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Jia Yan™, Member, IEEE, Qin Lu™, Member, IEEE, and Georgios B. Giannakis™, Life Fellow, IEEE

Abstract— Recent years have witnessed the emergence of
mobile edge computing (MEC), on the premise of a cost-
effective enhancement in the computational ability of hardware-
constrained wireless devices (WDs) comprising the Internet
of Things (IoT). In a general multi-server multi-user MEC
system, each WD has a computational task to execute and
has to select binary (off)loading decisions, along with the
analog-amplitude resource allocation variables in an online
manner, with the goal of minimizing the overall energy-delay
cost (EDC) with dynamic system states. While past works
typically rely on the explicit expression of the EDC function,
the present contribution considers a practical setting, where
in lieu of system state information, the EDC function is not
available in analytical form, and instead only the function
values at queried points are revealed. Towards tackling such
a challenging online combinatorial problem with only bandit
information, novel Bayesian optimization (BO) based approaches
are put forth by leveraging the multi-armed bandit (MAB)
framework. Per time slot, the discrete offloading decisions are
first obtained via the MAB method, and the analog resource
allocation variables are subsequently optimized using the BO
selection rule. By exploiting both temporal and contextual
information, two novel BO approaches, termed time-varying BO
and contextual time-varying BO, are developed. Numerical tests
validate the merits of the proposed BO approaches compared
with contemporary benchmarks under different MEC network
sizes.
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I. INTRODUCTION

HE era of massive connectivity is brought into being

by the Internet of Things (IoT), where tens of billions
of wireless devices (WDs) are ubiquitously connected to the
Internet through cellular networks. Constrained by limited bat-
teries and low-power on-chip computing units, the WDs face
challenges to support latency-sensitive applications in the cur-
rent IoT paradigms such as autonomous driving, online gaming
and virtual reality. To meet the intensive computation demands
far beyond the WDs’ capacities, mobile edge computing
(MEC) has emerged as a promising technology by releasing
and distributing computing resources to the edge servers within
the radio access networks to facilitate real-time services.
Capitalizing on the MEC architecture, WDs in the IoT are
able to carry out high-performance computation by offloading
tasks to the servers located at the network edge [2]. Compared
with traditional mobile cloud computing, the MEC no longer
suffers from high overhead and long backhaul latency.

Due to the time-varying wireless channel conditions and the
heterogeneity in both the WDs and edge servers, judiciously
offloading computations can offer significant performance
enhancement. In general, MEC has two computation offload-
ing models, referred to as binary and partial offloading [2].
Binary offloading requires each task to be either executed
locally or offloaded to the edge server as a whole [3].
On the other hand, a task under partial offloading model is
allowed to be partitioned and computed both locally and at
the edge server [4], [5]. In this work, we focus on binary
computation task offloading, which is commonly used in IoT
to process indivisible simple tasks such as face recognition
and temperature monitoring in smart home [2]. Prior works on
offloading computations typically focus on offline algorithms
by adopting either convex [3], [4] or non-convex (e.g., convex
relaxation [6] and heuristic local search [7], [8]) optimization
methods, which assume that the system states are known
a priori, even though such knowledge is challenging to acquire
beforehand.

With unknown system dynamics, online computational task
offloading approaches have been extensively investigated.
Building on the assumption of stationarity, a class of
online algorithms rely on stochastic optimization methods
such as Lyapunov optimization to determine the task

1536-1276 © 2023 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See https://www.ieee.org/publications/rights/index.html for more information.

Authorized licensed use limited to: University of Minnesota. Downloaded on June 30,2024 at 15:45:22 UTC from IEEE Xplore. Restrictions apply.


https://orcid.org/0000-0002-1233-1507
https://orcid.org/0000-0002-4051-1396
https://orcid.org/0000-0002-0196-0260

3426

offloading decisions within each time slot without future
information [9], [10], [11]. Nevertheless, the nonstationarity
introduced by the human participation in IoT makes
the stochastic optimization impractical. Targeting at the
nonstationary system dynamics, existing works focus on the
online convex optimization (OCO) algorithms [12], [13], [14],
where the sequence of convex task offloading costs changes in
an unknown and possibly adversarial manner. Yet, the OCO
approaches necessitate the availability of explicit cost function
forms or their gradients.

In practice though, the unpredictable WD preferences (e.g.,
service latency, reliability or privacy) render it prohibitive
to model the objective function analytically in dynamic
IoT environment. In fact, the IoT controller can only have
available objective function values at queried points. In this
context, the OCO has been extended to the bandit setting
by leveraging only point-wise values of objective functions
for the gradient estimations, which is referred to as bandit
convex optimization (BCO) [15], [16], [17]. Tailored for
partial task offloading strategies among multiple edge servers,
BCO with both time-varying costs and constraints was studied
n [18]. On the other hand, aiming at binary computational
offloading strategies with such a bandit feedback, multi-armed
bandit (MAB) based methods have been popular in MEC
systems [19], [20], [21], [22]. An online combinatorial bandit
upper confidence bound algorithm was proposed in [19] for
the task scheduling to asymptotically minimize the computing
delay. The security-aware server selection strategies based on
MAB were reported in [20]. The MAB-based task offloading
approach was further adapted to the vehicular edge computing
systems in [21].

Although achieving promising results, the aforementioned
BCO or MAB based works deal only with either continuous
or discrete decision variables. In many practical settings
though, the analog-amplitude communication and computation
resource allocation variables (e.g., transmit power and local
computing speed) need to be jointly optimized with discrete
variables that capture offloading decisions for optimum MEC
performance. Finely discretizing the analog action space (or
relaxing the discrete task offloading decisions), renders the
existing MAB methods (or the BCO approaches) inaccurate
and computationally prohibitive. In addition, the convexity of
objective functions commonly assumed in BCO algorithms
may not hold in practice [2], [3], [6], [7], [8]. Although
dealing with arbitrary objective functions, MAB methods
require to explore every single arm at least once to accumulate
sufficient statistics, which may incur sudden performance
drops and slow down the learning processes for large MEC
networks [19], [20], [21], [22].

Alleviating these limitations, we advocate a novel approach
based on Bayesian optimization (BO) [23]. BO is a
promising methodology for black-box derivative-free (i.e.,
only function value observations at queried points are available
without derivative information) global optimization with well-
documented merits, including sample efficiency, uncertainty
quantification, and safe exploration [23], [24]. The key idea
of BO is to build a Bayesian surrogate model (typically,
the Gaussian process [25], [26], [27], [28]) for the black-
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box objective function, guided by which an acquisition
function is designed to decide the next function evaluation
point. Apart from the applications such as hyperparameter
tuning in machine learning [29], drug discovery [30], and
robotics [31], BO has been applied to several problems in
the context of wireless networks, including radio resource
allocation [32], coverage and capacity optimization in cellular
networks [33], as well as beam alignment in mmWave
MIMO systems [34]. Very recently, targeting video analysis in
MEC, a BO-based approach is put forth for edge server and
frame resolution selection in [35], where the case of analog-
amplitude communication and computation resource allocation
is not accounted for.

The existing BO-based approaches to resource allocation
for MEC focus on optimizing black-box objective functions
with either continuous (e.g., transmit power [32], [33] and
beam alignment [34]) or integer (e.g., frame resolution [35])
variables. The present work, on the other hand, deals with the
mixture of categorical and continuous variables, which poses
nontrivial challenges in kernel design of the Gaussian process
(GP) based surrogate model and acquisition rule relative
to previous works. Further, the sought objective function
here is modeled as time-varying under the unknown system
state dynamics (e.g., wireless channel conditions and edge
server computing speeds), what deteriorates the performance
of existing BO approaches where stale data is exploited
as equally important as fresh data. Towards addressing the
aforementioned challenges, the current work puts forth a
novel kernel that incorporates the temporal and contextual
information, and further devises the associated acquisition rule.

In a multi-server multi-user MEC, time-varying system
state information, including wireless channel conditions, edge
server computing speeds, task workloads, and input data
sizes, has significant impact on task offloading and resource
allocation decisions. For example, a WD with larger task
workload at current time slot may prefer edge computing,
rather than local execution, so as to leverage higher computing
speed at edge servers. Also, the WD may choose the edge
server with best channel condition to offload its task with small
transmit power for energy saving. Therefore, exploiting such
temporal and contextual information (i.e., partially observed
system state) will intuitively yield enhanced performance
than the vanilla BO approach for MEC systems with bandit
feedback.

Relative to the aforementioned existing works, the present
work is the first attempt to develop novel BO-based approaches
for the joint optimization of discrete task offloading decisions
and analog-amplitude resource allocation strategies in time-
varying multi-server multi-user MEC systems with bandit
feedback. Specifically, our main contributions are summarized
as follows.

1) Building on the BO framework for online bandit
optimization of categorical and continuous decision
variables, a GP-based surrogate model is adopted for
the sought objective function with novel kernel design.
The resultant kernel function not only leverages a
weighted combination of sum and product compositions
of individual kernels over categorical and continuous
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variables in order to allow for more expressive coupling,
but also capitalizes on a temporal kernel to account for
unknown dynamics in the black-box function.

2) With the GP-based surrogate model, an innovative acqui-
sition rule is developed in the time-varying BO scheme
to select new optimization variables per iteration.
Specifically, given the categorical offloading decisions
obtained by the MAB-based method, the analog-
amplitude resource allocation variables are determined
using the conventional BO-based selection rule.

3) Under the scenario where each WD reveals its task
characterization variables (task computational workload
and input data size) at the beginning of each time slot,
a generalized contextual time-varying BO scheme is
further devised by incorporating the contextual kernel
in the GP surrogate model.

4) Numerical simulations under various MEC network
sizes demonstrate that our proposed BO approaches
benefit from both temporal and contextual information,
and exhibit superior performance compared with

traditional BO and other representative benchmarks.
The rest of the paper is organized as follows. The system

model and problem formulation are presented in Sec. II,
following which a novel time-varying BO algorithm for online
joint optimization of task offloading and resource allocation
under bandit setting is proposed in Sec. III. Further leveraging
observed state information, Sec. IV develops the contextual
time-varying BO approach for dynamic MEC management.
In Sec. V, the performance of the proposed BO methods is
evaluated on synthetic tests. Finally, concluding remarks are
made in Sec. VI.

Notation: ()7 and (-)~! denote transpose and matrix
inverse, respectively, and ||x|| stands for the l3-norm of a
vector x. Besides, 0;, 1; and I, denote the ¢ x 1 all-zero
vector, the ¢ x 1 all-one vector and the ¢ x ¢ identity matrix,
respectively. Inequalities for vector x > 0 are entry-wise.
I(z = a’) denotes the indicator function taking the value
of 1if x = 2/, and 0 otherwise. N'(x; u, K) stands for the
probability density function (pdf) of a Gaussian random vector
x with mean @ and covariance K.

II. SYSTEM MODEL AND PROBLEM FORMULATION

Consider a MEC system with M WDs, and IV base stations
(BSs). Each BS n € N := {1,...,N} is the gateway of
edge servers to provide MEC services to the power-limited
WDs indexed by m € M = {1,...,M}. Per slot t €
7 = {1,...,T}, the m-th WD has a computational task
characterized by the pair (I7", L}*), where I]™ denotes the
size of input data in bits, and L}" represents the workload
in terms of the total number of CPU cycles to execute
the aforementioned task. This WD could either execute its
task locally or offload it to one of the BSs, a choice that
is henceforth captured by the categorical variable cj* €
{0,1,..., N}. Specifically, ¢;* = 0 indexes local computing,
and ¢* = n,n € N, stands for offloading task to BS n, i.e.,

YmeM,neN,teT.
(D

oo 0, local computing
t 7\ n, offloading task to BS n
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Fig. 1. The considered mobile edge computing (MEC) system with M
wireless devices (WDs) and N base stations (BSs).

For both scenarios, the computational overhead per task
consists of the execution delay and energy consumption, which
will be elaborated as follows.

A. Local Computing

If WD m chooses to execute its task locally (i.e., c¢i* = 0)
per slot ¢, it has to select the local CPU frequency f;", based
on which the task computing time is given by

L
= - 2)
S
and the corresponding energy consumption is
e = &L (fi")° (3)

where ¢ denotes the effective switched capacitance parame-
ter [2].

B. Edge Computing

If WD m alternatively goes for edge computing at BS n
per slot ¢, that is, ¢j* = n, it must first offload the task
using transmit power p;*. Suppose that the wireless channel
coefficient between WD m and BS n for task offloading
is h;"", and the receiver is corrupted by additive white
Gaussian noise (AWGN) with mean zero and variance o2.
Here, the wireless channel is assumed to be invariant within
each slot and may change across different slots. Then, the
uplink transmission data rate for the sought offloading task is

m|,MM,1|2

by ‘htz | ) (4)
o

where W is the identical bandwidth of the dedicated spectral

resource block allocated to each WD. Accordingly, the

offloading transmission time is

R™" = Wlog,(1 +

smo [(c}" =n)I} (5)

u,t m,n
Ry
and the transmission energy consumption of WD m is

Eum,t = p;nﬂ?]}r 6)

For edge computing at BS n, the total computation
resource per slot ¢ is signified by the CPU frequency f,.
Upon receiving all the offloaded tasks, the edge server
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generates multiple virtual machines (VMs) to execute the
tasks in parallel, and equally partitions f;"; to yield f,/(1+
2 omieM/m I(c]* = n)) per task. The edge execution time for
WD m’s task is thus

N ’
L1+ cpmym Left =mn))
Ty = ZH(CT =n) = n/ . (D
n=1 ¢t
It is worth mentioning that the time delay for downloading
the task output from the BS to the WD is ignored given the
relatively small output data size and strong downlink transmit

power of the BS.

C. Problem Formulation

Accounting for both local and edge computing, the total
time delay for executing the task at WD m per slot ¢ is given
by

D" =1(ci" = 0)7y + 1(ci" # 0) (7% + 72%)- (8)

Here, D}* is equal to the local execution time T{E if WD m
chooses local computing (i.e., c¢;* = 0). Otherwise, D" in (8)
equals the sum of offloading transmission time 7", and the
edge computing time 7.7;.
Similarly, the energy consumption of WD m per slot ¢ is
given by
E" =1(c;" = 0)e)y + (e} # 0)eyy 9)

which is €} for local computing (¢i* = 0) and €}, otherwise.

Taking a weighted sum of task execution time delay Dj" and
energy consumption Ej" yields the energy-delay cost (EDC)
per WD m as

where [4,3. are positive scalars that balance these two
costs. For notational brevity, collect the optimization variables
inc, == [cf,....,c™]T, py == [p},...,pM]T, and £, =
[ft, ..., fM]T. The objective is to choose online (at the
beginning of each slot t) the categorical task offloading
decisions (i.e., ¢;) and analog-amplitude resource allocation
strategies (i.e., p¢, f;) minimizing the accumulated EDC across
all WDs, that is

T M
(P1 min EDCT (], £, o),
) {ct,pe fi}e ;mZ:l K (t ft pt)
st. ¢t €{0,1,2,...,N},

O<p;n SPpeaka
O<f?1§fpeak7 vmeM,tET

where fpeqr and Ppeq are the peak local CPU frequency
and transmit power of the WDs, respectively. By further
introducing x; := [p/,f,']"T and the reward function
or(ce,x¢) = —Zﬁle EDC/™ at slot ¢, (P1) can be
equivalently expressed as

(P2)

max

T
C 7X )
(er)e tz_; <Pt( t t)

st. ¢ €{0,1,2,..., N},
0 <xt < Xpeak, VE €T
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where Xpeak = [Ppeakl)s, fpeaklys] ", and 1y is the M-
dimensional all-one column vector.

A major challenge facing (P2) (equivalently (P1)) is that
the wireless channels {h;""}, the edge computing capacities
{fZ}, the computational task characterization {I;",L}"}
are not available; thus, the explicit form of the time-
varying EDC function is unknown when making the task
offloading and resource allocation decisions {c;,x;} per slot.
After performing {c;,x;}, only noisy EDC function value
(equivalently the realization of ¢;(c¢, X)) at that queried point
can be acquired at the end of slot ¢. The difficulty of such
a bandit setup is further exacerbated by its combinatorial
nature that calls for the joint optimization of the categorical c;
and continuous x;. To tackle this bandit mix-integer program,
novel BO-based approaches will be pursued in the following
sections.

III. TIME-VARYING BO FOR DYNAMIC MEC
MANAGEMENT

BO has well-documented merits in optimizing black-box
functions that arise in several settings [23]. To account for
the temporal variation arising from unknown system dynamics
(e.g., changing channel conditions and computing capacities of
the edge servers), the slot index ¢ is augmented as an additional
input of the sought black-box function, i.e., ©(cs, Xy, t) :=
i(ct,x¢). In short, BO seeks to maximize the black-box
©(z;) with z; = [c;/,x/,t]T by sequentially acquiring
function observations using a surrogate model. Collect all the
acquired data up to slot ¢ in D; := {(z,,y,)}L_, with y,
denoting the possibly noisy observation of ¢(z,). Each BO
iteration consists of i) obtaining the function posterior pdf
p(¢(z)|D;) based on the chosen surrogate model using Dy;
and, ii) selecting z;y; to evaluate at the beginning of slot
t + 1, whose observation y;; will be acquired at the end of
slot t + 1. In the following, we will introduce the GP-based
surrogate model and the acquisition rule for z;, , respectively.

A. GP-Based Surrogate Model for Time-Varying Function ¢
and Kernel Design

As an established Bayesian nonparametric approach, the GP
can learn black-box functions with quantifiable uncertainty and
sample efficiency, making it suitable for surrogate modeling
in BO. Specifically, given data D,, the goal is to learn the
function ¢(-) that links the input z, with the scalar output
yr as z, — ¢(z;) — y,. Towards this, a GP prior is
assumed on the unknown ¢ as ¢ ~ GP(0,k(z,z')), where
k(+,+) is a kernel (covariance) function measuring pairwise
similarity of any two inputs. Then, the joint prior pdf of any
t function evaluations ¢, := [¢(2z1),...,(z:)] at inputs
Z; = [z1,...,24)" is jointly Gaussian distributed as [25]

p(pi|Ze) = N(py; 00, Ky), Vi (11

where K; is a t x t covariance matrix with (7,7’)-th entry
[K¢]rr = cov(e(z,), p(2z,/)) := k(zr,2,). The estimation
of ¢ relies on the observed outputs y; := [y1,...,u:]"
that are linked with ¢, through the Gaussian conditional
likelihood p(y:|p,, Z:) = N(y+; ., 021;), where o2 is the
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noise variance. Along with the GP prior in (11), one can
readily obtain the function posterior pdf p(¢(z)|D;) via Bayes’
rule as

pl¢(2)| D) = N(p(2); pi(2), 07 (2))

where its mean and variance have the following closed-form
expressions

pe(z) =k, (2)(K¢ +021) "y
o7 (z) = k(z,2) — k/ (2) (K¢ + 021) "'k (2)

(12)

13)
(14)

where ki(z) := [r(z1,2),...,k(z¢2)]". Notice that
the posterior mean pu;(z) is a weighted average of the
observed function values y,;, with the weights determined
by evaluations of the kernel function at the input values.
Besides, the posterior variance o7(z) is equal to the prior
covariance k(z,z) minus the term corresponding to the
variance reduction by observing y;.

Clearly, the performance of this GP predictor (13)-(14)
highly hinges on the design of the kernel function k(-,-)
over the input space. Accounting for both the continuous
x, for resource allocation and the categorical c, for task
offloading in the function input z., as well as temporal
variations across slots, three separate kernels are considered,
which are k. (x,,x,/) over continuous inputs, k.(c, c,/) over
categorical inputs, and the temporal kernel Kiemy (7, 77).

Various kernel functions are available for continuous inputs;
see [25]. A popular choice is the class of Matérn 5ernels
2!~ \/%”XT — X
L'(v) l

x B, <@”XT - XT'”) (15)

kM (%, %x.0) =

l

with parameter v > 0 controlling the smoothness of the
learning function. The smaller v is, the less smooth the sought
function is assumed to be. In (15), [ is the characteristic
lengthscale, B, is a modified Bessel function, and I' is the
gamma function. Specifically, as v — oo, the kernel (15)
boils down to the well-known radial basis function (RBF)
kBB (x, x.1) = aexp(—%), where the pairwise
similarity grows exponentially as a function of the squared

distance between any two continuous inputs.
As for categorical variables, we follow [36] to adopt the

kernel function k.(c,,c,/) as

M
Ke(CryCrr) = % Z I =) (16)
m=1
where w is the categorical kernel variance. Note that the
categorical kernel defined in (16) is a special case of the RBF
kernel with & = 1 and [ — 0. To allow for a richer set of
couplings between the continuous and categorical domains,
a mixture of the sum and product compositions of the two
kernels ~; and . is proposed for the kernel function ;.
over continuous and categorical variables [36], i.e.,

”m,C([XIv CTT]Ta [
=(1=N)[Kc(cr, crr) +ha(xr, x7)]

+ )\ﬁc(c‘m Crr )Ha: (X77 X‘r’)

x7,¢]")

A7)
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where A € [0,1] weighs the contributions from the sum and
product compositions of k. and k,. When A = 0, only the
sum composition exists in (17), leading to independence of
the black-box function ¢ over the continuous and categorical
domains with limited expressiveness. On the other hand, the
pure product composition with A = 1 will take the value
of O if there is no pairwise overlap between two categorical
variables ¢, and c,/, that is, k.(c;,c.) = 0 according
to (16), thus preventing the GP model from learning. Towards
overcoming the aforementioned two limitations, one can
leverage a weighted combination of the sum and product
components with 0 < A < 1 in (17).

To further capture the temporal variation of the black-box
function ¢ due to the unknown system dynamics, the following
temporal kernel function ke (7, 7') is adopted based on [37]

lr—r'|

Kemp(T,7') = (1= p) "2

(18)

where p € [0,1] is the hyperparameter that controls the
level of temporal dynamics in the learning function . The
larger the value of p, the more frequently ¢ varies over time.
In particular, when p = 0, Kiemp(7,7") = 1 for any (7,7'),
thus inducing no dynamics in .

Henceforth, applying the product composition of . (17)
and Kgemp (18) yields the overall kernel function given by

K:(ZTa ZT/) = "ftemp(7—7 T/)fo,c([x-—rra CI]Ta [X;—r/v C;—r’}T)'

19)
It can be observed that the temporal kernel imposes a scaling
factor on x; . based on the time separation of any pair of
inputs. This agrees well with intuition that inputs that are well
separated in time (i.e., large |7 — 7'|) yield less correlated
function values for p # 0.
Remark 1 (Learning the GP Hyperparameters): The

GP hyperparameters, collected in 6 that consists of the
characteristic length-scale [, categorical kernel variance w,
and the noise variance o2, are optimized by maximizing the

log marginal likelihood [25]

£(8) = log ply:|Z:) = log ( [ e zt>p<sot|zt>dsot)
1
= *iytT(KtJrUgIt)*l}’t

- %log K401, — %log 21 (20)
where the first term involving the observations represents the
data-fit; the second term indicates the complexity penalty; and,
the last term is a normalization constant. Accordingly, the
gradient of the £(0) with respect to the hyperparameters 6
is given by

oL(0 1 LK+ _
% =5y (Ki+ooL) 1%(Kt+031t) 'y
1 0Ky + 020
—Su ((Kt+o—31t> 1W) 1)

based on which the gradient-based optimizer is adopted to
learn 6 every d time slots.
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B. Acquisition for z,y; Based on GP Surrogate Model

Having available GP-based posterior function model (12)
with the form of kernel function specified by (19) at
slot ¢, one is ready to select the next decisions z:;.
Coping with both categorical and continuous variables, this
is certainly a nontrivial task, but can fortunately be handled
by relying on the MAB framework. Since the cardinality of
the categorical variables is exponential with respect to the
number M of WDs, a scalable multi-agent MAB approach
will be leveraged with each WD m acting as an agent
simultaneously and independently determining its local task
offloading decision ¢}* € {0,1,..., N}. As the overall reward
function in the resultant MAB framework does not follow
any statistical distribution, it is more sensible to rely on
the adversarial MAB framework and adopt as the action
selection rule the well-known exponential-weight algorithm
for exploration and exploitation (EXP3) [38]. Per slot ¢,
EXP3 maintains an unnormalized weight vector wi* :=
[wm™(0), w(1),...,wm™(N)]T for each WD m to guide the
selection of its action. Next, we will delineate how each
acquisition step of the time-varying BO selects categorical
c;+1 and continuous x,,; with the help of EXP3.

1) Acquisition for Categorical Task Offloading Decisions:
Given w{" from the end of slot ¢, each agent m in EXP3 draws
its action c;’y; randomly according to the probability vector
a" = [ (0), g (1), .., qi"(N)] T with [38]

: w;" (k) gl
g (k) =(1—~ i Vke{0.1,. .. N

(22)

where v € (0, 1] is the coefficient that balances exploitation
given by the normalized weight in the first factor and
exploration from the uniform probability in the second term.
Specifically, by including the uniform distribution, EXP3
allows all N + 1 decisions to be explored per agent (WD)
so as to get good reward estimates.

2) Acquisition for Analog-Amplitude Resource Allocation
Decisions: With the categorical task offloading decisions c;4 1
at hand, the analog-amplitude resource allocation decisions
x¢+1 are selected by finding the maximizer of the celebrated
upper confidence bound (UCB)-based acquisition function
as [39]

Xep1= argmax Ust1(x|Ds, Cep1,t + 1)
0<x§xpeak'
=i (X, Cpp1, b+ D/ G107 (X, €41, 1)
(23)

where the coefficient (;4; > 0 nicely balances the exploitation
and exploration that are signified by the posterior mean
¢ (13) and variance o? (14), respectively. With closed-form
expressions of y; and o7 at hand, one can readily solve (23)
via off-the-shelf gradient-based solvers.

3) Weight Update in EXP3: Upon deploying (ci41,X¢+1)
into the MEC system to yield the observed reward ;i
EXP3 capitalizes on the importance sampling rule to obtain
an unbiased estimate of the reward value as

~m

I(c™ . =k
@t-}-l(k) = Yrit (Ct+1 )7Vk € {Oa 17 .

., N},meM
(k) )

(24)

IEEE TRANSACTIONS ON WIRELESS COMMUNICATIONS, VOL. 23, NO. 4, APRIL 2024

based on which the corresponding weight is updated using the
exponential rule as

w (k) = w™ (k) exp (W)

t+1
ek
_ (k) exp (72&‘101 ( >) |

Vk € {0,1,...,N},m € M. (25)

It is evident that wj},(k) summarizes the cumulative
rewards up to slot ¢ + 1 for action k under WD m, and
thus represents the effect of exploitation in (22). Relying on
the multi-agent MAB framework with the EXP3 to select
the categorical variables, a preliminary regret bound of the

proposed BO approach is given by the following lemma.

min {1, % } and
having the kernel function satisfy some regularity conditions,
the cumulative regret of the BO-based approach is upper

bounded by
R(T) < O(M+/T(N +1)In(N + 1)).

Lemma I: Selecting v =

(26)

Proof: For a single agent m, the cumulative regret
R (T) when the categorical decisions of all the other agents
are fixed to ¢\, is given by

R (T)
T T
=su max ¢ C\m)—E ey
p{{ ,,,,, ) [ St %}

27)

where ¢y, is the best single action over all time slots.
According to [ [38], Theorem 3.1], for the bounded reward

(N+1) 1n(N+1)} in

@t < 1,Vt and parameter v = min {1, DT

EXP3, we have
Ron(T) < sup {2.63\/T(N 1) In(N + 1)}
C\m,

<2.63y/T(N +1)In(N +1).

(28)

Then, the cumulative regret of the multi-agent EXP3 approach
has the bound

M
R(T) = > Rn(T) < 2.63M+/T(N + 1) In(N +1).

(29)
Such cumulative regret is sub-linear as
. R(T)
Jfim S =0 e
]

The sublinear cumulative regret bound in Lemma 1 dictates
the convergence of the proposed BO approach.

The pseudo-code of the overall time-varying BO approach
is summarized in Algorithm 1.

The main computational complexity of the proposed BO
approach comes from updating the GP-based surrogate model
using the acquired data D; (cf. (13)-(14)), and is of order
O(|Dy|?) with |Dy| denoting the cardinality of D;. In the
BO context, |D;| is usually pretty small (a few hundred),

Authorized licensed use limited to: University of Minnesota. Downloaded on June 30,2024 at 15:45:22 UTC from IEEE Xplore. Restrictions apply.



YAN et al.: BAYESIAN OPTIMIZATION FOR ONLINE MANAGEMENT IN DYNAMIC MOBILE EDGE COMPUTING

Algorithm 1 Time-Varying BO for Dynamic MEC Manage-
ment
1: Imitialization: Dy, wi*(k) = 1,Vk € {0,1,..
M;
2. fort=0:7T—-1do
3 ift mod § =1 then

L N}me

4 Learn GP hyperparameters 6 via multi-started
gradient descent using (21);
5:  end if

Calculate the posterior mean ju; and variance o7

according to (13)-(14) given Dy;

7. Compute the action distribution qj*,vm € M
according to (22);

8: Draw the discrete task offloading decision c}’\4
randomly according to q}*,Vm € M;

9:  Acquire the analog-amplitude resource allocation deci-
sions x;41 by solving (23);

10:  Deploy decisions z¢41 := [¢), 1, %/, 1,¢t+ 1] to MEC
system to observe y;41;

11:  Dyy1 = Dy U {(Ze41,y¢41)} and update wyiy, (k)
via (25), Vk € {0,1,...,N},m € M;

12: end for

thus rendering the computational complexity of no concern.
Even in cases when |D;| is rather large, one can rely on a
replay memory [40] to store the C' most recent data samples,
reducing the complexity to O(C?) per slot. Alternatively, one
can effect scalability via the scalable GP approaches, of which
the two most prevalent ones are the inducing points-based
framework [41] and random feature-based paradigm [42].

IV. CONTEXTUAL TIME-VARYING BO FOR DYNAMIC
MEC MANAGEMENT

So far, we have introduced a time-varying BO approach for
dynamic MEC management under the bandit setting, where
the temporal dynamics of the black-box reward function ¢
is captured by incorporating the temporal kernel. In some
scenarios, in addition to the observed reward value, one could
have access to a subset of the system state. Here, each WD m
could report its task characterization variables (I}, L)) to the
central controller per slot . The goal of this section is then to
generalize the time-varying BO approach for more informed
decision-making by leveraging such state information, which
will also be termed as “context” hereafter.

In the resultant contextual time-varying BO approach,
the black-box reward function ¢(z;) has the augmented
input z; := [z/,s]]", where s; is the context vector
that collects the observed state information as s; :=
(I, IM L, ..., LM]T. As with the time-varying BO
approach in the previous section, the generalized counterpart
here still consists of two steps per iteration, namely, GP-based
surrogate model learning and the acquisition of new decisions.

For the former, a GP prior is postulated for ¢ as ¢ ~
GP(0,%(z,z")), where the kernel function & has to be adapted
to capture correlation from the contextual input. Inspired
by [43], R(Z,,Z./) is proposed as the product combination
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of three separate kernels given by
/_{(ZT; 27‘/) =HRs (va S'r’)'%temp(’rv TI)K:I,C([X;l——v CI}Ta[XIH C'—lr—’]—r)

(3D

where ks(s-,s,/) is the contextual kernel over the observed
context variables, and k.. and Kiemp are given by (17)
and (18). Given the GP prior and a set of input-output data
pairs D; := {(Z,,y,)}._,, the posterior pdf for the reward
function is given by (cf. (12))

p(¢(2)|Dr) = N(¢(2); fir(2), 57 (2))
where the closed-form expressions of the mean fi; and variance

o2 can be obtained similarly as in (13)-(14) by including the
context vectors in the input, i.e.,

fir(z) =k (2) (K¢ + 0oL) 'y

oi(z) = /(2,2) — k; (2)(K; + 021;) k().
Here k;(z) := [R(Z1,2),...,R(22)]" and K; is the t x ¢
covariance matrix with (7, 7')-th entry [K;], ./ := &(Z,,%./).
Similar as Remark 1 in Sec. III-A, the GP hyperparameters
@ are optimized every § slots via log marginal likelihood
maximization using (21).

As for the acquisition of task offloading and resource
allocation decisions for slot ¢ + 1, contextual time-varying
BO proceeds as in Sec. III-B by first selecting the categorical
cy+1 via the EXP3 approach based on the multi-agent MAB
framework, and then choosing the continuous x;4; using the
UCB rule. Here, the latter has to take into account the observed
context vector s;1, thus yielding x;,; given by

(32)

(33)
(34)

Xep1 = argmax Uy (X|Dy, Cry1, Seq1,t+1)
0<x§xpeak

§t+1
(35)

= [ig(X, €41, S¢41,t+1) +
X 5't2(X, Ct+1, St+1, t—|—1)

where (;;1 > 0 is the coefficient that balances exploration
and exploitation. Please refer to Algorithm 2 for the
detailed implementation of the contextual time-varying BO
approach.

V. SIMULATION RESULTS

In this section, numerical tests were conducted to evaluate
the performance of the proposed BO approaches for dynamic
MEC management. In the multi-user multi-server MEC system
with M WDs and N BSs, the time-varying wireless channel
hy"™ from WD m to BS n is modelled as Rician fading
channel

m,n / K m,n / 1 m,n
ht = mht,LOS+ Ki_i_lhtyNLOS,Vm,n,t (36)

where h}";" o denotes the deterministic line of sight (LoS)
component determined by the locations of BS n and WD
m; h'{es stands for the non-LoS component following
the independent and identically distributed (i.i.d.) standard
Gaussian distribution; and K > 0 is the Rician factor
representing the ratio of the power in the LoS component to the
power in the non-LoS component. Note that a larger K implies
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Algorithm 2 Contextual Time-Varying BO for Dynamic MEC
Management

1: Initialization: observation dataset Dy and wy'(k) =
1,Vk €{0,1,...,N},m € M;

2. fort=0:T7—-1do

3:  ift mod 6 =1 then

4: Learn GP Hyperparameters 6 via multi-started
gradient descent using (21);
5. end if

Calculate the mean fi; and variance &7 in the posterior
pdf (32) according to (33)—(34);
Observe the contextual information s;41;
Compute the action distribution q*,Vm € M
according to (22);

9: Draw the discrete task offloading decision c}’\,
randomly according to qj*,Vm € M;

10:  Acquire the analog-amplitude resource allocation deci-
sions x;41 by solving (35);

11:  Deploy decisions (c;y1,%¢+1) to the MEC system to
observe y;41;

122 Dypy = Dy U {(Ze41,4e41)} and update wy (k)
via (25), Vk € {0,1,...,N},m € M;

13: end for

milder fading effect. The total average channel gaéign follows
the free-space path loss model |h;""|? = Ad(4i;;ﬂm VPL vt
where Ay = 4.11 denotes the antenna gain, ¢ = 915 MHz is
the carrier frequency, d,, , represents the distance (measured
by meters) between WD m and BS n, and PL = 3 signifies
the pass loss exponent.

In addition, the means of time-varying edge CPU
frequencies { f{; }n.+, task computational workloads {Li" }, ¢,
and task input data sizes {I}"},,, are 26 GHz, 125 Mcycles,
and 1250 KBytes, respectively [3], [4], [7], [8]. Specifically,

the generation rules are as follows

2= (ot [24) X 10° Hz ¥n,t (37a)
L = (L4 L) x 105 Cycles Vm,t (37b)
I™ = (I +1™) x 10* Bytes Vm,t (37c¢)

where fc = ~26, ; = 125,~ I = 125, and the dynamic
components f,, Li*, and I;" are evolved based on the
following first-order Markovian processes

fol = S}L,l Z/ln = 621,1 ﬁn = @??1 (382)
f2t+1 = mf;nt + Vet i1 €fep1 ~N(0,3) (38b)
LYty = /T =nLi" + el i, ey ~N(0,3) (380)
INﬁl = \/ﬂjtm + \/ﬁe?fwla e?le ~ N(0,3) (38d)

where the process noises e";)t, e’ﬁt, and e’}?t are i.i.d., and
n € [0,1] is the parameter adjusting the level of temporal
dynamics in these system state variables. In particular, n =
0 represents the time-invariant scenario, while n = 1 indicates
the independent system dynamics across time slots [37].
Besides, the peak transmit power Ppeqr and computational
frequency fpeqr Of each WD are equal to 100 mW and 10®
Hz, respectively. To be aligned with commercial practise, the
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Fig. 2. Average regret under different temporal kernel hyperparameters p

for the time-varying BO approach.

computing efficiency coefficient £ of the WDs in (3) is chosen
as £ = 10726 [44]. We set the channel additive white Gaussian
noise power o2 = 1071 W, and the bandwidth W = 2 MHz.
The prior weights of the time delay and energy consumption
cost of the WDs in (10) are set as §; = 3. = 0.5.

For the proposed (contextual) time-varying BO approaches,
the Matérn kernel (15) with parameter v = 5/2 is adopted
for the kernel k, over continuous variables. The weight A
regarding the sum and product kernel compositions in (17) is
set to 0.5. The coefficients (; = ét = 2,Vt, in UCB-based
acquisition rules (23) and (35). Unless otherwise stated, the
other kernel hyperparameters are optimized by maximizing the
log marginal likelihood every § = 10 slots via multi-started
gradient descent. The performance measure of the competing
methods is given by the notion of regret. By denoting the
maximizer of ¢; as (c;,x}), the instantaneous regret per slot
tis

gt = SOt(CZk»X?) - @t(ctvxt)v (39)

based on which the cumulative and average regrets are denoted
as Gr 1= Zthl g: and G := G /T, respectively. It is worth
mentioning that (c},x}) are obtained by relying on explicit
cost function in (P2) with known system state information.
All the methods are run for 200 time slots and the average
performances over 100 random repetitions are reported.

A. Effect of Kernel Hyperparameters

To study the effect of temporal and contextual kernel
hyperparameters on the performance of the proposed BO
approaches, a 2-BS MEC system with M = 2 WDs is
first considered, where the distances from the WDs to BSs
are [dy,1,d1,2,d21,d22] = [20,13, 15, 18] meters, the Rician
factor in (36) used to generate the channel gain is K = 4,
and 7 in (38) is set to 0.2. Fig. 2 depicts the average regret of
time-varying BO as a function of the time slot under different
values of the temporal kernel hyperparameter p in (18). It can
be readily observed that the regret performance improves and
then deteriorates as the value of p increases. Specifically,
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Fig. 3.  Average regret under different contextual and temporal kernel
hyperparameters for the contextual time-varying BO approach.

p = 0.048 achieves the lowest average regret by best capturing
the temporal variation in the black-box objective function.

Further considering the contextual time-varying BO where
a Matérn kernel with v = 5/2 in (15) is adopted for
the contextual ks, the curves of the average regret for
various contextual and temporal kernel hyperparameters are
presented in Fig. 3, where it is evident that the best-performing
hyperparameter set is given by p = 0.02 and [ = 0.2 in the
temporal and contextual kernel, respectively. Notice that the
best-performing hyperparameter p of the temporal kernel in
the contextual time-varying BO is smaller than that in the
time-varying BO. To put it equivalently, the temporal kernel
in the latter captures more dynamics in the objective function
than that in the former. This phenomenon can be explained by
that the observed contextual state information including time-
varying task computational workload L}* and input data size
Ii™ accounts for a portion of the overall dynamics, yielding
lower degree of dynamics to be represented by the temporal
kernel in the contextual time-varying BO.

B. Performance Comparison

For performance comparison, four existing schemes are
employed as baselines, namely, the MAB [38], bandit convex
optimization (BCO) [15], the conventional time-invariant BO
approach [23], and the random scheme. Since MAB can
only cope with discrete decision variables, we discretized the
analog-amplitude resource allocation variables into 5 levels
and then adopted the multi-agent EXP3 method [38] for
learning. In BCO, the analog-amplitude resource allocation
variables are obtained by constructing gradient estimates
using evaluated function values, while the discrete offloading
variables are still sought based on MAB as in the proposed
BO approaches. Besides, time-invariant BO method neglects
both temporal and contextual information in MEC systems.
We additionally include a random server selection scheme with
resource allocation variables being half of their corresponding
peak values following [37].

With properly selected temporal and contextual kernel
hyperparameters, the average regret curves of all the
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Fig. 5. Comparison of average regret under the 2-BS and 2-WD MEC system
with Rician factor K =9 and n = 0.02.

competing approaches are presented in Fig. 4 for the
2-BS and 2-WD MEC system with [dy1,d12,d21,d22] =
[20,13,15,18], K = 4 and n = 0.2. Specifically, the
temporal kernel hyperparameter in the time-varying BO
approach is chosen as p = 0.048. As for contextual time-
varying BO algorithm, the temporal kernel hyperparameter
p and the lengthscale [ of the contextual kernel are set
to 0.02 and 0.2, respectively. As shown in Fig. 4, it is
evident that all the bandit-based methods outperform the
random scheme. In addition, our proposed time-varying BO
approach outperforms the three benchmarks, namely, time-
invariant BO, MAB, and BCO, by around 1.21%, 8.51% and
25.72% in average regret after 200 time slots. This suggests
the benefits of adapting temporal information-aided Bayesian
approach to the black-box optimization with both categorical
(i.e., task offloading) and analog-amplitude (i.e., resource
allocation) variables. By further utilizing the observed context
information (i.e., the characteristics of computational tasks)
via the contextual kernel, the novel contextual time-varying
BO method achieves 1.81% and 3% lower average regret than
time-varying BO and traditional BO after 200 slots.
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Fig. 6. Comparison of average regret under the 2-BS and 5-WD MEC system
with Rician factor K = 5.67 and n = 0.2.

Further, the performances of the proposed BO approaches
are investigated in the 2-BS and 2-WD MEC system with
a smaller scale of system dynamics, that is given by the
Rician factor K = 9 in (36) and the temporal variation
parameter n = 0.02 in (38). The temporal kernel parameter
p is set to 0.011 in the time-varying BO approach, while
p = 0.0045 and contextual kernel lengthscale [ = 0.2 are
chosen in contextual time-varying BO. Here, the values of
p in both cases are smaller than the counterparts in Fig. 4,
what is in accordance with the degree of the underlying
temporal dynamics. Compared with the alternative time-
invariant BO, MAB, BCO, and random schemes, the proposed
(contextual) time-varying BO methods reduce the average
regret by approximately 1.49%, 34.77%, 47.75% and 47.89%
after 200 slots as showcased in Fig. 5. In addition, the
performance of the time-invariant BO method is close to the
proposed time-varying BO alternatives due to such small-scale
system dynamics.

C. Effect of Network Size

Lastly, the performances of all the schemes are assessed
as the number of WDs and BSs varies. Consider first a 2-
BS MEC system with a larger number M = 5 of WDs,
where the time-varying system state is generated using the
Rician factor K = 5.67 in (36) and temporal variation factor
1 = 0.2 in (38). In this case, p = 0.018 in time-varying BO
approach, while p = 0.006 and [ = 0.5 in contextual time-
varying BO strategy. Still, the proposed (contextual) time-
varying BO methods outperform the other four alternatives by
leveraging temporal and contextual information as shown in
Fig. 6. In addition, we observe that the random scheme attains
lower average regret than the BCO methods. It is because
the considered random scheme leverages the fixed half-peak
resource allocation strategy, while the whole continuous action
space needs to be explored in the BCO method for the resource
allocation.

Moreover, fixing the number M of WDs as 2, the average
EDC over slots is plotted as a function of the number N
of BSs for all the competing methods in Fig. 7. Here, the
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Rician factor in (36) and value of 7 in (38) are set to K =
4 and n = 0.2 respectively. Apparently, the two proposed BO
approaches achieve lower average EDC than the other four
baselines. Additionally, the average EDC of all the methods
decreases as the network size grows by better exploiting the
diverse computing capacities and channel conditions of the
edge servers.

In Fig. 8, we further illustrate the impact of the mean
of task input data size on the average EDC over slots
under a real-world 2-BS and 2-WD MEC system with
Rician factor K = 4 and time variation parameter 7 =
0.2. Specifically, we consider a widely-used public dataset
containing the geographical information of real-world edge
servers and anonymous mobile users in Melbourne CBD area
in Australia [45], [46]. In this experiment, the locations of
N = 2 edge servers and M = 2 WDs are extracted from the
dataset to simulate the MEC system. It is observed that the
proposed BO approaches attain lower average EDC than the
other baselines under different input data size settings in the
real-world MEC system.
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VI. CONCLUSION

BO for dynamic MEC management was studied in this
paper. Different from prior works in time-varying MEC
systems, the focus was online joint optimization of discrete
task offloading decisions and analog-amplitude resource
allocation strategies by minimizing the EDC using only bandit
observations at queried points. Specifically, by exploiting both
temporal and contextual information, we developed two novel
BO approaches that incorporate the strength of the MAB
framework. Numerical tests under different MEC network
sizes demonstrated the effectiveness of the proposed BO
approaches.
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