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Node and Edge Differential Privacy for Graph
Laplacian Spectra: Mechanisms and Scaling Laws

Calvin Hawkins, Bo Chen, Kasra Yazdani, Matthew Hale∗

Abstract—This paper develops a framework for privatizing
the spectrum of the Laplacian of an undirected graph using
differential privacy. We consider two privacy formulations. The
first obfuscates the presence of edges in the graph and the
second obfuscates the presence of nodes. We compare these two
privacy formulations and show that the privacy formulation that
considers edges is better suited to most engineering applications.
We use the bounded Laplace mechanism to provide (ϵ, δ)-
differential privacy to the eigenvalues of a graph Laplacian, and
we pay special attention to the algebraic connectivity, which
is the Laplacian’s the second smallest eigenvalue. Analytical
bounds are presented on the accuracy of the mechanisms and on
certain graph properties computed with private spectra. A suite
of numerical examples confirms the accuracy of private spectra
in practice.

I. INTRODUCTION

Graphs are used to model a wide range of interconnected
systems, including multi-agent control systems [1], social
networks [2], and others [3]. Various properties of these
graphs have been used to analyze controllers and dynamical
processes over them, such as reaching a consensus [4], the
spread of a virus [5], robustness to connection failures [6],
and others. Graphs in these applications may contain sensitive
information, e.g., one’s close friendships in the case of a
social network, and it is essential that these analyses do not
inadvertently leak any such information.

Unfortunately, it is well-known that even aggregate, graph-
level analyses can reveal sensitive information about individ-
uals in a graph, such as the absence or presence of individual
nodes in a graph [7] and the absence or presence of specific
edges between them [8]. Similar privacy threats have been
explored in the data science community, where graphs are used
to represent datasets and the goal is to enable data analysis
while formally protecting the data of individuals contained in
those datasets.

Differential privacy is one well-studied tool for doing so.
Differential privacy is a statistical notion of privacy that has
several desirable properties: (i) it is robust to side infor-
mation, in that learning additional information about data-
producing entities does not weaken privacy by much [9], and
(ii) it is immune to post-processing, in that arbitrary post-
hoc computations on private data do not weaken privacy [10].
There exist numerous differential privacy implementations
for graph properties specifically, including counts of certain

∗Department of Mechanical and Aerospace Engineering
at the University of Florida, Gainesville, FL USA. Emails:
{calvin.hawkins,bo.chen,kasra.yazdani,matthewhale}
@ufl.edu. This work was supported in part by NSF under CAREER
Grant #1943275, by AFOSR under Grant #FA9550-19-1-0169, and by ONR
under Grant #N00014-21-1-2502.

subgraphs [8], the degree distribution of a graph [11], and
various other frequent patterns in graphs [12].

The need for privacy for the aforementioned graph proper-
ties comes from the inferences that one can draw about a graph
from these quantities, as detailed in [13]–[15]. Decades of
research in algebraic graph theory have quantified connections
between the Laplacian spectrum and a myriad of other graph
properties; see [16] for a summary. Accordingly, the Laplacian
spectrum, especially the algebraic connectivity λ2, implicates
the same ability to draw inferences as other graph properties
and hence gives rise to the same types of privacy concerns.
Nonetheless, it is still desirable to share private spectra to
enable graph analyses.

One specific motivation for privacy of Laplacian spectra
is interest in graphs as data sets in machine learning [17].
It is well known that training machine learning models on
sensitive data can cause privacy breaches [18]. Laplacian
spectra can specifically be used for clustering, embedding,
and indexing large graphs [19]–[21], as well as understanding
randomness and centrality of social networks [22], [23]. This
paper presents a method to share a private Laplacian spectrum
that enables all of these existing analyses while ensuring that
the graph is kept private from the recipient of these private
spectra.

We therefore protect the values the graph Laplacian spec-
trum using two notions of privacy: edge and node differential
privacy [24]; to the best of our knowledge this is the first work
to do so. Edge privacy obfuscates the absence and/or pres-
ence of a pre-specified number of edges, while node privacy
obfuscates the absence or presence of a single node. In this
paper we show that the differences in guarantees of these two
notions of privacy result in drastic differences in the accuracy
of the private values of the Laplacian spectrum. Specifically,
in Section IV we show that the variance of noise required
to obfuscate the presence of one node in a graph of size n
scales with n2, which rapidly grows large. For this reason,
Sections V and VI focus on edge privacy and obfuscating
the connections in a network. We note that while differential
privacy has been applied to protect various quantities in multi-
agent systems [25]–[28], privacy for properties of a multi-
agent network itself has received less attention, and that is
what we focus on.

In this paper we pay special attention to the algebraic
connectivity. A graph’s algebraic connectivity (also called its
Fiedler value [29]) is equal to the second-smallest eigenvalue
of its Laplacian. This value plays a central role in the study of
multi-agent systems because it sets the convergence rates of
consensus algorithms [30], which appear directly or in modi-
fied form in formation control [31], connectivity control [32],
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and many distributed optimization algorithms [33].
Our implementation uses the recent bounded Laplace mech-

anism [34], which ensures that private scalars lie in a specified
interval. The algebraic connectivity of a graph is bounded
below by zero and above by the number of nodes in a graph,
and we confine private outputs to this interval by applying the
mechanism in [34] to the privatization of Laplacian spectra.

Contributions: We provide closed-form values for the sen-
sitivity and other constants needed to define edge and node
differential privacy mechanisms for the Laplacian spectrum,
and this is the first contribution of this paper. The second
contribution is showing the detrimental scaling of node privacy
and the benefits of edge privacy. Our third contribution is
the use of the private values of algebraic connectivity to
analytically bound other graph properties, namely the diameter
of graphs and the mean distance between their nodes. Our
fourth contribution is providing guidelines on using these
mechanisms by providing a series of examples to demonstrate
how to use the mechanisms and the accuracy of information
they provide.

Related work in [35] has developed a different method to
privatize the spectrum and other properties of a graph’s adja-
cency matrix. We instead focus on privatizing the spectrum of
a graph’s Laplacian, which commonly appears in the analysis
of large data sets in machine learning and the analysis of social
networks. We also derive simpler forms for the distribution of
noise required, and we develop a privacy mechanism that does
not require any post-processing, which is different from [35].

A preliminary version of this paper appeared in [36]. This
paper extends the edge privacy mechanism for λ2 to the rest of
the Laplacian spectrum, develops the node privacy mechanism
for λ2, compares the scaling of the edge and node privacy
mechanisms, and provides further applications and uses of the
private Laplacian spectrum.

The rest of the paper is organized as follows. Section II
provides background and problem statements. Section III
develops the differential privacy mechanisms for the Laplacian
spectrum. Next, Section IV compares the scaling of edge and
node differential privacy and as a result we shift our attention
to edge privacy exclusively. Then, we use the output of the
edge mechanism to bound other graph properties in Section V.
Section VI provides guidelines and examples and Section VII
concludes.

Notation We use R and N to denote the real and natural
numbers, respectively. We use |S| to denote the cardinality of
a finite set S, and we use S1∆S2 = (S1\S2) ∪ (S2\S1) to
denote the symmetric difference of two sets. For n ∈ N, we
use Gn to denote the set of graphs on n nodes.

II. PRELIMINARIES AND PROBLEM STATEMENT

A. Graph Theory Background

We consider an undirected, unweighted graph G = (V,E)
defined over a set of nodes V = {1, . . . , n} with edge
set E ⊂ V × V . The pair (i, j) belongs to E if nodes
i and j share an edge, and (i, j) /∈ E otherwise. We let
di = |{j ∈ V | (i, j) ∈ E}| denote the degree of node

i ∈ V . The degree matrix D(G) ∈ Rn×n is the diagonal matrix
D(G) = diag

(︁
d1, . . . , dn

)︁
. The adjacency matrix of G is

(H(G))ij =

{︄
1 (i, j) ∈ E

0 otherwise
.

We denote the Laplacian of graph G
by L(G) = D(G)−H(G), which we simply write as
L when the associated graph is clear from context.

Let the eigenvalues of L be ordered according
to λ1 ≤ λ2 ≤ · · · ≤ λn. The matrix L is symmetric and
positive semidefinite, and thus λi ≥ 0 for all i. All graphs G
have λ1 = 0, and a seminal result shows that λ2 > 0 if and
only if G is connected [37]. Thus, λ2 is often called the
algebraic connectivity of a graph. Throughout this paper, we
consider connected graphs with n ≥ 3.

The value of λ2 specifically encodes a great deal of infor-
mation about G: its value is non-decreasing in the number
of edges in G, and algebraic connectivity is closely related
to graph diameter and various other algebraic properties of
graphs [16]. The value of λ2 also characterizes the per-
formance of consensus algorithms. Specifically, worst-case
disagreement in a consensus protocol decays proportionally
to e−λ2t [38]. Thus, we will privatize the full spectrum of L
and pay special attention to λ2 as we do so.

B. Privacy Background

We follow the differential privacy definition in [10]. Dif-
ferential privacy is enforced by a mechanism, which is a
randomized map. Given “similar” inputs, a differential privacy
mechanism produces outputs that are approximately indis-
tinguishable from each other. Formally, a mechanism must
obfuscate differences between inputs that are adjacent1. In
this work, we analyze two different notions of adjacency for a
given graph G: an adjacency relation defined with respect to
the edges of G, E(G), and an adjacency relation defined with
respect to the nodes of G, V (G). When adjacency is defined
with respect to the edge set, we will calibrate our privacy to
obfuscate the absence or presence of one or more edges in
G. When adjacency is defined with respect to the node set,
we will obfuscate the absence or presence of a single node.
Mathematically, this is done as follows.

Definition 1.A (Edge Adjacency relation). Let A ∈ N be
given, and fix a number of nodes n ∈ N. Two graphs G,G′ ∈
Gn are adjacent if they differ by A edges. We express this
mathematically via

Adje,A(G,G′) =

{︄
1 |E(G)∆E(G′)| ≤ A

0 otherwise
. ♢

Definition 1.B (Node Adjacency relation). Fix n ∈ N. Two
graphs, G,G′ ∈ Gn are adjacent if they differ by one node

1The word “adjacency” appears in two forms in this paper: for the adjacency
matrix H above, and for the adjacency relation used by differential privacy.
The adjacency matrix appears only in this section and only to define the graph
Laplacian, and all subsequent uses of “adjacent” and “adjacency” pertain to
differential privacy (not the adjacency matrix).
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with the corresponding edges added or deleted. We express
this mathematically via

Adjn(G,G′) =

{︄
1 |V (G)∆V (G′)| ≤ 1

0 otherwise
. ♢

In Definition 1.A, the parameter A is the number of edges
whose absence or presence must be concealed by privacy. It
can encode, for example, the concealment of the absence or
presence of A connections of a single user, the concealment
of the absence or presence of A

3 connections of each of three
distinct users, or the concealment of the absence or presence
of a single connection belonging to each of A distinct users.
On the other hand, Definition 1.B specifies that the absence

or presence of a single node must be concealed by privacy. Its
interpretation is that the addition or removal of a single user
from a graph will not change its privatized spectrum by much.

In Section III-B, we show that a mechanism that obfuscates
the absence or presence of only a single node (in the sense
of Definition 1.B) requires impractically large variance of
noise and produces highly inaccurate private outputs. The
obfuscation of more nodes would require even more noise,
and thus node differential privacy is not practical for protecting
the spectra of many realistic networks. Therefore we do not
consider obfuscating the absence or presence of arbitrary
numbers of nodes, and we focus on edge differential privacy
and the obfuscation of edges instead.

Next, we briefly review differential privacy; see [10] for a
complete exposition. A privacy mechanism M for a function f
can be obtained by first computing the function f on a given
input x, and then adding noise to f(x). The distribution of
noise depends on the sensitivity of the function f to changes
in its input, described below. It is the role of a mechanism to
approximate functions of sensitive data with private responses,
and we next state this formally. The guarantees of privacy are
defined with respect to the adjacency relation. Since we con-
sider two notions of adjacency, we define two types of privacy:
(i) edge differential privacy using the standard definition of
differential privacy equipped with the edge adjacency relation,
Adje,A, appearing in Defintion 1.A, and (ii) node differential
privacy using the standard definition of differential privacy
equipped with Adjn in Definition 1.B.

Definition 2.A (Edge differential privacy; [10]). Let ϵ > 0,
δ ∈ [0, 1) be given, use Adje,A from Definition 1.A, and
fix a probability space (Ω,F ,P). Then a mechanism M :
Ω× Gn → R is (ϵ, δ)-differentially private if, for all adjacent
graphs G,G′ ∈ Gn,

P
[︁
M(G) ∈ S

]︁
≤ exp(ϵ) · P

[︁
M (G′) ∈ S

]︁
+ δ

for all sets S in the Borel σ-algebra over R. ♢

Definition 2.B (Node differential privacy; [10]). Let ϵ > 0,
δ ∈ [0, 1) be given, use Adjn from Definition 1.B, and fix a
probability space (Ω,F ,P). Then a mechanism M : Ω×Gn →
R is (ϵ, δ)-differentially private if, for all adjacent graphs
G,G′ ∈ Gn,

P
[︁
M(G) ∈ S

]︁
≤ exp(ϵ) · P

[︁
M (G′) ∈ S

]︁
+ δ

for all sets S in the Borel σ-algebra over R. ♢

The value of ϵ controls the amount of information shared,
and typical values range from 0.1 to log 3 [10]. The value
of δ can be regarded as the probability that more information
is shared than ϵ should allow, and typical values range from 0
to 0.05. Smaller values of both imply stronger privacy. Given ϵ
and δ, a privacy mechanism must enforce Definition 2.A or 2.B
for all graphs adjacent in the sense of Definition 1.A or 1.B,
respectively.

We next define the sensitivity of λi, which will be used later
to calibrate the variance of privacy noise. With a slight abuse
of notation, we treat λi as a function λi : Gn → R, and we will
develop differential privacy mechanisms to approximate each
λi. The sensitivity will depend on which adjacency relation is
used, and this is made explicit in the following definitions.

Definition 3.A (Edge Sensitivity). The edge sensitivity of λi

is the greatest difference between its values on Laplacians
of graphs that are adjacent with respect to Adje,A in Defin-
tion 1.A. Formally, for a fixed A, the edge sensitivity of λi is
given as

∆λi,e = max
G,G′∈Gn

Adje,A(G,G′)=1

⃓⃓
λi(L)− λi(L

′)
⃓⃓
,

where L and L′ are the Laplacians of G and G′. ♢

Definition 3.B (Node Sensitivity). The node sensitivity of λi

is the greatest difference between its values on Laplacians of
graphs that are adjacent with respect to Adjn in Defintion 1.B.
Formally, the node sensitivity of λi is given as

∆λi,n = max
G,G′∈Gn

Adjn(G,G′)=1

⃓⃓
λi(L)− λi(L

′)
⃓⃓
,

where L and L′ are the Laplacians of G and G′. ♢

Noise is added by a mechanism, which is a randomized map
used to implement differential privacy. The Laplace mecha-
nism is widely used, and it adds noise from a Laplace dis-
tribution to sensitive data (or functions thereof). The standard
Laplace mechanism has support on all of R. For graphs on n
nodes, λi ∈ [0, n] for all i. To generate a private output, one
can add Laplace noise and then project the result onto [0, n]
(which is differentially private because the projection is post-
processing), though similar approaches have been shown to
produce highly inaccurate private data [39]. Instead, we use
the bounded Laplace mechanism in [34]. We state it in a form
amenable to use with λi.

Definition 4. Let b > 0 and let D = [0, n]. Then the bounded
Laplace mechanism Wλi : Ω → D, for each λi ∈ D, is given
by its probability density function fWλi

as

fWλi
(x) =

{︄
0 if x /∈ D

1
C(λi,b)

1
2be

− |x−λi|
b if x ∈ D

,

where C(λi, b) =
∫︁
D

1
2be

− |x−λi|
b dx. ♢
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Remark 1. This mechanism can be implemented by any
means of sampling from the p.d.f. fWλi

(x). For the numerical
results presented in Section VI, we use inverse transform
sampling. In short, we sample a uniform random variable and
transform it using the inverse cumulative distribution function
defined by the mechanism [40].

Throughout the rest of the paper, we use be to denote
the parameter b in Definition 4 when used to implement
edge privacy in Definition 2.A, and we use bn to denote
the parameter b when used to implement node privacy in
Definition 2.B.

C. Problem Statements
We now give formal problem statements. The first two

pertain to the development of privacy mechanisms.

Problem 1. Develop a mechanism to provide (ϵ, δ)-edge
differential privacy in the sense of Definition 2.A for the
spectrum of the graph Laplacian L(G) of a graph G.

Problem 2. Develop a mechanism to provide (ϵ, δ)-node
differential privacy in the sense of Definition 2.B for the
algebraic connectivity of a graph G.

We note that Problem 2 considers the algebraic connectivity
specifically because that will be used to show the poor scaling
of node privacy for the full Laplacian spectrum. Comparisons
of the two mechanisms are the subject of the next problem.

Problem 3. Given a graph G on n nodes and two privacy
mechanisms, Mn and Me, that provide (ϵ, δ)-node privacy
and (ϵ, δ)-edge privacy for the spectrum of L(G), respectively,
analyze how the variances of the two mechanisms scale with
respect to the size of the network n.

The final two problem statements pertain to the accuracy of
graph properties when bounded using private spectra.

Problem 4. Given a private algebraic connectivity, develop
bounds on the expectation of the graph diameter and mean
distance between nodes in the graph.

Problem 5. Given private values of the Laplacian spectrum,
provide examples to numerically quantify the accuracy of using
these private values to estimate the trace of the Laplacian,
Kemeny’s constant, and Cheeger’s inequality.

III. PRIVACY MECHANISMS

In this section, we solve Problems 1 and 2. Specifically, we
develop two mechanisms to provide (ϵ, δ)−differential privacy
to eigenvalues of a graph Laplacian L. In Section III-A, we
use edge differential privacy to privatize each of the Laplacian
eigenvalues, λi for i ∈ [n]. Then in Section III-B, we use node
differential privacy to privatize λ2. In both subsections we first
bound the sensitivity appearing in Definition 3 and then use
these sensitivity bounds to develop the privacy mechanisms.

A. Edge Privacy
We now design a mechanism to implement (ϵ, δ)−edge

differential privacy. We first bound the sensitivity ∆λi,e ap-
pearing in Definition 3.A.

Lemma 1 (Edge sensitivity bound). Fix an adjacency pa-
rameter A ∈ N. Then for the edge sensitivity ∆λi,e in
Definition 3.A, we have

∆λi,e ≤ 2A

for i ∈ {1, . . . , n}.
Proof: See Appendix A. ■
Next, we establish an algebraic relation for be, which lets the

bounded Laplace mechanism satisfy the theoretical guarantees
of (ϵ, δ)-edge differential privacy in Definition 2.A.

Theorem 1. Let ϵ > 0 and δ ∈ (0, 1) be given. Fix n ∈ N
and consider graphs in Gn. Then for the bounded Laplace
mechanism Wλi

in Definition 4, choosing be according to

be ≥
2A

ϵ− log

(︃
2−e

− 2A
be −e

−n−2A
be

1−e
− n

be

)︃
− log(1− δ)

satisfies (ϵ, δ)-edge differentially privacy with respect to
Adje,A as defined in Definition 2.A.

Proof: By [34, Theorem 3.5], the bounded Laplace mecha-
nism provides (ϵ, δ)−differential privacy if

be ≥
∆λi,e

ϵ− log∆C(be)− log(1− δ)
,

where, given that λi ∈ [0, n], ∆C(be) is defined as

∆C(be) :=
C(∆λi,e, be)

C(0, be)
, (1)

where C is from Definition 4. Next, we find

C(λi, be) =

∫︂ n

0

1

2be
e−

|x−λi|
be dx

=
1

2be

∫︂ λi

0

e
x−λi
be dx+

1

2be

∫︂ n

λi

e−
x−λi
be dx

= 1− 1

2

(︂
e−

λi
be + e−

n−λi
be

)︂
. (2)

Using (2) to compute C(∆λi,e, be) and C(0, be) in (1) gives

∆C(be) =

1− 1
2

(︃
e−

∆λi,e
be + e−

n−∆λi,e
be

)︃

1− 1
2

(︂
1 + e−

n
be

)︂ .

Using the sensitivity bound in Lemma 1, we put ∆λi,e = 2A,
which completes the proof. ■

Theorem 1 solves Problem 1, and we now have an
(ϵ, δ)−edge differential privacy mechanism for the spectrum
of a graph Laplacian L. We now shift our attention to node
privacy and the algebraic connectivity, λ2.

B. Node Privacy

Here we develop an (ϵ, δ)−node differential privacy mech-
anism for λ2. We will use the same process as the last sub-
section: we first bound ∆λ2,n from Definition 3.B for a graph
G ∈ Gn, then use this sensitivity to find an algebraic relation
for the bounded Laplace mechanism to satisfy Definition 2.B.



5

In Lemma 1, we were able to derive a common bound on
the sensitivity of each eigenvalue of L when edge sensitivity
is used. There is no common bound when node sensitivity
is used. In Section IV, we show that the node privacy scales
poorly with the size of the network and will not be usable
in most engineering problems. Thus, in this section we focus
on λ2 rather than the entire spectrum, as this is sufficient to
illustrate the poor scaling of node privacy in this context.

Definition 1.B considers adjacent graphs as graphs that have
an additional or absent node from G. Thus, for a G′ satisfying
Adjn(G,G′) = 1, it is possible that G′ ∈ Gn−1 or G′ ∈ Gn+1.
Because of this, we require n ≥ 3 and the two cases will
be handled separately in our analysis. We have the following
result.

Lemma 2. Fix n ∈ N and consider graphs in Gn. Then the
node sensitivity of λ2 in Definition 3.B is bounded as

∆λ2,n ≤ n− 1.

Proof: See Appendix B. ■
With this sensitivity bound, we now establish an algebraic

relation for bn, which lets the bounded Laplace mechanism
satisfy the theoretical guarantees of (ϵ, δ)-node differential
privacy in Definition 2.B.

Theorem 2. Let ϵ > 0 and δ ∈ (0, 1) be given. Fix n ∈ N
and consider graphs in Gn. Then for the bounded Laplace
mechanism Wλ2 in Definition 4, choosing bn according to

bn ≥ n− 1

ϵ− log

(︃
2−e

−n−1
bn −e

− 1
bn

1−e
− n

bn

)︃
− log(1− δ)

satisfies (ϵ, δ)-node differential privacy with respect to Adjn
from Definition 1.B.

Proof: See Appendix C. ■
Theorem 2 solves Problem 2 and gives an (ϵ, δ)−node

differential privacy mechanism for the algebraic connectivity,
λ2, of the graph Laplacian L. The expressions given in
Theorems 1 and 2 define b implicitly since b appears on both
sides of these expressions. In particular, although each expres-
sion has a unique minimum value of b that satisfies it, this
minimum value does not have a closed form representation.
However, in [34], the authors provide an algorithm to solve
for b numerically using the bisection method, and we use this
algorithm in the rest of the paper to numerically solve for the
value of b any time one is needed to implement a mechanism.

The lack of an analytical expression for the required b
prevents us from immediately comparing the amounts of noise
required by the two notions of privacy. The next section derives
necessary conditions for the variances of noise required for
edge and node privacy, which will allow us to compare how
the two notions of privacy scale with the size of the network
n.

IV. SCALING LAWS

In this section we will compare the notions of edge and node
differential privacy to solve Problem 3. More specifically, we
will analyze how the required variance of each privacy notion

0 20 40 60 80 100
n

0

5000

10000

15000

20000

b2

b2n (Node Privacy)
b2e (Edge Privacy)

Fig. 1. Fix ϵ = 0.4, δ = 0.05, A = 2, and λ2 = 2.5. We set bn equal to its
lower bound in Corollary 1 and be equal to its lower bound in Corollary 2.
The variances of the Laplace mechanisms are proportional to b2e and b2n, and
we plot b2e and b2n here for n = 3 to n = 100 nodes. This figure shows
that the variance of noise required for edge privacy has no dependence on
n, while it is necessary for the variance of noise for node privacy to grow
quadratically in n.

scales with the size of the network n. Here, we focus on
the algebraic connectivity λ2 to draw accurate comparisons
between edge and node privacy. However, the edge privacy
results can immediately be applied to the rest of the Lapla-
cian’s spectrum and the scaling trends found here persist for
each value of the Laplacian spectrum. To compare the two
mechanisms, we fix a graph G ∈ Gn and privacy parameters ϵ
and δ. Then we define an edge and node privacy mechanism to
provide (ϵ, δ)−differential privacy with parameters be and bn,
respectively. Then we will analyze and compare the required
values of be and bn given this ϵ and δ.

A. Comparison of Mechanisms

Recall that the requirements for the bounded Laplace mech-
anism to achieve (ϵ, δ)−differential privacy appearing in The-
orems 1 and 2 are defined implicitly in be and bn and the min-
imal values must be found numerically. To compare the two
notions of privacy we find different conditions for (ϵ, δ)−edge
and node differential privacy, which give an analytical ex-
pression for the growth of b. For node privacy, Corollary 1
presents a weaker, necessary condition for differential privacy.
For edge privacy, Corollary 2 presents a stronger, sufficient
condition for differential privacy. Corollary 1 will show that
the required parameter for the bounded Laplace mechanism to
achieve (ϵ, δ)−node differential privacy is strictly larger than
the parameter required for the standard, unbounded Laplace
mechanism from [10] to achieve the same level of privacy. This
recovers a general-purpose result of the same kind presented
in [34, Theorem 3.5].

We now introduce the two corollaries that quantify the
scaling behavior of node and edge privacy. Corollary 1 pro-
vides a necessary condition for achieving node privacy. By
examining a necessary condition, we gain insights into the
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graph properties that contribute to the scaling of any node
privacy mechanism. In contrast, Corollary 2 offers a separate
sufficient condition for achieving edge privacy. By examining
a sufficient condition, we show that edge privacy can be
achieved with no dependence on n.

Corollary 1. Fix a graph G ∈ Gn, ϵ > 0, and δ ∈ (0, 1).
Let Wn

λ2
be a bounded Laplace mechanism with parameter

bn. Then
bn >

n− 1

ϵ− log(1− δ)

is a necessary condition for Wn
λ2

to provide (ϵ, δ)−node
differential privacy.

Proof: See Appendix D. ■

Corollary 2. Fix a graph G ∈ Gn, ϵ > 0, and δ ∈ (0, 1).
Let W e

λ2
be a bounded Laplace mechanism with parameter

be. Then

be >
2A

ϵ− log(2)− log(1− δ)

is a sufficient condition for W e
λ2

to provide (ϵ, δ)−edge
differential privacy.

Proof: See Appendix E. ■

Remark 2. In Corollary 1, the necessary condition on bn
for (ϵ, δ)-node differential privacy scales linearly with n. A
standard Laplace distribution with parameter b has variance
2b2. This means that as the size of the network n grows, the
variance required for (ϵ, δ)−node differential privacy grows
quadratically in n. Simultaneously, in Corollary 2, the suffi-
cient condition for be has no dependence on the size of the
network. Thus, be and the variance of privacy noise needed
for edge differential privacy can remain constant as a network
grows. That is, the variance of noise for node privacy is O(n2)
while the variance of noise for edge privacy is O(1).

The aforementioned scaling laws are further illustrated by
numerical results shown in Figure 1. These results show that
the minimal bn required for node privacy grows quickly,
while be remains constant.

An appealing feature of differential privacy is that it pro-
vides a means to share private information that can still be
useful. However, in many applications, variance that is O(n2)
will render private information useless. Node differential pri-
vacy requires variance that is O(n2) and hence we do not
expect node differentially private spectra to be useful. Thus,
we focus on edge privacy for the rest of the paper.

B. Accuracy of Edge Privacy
The edge privacy mechanism has the following accuracy.

Theorem 3. For a fixed G ∈ Gn, ϵ > 0, δ ∈ (0, 1), and
A ∈ N, the accuracy of a private eigenvalue λ̃i generated
using the bounded Laplace mechanism with parameter be is
given by

E
[︂
λ̃i − λi

]︂
=

1

2C(λi, be)

(︂
2λi + bee

−λi
be − (n+ be)e

−n−λi
be

)︂
− λi.

Proof: See Appendix F. ■

Remark 3. The error bound in Theorem 3 can be used by data
curators to calibrate the strength of privacy. Specifically, when
choosing ϵ and δ, a data curator releasing private spectra can
use Theorem 3 as a measure of the quality those private spectra
in order to balance the strength of privacy with the accuracy of
private data. To interpret Theorem 3, note that (i) E[λ̃i−λi] <
0 when λi <

n
2 , i.e., the expected error is negative when λi <

n
2 , (ii) E[λ̃i−λi] > 0 when λi >

n
2 , i.e., the expected error is

positive when λi >
n
2 , and (iii) E[λ̃i−λi] = 0 when λi =

n
2 ,

i.e., the expected error is zero when λi =
n
2 exactly. Overall,

this shows that the mechanism adds a bias to the private output
unless the value being privatized is in the center of the interval
[0, n]. Example 2 and Figure 5 of Section VI demonstrate
this bias and its relation to the privacy level with numerical
experiments.

Theorem 3 provides an analytical expression for the ac-
curacy of the edge privacy mechanism. Since differential
privacy is immune to post-processing, we can use private
spectra to estimate other graph properties without harming
privacy guarantees. The rest of the paper focuses on estimating
other graph properties using the edge privacy mechanism.
Specifically, in Section V we develop statistical bounds on
other graph properties given a private λ2, and in Section VI
we provide a series of examples that demonstrate the accuracy
of the edge privacy mechanism and illustrate how these private
values of the Laplacian spectrum can be used to estimate other
graph properties.

V. BOUNDING OTHER GRAPH PROPERTIES

In this section we solve Problem 4. There exist numerous
inequalities relating λ2 to other quantitative graph proper-
ties [16], [38], and one can therefore expect that the private λ2

will be used to estimate other quantitative characteristics
of graphs. For example, a network analyst may only have
access to the private value λ̃2 and wish to use it in some
standard graph analyses. To illustrate the utility of doing so,
in this section we bound the graph diameter d and mean
distance ρ (defined in Section V-A below) in terms of the
private value λ̃2. Specifically, we post-process the private value
λ̃2 to estimate d and ρ by using it in bounds on d and ρ from
the existing literature. We denote these estimates by d̃ and ρ̃.

It is important to note that differential privacy is immune
to post-processing [10]. Therefore, if λ̃2 is (ϵ, δ)-differentially
private, then the estimates d̃ and ρ̃ are also (ϵ, δ)-differentially
private if they are functions of λ̃2. Hence, there is no need to
develop new mechanisms for the private estimation of d and
ρ. Instead, the mechanisms we develop can be applied to λ2 to
generate λ̃2 and then the value of λ̃2 can be used to bound d
and ρ in a privacy-preserving way.

A. Analytical bounds

Both d and ρ measure graph size and provide insight
into how easily information can be transferred across a net-
work [41]. Formally, they are defined as follows.
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Definition 5. Fix n ∈ N and a graph G = (V,E) ∈ Gn. Let
dij be the length of the shortest path from node i ∈ V to
node j ∈ V. The graph diameter is defined as the length of
the longest shortest path, namely

d = max
i,j∈V

dij .

The mean distance is defined to be the average of the shortest
paths, namely

ρ =
1

n(n− 1)

∑︂

i,j∈V

dij .

♢

We will next estimate each one in terms of the private λ2

and bound the error induced in these estimates by privacy.
These bounds represent the types of calculations one can do
with λ̃2, and similar bounds can be easily derived, e.g., on
minimal/maximal degree, edge connectivity, etc., because their
bounds are proportional to λ2 [29].

We first recall bounds from the literature.

Lemma 3 (Diameter and Mean Distance Bounds [42]). For
an undirected, unweighted graph G on n nodes, define

d(λ2, α) =

(︄
2

√︃
λn

λ2

√︃
α2 − 1

4α
+ 2

)︄(︂
logα

n

2

)︂

ρ(λ2, α) =

(︄√︃
λn

λ2

√︃
α2 − 1

4α
+1

)︄(︃
n

n− 1

)︃(︃
1

2
+logα

n

2

)︃
.

Then for any fixed λ2 > 0 and any α > 1, the diameter d and
mean distance ρ of the graph G are bounded via

d(λ2) =
4

nλ2
≤ d ≤ d(λ2, α)

ρ(λ2) =
2

(n− 1)λ2
+

n− 2

2(n− 1)
≤ ρ ≤ ρ(λ2, α).

The least upper bounds can be derived by finding values of αd

and αρ which minimize d(λ2, α) and ρ(λ2, α), respectively.■

A list of αd and αρ values can be found in Table 1 in
[42]. To quantify the impacts of using the private λ2 in these
bounds, we next bound the expectations of the private forms
of d and ρ. These bounds use the upper incomplete gamma
function Γ(·, ·) and the imaginary error function erfi(·), defined
as

Γ(s, x) =

∫︂ ∞

x

ts−1e−tdt and erfi(x) =
2√
π

∫︂ x

0

et
2

dt.

We generate private estimates of d and ρ using

d̃ =

(︄
2

√︃
n

λ̃2

√︃
α2 − 1

4α
+ 2

)︄(︂
logα

n

2

)︂

ρ̃ =

(︄√︃
n

λ̃2

√︃
α2 − 1

4α
+1

)︄(︃
n

n− 1

)︃(︃
1

2
+logα

n

2

)︃
,

i.e., we simply plug λ̃2 into the upper bound for each term.
Using the private λ2, expectation bounds are as follows.

Theorem 4 (Expectation bounds for d and ρ; Solution to
Problem 4). For any λ2 > 0, denote its private value by λ̃2.

Let d̃ and ρ̃ denote the estimates of the diameter and mean
distance, respectively, when computed with λ̃2. Then the
expectations E[d̃] and E[ρ̃], obey

4

nE[λ̃2]
≤ E[d̃] ≤ E[d(λ̃2, αd)] and

2

(n− 1)E[λ̃2]
+

n− 2

2(n− 1)
≤ E[ρ̃] ≤ E[ρ(λ̃2, αρ)],

where

E[d(λ̃2, αd)]=

⎡
⎣2
√︄

λn(α2
d − 1)

4αd
E

[︄√︄
1

λ̃2

]︄
+2

⎤
⎦
[︂
logαd

n

2

]︂

E[ρ(λ̃2, αρ)] =

[︄√︄
λn(α2

ρ − 1)

4αρ
E

[︄
1√︁
λ̃2

]︄
+ 1

]︄

·
[︃

n

n− 1

]︃
·
[︃
1

2
+ logαρ

n

2

]︃.

We can compute the expectation terms with λ̃2 via

E

[︄
1√︁
λ̃2

]︄
=

1

C(λ2, be)

1

2be

(︄
√
π
√︁
bee

−λ2
be

(︄
erfi

(︄√︃
λ2

be

)︄)︄

+
√︁
bee

λ2
be

(︃
Γ

(︃
1

2
,
n

be

)︃
− Γ

(︃
1

2
,
λ2

be

)︃)︃)︃

E[λ̃2] =
1

2C(λ2, be)

(︂
2λ2 + bee

−λ2
be − bee

−n−λ2
be − ne−

n−λ2
be

)︂
,

where C is from Definition 4.

Proof: See Appendix G. ■

Remark 4. Figures 2 and 3 demonstrate that the bounds pre-
sented in Theorem 4 do not lose much accuracy as the strength
of privacy increases. For example, in Figure 2 when λ2 = 10,
we can use ϵ = 1 which corresponds to strong privacy and
incur only around 5% error in the upper bound, along with
negligible error in the lower bound. Thus, the key takeaway
from Theorem 4 is that bounds on diameter and mean distance
with privacy are about as accurate as using those same bounds
without privacy.

Remark 5. A larger ϵ gives weaker privacy, and it results in
a smaller value of be and a distribution of privacy noise that
is more tightly concentrated about its mean. Thus, a larger ϵ
implies that the expected value E[λ̃2] is closer to the exact,
non-private λ2, which leads to smaller disagreements in the
bounds on the true and expected values of d and ρ.

B. Simulation results

We next present simulation results for using the private
value of λ2 to estimate d and ρ. We consider networks of
n = 30 agents with different edge sets and hence different
values of λ2. We let λn = n and therefore the upper bounds
on d and ρ in Theorem 4 can reach their worst-case values.
We apply the bounded Laplace mechanism with δ = 0.05
and a range of ϵ ∈ [0.1, 2]. To illustrate the effects of privacy
in bounding diameter, we compute the distance between the
exact (non-private) upper bound on diameter in Lemma 3 and
the expected (private) upper bound on diameter in Theorem 4.
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Fig. 2. The top plot shows the distance between the exact and expected upper
bounds for d. The bottom plot shows the distance between the corresponding
lower bounds.
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Fig. 3. The top plot shows the distance between the exact and expected upper
bounds for ρ. The bottom plot shows the distance between the corresponding
lower bounds.

This distance is shown in the upper plot in Figure 2, and
the lower plot shows the analogous distance for the diameter
lower bounds. Figure 3 shows the corresponding upper- and
lower-bound distances for ρ.

In all plots, we see that the errors induced by privacy are
small. Moreover, there is a general decrease in the distance be-
tween the exact and private bounds as ϵ grows. Recalling that
a larger ϵ implies weaker privacy, these simulations confirm
that weaker privacy guarantees result in smaller differences
between the exact and expected bounds for d and ρ, as
predicted in Remark 5.

VI. GUIDELINES AND EXAMPLES

In this section, we develop guidelines for providing private
responses to queries of the Laplacian eigenvalues, as well as
a series of examples to highlight what type of information
can be shared via queries of the Laplacian spectrum, thereby
solving Problem 5. Recall that a connected graph G ∈ Gn has
eigenvalues λ1 ≤ λ2 ≤ · · · ≤ λn, where λ1 = 0 and λ2 > 0.
In this section, we generate private eigenvalues λ̃i according
to a mechanism Wλi , which we write as λ̃i ∼ Wλi .

The procedure for sharing one private eigenvalue is straight-
forward. Given a graph G, and privacy parameters ϵ and δ, we
can compute the eigenvalue λi and the minimum b required for
(ϵ, δ)−differential privacy, either edge or node, then add noise

Quantity ϵ n Average % error Variance of Error
λ2(G) 5 535 8.48% 0.55

Tr(L(G)) 1 535 1.63% 7.47× 10−3

K(P ) 5 535 7.56% 1.48× 10−3

ϕ(G) 2.5 14 9.01% 0.27

TABLE I
SUMMARY OF THE QUANTITIES COMPUTED IN SECTION VI. VALUES

WERE COMPUTED USING M = 104 PRIVATE SPECTRUM VALUES. THERE
ARE NO COLUMNS FOR A AND δ SINCE THEY ARE FIXED AT A = 1

AND δ = 0.05 FOR ALL SIMULATIONS.

with the bounded Laplace mechanism to get the private eigen-
value λ̃i. More care must be taken when answering queries
of multiple eigenvalues or the entire spectrum. Specifically,
since we only consider connected graphs we will always have
λ1 = 0 and thus there is no need to privatize it. Furthermore,
for λi with i ∈ {2, . . . , n} we can define n − 1 independent
mechanisms that provide (ϵ, δ)−differential privacy to each λi.
In general, since we have n−1 queries that are each individu-
ally (ϵ, δ)−differentially private, the privacy level for querying
the entire spectrum is

(︁
(n − 1)ϵ, (n − 1)δ

)︁
−differentially

private due to the Composition Theorem [10, Theorem 3.16].
After privatizing the spectrum, the set {λ̃i}ni=1 is no longer
guaranteed to have the ordering λ̃1 ≤ · · · ≤ λ̃n. In applications
where the sorting of the private values is critical we can sort
the private values prior to sharing them. Sorting does not harm
privacy because it is post-processing on privatized data, but it
will change the statistics of each λ̃i.

For the remainder of this section we provide a series of
examples illustrating the accuracy and utility of the edge
privacy mechanism developed in Theorem 1. In each of the
examples, we calculate a metric to quantify accuracy of the
private information, and Table I gives statistical summaries of
these quantities. In Examples 1-4 we fix the sensitive graph
G to be a Facebook user’s local social network which is
available at [43]. This data set was originally presented in [17]
and the graph we use here corresponds to the ego agent
with ID 3437. This graph is un-directed and has n = 535
nodes, |E| = 10, 160 edges, and an algebraic connectivity of
λ2(G) ≈ 1.

Example 1 (Accuracy). Fix G ∈ G535 to be the graph
from [43] with ego ID 3437. Fix ϵ = 5, δ = 0.05, and
A = 1. We generated M = 104 private λ̃i’s for each
i ∈ {2, 200, 300, 400} using an edge privacy mechanism W e

λi

with parameter be. Solving for the minimum be required for
(5, 0.05)−differential privacy gives be = 0.458. To quantify
the accuracy of the private spectrum for a fixed ϵ and δ we
analyze λ̃i−λi for i ∈ {2, 200, 300, 400}. A histogram of the
accuracy for the M = 104 queries is shown in Figure 4. For
each of the eigenvalues, the error in the private information
is heavily concentrated near 0. This trend persists for the rest
of the n = 535 eigenvalues that are not shown here, as well
as for larger networks with larger values of n. This shows
that edge privacy provides accurate spectrum values for large
networks, even with strong privacy.

In Figure 4, it appears that there is a slight bias in the private
spectrum values because the plots are not perfectly symmetric.
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Fig. 4. Errors in private values of λi for i ∈ {2, 200, 300, 400}. These
results illustrate that edge privacy is able to achieve high accuracy, even under
strong privacy.
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Fig. 5. The empirical mean and variance of the error in λ̃i for i ∈
{2, 268, 535} and ϵ ∈ [0.1, 10]. For each ϵ, M = 104 private values were
generated to empirically compute the values of E[λ̃i−λi] and Var[λ̃i−λi].

This bias is made precise by Theorem 3, and it is a function of
the underlying graph G through its eigenvalues and a function
of the privacy parameters ϵ and δ through be. This bias appears
as a result of adding bounded noise. Specifically, the density
we use to generate λ̃i has a peak at the true value λi but is
only supported on the interval [0, n], which means that the
expected value will not be λi unless λi = n

2 . Nonetheless,
Figure 4 shows that this bias is small even when using strong
privacy. △

Example 2 (The Effect of ϵ). Fix G ∈ G535 to be the graph
from [43] with ego ID 3437. Fix δ = 0.05 and A = 1. Let
ϵ vary and take on values ϵ ∈ [0.1, 10]. Then for each ϵ,
generate M = 104 private λ̃i’s for i ∈ {2, 268, 535} using
an edge privacy mechanism W e

λi
with parameter be. For a
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Fig. 6. Values of ˜︂Tr(L) that are computed using private eigenvalues. For
privacy parameters ϵ = 1 and δ = 0.05, 104 sets of eigenvalues were
generated.

given ϵ and eigenvalue λi, we quantify the quality of the
private information with the empirical values of E[λ̃i − λi]
and Var[λ̃i − λi] taken over the M = 104 private values.
Figure 5 presents the values of E[λ̃i − λi] and Var[λ̃i − λi]
for ϵ ∈ [0.1, 5]. Recall that a larger ϵ implies weaker privacy.

In Figure 5, as ϵ grows and privacy is weakened, both
E[λ̃i − λi] and Var[λ̃i − λi] converge to 0 relatively quickly.
This trend is consistent across the entire spectrum of the graph
Laplacian. This shows that even with relatively strong privacy,
for example ϵ = 3, the private spectra we share are highly
accurate. Here we also see that under strong privacy, given
by small ϵ, we are sharing values of λ2 that are much larger
than the true value, and we are sharing much smaller values
of λ535. This occurs because of adding bounded noise and
because λ2 and λ535 are near the boundaries of the allowable
output range [0, n]. This example also illustrates the loss of
accuracy as privacy is strengthened.

Example 3 (Trace of the Laplacian). Fix G ∈ G535 to
be the graph from [43] with ego ID 3437. Fix ϵ = 1,
δ = 0.05, and A = 1. Recall that the trace of a matrix
R ∈ Rn×n is given by the sum of its eigenvalues, i.e.,
Tr(R) =

∑︁n
i=1 λi(R). Applying this to the graph Laplacian,

we have Tr(L) =
∑︁n

i=1 λi(L). The trace of the graph
Laplacian can, for example, be used to compute the average
degree of the network as davg = Tr(L)

n . Suppose that we do
not have access to G or L(G) and we only have the private
spectrum values {λ̃i}Ni=1. Then we can use these eigenvalues
to estimate the trace of L as ˜︂Tr(L) =∑︁n

i=1 λ̃i(L). To analyze
the accuracy of this estimate, M = 104 sets of private spectra
were generated and used to estimate the trace. In Figure 6 we
give a histogram of values of ˜︂Tr(L)− Tr(L) for these trace
estimates. We can see in Figure 6 that edge privacy generally
provides accurate estimates of the trace, with the majority of
private trace estimates falling within ±5% of the true trace
value.
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Fig. 7. The values of
˜︁K(P )−K(P )

K(P )
in Example 4. The average value of˜︁K(P )−K(P )

K(P )
is 0.0756. In general, we overestimate the Kemeny constant of

the graph G ∈ G535, but the majority of results are within ±10% of its true
value.

However, there is a bias in the distribution of private trace
estimates, and we tend to overestimate the trace. To quantify
this overestimate, we analyze E

[︂
˜︂Tr(L)− Tr(L)

]︂
. Plugging

in Tr(L) =
∑︁n

i=1 λi(L) and simplifying gives

E
[︂
˜︂Tr(L)− Tr(L)

]︂
=

n∑︂

i=1

E
[︂
λ̃i(L)

]︂
− λi(L).

Then applying Theorem 3 gives

E
[︂
˜︂Tr(L)− Tr(L)

]︂
=

n∑︂

i=1

1

2C(λi, b)

(︂
2λi + be−

λi
b

−(n+ b)e−
n−λi

b

)︂
− λi(L),

where C is from Definition 4. In Example 1, there was a small
bias in the values of λ̃i due to using bounded noise to achieve
differential privacy. Here the bias for the trace is larger because
we are summing each λ̃i and the bias is amplified due to
summing biased terms. Nonetheless, accurate trace estimates
can still be attained, even under strong privacy. △

Example 4 (Kemeny’s Constant). In network control, network
level discrete-time consensus dynamics are governed by the
matrix P = I−γL(G), where γ is a step-size which must obey
γ ≤ 1

maxi di
in order to achieve consensus [44, Theorem 2].

When G is a connected, undirected graph, P can be interpreted
as the transition matrix of a symmetric Markov chain. The
Kemeny constant of a Markov chain is the expected time
it takes to transition from a state i in a Markov chain to
another state sampled from its stationary distribution and can
be used to compute the error in consensus protocols subject
to noise [45]. The Kemeny constant of the Markov chain with
transition matrix P = I−γL(G) can be computed as K(P ) =∑︁n

i=2
1

1−λi(P ) [46]. Note that λi(P ) = 1 − γλi(L) and thus
K(P ) = 1

γ

∑︁n
i=2

1
λi(L) . Given private spectrum values we

Fig. 8. The cycle graph on n = 14 nodes, C14, used in Example 5.
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Fig. 9. The error in the estimate of Cheeger’s constant for the cycle graph in
Figure 8 and the parameters in Example 5. We usually overestimate Cheeger’s
constant using private information. This means we are estimating that the
graph is more connected than it really is, though these estimates are often
fairly accurate.

can estimate the Kemeny constant as ˜︁K(P ) = 1
γ

∑︁n
i=2

1
λ̃i(L)

.

We fix γ = 1
n , and with this step-size the graph G ∈ G535

from [43] has K(P ) = 32, 985.57. Note that ˜︁K(P ) is prone
to numerical instabilities as it consists of summing n−1 = 534
random variables that have a positive probability of being close
to 0. Thus, to avoid numerical instability we constrain the
domain of the mechanism to [0.2, n] rather than [0, n].

We now fix ϵ = 5, δ = 0.05, and A = 1. We generate
M = 104 private spectra for G ∈ G535 from [43] and these
values are used to compute ˜︁K(P ). To quantify the accuracy of
the estimates of the Kemeny constant, we analyze the relative
error

˜︁K(P )−K(P )
K(P ) whose values for the M = 104 private

spectra are presented in Figure 7. Here, we can see that we
overestimate the Kemeny constant, but the average error for
these queries is only 7.56%. This shows that sharing the pri-
vate spectrum can share relatively accurate information about
the Kemeny constant and thus about discrete-time consensus
dynamics while providing edge differential privacy.

Example 5 (Cheeger’s Inequality). In this example we discuss
how private Laplacian spectra can be used to estimate the
isoperimetric number, ϕ(G), of a graph G. The isoperimet-
ric number, or the Cheeger constant, is a measure of how
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connected a graph is or more specifically how easy it is to
disconnect a graph [47]. In general, the isoperimetric number
is NP-hard to compute and Cheeger’s inequality gives an
easily computable upper bound on the isoperimetric number
via ϕ(G) ≤ ϕub :=

√︁
λ2 (maxi di − λ2) [47, Theorem 4.2].

In this example, we estimate ϕ(G) using Cheeger’s inequal-
ity for cases in which we do not have access to G and only
have its private Laplacian spectrum. To estimate λ2, we use the
private value λ̃2. For maxi di, we estimate this with d̃(G) =
1
n

∑︁n
i=1 λ̃i. Then plugging these estimates into Cheeger’s

inequality, we have the estimate ϕ̃(G) =

√︃
λ̃2

(︂
2d̃(G)− λ̃2

)︂
.

Since the isoperimetric number is not feasible to compute
for large networks, we cannot run simulations on the graph
G ∈ G535 from [43] to demonstrate the accuracy of our
estimates. Thus, we fix G to be the cycle or ring graph
on n nodes, Cn, which has a known Cheeger’s constant of
ϕ(Cn) =

4
n [48]. For this example, we fix n = 14. The graph

G = C14 is shown in Figure 8 and ϕ(C14) =
2
7 . To analyze

the accuracy of using Cheeger’s inequality with private spectra,
we generate M = 104 private Laplacian spectra {λ̃i}ni=1 and
use them to privately estimate ϕ(G).

Before discussing the accuracy of our estimates we will
discuss the accuracy of the Cheeger’s inequality itself. For
C14, we have ϕ(C14) =

2
7 = 0.2857 and plugging in λ2 and

maxi di = 2 into Cheeger’s inequality gives ϕub = 0.8678.
This is more than 3 times the true value. Thus, to distinguish
between errors inherent to Cheeger’s inequality itself and
errors due to privacy, we will compare our estimate to the
upper bound from Cheeger’s inequality, ϕub.

In Figure 9, we show the accuracy of the resulting
estimates given by ϕ̃(G)−ϕub

ϕub
for 104 queries satisfying

(2.5, 0.05)−differential privacy. Here, we typically over es-
timate Cheeger’s constant. This means that we are estimating
that the graph is more connected than it truly is. Comparing
to the non-private Cheeger’s inequality upper bound given
by ϕub, the use of private spectra in computations results in
a slightly looser bound on average. However the estimates
are relatively accurate with an average normalized error of
9.01%, with a variance of only 0.27. Overall, this example
shows that using private spectrum information to estimate the
isoperimetric number is relatively accurate and does not have
much more error than when true spectrum values are used. △

VII. CONCLUSIONS

This paper presented two differential privacy mechanisms
for edge and node privacy of the spectra of graph Laplacians
of unweighted, undirected graphs. Bounded noise was used to
provide private values that are still accurate, and the private
values of Laplacian spectrum were shown to give accurate
estimates of the diameter and mean distance of a graph, the
trace of the Laplacian, the Kemeny constant, and Cheeger’s
inequality. Future work includes the development of new
privacy mechanisms for other algebraic graph properties.
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