38).

Step 2. Update the non-local deformation gradient tensor and force vector state using Eqs. (25)-(28).
Step 2. Evaluate Fn+ 1

2 using Eq. (29).
Step 3. Spread the intermediate Lagrangian force density to the Eulerian grid using Eq. (41).
Step 4. Solve Eqs. (39)-(40) for vn+1 and pn+ 1

2 .
Step 5. Update χn+1 using Eq. (42).

4. Benchmarks

We first investigate standard benchmark problems for hyperelastic materials in the conventional solid mechanics litera-
ture, with the structure bodies embedded in an incompressible Newtonian fluid for FSI. Numerical tests detailed in Sec. 4.1
exhibit clear constitutive correspondence between the IPD formulation and benchmark FE and FE based IB results. After-
wards, we focus on fluid-driven material failure through several numerical experiments, as detailed in Sec. 4.2.

The IBAMR software [60,61] is used for all IPD simulations. IBAMR is a distributed-memory parallel implementation of 
the IB method with support for Cartesian grid adaptive mesh refinement (AMR). We compare the results obtained using 
our new IPD method against an immersed finite element-finite difference (IFED) method [49] that is also implemented in 
IBAMR, and also to a stabilized FE method for incompressible nonlinear elasticity [46].

It is well known that conventional IB-type methods can suffer from poor volume conservation [62,63]. The exact incom-
pressibility condition in the continuous IB formulation, Eq. (20), can be lost under the spatial discretization, time stepping 
errors, and the use of regularized delta function kernels. To improve volume conservation, we adopt a modified neo-Hookean 
model unless otherwise mentioned, which was previously shown to improve the volume conservation of the IFED method by 
Vadala-Roth et al. [49]. In the modified neo-Hookean model, the strain energy and elastic stress are additively decomposed 
into two parts, isochoric and volumetric,

( = G
2

(
J−2/3tr (C) − 3

)
+ κstab

2
(ln J )2 , (43)

P = G J−2/3
(

F − tr (C)

3
F−T

)
+ κstab ln ( J )F−T , (44)

9
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in which G is the shear modulus, J is the determinant of non-local deformation gradient tensor, J = det (F), C = FT F is 
the right Cauchy-Green strain, and κstab is the numerical bulk modulus. The numerical Poisson’s ratio, νstab, can be used to 
define the numerical bulk modulus via

κstab = 2G (1 + νstab)

3 (1 − 2νstab)
. (45)

This volumetric term reinforces the discrete incompressibility of the immersed structure. As in prior work that uses an 
immersed finite element structural description [49], we test several values of the numerical Poisson’s ratio in our bench-
marking studies.

Unless otherwise noted, the density and viscosity of the fluid are respectively set to ρ = 1.0 g
cm3 and µ = 0.01 dyn·s

cm2 , 
corresponding to water. For simplicity, we use the same density for both the structure and fluid. The computational domain 
is " = [0, L]d , in which d is the spatial dimension and L is the length of domain. We define the mesh factor ratio MFAC = -X

-x , 
in which -X and -x are the Lagrangian and Eulerian grid spacings, respectively. The Eulerian grid size is -x = L

N , in which 
N is the number of Cartesian grid cells in one spatial direction. We use MFAC = 0.5 in our IPD simulations, so that the 
structure discretization is twice as fine as the background Cartesian grid.

In our numerical simulations, both static and dynamic benchmarks are considered. To efficiently obtain numerical 
solutions at steady states, the maximum amount of load is applied to the immersed structure using the polynomial 
q(t) = −2 

(
t
T l

)3
+ 3 

(
t
T l

)2
, in which T l = αT f with α ∈ (0, 1) is a loading time and T f is a final simulation time. In static 

benchmarks, the final simulation time T f is determined when the velocity V is approximately zero. In addition, viscous 
damping forces are used in the solid region to suppress oscillations and accelerate reaching steady states. Viscous damping 
is applied to the immersed structure by adding a damping force −ηV to the Lagrangian body force F, as in Eq. (23), in 
which η > 0 is the damping coefficient.

The effect of peridynamic horizon is also investigated in the IPD simulations. For the simplicity, a uniform ε-ball is 
used for the peridynamic horizon. The peridynamic horizon size ε is always taken to be a constant multiple of the 
Lagrangian mesh spacing -X in the reference configuration, which is commonly used to define the ε-ball in the PD 
literature [51,54,64]. Consequently, our grid refinement studies consider the ε-convergence of the IPD formulation.2 A 
larger horizon size implies more interactions between Lagrangian points, and it requires more computations compared 
to a smaller horizon size. Therefore, finding an optimum horizon size is important for optimizing the computational per-
formance of the method. Our simulations examine different peridynamic horizon sizes for the constitutive correspondence: 
ε = 1.015-X, 2.015-X, 3.015-X .

4.1. Non-failure benchmarks

This section presents non-failure benchmarks, including standard benchmark problems in solid mechanics literature, 
using the IPD method to demonstrate the constitutive correspondence to the classical continuum based theory.

4.1.1. Compression test
We compress a rectangular block to demonstrate a hyperelastic material response under plane strain. The computational 

domain is " = [0, L]2, with L = 40 cm. A downward uniaxial traction is loaded in the center of the top of the block. 
Zero horizontal and vertical displacements are respectively applied to the top and bottom boundaries of the block and 
all other boundaries have zero traction. This test was introduced by Reese et al. [46] to test a stabilization technique for 
low-order finite elements. Fig. 4 provides a schematic of this test case. A shear modulus of G = 80.194 dyn

cm2 is used for the 
incompressible neo-Hookean hyperelastic material, and the downward traction is set to 200 dyn

cm2 . The load time is T l = 100 s, 
and the final time is T f = 500 s. An additional damping is set to η = 4.0097 gs . To verify the correspondence to benchmark 
FE results, material failure (i.e., bond breakage) is not allowed.

Fig. 5 illustrates the material body after the deformation along with pointwise values of the non-local Jacobian determi-
nant J , which is evaluated from the non-local deformation gradient tensor. Fig. 6 shows the vertical displacements of the 
top center material point, highlighted in Fig. 4, for various numerical Poisson’s ratios νstab and peridynamic horizon sizes 
ε under grid refinement. The maximum displacement of the point obtained using IPD method is in excellent agreement 
with that obtained using the standard FE method, and it converges under grid refinement to approximately 3.92 cm. The 
maximum displacement of the point of interest is relatively small (between 2.25 cm and 3.30 cm) at low grid resolutions if 
a larger value of νstab = 0.49995 is used. In the computational mechanics literature, this issue is referred to as volumetric 
locking and can occur with large values of the volumetric penalty parameters. Note that κstab → ∞ as νstab → 0.5. Under 
grid refinement, we ultimately recover accurate deformations for fixed finite values of κstab, as in standard methods for 
nearly incompressible elasticity.

2 We remark that the notion of convergence that we call ε-convergence is more commonly called δ-convergence in the peridynamics literature [65,66], 
in which δ defines the horizon size. As mentioned previously, we avoid using δ to describe the horizon size since we use δ to denote the Dirac delta 
function and δh to denote the regularized delta function.
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Fig. 4. Schematic diagram for the compression test (Sec. 4.1.1). The initial configurations of the immersed structure and a fluid are denoted by "s
0 and "f

0 , 
respectively. The entire computational domain is " = "s

0 ∪ "f
0 . Zero fluid velocity is enforced on the outer boundaries of the computational domain.

Fig. 5. Deformations of the hyperelastic block along with the values of J at material points using the neo-Hookean material model with G = 80.194 dyn
cm2 . The 

deformations are computed using 561 solid degrees of freedom (DoF) and ε = 2.015-X . The left panel shows the deformation obtained using νstab = −1.0, 
and the right panel shows the result for νstab = 0.4.

Fig. 6. Vertical displacements of the top center point of the compressed block, highlighted in Fig. 4, for different choices of peridynamic horizon size ε
and numerical Poisson’s ratio νstab. The solid DoF range from 153 to 4753. Note that locking clearly occurs for νstab = 0.49995. As in standard compu-
tational mechanics approaches, however, the IPD formulation ultimately converges under grid refinement even with high (but fixed) levels of volumetric 
penalization.

11
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Fig. 7. Volume change of the compressed block for different choices of horizon size ε and numerical Poisson’s ratio νstab. The solid DoF range from 153 to 
4753. The largest change is approximately 2.7%.

Fig. 8. Schematic diagram for the Cook’s membrane benchmark (Sec. 4.1.2). The initial configurations of the immersed structure and a fluid are denoted by 
"s

0 and "f
0 , respectively. The entire computational domain is " = "s

0 ∪ "f
0 . Zero fluid velocity is enforced on the outer boundaries of the computational 

domain.

Fig. 7 shows the volume change observed under deformation for different grid spacings. If νstab is small, slight volumet-
ric changes occur (between 0.3% and 2.7%) under loading. This volume change becomes negligible (up to 0.001%) when 
larger values of νstab ≥ 0.4 are used. This is also clear in Fig. 5. IPD results agree with results obtained using IFED, with 
both methods exhibiting similar volume changes that range between 0.0004% and 2.1%. Under grid refinement, negligible 
spurious volume changes or locking occur in all IPD simulations. In addition, relatively consistent results are obtained for 
all choices of the PD horizon sizes considered in the tests.

4.1.2. Cook’s membrane
Cook’s membrane [47], which is another widely used plane strain problem, is used to demonstrate the hyperelastic 

material response under bending and shearing. The computational domain is " = [0, L]2, with L = 40 cm. Zero displacement 
is imposed on the left boundary of the structure, and an upward traction of 6.25 dyn

cm2 is applied to the right boundary. 
Otherwise, stress-free boundary conditions are assumed. Fig. 8 provides a schematic of this test case. A shear modulus of 
G = 83.3333 dyn

cm2 is used for the incompressible hyperelastic material. The load time is T l = 20 s, the final time is T f = 50 s, 
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Fig. 9. Deformations of Cook’s membrane with the values of J at material points using the neo-Hookean material model with G = 83.3333 dyn
cm2 . The 

deformations are represented using 1481 solid DoF and ε = 2.015-X . The left panel shows the deformation obtained using νstab = −1.0, and the right 
panel shows the result for νstab = 0.4.

Fig. 10. Vertical displacements of the top corner point of the Cook’s membrane benchmark, highlighted in Fig. 8, for different choices of peridynamic 
horizon size ε and numerical Poisson’s ratio νstab. The solid DoF range from 101 to 5841. Note that locking clearly occurs for νstab = 0.49995. As in 
standard computational mechanics approaches, however, the IPD formulation ultimately converges under grid refinement even with high (but fixed) levels 
of volumetric penalization.

and the damping parameter is set to η = 4.16667 gs . We focus on the vertical displacements of the top-right corner of the 
membrane to assess convergence. To impose the same volume fraction at each material point in the NOSB-PD formulation, 
we use a stair-step representation of the immersed membrane. Consequently, the horizon size needs to be large enough (ε ≥√

2-X) to ensure adequate bond connectivity throughout the material. Bond breakage is not considered for this problem as 
well.

Fig. 9 shows the plane sheet after the deformation along with pointwise values of the non-local Jacobian determinant 
of non-local deformation gradient tensor at each material point. Fig. 10 shows the y-displacement of the top-right corner 
in Fig. 8 at the steady states for various numerical Poisson’s ratios νstab and PD horizon sizes ε under grid refinement. 
Fig. 10 shows that the displacements obtained using the IPD method are comparable to those obtained using the classical 
FE method, and that they converge under grid refinement to approximately 0.67 cm. With νstab = 0.49995, a larger vol-
umetric penalty causes volumetric locking, which results in smaller displacements when low mesh resolutions are used 
in the simulations. However, under grid refinement, we ultimately recover accurate deformations for fixed finite values of 
numerical bulk modulus, as in classical methods for nearly incompressible elasticity.

Fig. 11 shows volume changes observed under deformation for different grid spacings. With smaller values of νstab , 
slight volume changes (between 0.6% and 5.3%) are observed under loading. The volume change becomes negligible (up to 
0.0005%) when larger values of νstab ≥ 0.4 are used. The volume change using IPD is comparable to the results obtained 
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Fig. 11. Volume change of the Cook’s membrane benchmark for different choice of horizon size ε and numerical Poisson’s ratio νstab. The solid DoF range 
from 101 to 5841. The largest change is approximately 5.3%.

Fig. 12. Schematic diagram for the three-dimensional torsion benchmark (Sec. 4.1.3). The computational domain is " = [0, L]3, with L = 9 cm, and the 
three-dimensional beam is placed at the center of the domain. Zero fluid velocity is enforced on the outer boundaries of the computational domain.

using IFED, which is between 0.000021% and 0.1%. We can expect negligible volume loss or locking under grid refinement 
in all IPD simulations. In addition, relatively consistent results are obtained for all considered choices of the PD horizon size.

4.1.3. Torsion
We use a three-dimensional beam under torsion to investigate three dimensional hyperelastic material responses. This 

benchmark is based on a test suggested by Bonet et al. [67] and later modified by Vadala-Roth et al. [49] to use with the 
IFED method. The computational domain is the cube " = [0, L]3, with L = 9 cm. One side of the beam is fixed in place, and 
a torsion is applied to the opposite end through displacement boundary conditions. Fig. 12 provides a schematic of the test 
case. The right surface is rotated by the linear function θ(t) from 0 to θT f = 2.5π in time. The maximum angle of rotation is 
achieved at T l = 0.4T f , with T f = 5 s. All other surfaces have zero traction boundary conditions. Material damage and failure 
are not considered.

We use the modified Mooney-Rivlin material model [49]

( = c1

(
J−2/3 I1 − 3

)
+ c2

(
J−4/3

2
I2 − 3

)
+ κstab

2
(ln J )2 , (46)

P = 2c1 J−2/3
(

F − I1

3
F−T

)
+ 2c2 J−4/3

(
I1F − FC − I2

3
F−T

)
+ κstab ln ( J )F−T , (47)

in which c1 and c2 are material parameters, I1 = tr (C), and I2 = tr (C)2 − tr
(
C2). The material parameters are set to 

c1 = c2 = 9000 dyn
cm2 , and G = (c1 + c2) is used to determine the numerical bulk modulus. The density and viscosity of the 
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Fig. 13. Deformation of the three-dimensional beam with the values of J at material points using the Mooney-Rivlin material model with c1 = c2 =
9000 dyn

cm2 . The deformations are computed using 12337 solid DoF and ε = 2.015-X . The left panel shows the deformation obtained using νstab = −1.0, and 
the right panel shows the result for νstab = 0.4.

Fig. 14. (a) Displacements of the point of interest, highlighted in Fig. 12, for different choices of horizon size ε . The solid DoF range from 117 to 12337. (b) 
Volume change of the beam for different choices of horizon size ε .

surrounding fluid are set to ρ = 1.0 g
cm3 and µ = 0.04 dyn·s

cm2 , respectively. This larger value of viscosity compared to the 
previous benchmarks is used to accelerate reaching the steady state.

Overall deformations and volume conservation using the numerical Poisson’s ratio of νstab = 0.4 in Sec. 4.1.1 and Sec. 4.1.2
are consistent with the classical elasticity results under grid refinement. In general, a larger value of numerical bulk mod-
ulus requires a smaller time step size. For the remainder of the IPD simulations presented herein, we only consider two 
fixed numerical Poisson’s ratios; νstab = 0.4 for nearly incompressible hyperelastic material models and νstab = −1.0 for 
comparison tests.

Fig. 13 illustrates the deformations of the beam under torsion along with the Jacobian determinant of the non-local de-
formation gradient tensor at each material point. Fig. 14a shows the maximum displacement of the center of the top surface 
in Fig. 12 at the steady states for various sizes of ε under grid refinement. The displacements using IPD are comparable to 
the classical FE results and converge under grid refinement to a value of approximately 0.27 cm. Fig. 14b shows the volume 
change of the beam for different numbers of the solid DoF, ranging from 0.13% to 7.41%. Volume changes obtained using 
the IFED method are between 0.16% and 11%, which are comparable to the IPD simulations.

4.1.4. Elastic band
This benchmark examines deformations of an elastic band that are driven by fluid forces themselves. The deformations of 

the elastic band are simulated under fluid pressure loading. The computational domain is " = [0, 2L] × [0, L], with L = 1 cm. 
Fluid traction boundary conditions are imposed on the boundaries of the computational domain as σf(x, t)n(x) = h(t) and 
σf(x, t)n(x) = −h(t) on the left and right, respectively, in which σf is the fluid stress tensor and h(t) =

(
10 sin

(
πt
2T l

)
,0

)
dyn
cm2

when t < T l and h(t) = (10,0) dyn
cm2 otherwise. The load time is T l = 5 s. Zero fluid velocity conditions are applied to the top 

and bottom boundaries of the computational domain. Unlike the previous benchmarks, the pressure difference across the 
computational domain causes the deformations of the elastic band. Both top and bottom surfaces of the elastic band are 
attached to fixed blocks. The stationary blocks serve to block the fluid flow between the wall and the flexible band. Fig. 15
provides a schematic of this test case. We measure the maximum displacement of the point of interest, the encircled point 
in Fig. 15, at T f = 15 s. A shear modulus of G = 200 dyn

cm2 is used for the nearly incompressible neo-Hookean material model. 
Damage and failure of the elastic band are not allowed. An additional damping force in the structure is used with η = 10 gs , 
to accelerate reaching steady state.

Fig. 16 shows the deformations of the elastic band under pressure loading at steady state. Fig. 17a shows the maximum 
horizontal displacement of the point of interest in Fig. 15 at the steady states for different choices of the PD horizon sizes 
under grid refinement, which is approximately 0.17 cm. Except for ε = 1.015-X , the results obtained using the IPD method 
are comparable to FE results. The absence of a diagonal connectivity in the immersed structure with ε = 1.015-X causes a 
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Fig. 15. Schematic diagram for the elastic band benchmark (Sec. 4.1.4). The initial configurations of the immersed structure and a fluid are denoted 
by "s

0 and "f
0 , respectively. The entire computational domain is " = "s

0 ∪ "f
0 . Zero fluid velocity is enforced on the top and bottom boundaries 

of the computational domain, and fluid traction boundary conditions are applied along the left and right boundaries. The fluid traction is set to 
h(t) =

(
10 sin

(
πt
2T l

)
,0

)
dyn
cm2 when t < T l and h(t) = (10,0) dyn

cm2 otherwise.

Fig. 16. Deformations of an elastic band with the values of J at material points using the neo-Hookean material model with G = 200 dyn
cm2 . The deformations 

are computed using 1261 solid degrees of freedom and ε = 2.015-X . Note that the number of solid DoF only considers the number of Lagrangian points 
of the band. The left panel shows the deformation obtained using νstab = −1.0, and the right panel shows the result for νstab = 0.4.

Fig. 17. (a) Horizontal displacements of the point of interest, highlighted in Fig. 15, for different choices of horizon size ε . The solid DoF range from 51 to 
3381. (b) Volume change of the band for different choices of horizon size ε .
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Fig. 18. Deformations of a dynamic version of the elastic band under the fluid traction force. The color represents the magnitude of the Eulerian velocity 
at each spatial point and the values of J at material points. The deformations are computed using 1261 solid DoF, ε = 2.015-X , and νstab = 0.4. The band 
undergoes its largest deformation at t = 0.27 s and enters another period of oscillation at t = 0.53 s.

lack of resistance to this type of bending. Fig. 17b shows the volume change of the band for different numbers of the solid 
DoF. We observe slight volume changes with smaller values of solid DoF, however, these are resolved under grid refinement. 
The volume conservation achieved by the IPD method (between 0.015% and 1.2%) is comparable to the results generated by 
the IFED method (between 0.0015% and 2.1%).

To investigate nontrivial fluid dynamics in this benchmark, we test the transient behavior of a dynamic version of the 
elastic band. Instead of gradually applying the fluid traction as the static problem, fluid traction conditions on the boundaries 
of the computational domain are set to σf(x, t)n(x) = h(t), in which h(t) = (−10,0) dyn

cm2 and h(t) = (10,0) dyn
cm2 on the left 

and right, respectively. The final simulation time is set to T f = 10 s. Otherwise, we fix the rest of the test parameters as in 
the static problem, with no damping.

Fig. 18 shows the structural deformations of the band along with the Eulerian velocity field and the values of Jacobian of 
the non-local deformation tensor. Fig. 19 shows the transient behavior of the elastic band against time for various numerical 
Poisson’s ratios νstab and peridynamic horizon sizes ε under grid refinement. Fig. 20 shows the volume change of the band 
under deformation for different choices of νstab and ε . The total volume change decreases under grid refinement as in the 
static case, and the range is comparable to the static case as well. With a larger value of the numerical bulk modulus, 
the volume change noticeably decreases. Fig. 21a and Fig. 21b show that the maximum displacements of the oscillations 
and time to reach the maximum displacements converge under grid refinement. Fig. 22 shows the upper envelopes of the 
oscillations for different choices of ε under grid refinement.

4.2. Failure benchmarks

This section presents modified elastic band benchmark problems that allow bond breakage to simulate the fluid-driven 
deformations of a material that can experience damage and, ultimately, failure.

4.2.1. Rupture of an elastic band
This benchmark considers dynamic material deformations and fracture of the elastic band under fluid-driven forces. In 

this benchmark, the critical bond stretch is set to sc = 4.5 to demonstrate the effectiveness of simulating crack initiation and 
propagation using the IPD method. In general, the critical bond stretch of a material must be experimentally determined. 
The critical bond stretch sc used here is determined based on preliminary simulations. The pressure loading is three times 
larger than the value used in Sec. 4.1.4 on each side; σf(x, t)n(x) = h(t), in which h(t) = (−30,0) dyn

cm2 and h(t) = (30,0) dyn
cm2

on the left and right, respectively. The final simulation time is set to T f = 0.25 s. Otherwise, we use the same parameters as 
the non-failure case of the dynamic elastic band benchmark. The horizon size is set to ε = 3.015-X , as suggested in the 
PD literature [54].

Fig. 23 shows the crack nucleation and propagation of the dynamic version of the elastic band benchmark with an 
Eulerian velocity field. The crack formulation is initiated near the junctions between the fixed blocks and the band, and 
the band gets entirely detached from the block when the bonds exceed the critical bond stretch sc . Fig. 24a shows the 
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Fig. 19. Horizontal displacements of the point of interest, highlighted in Fig. 15, for different choices of horizon size ε and numerical Poisson’s ratio νstab
under grid refinement. N = 4 corresponds to 165 solid DoF, N = 12 corresponds to 1261 solid DoF, and N = 16 corresponds to 2193 solid DoF.

Fig. 20. Volume change of the band in Fig. 15 for different choices of horizon size ε and numerical Poisson’s ratio νstab under grid refinement. N = 4
corresponds to 165 solid DoF, N = 12 corresponds to 1261 solid DoF, and N = 16 corresponds to 2193 solid DoF.

horizontal displacements of the point of interest, highlighted in Fig. 15, for different grid spacings. Fig. 24b shows the local 
damage growth at the top left corner of the detached band during the failure process under grid refinement.

4.2.2. Elastic band with a notch
We next consider the dynamics of an elastic band with a pre-existing crack. A notch is placed on the center-right of 

the band with the length of 0.05 cm. The pressure loading is set to σf(x, t)n(x) = h(t), in which h(t) = (−20,0) dyn
cm2 and 
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Fig. 21. (a) Maximum displacements of the dynamic version of the elastic band for different choices of horizon size ε under grid refinement. The solid DoF 
range from 51 to 3381. (b) Time to reach the maximum displacement of the dynamic version of the elastic band for different choices of horizon size ε
under grid refinement.

Fig. 22. Upper envelopes of the oscillations in Fig. 19 for different choices of horizon size ε under grid refinement with νstab = 0.4. The solid DoF range from 
585 to 3381. N = 8 corresponds to 585 solid DoF, N = 12 corresponds to 1261 solid DoF, N = 16 corresponds to 2193 solid DoF, and N = 20 corresponds 
to 3381 solid DoF.

Fig. 23. Dynamic failure process of the elastic band with the local damage in NOSB-PD along with the corresponding Eulerian velocity field. Note that ϕ = 0
implies that all initial bonds are connected, and ϕ = 1 implies that all initial bonds are disconnected. The deformations are computed using 3381 solid DoF, 
ε = 3.015-X , and νstab = 0.4.
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Fig. 24. (a): Horizontal displacements of the point of interest, highlighted in Fig. 15, under grid refinement. (b): Local damage growth at the top left corner 
of the detached band during the failure process under grid refinement. N = 12 corresponds to 1261 solid DoF, N = 16 corresponds to 2193 solid DoF, 
N = 20 corresponds to 3381 solid DoF, and N = 24 corresponds to 4825 solid DoF.

Fig. 25. Schematic diagram for the failed elastic band benchmark (Sec. 4.2.2). The initial configurations of the immersed structure and a fluid are denoted 
by "s

0 and "f
0 , respectively. The entire computational domain is " = "s

0 ∪ "f
0 . Zero fluid velocity is enforced on the top and bottom boundaries of the 

computational domain, and fluid traction boundary conditions are applied along the left and right boundaries. The fluid traction is set to h(t) = (20,0) dyn
cm2 .

h(t) = (20,0) dyn
cm2 on the left and right, respectively, with a zero loading time. In this benchmark, the critical bond stretch 

is set to sc = 4.5 based on preliminary tests. Otherwise, we use the same parameters as the non-failure case of the dynamic 
elastic band benchmark. To obtain symmetric fracture in the middle of the band, we use even numbers of Lagrangian 
points in the vertical direction of the elastic band. Fig. 25 provides a schematic of this test case. The horizon size is set to 
ε = 3.015-X , as suggested in the PD literature [54]. The final simulation time is set to T f = 0.3 s.

Fig. 26 shows the dynamic deformation and failure process of the elastic band along with the damage parameter ϕ and 
Eulerian velocity vectors. The band undergoes a large deformation before the crack propagates, and it ultimately breaks 
the bond connectivity and completely ruptures. Fig. 27a shows the vertical displacements of the point A in Fig. 26 under 
grid refinement, and Fig. 27b shows horizontal displacements of the point A under grid refinement. Fig. 28 shows the local 
damage growth at the point of interest B during the failure process under grid refinement.

5. Discussion and conclusion

This paper develops an immersed peridynamics method to simulate FSI with structural models that can experience ma-
terial damage and failure. It uses non-ordinary state-based peridynamics to determine the internal body forces, which allows 
nonlinear material models of the immersed structural body that can accommodate discontinuities (i.e., crack formulation 
and propagation). Numerical tests consider both classical quasi-static benchmarks adapted from the solid mechanics litera-
ture [46–48] and fully dynamic FSI benchmarks [49]. Our numerical results demonstrate the constitutive correspondence of 
nonlinear hyperelastic material models for non-failure benchmarks, as detailed in Sec. 4.1, and show that the IPD method 
yields comparable accuracy under grid refinement that offered by a stabilized FE method [46] and the IFED method [49]. We 
obtain accurate results of overall deformations and volume conservation. We also test crack initiation, growth, and fracture 
in the immersed structural body by fluid stresses, as detailed in Sec. 4.2, and simulation results show ε-convergence as in 
the non-failure benchmarks. Moreover, we investigate the effect of the size of the peridynamic horizon using standard solid 
mechanics and FSI benchmark studies. When the IPD method is used with classical solid mechanics benchmarks, results 
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Fig. 26. Dynamic failure process of the elastic band with the local damage in NOSB-PD along with the corresponding Eulerian velocity field. Note that ϕ = 1
indicates all initially connected bonds are broken. The deformations are computed using 2210 solid DoF, ε = 3.015-X , and νstab = 0.4.

Fig. 27. (a): Vertical displacements of the point of interest A, highlighted in Fig. 26, under grid refinement. (b): Horizontal displacements of the point of 
interest A under grid refinement. N = 8 corresponds to 594 solid DoF, N = 12 corresponds to 1274 solid DoF, N = 16 corresponds to 2210 solid DoF, and 
N = 20 corresponds to 3402 solid DoF.

Fig. 28. Local damage growth at the point of interest B, highlighted in Fig. 26, during the failure process. N = 8 corresponds to 594 solid DoF, N = 12
corresponds to 1274 solid DoF, N = 16 corresponds to 2210 solid DoF, and N = 20 corresponds to 3402 solid DoF. Note that ϕ = 0 implies that all initial 
bonds are connected and ϕ = 1 implies that all initial bonds are disconnected.

are relatively insensitive to the size of the peridynamic horizons. In contrast, the elastic band benchmarks require at least 
ε = 2.015-X for non-failure tests and ε = 3.015-X for failure tests.

An interesting finding of this work is that the IPD method with a proper volume stabilization does not appear to suffer 
from spurious zero-energy modes. Our numerical experiments suggest that the methodology developed herein reduces the 
effect of zero-energy modes by including the volumetric stabilization term to the strain energy functional; however, we 
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currently lack a rigorous theoretical understanding of this empirical observation. Zero-energy modes in deformed material 
bodies are observed in numerical discretizations of the PD correspondence model in the PD literature [68]. These modes 
were initially regarded as discretization issuses, and various numerical treatments have been developed to reduce such 
instabilities [68–71]. However, Tupek and Radobitzky demonstrated that the instabilities are caused by the definition of the 
non-local deformation gradient tensor used in the mathematical formulation of the constitutive correspondence model [72].

One aspect of the present formulation, which is also shared by some other numerical approaches to failure mechanics 
[11], is that failure events can only occur within the discretized equations of motion, and not in the continuous equations. 
For the present methodology, the reason is that the interpolated velocity field used within the IB framework to determine 
the motion of the material points is a continuous function of space. Consequently, if we consider the limit in which two ma-
terial points approach each other, the material velocities of those points will also converge. In contrast, the spatially discrete 
equations can achieve discontinuous structural dynamics because the discrete material points have a non-zero lattice spac-
ing, so that nearby material points can experience different velocities, independent of whether there are discontinuities in 
the Eulerian velocity field. Although not considered here, modifications to the continuum formulation could allow for failure 
events for both the continuous and discrete equations of motion. For instance, using different delta functions for different 
material points cloud allow nearby points to experience discontinuous dynamics. Despite these inconsistencies between the 
continuous and discrete equations of motion, we remark that an important finding of the current work is that the developed 
numerical methodology yields convergent and consistent failure predictions for a nontrivial range of grid spacings.

Our current IPD formulation is limited to a material that has uniformly distributed volumes along the structural body, 
which limits the fidelity of the methodology for complex structural geometries. This can be seen in the Cook’s membrane 
benchmark Sec. 4.1.2 with the stair-step geometry. To simulate the deformations of real hyperelastic materials under fluid 
traction, it is necessary to modify the volume terms in the discrete IPD formulation Eqs. (25)–(29). Such modifications 
will ultimately enable the IPD method to simulate realistic material behaviors in more complex FSI problems. We also only 
consider isotropic material models. An important extension of this work will be to consider fiber-reinforced material models 
like those that have been developed to describe biomaterials.
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