é o Applied and Environmental
sl MICROBIOLOGY MICrObIO|Ogy

Environmental Microbiology | Full-Length Text

Check for
updates |

Novel Alphaproteobacteria transcribe genes for nitric oxide

transformation at high levels in a marine oxygen-deficient zone
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ABSTRACT Marine oxygen-deficient zones (ODZs) are portions of the ocean where intense
nitrogen loss occurs primarily via denitrification and anammox. Despite many decades of
study, the identity of the microbes that catalyze nitrogen loss in ODZs is still being elucidated.
Intriguingly, high transcription of genes in the same family as the nitric oxide dismutase (nod)
gene from Methylomirabilota has been reported in the anoxic core of ODZs. Here, we show
that the most abundantly transcribed nod genes in the Eastern Tropical North Pacific ODZ
belong to a new order (UBA11136) of Alphaproteobacteria, rather than Methylomirabilota
as previously assumed. Gammaproteobacteria and Planctomycetia also transcribe nod, but
at lower relative abundance than UBA11136 in the upper ODZ. The nod-transcribing
Alphaproteobacteria likely use formaldehyde and formate as a source of electrons for
aerobic respiration, with additional electrons possibly from sulfide oxidation. They also
transcribe multiheme cytochrome (here named ptd) genes for a putative porin-cytochrome
protein complex of unknown function, potentially involved in extracellular electron transfer.
Molecular oxygen for aerobic respiration may originate from nitric oxide dismutation via
cryptic oxygen cycling. Our results implicate Alphaproteobacteria order UBA11136 as a
significant player in marine nitrogen loss and highlight their potential in one-carbon,
nitrogen, and sulfur metabolism in ODZs.

IMPORTANCE In marine oxygen-deficient zones (ODZs), microbes transform bioavailable
nitrogen to gaseous nitrogen, with nitric oxide as a key intermediate. The Eastern Tropical
North Pacific contains the world’s largest ODZ, but the identity of the microbes transforming
nitric oxide remains unknown. Here, we show that highly transcribed nitric oxide dismutase
(nod) genes belong to Alphaproteobacteria of the novel order UBA11136, which lacks
cultivated isolates. These Alphaproteobacteria show evidence for aerobic respiration, using
oxygen potentially sourced from nitric oxide dismutase, and possess a novel porin-
cytochrome protein complex with unknown function. Gammaproteobacteria and
Planctomycetia transcribe nod at lower levels. Our results pinpoint the microbes mediating
a key step in marine nitrogen loss and reveal an unexpected predicted metabolism for marine
Alphaproteobacteria.
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IVI arine oxygen-deficient zones (ODZs) contribute up to half of the ocean’s nitrogen loss
(1) and are a major source of marine emissions of the potent greenhouse gas nitrous

oxide (N20) (2). The primary source of the N20 at the oxic—anoxic interface and in
anoxic waters in ODZs is denitrification (3, 4). The microbial enzyme responsible for N20
production during denitrification is nitric oxide reductase (Nor), which uses electrons from
cytochrome c (cNor) or quinol (gNor), to reduce nitric oxide (NO) to N20 (5-7). In the gNor
family, there are bona fide qNor enzymes and NO dismutase (Nod). Nod proteins lack the
quinol-binding site, seemingly preventing the enzyme from taking up external electrons;
instead, Nod is theorized to disproportionate NO into dinitrogen and O2 in methane-oxidizing
Methylomirabilota bacteria (8, 9) and in the alkane-oxidizing Gammaproteobacterium HdN1
(10).

The Eastern Tropical North and South Pacific (ETNP and ETSP) ODZs are the world’s largest
and second largest ODZs, and the subjects of extensive microbial ecology studies. Abundant
NO reductase-like genes and transcripts in the ETNP and ETSP ODZ cluster in the same
enzyme subfamily as Nod (11-14). Due to the similarity of ODZ Nod proteins to those of
Methylomirabilota (NC10), it was initially presumed that ODZ bacteria also used Nod proteins
to disproportionate NO into N2 and O2 for use in intra-aerobic methane oxidation (11, 13,
15). However, Fuchsman et al. (12) found that the peak of nod gene abundance in the ETNP
ODZ correlates with a peak of modeled N20 production (4) and does not correlate with
abundance of methane monooxygenase genes, suggesting that Nod proteins in the ETNP
ODZ are potentially an important source of N20 and are unlikely to be involved in methane
oxidation. The plausibility that Nod proteins can reduce NO to N20 is supported by a study
of a novel eukaryotic denitrification pathway in foraminifera (Globobulimina spp.) that
produce N20 while expressing Nod (16). Yet, the phylogenetic identity and metabolic context
of marine Nod proteins, which are a key biological source of either N20 or O2+N2 in marine
0DZs, remain unresolved.

In this study, we sought to determine the identity, predicted metabolism, and
environmental niche of the ODZ organism responsible for the highly transcribed nod genes
first discovered by Padilla et al. (11). We found that the most abundantly transcribed nod
genes in the ETNP ODZ belong to Alphaproteobacteria in the novel order UBA11136.
Significant transcription of nod genes was limited to waters with <1 uM O2. These nod-
transcribing Alphaproteobacteria also transcribe genes involved in aerobic respiration, which
was unexpected given that they inhabit anoxic waters, as well as genes involved in oxidation
of formaldehyde, likely indicating methylotrophy. Genes encoding multiheme cytochrome
proteins potentially implicated in nitrogen or iron cycling were also transcribed.

RESULTS

Transcribed nod sequences in the ETNP ODZ belong to Alphaproteobacteria,
Gammaproteobacteria, and Planctomycetia

Our reanalysis of highly transcribed nod genes in the ETNP ODZ (11) shows that these genes
belong to Alphaproteobacteria rather than a member of Methylomirabilota as previously
assumed. Querying the Nod amino acid sequences from Padilla et al. (11) against ETNP ODZ
metagenomes in the JGI IMG/MER database returned multiple 100% identity matches,
including a nod gene (Ga0066848_100037855) on a scaffold with hypothetical genes with
100% identity to Alphaproteobacteria metagenome-assembled genomes (MAGs) from the
ETNP ODZ (17) (Table S1). We binned previously sequenced ETNP ODZ metagenomes
Ga0066848 (ETNP201310SV72) and Ga0066829 (ETNP2013065V43) (18) into MAGs. Contigs
with the most highly transcribed nod genes were present in two Alphaproteobacteria MAGs
(GTDB taxonomy: UBA11136 sp002686135; species representative: Rhodospirillaceae
bacterium isolate ARS27) with 97% average nucleotide identity. Querying the Nod amino acid
sequences from Padilla et al. (11) against NCBI’s nonredundant protein database returned
matches to other MAGs assigned to Alphaproteobacteria order UBA11136 from low-oxygen

Month XXXX Volume 0 Issue O

Editor Jennifer F. Biddle, University of Delaware,
Newark, Delaware, USA

Address correspondence to Jennifer B. Glass,
jennifer.glass@eas.gatech.edu.

The authors declare no conflict of interest.
See the funding table on p. 11.

Received 20 November 2023
Accepted 9 February 2024
Published 6 March 2024

Copyright © 2024 American Society for
Microbiology. All Rights Reserved.

10.1128/aem.02099-23 2

Downloaded from https://journals.asm.org/journal/aem on 06 March 2024 by 205.149.15.189.


https://doi.org/10.1128/ASMCopyrightv2
https://doi.org/10.1128/ASMCopyrightv2

Full-Length Text
marine settings (ETNP, Saanich Inlet, and the Black Sea; 78%—80% identity), the marine

magnetotactic alphaproteobacterium Magnetovibrio blakemorei MV-1 (75% identity),
Gammaproteobacterium HdN1 (66% identity), and Methylomirabilis spp. (66% identity;
Table S2).

To glean additional insights into evolutionary relationships, we updated a previous Nod
phylogeny (19) with additional amino acid sequences from marine MAGs (20—-22) and ETNP
0ODZ metagenomes (18), subdivided into cells that are free-living (FL; 0.2—-1.6 um) and from
the particle fraction (PF; >1.6 um; Fig. 1A; Table S3). The Nod topology was generally
consistent with a previous phylogeny from Fuchsman et al. (12), with
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FIG 1 Marine Nod clades, gene neighborhoods, and depth profiles of transcription. (A) A maximum likelihood phylogeny of nitric oxide dismutase (Nod) amino acid
sequences in marine (blue) and select terrestrial (brown) taxa, primarily from marine MAGs (20—22) and ETNP ODZ metagenomes (18). Branch support was evaluated

using 1,000 rapid bootstrap replicates, with bootstrap values shown for deep branches. The tree is drawn to scale, with branch lengths in number of (Continued on

FIG 1 (Continued) substitutions per site. Bold sequences represent those present in multiple ETNP ODZ metagenomes (see Table S3 for duplicate accession numbers).

“PF” indicates genes from the particle fraction (>1.6 um fraction) of filters. “FL” indicates genes from the free-living fraction (0.2—1.6 um) collected on Sterivex filters.
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The most highly transcribed ETNP ODZ sequence is indicated with an asterisk. The gNor sequence Geobacillus stearothermophilus was used as the outgroup. (B) Gene

neighborhoods surrounding nod genes in select taxa. GenBank contigs: Cecembia calidifontis SGXG01000001, Scalindua japonica BAOS01000045,
Gammaproteobacteria NP964 PBRC01000062, Gammaproteobacterium HdN1 FP929140, Deltaproteobacteria NZCL01000067, Candidatus Methylomirabilis oxyfera

FP565575, and Rhodospirillaceae NP1106 PCBZ01000014. Unlabeled gray genes are hypothetical. (C, D) Oxygen concentrations (gray lines), nitrite concentrations

(black circles), and nod transcripts (squares, as reads per kilobase per million mapped reads [RPKM]) with depth in ETNP ODZ P1 (onshore) and P2 (offshore) sites (25).

additional taxonomic data from MAGs in the Tara Oceans data set further constraining Nod
placement (22). As expected based on the binning and BLAST results, the Nod sequence from
Padilla et al. (11) (Ga0066848 100037855) clustered phylogenetically with marine
Alphaproteobacteria (OTU Ill in Fuchsman et al. [12], hereafter “Alpha-type Nod”); this clade
contained three unique sequences, all of which were present in multiple metagenomes and
all from the free-living fraction, and one of which was identical to that of Rhodospirillaceae
NP1106 (GenBank: MBV28360). Four unique ODZ Nod sequences clustered with marine
Gammaproteobacteria (OTU Il in Fuchsman et al. [12], hereafter “Gamma-type Nod”); these
sequences were monophyletic with a cluster of Gammaproteobacteria Nod cluster
sequences from sewage sludge, including Gammaproteobacterium HdN1 (23) and other
wastewater Gammaproteobacteria. Multiple ETNP ODZ metagenomes contained Gamma-
type Nod sequences identical to those of Gammaproteobacteria NP964 (GenBank:
MBP20251). Gamma-type Nod had ~70% identity to Alpha-type Nod. Several ODZ Nod
sequences, all from the particle fraction, clustered with marine Deltaproteobacteria in a
clade of monophyletic nod genes from groundwater Methylomirabilota,
Deltaproteobacteria, and Acidobacteria MAGs (~65% identity to Alpha-type Nod). Six unique
Nod ODZ protein sequences (two of which were present in multiple metagenomes) clustered
with Planctomycetia (OTU | in Fuchsman et al. [12], hereafter “Planctomycetia-type Nod”),
were primarily found in free-living cells, and had ~40% identity to Alpha-type Nod.
Intriguingly, two ODZ sequences clustered in the eukaryotic Globobulimina clade (~50%
identity to Alpha-type Nod). Viral Nod sequences from Saanich Inlet (~¥55% identity to Alpha-
type Nod) clustered with the viral Nod sequence previously reported by Gazitla et al. (24)
from the ETSP ODZ (St16 OMZ 317E-viral).

We investigated gene neighborhoods surrounding ODZ nod genes in the three main
phylogenetic clusters of ODZ sequences: Planctomycetia-type Nod, Gamma-type Nod, and
Alpha-type Nod. Although “unknown Nor-related” marine Bacteroidota sequences were
located on an operon with other nor genes, there was no consistent gene neighborhood for
nod sequences (Fig. 1B). Planctomycetia-type nod genes were not located in the vicinity of
any genes with recognizable related function. Gamma-type nod gene neighborhoods
contained ferredoxins and cytochrome bs61 genes for electron transport. Upstream of the
Alpha-type nod in Rhodospirillaceae NP1106 is a cluster of formylmethanofuran
dehydrogenase genes (fmd/fwd) used in C1 metabolism via
tetrahydromethanopterin/methanofuran-linked reactions. Immediately upstream or
downstream of nod genes, helix—turn—helix transcriptional regulators were common (Fig.
1B). Neighboring Gamma-type and Methylomirabilis nod genes, LuxR-type regulators were
common; these regulators have diverse functions and their potential connection to Nod
remains unclear. Neighboring Alpha-type and Bacteroidota (e.g., Cecembia calidifontis) nod
genes, Rrf2-type regulators were present. The protein NsrR in the Rrf2 family regulates global
cellular response to NO toxification by directly sensing NO with an iron-sulfur cluster (26, 27).
The presence of this NsrR-like regulator suggests that Nod in marine Alphaproteobacteria
and Bacteroidota may be involved in nitrosative stress response and NO detoxification.
Alphaproteobacterial nod is highly transcribed in anoxic waters

We assessed transcription of Alpha-, Gamma-, and Planctomycetia-type nod genes from the
oxycline to upper ODZ (secondary nitrite maximum) using ETNP ODZ metatranscriptomes
from an onshore station with a shallower oxycline (P1; Fig. 1C) and an offshore station with
a deeper oxycline (P2; Fig. 1D) (25). In both oxyclines, transcription was low (4—10 reads per
kilobase per million mapped reads [RPKM], n = 8) for all three nod types (Fig. 1C and D).
Below the oxyclines, nod transcripts began to rise and were highest at the secondary nitrite
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maxima, with Alpha-type (184-274 RPKM, n = 4) > Gamma-type (55-95 RPKM, n = 4) >
Planctomycetia-type (13—19 RPKM, n = 4; Table S4).

MAGSs with highly transcribed nod gene represent a new order of Alphaproteobacteria

In order to assess the phylogeny of the nod-containing Alphaproteobacteria MAGs, we
constructed an alphaproteobacterial phylogeny using the conserved protein NADH
ubiquinone oxidoreductase subunit L (NuoL) as in Cevallos and Degli

Esposti (28), with additional representation of order UBA11136 including our MAG
ETNP2013_510_300m_22 (Fig. 2). MAG ETNP2013_S06_300m_15 was not included in the
phylogeny because its nuolL gene was truncated. The phylogeny confirmed that nod-
containing Alphaproteobacteria belong to the order UBA11136 and showed that UBA11136
is situated near other Alphaproteobacteria orders found in ODZs.
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FIG 2 Alphaproteobacteria phylogeny with order UBA11136 expanded and nod-containing MAGs bolded. The phylogeny was

constructed using the alphaproteobacterial phylogenetic marker NADH ubiquinone oxidoreductase subunit L as in Cevallos and

Degli Esposti (28). Taxonomic names are from Cevallos and Degli Esposti (28) and GTDB Release 08-RS214. The scale bar represents

amino acid substitutions per site. The full phylogeny is shown in Fig. S1.

Alphaproteobacteria transcribe genes for formate metabolism, aerobic respiration, and a

multiheme cytochrome complex

To glean insight into potential roles for Nod in a cellular context, we sought to reconstruct
the electron transport chain of the Alphaproteobacteria with the most highly transcribed
nod genes (Alphaproteobacterium MAG ETNP2013_S10_300m_22 and
Alphaproteobacterium MAG ETNP2013_S06_300m_15, 73% and 69% estimated
completeness, respectively) at the secondary nitrite maximum. Of total metagenomic reads,
0.38% map to ETNP2013_510_300m_22 and 0.39% map to ETNP2013_S06_300m_15. In
both MAGs, nod was in the top three most transcribed genes in the ETNP ODZ (~44,000
FPKM; Table S5), after a bacterial nucleoid DNA-binding protein and a potassium-gated
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channel protein. In addition to nod, we found that genes for formaldehyde oxidation via
tetrahydromethanopterin/methanofuran-linked reactions, including formylmethanofuran
dehydrogenase (fwd/fmd) and formylmethanofuran—tetrahydromethanopterin  N-
formyltransferase (ftr), were transcribed in both MAGs (Table S5). Both MAGs also
transcribed NAD-dependent formate dehydrogenase (Table S5). Thus, the
alphaproteobacterium appears to be capable of conversion of formaldehyde to formate and
use of formate as a source of electrons for NADH:ubiquinone oxidoreductase (Complex I; Fig.
3). The source of formaldehyde is likely methanol oxidation, as pyrroloquinoline quinone
(PQQ)-dependent ethanol/methanol dehydrogenases were found in Alphaproteobacteria
MAGs from low-oxygen marine settings (Table S6). Methane monooxygenase genes were not
found in the partial Alphaproteobacteria MAGs, precluding our ability to rule out the
possibility of these genes in the missing portions of the genomes. The Alphaproteobacteria
PQQ-dependent dehydrogenase genes contained the motif DYDG (Table S6), which is
characteristic of the lanthanide-containing form of the enzymes rather than the calcium form
(29).

A full aerobic electron transport chain (Complex I, Il, lll, and 1V) and FOF1-type ATP
synthase were transcribed in both bins (Fig. 3; Table S5). Complex IV (cytochrome c oxidase)
was type Al according to the Sousa et al. (30) classification, and the cox operon in the GTDB
species representative Rhodospirallaceae ARS27 was subtype b (COX2-COX1-CtaB-
CtaG_Cox11-COX3-DUF983-SURF1-CtaA1-M32-Tsy-M16B) according to the Geiger et al. (31)
classification. Sulfur oxidation genes, including flavocytochrome ¢ sulfide dehydrogenase
(FccAB), sulfane hydrogenase (SoxCD), and carrier protein SoxYZ, were also transcribed, as
were numerous transposes (Fig. 3; Table S5).

Genes for a multiheme cytochrome complex were transcribed in both bins. To our
knowledge, this putative operon has not been previously described. Hereafter, we designate
it the ptdABCDEFG operon for its sequence of penta/tetra/deca-heme proteins, interspersed
with other conserved proteins. ptdAB genes are highly transcribed in our
Alphaproteobacteria MAGs, but it is unclear if the rest of the operon is also highly
transcribed, because it was truncated in our MAGs’ scaffolds. The ptd gene cluster consists
of a penta-heme protein with a C-terminal beta-sandwich (PtdA), a porin (PtdB), a
FAD/NAD(P)-binding oxidoreductase (PtdC), a periplasmic tetra-heme protein (PtdD), a cyclic
nucleotide-binding domain protein with two 4Fe—4S clusters (PtdE), a cytoplasmic
transmembrane ferric reductase-like protein (PtdF), and a periplasmic deca-heme protein
(PtdG; Fig. 3; Table S7 and S8). The function of this complex is unknown, but the presence of
genes encoding a porin and multiple multiheme proteins resembles porin-cytochrome
protein complexes involved in extracellular reduction electron transfer during Fe(lll) and
Mn(IV) reduction (32, 33). PtdA has a homolog to a penta-heme cytochrome c552 protein of
unknown function in a thermophilic purple sulfur gammaproteobacterium (34) and is in the
same COG family (COG3303) as formate-dependent nitrite reductase, NrfA. ptdABCDEFG
genes were prevalent in Alphaproteobacteria, Gammaproteobacteria, Nitrospirales, and
Planctomycetes MAGs from marine or high salinity environments (Fig. 4; Table S7).
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FIG 3 Schematic of the electron transport chain in nod-containing Alphaproteobacteria. Increasing transcriptional activity is indicated from lighter to darker blue (Table

S5). Red circles with black lines indicate hemes. Hypothetical Ptd proteins are labeled A, B, C, D, E, F, and G (Table S8). Proposed electron transfer from formate to
Complex | is shown. Highly transcribed Nod protein and predicted O2 generation is shown as feeding into Al-type CCO Complex IV. Additional electrons for CytC and
the electron transport chain are proposed to come from sulfur oxidation carried out by the flavocytochrome c sulfide dehydrogenase (FccAB, FCC), and sulfane-sulfur

dehydrogenase (SoxCD) with the multi-enzyme carrier complex (SoxYZ).

DISCUSSION

This study predicts the previously ambiguous identity of the microorganisms that make the
dominant nitric oxide-transforming protein (Nod) in the world’s largest ODZ, the Eastern
Tropical North Pacific. Extensive horizontal gene transfer of nod genes between microbial
genomes is evident from the lack of conservation of gene neighborhood and patchy
phylogeny (12), which may be mediated by viral infection (24). We found that the most
transcriptionally active nod genes in the ETNP upper ODZ belong to
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the novel Alphaproteobacteria order UBA11136. Alpha-type nod transcript abundances

(~200 RPKM) are similar to those of dissimilatory nitrate reductase (narG) in the ODZ (35).
The nod-transcribing Alphaproteobacteria are also transcribing genes for formaldehyde
oxidation, likely as a source of electrons to the respiratory chain via NAD reduction by
formate dehydrogenase. Sulfide may be used as a supplemental electron donor and/or may
be concomitantly oxidized for detoxification (36, 37).

Our discovery of a putative porin—cytochrome complex (ptd operon) in marine bacteria
was unexpected. Porin—cytochrome complexes have been best studied for their role in
extracellular electron transport, particularly for respiratory metal reduction and oxidation
(32, 33). It is conceivable that the Ptd complex is involved in iron reduction in ODZs; there is
iron reduction at the secondary nitrite maximum and it is hypothesized to be bacterially
mediated, but the microbes involved have yet to be determined (38, 39). Alternatively, the
presence of ptdABCDEFG genes in numerous nitrite-oxidizing bacteria (Nitrospirales) could
imply the involvement of these genes in nitrogen cycling; PtdA was in the same COG family
as formate-dependent nitrite reductase (40), and PtdC is similar to a flavohemoprotein with
predicted nitric oxide dioxygenase activity, also annotated as hydroxylamine oxidoreductase-
linked cytochrome. The function of PtdABCDEFG remains completely unknown and requires
future biochemical characterization.

On the other end of the electron transport chain, high transcription of a heme/copper
terminal oxidase suggests that 02 is being used as the terminal electron acceptor in nod-
transcribing Alphaproteobacteria MAGs. The transcribed heme/copper oxidase is Al-type
(low 02 affinity), also present in mitochondria, and adapted for high O2 concentrations. Low
02 affinity A1-type heme/copper oxidases are transcribed in other anoxic environments (41).
Because ODZs have extremely low concentrations of O2 below the oxycline, O2 for aerobic
respiration may be generated in situ and rapidly consumed. Given that the function of Nod
is proposed to be dismutation of two NO molecules into N2 and 02 (8), it is possible that the
02 source for aerobic respiration in the UBA11136 MAGs is NO dismutation, although other
sources of 02 (e.g., in situ photosynthesis, mixing) in anoxic waters are also conceivable (42).
The physiological uses of Gamma-type and Planctomycetia-type Nod may be different from
Alpha-type Nod, although this remains to be investigated.

The source of NO, the presumed substrate for Nod, may be generated in the same
organism using Nod or generated by a different organism (or chemical pathway). Nitric oxide
was positively correlated with nitrite in the ETSP ODZ and was only detectable when 02 was
<1-2 uM (43). In the ETNP ODZ, NO concentration and turnover rates were elevated at 02 <
100 uM (44). Both studies suggest that the NO in ODZs likely originates from nitrification or
nitrifier denitrification, while genomic analyses indicate that the copper-containing nitrite
reductase (nirK) in SAR11 bacteria (presumably performing denitrification) may be a key
source of NO (12). Because most ODZ denitrifiers specialize in only one of the three steps
(NO2" reduction, NO reduction, and N20 reduction) (45) and known nitrite reductases were
not identified in our MAGs, existing data indicate that the NO that is used as a substrate for
alphaproteobacterial Nod is not generated in vivo. (Only 4 out of 32 nod-containing MAGs
contained a nitrite reductase gene: two Gammaproteobacteria MAGs contained nirK, one
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Myxococcota MAG contained nirS, and one Scalindua MAG contained nirS). It is also possible

that another uncharacterized enzyme produces NO.

This study suggests that marine Alphaproteobacteria from order UBA11136 are actively
reducing NO under anoxia, as implied by their abundant transcription of nod genes. Although
there is strong evidence that the substrate for Nod in ODZs is NO based on its abundance,
the products of this enzyme (N20 vs N2+02) remain uncertain. Nod is theorized to
disproportionate NO into N2 and O2 in methane-oxidizing Methylomirabilota bacteria (8, 9),
but no biochemical characterizations of Nod have been published to date, and foraminifera
expressing Nod produce N20 (16). The apparent lack of other denitrification genes in nod-
transcribing Alphaproteobacteria is consistent with the observation that denitrification in
ODZs is largely divided into distinct microbial taxa (12, 13, 45). For example, although nitrate
reductase (narG) genes are widely distributed amongst ODZ microbes (45), SAR11 bacteria
appear to dominate in narG transcriptional activity (35). Our finding that the transcription of
nod is catalyzed primarily by marine Alphaproteobacteria implies that this taxon contributes
significantly to marine nitrogen loss.

MATERIALS AND METHODS

Nod phylogeny and gene neighborhood

Amino acid sequences of highly transcribed nod genes “ETNP 2014 Stn10 150m” and “ETNP
2013 Stn6 300m” were acquired from the authors of Padilla et al. (11) (see Table S2 for
sequences). These sequences were used for BLASTP searches of ODZ metagenomes in the
JGI IMG/MER database and the NCBI nonredundant protein (nr) database. Sequences (n =
53, 731 gap-free sites) were aligned using the MAFFT online server with the L-INS-i method
(46). A phylogeny was generated with 1,000 bootstraps using model LG+I+G4 with W-IQ-Tree
(47). The phylogeny was visualized using FigTree v.1.4.4, and the fasta file (Nod_alignment)
is available as a supplemental data set. Gene neighborhoods were generated using the EFI
Gene Neighborhood Tool (48) with single sequence BLAST of the UniProt database using the
amino acid sequence Ga0066848_100037855 (JGI IMG/ MER) as the Nod query with an e-
value cutoff of 10 and with 10 genes upstream and downstream the gene of interest.

Transcription of nod genes in ETNP ODZ depth profiles

Magic Basic Local Alignment Search Tool (49) was used to search ETNP ODZ
metatranscriptomes (PRINA727903; Mattes et al. [25]) using representative nucleotide
sequences for Planctomycetia-like (Ga0066826_100064333 [JGI IMG/MER]), Gamma-like
(PBRC01000062.1:19833-22205 [NCBI]), and Alpha-like (Ga0066848_100037855 [JGI IMG/
MER]) nod genes. Default parameters were used except for the score threshold (18). Read
hits were normalized to reads per kilobase million (RPKM).

Metagenomic binning

Binning of metagenome-assembled genomes (MAGs) was performed using the KBase
platform (50). ETNP ODZ metagenomes were collected in 2013 and sequenced by Joint
Genome Institute (JGI) using an lllumina HiSeq 2500 as described in Ruiz-Perez et al. (18).
Assemblies for the ETNP ODZ metagenomes (18) containing
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Alpha-type nod genes (ETNP201310SV72 [GOLD Analysis Project ID Ga0066848; stn10 300m]
and ETNP201306SV43 [GOLD Analysis Project ID Ga0066829; stn6 300m]) were imported
from JGI IMG/MER into KBase. Metagenomic assemblies were binned into MAGs using
MaxBin2 v2.2.4 (51). The two MAGs containing nod genes (MAG ETNP2013_S10_300m_22
from ETNP201310SV72, and ETNP2013_S06_300m_15 from ETNP2013065V43) were
selected for further analysis. Average nucleotide identity was calculated using FastANI (52).
MAG taxonomy and genome quality were evaluated by GTDB-Tk v2.3.2 (53). MAGs were
annotated with RASTtk v1.073 (54). Metagenomic reads were mapped to MAGs using
Bowtie2 (55).

Alphaproteobacterial NuoL phylogeny

Alphaproteobacterial NADH ubiquinone oxidoreductase subunit L (NuolL) and mitochondrial
ND5 marker proteins (n = 320) were aligned as in Cevallos and Degli Esposti (28), with
additional representation of order UBA11136. A maximum likelihood phylogeny with 1000
bootstraps was constructed in I1Q-tree (56) using the LG+F model with ultrafast bootstrap
(57). Taxonomic names and clades are from Cevallos and Degli Esposti (28) and GTDB Release
08-RS214. The fasta file (Nuol_alignment) is available as a supplemental data set.
Alphaproteobacteria MAGs containing nod genes (Table S2) were classified as belonging to
order UBA11136 using GTDB-Tk v2.3.2 (53).

Mapping transcripts to metagenomic bins

Metatranscriptomic mapping to MAGs was performed using the KBase platform (50). RNA-
seq data (25) were imported from the depth with the highest nod transcription, the
secondary nitrite maximum (126 m, NCBI run SRR14460584), and aligned to MAGs using the
Bowtie2 (55) app in KBase. The Cufflinks v.2.2.1 (58) app in KBase was then used to assemble
the aligned RNA-seq data into a set of transcripts and to calculate the relative abundances
of the transcripts expressed in fragments per kilobase per million fragments mapped (FPKM).

Cellular localization and heme numbers

Cellular locations of Ptd proteins were predicted using PSORTb v.3.0.3 analysis (59). Numbers
of heme-binding motifs per protein were identified by counting CXXCH sequences. Ptd gene
neighborhoods were generated using the EFlI Gene Neighborhood Tool (48) with single
sequence BLAST of the UniProt database using the amino acid sequence
Ga0066848_100031354 (JGI IMG/MER) as the PtdA query with an e-value cutoff of 10-5 and
with 10 genes upstream and downstream the gene of interest.
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