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Abstract— Recent years have witnessed the emergence of
mobile edge computing (MEC), on the premise of a cost-
effective enhancement in the computational ability of hardware-
constrained wireless devices (WDs) comprising the Internet
of Things (IoT). In a general multi-server multi-user MEC
system, each WD has a computational task to execute and
has to select binary (off)loading decisions, along with the
analog-amplitude resource allocation variables in an online
manner, with the goal of minimizing the overall energy-delay
cost (EDC) with dynamic system states. While past works
typically rely on the explicit expression of the EDC function,
the present contribution considers a practical setting, where
in lieu of system state information, the EDC function is not
available in analytical form, and instead only the function
values at queried points are revealed. Towards tackling such
a challenging online combinatorial problem with only bandit
information, novel Bayesian optimization (BO) based approaches
are put forth by leveraging the multi-armed bandit (MAB)
framework. Per time slot, the discrete offloading decisions are
first obtained via the MAB method, and the analog resource
allocation variables are subsequently optimized using the BO
selection rule. By exploiting both temporal and contextual
information, two novel BO approaches, termed time-varying BO
and contextual time-varying BO, are developed. Numerical tests
validate the merits of the proposed BO approaches compared
with contemporary benchmarks under different MEC network
sizes.
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I. INTRODUCTION

T
HE era of massive connectivity is brought into being

by the Internet of Things (IoT), where tens of billions

of wireless devices (WDs) are ubiquitously connected to the

Internet through cellular networks. Constrained by limited bat-

teries and low-power on-chip computing units, the WDs face

challenges to support latency-sensitive applications in the cur-

rent IoT paradigms such as autonomous driving, online gaming

and virtual reality. To meet the intensive computation demands

far beyond the WDs’ capacities, mobile edge computing

(MEC) has emerged as a promising technology by releasing

and distributing computing resources to the edge servers within

the radio access networks to facilitate real-time services.

Capitalizing on the MEC architecture, WDs in the IoT are

able to carry out high-performance computation by offloading

tasks to the servers located at the network edge [2]. Compared

with traditional mobile cloud computing, the MEC no longer

suffers from high overhead and long backhaul latency.

Due to the time-varying wireless channel conditions and the

heterogeneity in both the WDs and edge servers, judiciously

offloading computations can offer significant performance

enhancement. In general, MEC has two computation offload-

ing models, referred to as binary and partial offloading [2].

Binary offloading requires each task to be either executed

locally or offloaded to the edge server as a whole [3].

On the other hand, a task under partial offloading model is

allowed to be partitioned and computed both locally and at

the edge server [4], [5]. In this work, we focus on binary

computation task offloading, which is commonly used in IoT

to process indivisible simple tasks such as face recognition

and temperature monitoring in smart home [2]. Prior works on

offloading computations typically focus on offline algorithms

by adopting either convex [3], [4] or non-convex (e.g., convex

relaxation [6] and heuristic local search [7], [8]) optimization

methods, which assume that the system states are known

a priori, even though such knowledge is challenging to acquire

beforehand.

With unknown system dynamics, online computational task

offloading approaches have been extensively investigated.

Building on the assumption of stationarity, a class of

online algorithms rely on stochastic optimization methods

such as Lyapunov optimization to determine the task
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offloading decisions within each time slot without future

information [9], [10], [11]. Nevertheless, the nonstationarity

introduced by the human participation in IoT makes

the stochastic optimization impractical. Targeting at the

nonstationary system dynamics, existing works focus on the

online convex optimization (OCO) algorithms [12], [13], [14],

where the sequence of convex task offloading costs changes in

an unknown and possibly adversarial manner. Yet, the OCO

approaches necessitate the availability of explicit cost function

forms or their gradients.

In practice though, the unpredictable WD preferences (e.g.,

service latency, reliability or privacy) render it prohibitive

to model the objective function analytically in dynamic

IoT environment. In fact, the IoT controller can only have

available objective function values at queried points. In this

context, the OCO has been extended to the bandit setting

by leveraging only point-wise values of objective functions

for the gradient estimations, which is referred to as bandit

convex optimization (BCO) [15], [16], [17]. Tailored for

partial task offloading strategies among multiple edge servers,

BCO with both time-varying costs and constraints was studied

in [18]. On the other hand, aiming at binary computational

offloading strategies with such a bandit feedback, multi-armed

bandit (MAB) based methods have been popular in MEC

systems [19], [20], [21], [22]. An online combinatorial bandit

upper confidence bound algorithm was proposed in [19] for

the task scheduling to asymptotically minimize the computing

delay. The security-aware server selection strategies based on

MAB were reported in [20]. The MAB-based task offloading

approach was further adapted to the vehicular edge computing

systems in [21].

Although achieving promising results, the aforementioned

BCO or MAB based works deal only with either continuous

or discrete decision variables. In many practical settings

though, the analog-amplitude communication and computation

resource allocation variables (e.g., transmit power and local

computing speed) need to be jointly optimized with discrete

variables that capture offloading decisions for optimum MEC

performance. Finely discretizing the analog action space (or

relaxing the discrete task offloading decisions), renders the

existing MAB methods (or the BCO approaches) inaccurate

and computationally prohibitive. In addition, the convexity of

objective functions commonly assumed in BCO algorithms

may not hold in practice [2], [3], [6], [7], [8]. Although

dealing with arbitrary objective functions, MAB methods

require to explore every single arm at least once to accumulate

sufficient statistics, which may incur sudden performance

drops and slow down the learning processes for large MEC

networks [19], [20], [21], [22].

Alleviating these limitations, we advocate a novel approach

based on Bayesian optimization (BO) [23]. BO is a

promising methodology for black-box derivative-free (i.e.,

only function value observations at queried points are available

without derivative information) global optimization with well-

documented merits, including sample efficiency, uncertainty

quantification, and safe exploration [23], [24]. The key idea

of BO is to build a Bayesian surrogate model (typically,

the Gaussian process [25], [26], [27], [28]) for the black-

box objective function, guided by which an acquisition

function is designed to decide the next function evaluation

point. Apart from the applications such as hyperparameter

tuning in machine learning [29], drug discovery [30], and

robotics [31], BO has been applied to several problems in

the context of wireless networks, including radio resource

allocation [32], coverage and capacity optimization in cellular

networks [33], as well as beam alignment in mmWave

MIMO systems [34]. Very recently, targeting video analysis in

MEC, a BO-based approach is put forth for edge server and

frame resolution selection in [35], where the case of analog-

amplitude communication and computation resource allocation

is not accounted for.

The existing BO-based approaches to resource allocation

for MEC focus on optimizing black-box objective functions

with either continuous (e.g., transmit power [32], [33] and

beam alignment [34]) or integer (e.g., frame resolution [35])

variables. The present work, on the other hand, deals with the

mixture of categorical and continuous variables, which poses

nontrivial challenges in kernel design of the Gaussian process

(GP) based surrogate model and acquisition rule relative

to previous works. Further, the sought objective function

here is modeled as time-varying under the unknown system

state dynamics (e.g., wireless channel conditions and edge

server computing speeds), what deteriorates the performance

of existing BO approaches where stale data is exploited

as equally important as fresh data. Towards addressing the

aforementioned challenges, the current work puts forth a

novel kernel that incorporates the temporal and contextual

information, and further devises the associated acquisition rule.

In a multi-server multi-user MEC, time-varying system

state information, including wireless channel conditions, edge

server computing speeds, task workloads, and input data

sizes, has significant impact on task offloading and resource

allocation decisions. For example, a WD with larger task

workload at current time slot may prefer edge computing,

rather than local execution, so as to leverage higher computing

speed at edge servers. Also, the WD may choose the edge

server with best channel condition to offload its task with small

transmit power for energy saving. Therefore, exploiting such

temporal and contextual information (i.e., partially observed

system state) will intuitively yield enhanced performance

than the vanilla BO approach for MEC systems with bandit

feedback.

Relative to the aforementioned existing works, the present

work is the first attempt to develop novel BO-based approaches

for the joint optimization of discrete task offloading decisions

and analog-amplitude resource allocation strategies in time-

varying multi-server multi-user MEC systems with bandit

feedback. Specifically, our main contributions are summarized

as follows.
1) Building on the BO framework for online bandit

optimization of categorical and continuous decision

variables, a GP-based surrogate model is adopted for

the sought objective function with novel kernel design.

The resultant kernel function not only leverages a

weighted combination of sum and product compositions

of individual kernels over categorical and continuous
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variables in order to allow for more expressive coupling,

but also capitalizes on a temporal kernel to account for

unknown dynamics in the black-box function.

2) With the GP-based surrogate model, an innovative acqui-

sition rule is developed in the time-varying BO scheme

to select new optimization variables per iteration.

Specifically, given the categorical offloading decisions

obtained by the MAB-based method, the analog-

amplitude resource allocation variables are determined

using the conventional BO-based selection rule.

3) Under the scenario where each WD reveals its task

characterization variables (task computational workload

and input data size) at the beginning of each time slot,

a generalized contextual time-varying BO scheme is

further devised by incorporating the contextual kernel

in the GP surrogate model.

4) Numerical simulations under various MEC network

sizes demonstrate that our proposed BO approaches

benefit from both temporal and contextual information,

and exhibit superior performance compared with

traditional BO and other representative benchmarks.
The rest of the paper is organized as follows. The system

model and problem formulation are presented in Sec. II,

following which a novel time-varying BO algorithm for online

joint optimization of task offloading and resource allocation

under bandit setting is proposed in Sec. III. Further leveraging

observed state information, Sec. IV develops the contextual

time-varying BO approach for dynamic MEC management.

In Sec. V, the performance of the proposed BO methods is

evaluated on synthetic tests. Finally, concluding remarks are

made in Sec. VI.

Notation: (·)⊤ and (·)−1 denote transpose and matrix

inverse, respectively, and ∥x∥ stands for the l2-norm of a

vector x. Besides, 0t, 1t and It denote the t × 1 all-zero

vector, the t × 1 all-one vector and the t × t identity matrix,

respectively. Inequalities for vector x > 0 are entry-wise.

I(x = x′) denotes the indicator function taking the value

of 1 if x = x′, and 0 otherwise. N (x; µ,K) stands for the

probability density function (pdf) of a Gaussian random vector

x with mean µ and covariance K.

II. SYSTEM MODEL AND PROBLEM FORMULATION

Consider a MEC system with M WDs, and N base stations

(BSs). Each BS n ∈ N := {1, . . . , N} is the gateway of

edge servers to provide MEC services to the power-limited

WDs indexed by m ∈ M := {1, . . . ,M}. Per slot t ∈
T := {1, . . . , T}, the m-th WD has a computational task

characterized by the pair (Im
t , Lm

t ), where Im
t denotes the

size of input data in bits, and Lm
t represents the workload

in terms of the total number of CPU cycles to execute

the aforementioned task. This WD could either execute its

task locally or offload it to one of the BSs, a choice that

is henceforth captured by the categorical variable cm
t ∈

{0, 1, . . . , N}. Specifically, cm
t = 0 indexes local computing,

and cm
t = n, n ∈ N , stands for offloading task to BS n, i.e.,

cm
t =

{

0, local computing

n, offloading task to BS n
∀m ∈M, n ∈ N , t ∈ T .

(1)

Fig. 1. The considered mobile edge computing (MEC) system with M

wireless devices (WDs) and N base stations (BSs).

For both scenarios, the computational overhead per task

consists of the execution delay and energy consumption, which

will be elaborated as follows.

A. Local Computing

If WD m chooses to execute its task locally (i.e., cm
t = 0)

per slot t, it has to select the local CPU frequency fm
t , based

on which the task computing time is given by

Äm
l,t =

Lm
t

fm
t

(2)

and the corresponding energy consumption is

ϵm
l,t = ÀLm

t (fm
t )2 (3)

where À denotes the effective switched capacitance parame-

ter [2].

B. Edge Computing

If WD m alternatively goes for edge computing at BS n
per slot t, that is, cm

t = n, it must first offload the task

using transmit power pm
t . Suppose that the wireless channel

coefficient between WD m and BS n for task offloading

is hm,n
t , and the receiver is corrupted by additive white

Gaussian noise (AWGN) with mean zero and variance Ã2.

Here, the wireless channel is assumed to be invariant within

each slot and may change across different slots. Then, the

uplink transmission data rate for the sought offloading task is

Rm,n
t = W log2(1 +

pm
t |hm,n

t |2
Ã2

) (4)

where W is the identical bandwidth of the dedicated spectral

resource block allocated to each WD. Accordingly, the

offloading transmission time is

Äm
u,t =

N
∑

n=1

I(cm
t = n)Im

t

Rm,n
t

(5)

and the transmission energy consumption of WD m is

ϵm
u,t = pm

t Äm
u,t. (6)

For edge computing at BS n, the total computation

resource per slot t is signified by the CPU frequency fn
c,t.

Upon receiving all the offloaded tasks, the edge server
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generates multiple virtual machines (VMs) to execute the

tasks in parallel, and equally partitions fn
c,t to yield fn

c,t/(1 +
∑

m′∈M/m I(cm′

t = n)) per task. The edge execution time for

WD m’s task is thus

Äm
c,t =

N
∑

n=1

I(cm
t = n)

Lm
t (1 +

∑

m′∈M/m I(cm′

t = n))

fn
c,t

. (7)

It is worth mentioning that the time delay for downloading

the task output from the BS to the WD is ignored given the

relatively small output data size and strong downlink transmit

power of the BS.

C. Problem Formulation

Accounting for both local and edge computing, the total

time delay for executing the task at WD m per slot t is given

by

Dm
t = I(cm

t = 0)Äm
l,t + I(cm

t ̸= 0)(Äm
u,t + Äm

c,t). (8)

Here, Dm
t is equal to the local execution time Äm

l,t if WD m
chooses local computing (i.e., cm

t = 0). Otherwise, Dm
t in (8)

equals the sum of offloading transmission time Äm
u,t and the

edge computing time Äm
c,t.

Similarly, the energy consumption of WD m per slot t is

given by

Em
t = I(cm

t = 0)ϵm
l,t + I(cm

t ̸= 0)ϵm
u,t (9)

which is ϵm
l,t for local computing (cm

t = 0) and ϵm
u,t otherwise.

Taking a weighted sum of task execution time delay Dm
t and

energy consumption Em
t yields the energy-delay cost (EDC)

per WD m as

EDCm
t (cm

t , fm
t , pm

t ) = ´dD
m
t + ´eE

m
t (10)

where ´d, ´e are positive scalars that balance these two

costs. For notational brevity, collect the optimization variables

in ct := [c1
t , . . . , c

M
t ]⊤, pt := [p1

t , . . . , p
M
t ]⊤, and ft :=

[f1
t , . . . , fM

t ]⊤. The objective is to choose online (at the

beginning of each slot t) the categorical task offloading

decisions (i.e., ct) and analog-amplitude resource allocation

strategies (i.e., pt, ft) minimizing the accumulated EDC across

all WDs, that is

(P1) min
{ct,pt,ft}t

T
∑

t=1

M
∑

m=1

EDCm
t (cm

t , fm
t , pm

t ),

s.t. cm
t ∈ {0, 1, 2, . . . , N},

0 < pm
t f Ppeak,

0 < fm
t f fpeak, ∀m ∈M, t ∈ T

where fpeak and Ppeak are the peak local CPU frequency

and transmit power of the WDs, respectively. By further

introducing xt := [p⊤t , f⊤t ]⊤ and the reward function

φt(ct,xt) := −∑M
m=1 EDCm

t at slot t, (P1) can be

equivalently expressed as

(P2) max
{ct,xt}t

T
∑

t=1

φt(ct,xt),

s.t. ct ∈ {0, 1, 2, . . . , N}M ,

0 < xt f xpeak,∀t ∈ T

where xpeak := [Ppeak1
⊤
M , fpeak1

⊤
M ]⊤, and 1M is the M -

dimensional all-one column vector.

A major challenge facing (P2) (equivalently (P1)) is that

the wireless channels {hm,n
t }, the edge computing capacities

{fn
c,t}, the computational task characterization {Im

t , Lm
t }

are not available; thus, the explicit form of the time-

varying EDC function is unknown when making the task

offloading and resource allocation decisions {ct,xt} per slot.

After performing {ct,xt}, only noisy EDC function value

(equivalently the realization of φt(ct,xt)) at that queried point

can be acquired at the end of slot t. The difficulty of such

a bandit setup is further exacerbated by its combinatorial

nature that calls for the joint optimization of the categorical ct

and continuous xt. To tackle this bandit mix-integer program,

novel BO-based approaches will be pursued in the following

sections.

III. TIME-VARYING BO FOR DYNAMIC MEC

MANAGEMENT

BO has well-documented merits in optimizing black-box

functions that arise in several settings [23]. To account for

the temporal variation arising from unknown system dynamics

(e.g., changing channel conditions and computing capacities of

the edge servers), the slot index t is augmented as an additional

input of the sought black-box function, i.e., φ(ct,xt, t) :=
φt(ct,xt). In short, BO seeks to maximize the black-box

φ(zt) with zt := [c⊤t ,x⊤t , t]⊤ by sequentially acquiring

function observations using a surrogate model. Collect all the

acquired data up to slot t in Dt := {(zτ , yτ )}t
τ=1 with yτ

denoting the possibly noisy observation of φ(zτ ). Each BO

iteration consists of i) obtaining the function posterior pdf

p(φ(z)|Dt) based on the chosen surrogate model using Dt;

and, ii) selecting zt+1 to evaluate at the beginning of slot

t + 1, whose observation yt+1 will be acquired at the end of

slot t + 1. In the following, we will introduce the GP-based

surrogate model and the acquisition rule for zt+1, respectively.

A. GP-Based Surrogate Model for Time-Varying Function φ
and Kernel Design

As an established Bayesian nonparametric approach, the GP

can learn black-box functions with quantifiable uncertainty and

sample efficiency, making it suitable for surrogate modeling

in BO. Specifically, given data Dt, the goal is to learn the

function φ(·) that links the input zτ with the scalar output

yτ as zτ → φ(zτ ) → yτ . Towards this, a GP prior is

assumed on the unknown φ as φ ∼ GP(0, »(z, z′)), where

»(·, ·) is a kernel (covariance) function measuring pairwise

similarity of any two inputs. Then, the joint prior pdf of any

t function evaluations ϕt := [φ(z1), . . . , φ(zt)]
⊤ at inputs

Zt := [z1, . . . , zt]
⊤ is jointly Gaussian distributed as [25]

p(ϕt|Zt) = N (ϕt;0t,Kt), ∀t (11)

where Kt is a t × t covariance matrix with (Ä, Ä ′)-th entry

[Kt]τ,τ ′ = cov(φ(zτ ), φ(zτ ′)) := »(zτ , zτ ′). The estimation

of φ relies on the observed outputs yt := [y1, . . . , yt]
⊤

that are linked with ϕt through the Gaussian conditional

likelihood p(yt|ϕt,Zt) = N (yt;ϕt, Ã
2
oIt), where Ã2

o is the
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noise variance. Along with the GP prior in (11), one can

readily obtain the function posterior pdf p(φ(z)|Dt) via Bayes’

rule as

p(φ(z)|Dt) = N (φ(z); µt(z), Ã
2
t (z)) (12)

where its mean and variance have the following closed-form

expressions

µt(z) = k⊤t (z)(Kt + Ã2
oIt)

−1yt (13)

Ã2
t (z) = »(z, z)− k⊤t (z)(Kt + Ã2

oIt)
−1kt(z) (14)

where kt(z) := [»(z1, z), . . . , »(zt, z)]
⊤. Notice that

the posterior mean µt(z) is a weighted average of the

observed function values yt, with the weights determined

by evaluations of the kernel function at the input values.

Besides, the posterior variance Ã2
t (z) is equal to the prior

covariance »(z, z) minus the term corresponding to the

variance reduction by observing yt.

Clearly, the performance of this GP predictor (13)-(14)

highly hinges on the design of the kernel function »(·, ·)
over the input space. Accounting for both the continuous

xτ for resource allocation and the categorical cτ for task

offloading in the function input zτ , as well as temporal

variations across slots, three separate kernels are considered,

which are »x(xτ ,xτ ′) over continuous inputs, »c(cτ , cτ ′) over

categorical inputs, and the temporal kernel »temp(Ä, Ä
′).

Various kernel functions are available for continuous inputs;

see [25]. A popular choice is the class of Matérn kernels

»MT
x (xτ ,xτ ′) =

21−ν

Γ(¿)

(√
2¿∥xτ − xτ ′∥

l

)ν

×Bν

(√
2¿∥xτ − xτ ′∥

l

)

(15)

with parameter ¿ > 0 controlling the smoothness of the

learning function. The smaller ¿ is, the less smooth the sought

function is assumed to be. In (15), l is the characteristic

lengthscale, Bν is a modified Bessel function, and Γ is the

gamma function. Specifically, as ¿ → ∞, the kernel (15)

boils down to the well-known radial basis function (RBF)

»RBF
x (xτ ,xτ ′) := ³ exp(−∥xτ−xτ′∥

2

2l2 ), where the pairwise

similarity grows exponentially as a function of the squared

distance between any two continuous inputs.

As for categorical variables, we follow [36] to adopt the

kernel function »c(cτ , cτ ′) as

»c(cτ , cτ ′) =
ω

M

M
∑

m=1

I(cm
τ = cm

τ ′) (16)

where ω is the categorical kernel variance. Note that the

categorical kernel defined in (16) is a special case of the RBF

kernel with ³ = 1 and l → 0. To allow for a richer set of

couplings between the continuous and categorical domains,

a mixture of the sum and product compositions of the two

kernels »x and »c is proposed for the kernel function »x,c

over continuous and categorical variables [36], i.e.,

»x,c([x
⊤
τ , c⊤τ ]⊤, [x⊤τ ′ , c

⊤
τ ′ ]

⊤)

=(1−¼)[»c(cτ , cτ ′)+»x(xτ ,xτ ′)]

+ ¼»c(cτ , cτ ′)»x(xτ ,xτ ′) (17)

where ¼ ∈ [0, 1] weighs the contributions from the sum and

product compositions of »c and »x. When ¼ = 0, only the

sum composition exists in (17), leading to independence of

the black-box function φ over the continuous and categorical

domains with limited expressiveness. On the other hand, the

pure product composition with ¼ = 1 will take the value

of 0 if there is no pairwise overlap between two categorical

variables cτ and cτ ′ , that is, »c(cτ , c′τ ) = 0 according

to (16), thus preventing the GP model from learning. Towards

overcoming the aforementioned two limitations, one can

leverage a weighted combination of the sum and product

components with 0 < ¼ < 1 in (17).

To further capture the temporal variation of the black-box

function φ due to the unknown system dynamics, the following

temporal kernel function »temp(Ä, Ä
′) is adopted based on [37]

»temp(Ä, Ä
′) = (1 − Ä)

|τ−τ′|
2 (18)

where Ä ∈ [0, 1] is the hyperparameter that controls the

level of temporal dynamics in the learning function φ. The

larger the value of Ä, the more frequently φ varies over time.

In particular, when Ä = 0, »temp(Ä, Ä
′) = 1 for any (Ä, Ä ′),

thus inducing no dynamics in φ.

Henceforth, applying the product composition of »x,c (17)

and »temp (18) yields the overall kernel function given by

»(zτ , zτ ′) = »temp(Ä, Ä
′)»x,c([x

⊤
τ , c⊤τ ]⊤, [x⊤τ ′ , c

⊤
τ ′ ]

⊤). (19)

It can be observed that the temporal kernel imposes a scaling

factor on »x,c based on the time separation of any pair of

inputs. This agrees well with intuition that inputs that are well

separated in time (i.e., large |Ä − Ä ′|) yield less correlated

function values for Ä ̸= 0.

Remark 1 (Learning the GP Hyperparameters): The

GP hyperparameters, collected in θ that consists of the

characteristic length-scale l, categorical kernel variance ω,

and the noise variance Ã2
o , are optimized by maximizing the

log marginal likelihood [25]

L(θ) := log p(yt|Zt) = log

(
∫

p(yt|ϕt,Zt)p(ϕt|Zt)dϕt

)

= −1

2
y⊤t (Kt+Ã2

oIt)
−1yt

− 1

2
log |Kt+Ã2

oIt| −
t

2
log 2Ã (20)

where the first term involving the observations represents the

data-fit; the second term indicates the complexity penalty; and,

the last term is a normalization constant. Accordingly, the

gradient of the L(θ) with respect to the hyperparameters θ

is given by

∂L(θ)

∂θ
=

1

2
y⊤t (Kt+ Ã2

oIt)
−1 ∂(Kt + Ã2

oIt)

∂θ
(Kt + Ã2

oIt)
−1yt

− 1

2
tr

(

(Kt + Ã2
oIt)

−1 ∂(Kt + Ã2
oIt)

∂θ

)

(21)

based on which the gradient-based optimizer is adopted to

learn θ every ¶ time slots.
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B. Acquisition for zt+1 Based on GP Surrogate Model

Having available GP-based posterior function model (12)

with the form of kernel function specified by (19) at

slot t, one is ready to select the next decisions zt+1.

Coping with both categorical and continuous variables, this

is certainly a nontrivial task, but can fortunately be handled

by relying on the MAB framework. Since the cardinality of

the categorical variables is exponential with respect to the

number M of WDs, a scalable multi-agent MAB approach

will be leveraged with each WD m acting as an agent

simultaneously and independently determining its local task

offloading decision cm
t ∈ {0, 1, . . . , N}. As the overall reward

function in the resultant MAB framework does not follow

any statistical distribution, it is more sensible to rely on

the adversarial MAB framework and adopt as the action

selection rule the well-known exponential-weight algorithm

for exploration and exploitation (EXP3) [38]. Per slot t,
EXP3 maintains an unnormalized weight vector wm

t :=
[wm

t (0), wm
t (1), . . . , wm

t (N)]⊤ for each WD m to guide the

selection of its action. Next, we will delineate how each

acquisition step of the time-varying BO selects categorical

ct+1 and continuous xt+1 with the help of EXP3.

1) Acquisition for Categorical Task Offloading Decisions:

Given wm
t from the end of slot t, each agent m in EXP3 draws

its action cm
t+1 randomly according to the probability vector

qm
t := [qm

t (0), qm
t (1), . . . , qm

t (N)]⊤ with [38]

qm
t (k)=(1 − µ)

wm
t (k)

∑N
k′=0 wm

t (k′)
+

µ

N + 1
,∀k ∈ {0, 1, . . . , N}

(22)

where µ ∈ (0, 1] is the coefficient that balances exploitation

given by the normalized weight in the first factor and

exploration from the uniform probability in the second term.

Specifically, by including the uniform distribution, EXP3

allows all N + 1 decisions to be explored per agent (WD)

so as to get good reward estimates.

2) Acquisition for Analog-Amplitude Resource Allocation

Decisions: With the categorical task offloading decisions ct+1

at hand, the analog-amplitude resource allocation decisions

xt+1 are selected by finding the maximizer of the celebrated

upper confidence bound (UCB)-based acquisition function

as [39]

xt+1= arg max
0<x≤xpeak

ut+1(x|Dt, ct+1, t + 1)

:=µt(x, ct+1, t+1)+
√

·t+1Ã
2
t (x,ct+1, t+1)

(23)

where the coefficient ·t+1 g 0 nicely balances the exploitation

and exploration that are signified by the posterior mean

µt (13) and variance Ã2
t (14), respectively. With closed-form

expressions of µt and Ã2
t at hand, one can readily solve (23)

via off-the-shelf gradient-based solvers.

3) Weight Update in EXP3: Upon deploying (ct+1,xt+1)
into the MEC system to yield the observed reward yt+1,

EXP3 capitalizes on the importance sampling rule to obtain

an unbiased estimate of the reward value as

φ̂m
t+1(k) =

yt+1I(cm
t+1 = k)

qm
t (k)

,∀k ∈ {0, 1, . . . , N},m ∈M
(24)

based on which the corresponding weight is updated using the

exponential rule as

wm
t+1(k) = wm

t (k) exp

(

µφ̂m
t+1(k)

N + 1

)

= wm
0 (k) exp

(

µ
∑t+1

τ=1 φ̂m
τ (k)

N + 1

)

,

∀k ∈ {0, 1, . . . , N},m ∈M. (25)

It is evident that wm
t+1(k) summarizes the cumulative

rewards up to slot t + 1 for action k under WD m, and

thus represents the effect of exploitation in (22). Relying on

the multi-agent MAB framework with the EXP3 to select

the categorical variables, a preliminary regret bound of the

proposed BO approach is given by the following lemma.

Lemma 1: Selecting µ = min
{

1,
√

(N+1) ln(N+1)
(e−1)T

}

and

having the kernel function satisfy some regularity conditions,

the cumulative regret of the BO-based approach is upper

bounded by

R(T ) f O(M
√

T (N + 1) ln(N + 1)). (26)

Proof: For a single agent m, the cumulative regret

Rm(T ) when the categorical decisions of all the other agents

are fixed to c\m is given by

Rm(T )

=sup
c\m

{

max
c∗m∈{0,1,...,N}

T
∑

t=1

φt(c
∗
m, c\m)−E

[

T
∑

t=1

φt(c
m
t , c\m)

]}

,

(27)

where c∗m is the best single action over all time slots.

According to [ [38], Theorem 3.1], for the bounded reward

φt f 1,∀t and parameter µ = min
{

1,
√

(N+1) ln(N+1)
(e−1)T

}

in

EXP3, we have

Rm(T ) f sup
c\m

{

2.63
√

T (N + 1) ln(N + 1)
}

f 2.63
√

T (N + 1) ln(N + 1). (28)

Then, the cumulative regret of the multi-agent EXP3 approach

has the bound

R(T ) =
M
∑

m=1

Rm(T ) f 2.63M
√

T (N + 1) ln(N + 1).

(29)

Such cumulative regret is sub-linear as

lim
T→∞

R(T )

T
= 0. (30)

□

The sublinear cumulative regret bound in Lemma 1 dictates

the convergence of the proposed BO approach.

The pseudo-code of the overall time-varying BO approach

is summarized in Algorithm 1.

The main computational complexity of the proposed BO

approach comes from updating the GP-based surrogate model

using the acquired data Dt (cf. (13)-(14)), and is of order

O(|Dt|3) with |Dt| denoting the cardinality of Dt. In the

BO context, |Dt| is usually pretty small (a few hundred),
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Algorithm 1 Time-Varying BO for Dynamic MEC Manage-

ment

1: Initialization: D0, wm
0 (k) = 1,∀k ∈ {0, 1, . . . , N},m ∈

M;

2: for t = 0 : T − 1 do

3: if t mod ¶ = 1 then

4: Learn GP hyperparameters θ via multi-started

gradient descent using (21);

5: end if

6: Calculate the posterior mean µt and variance Ã2
t

according to (13)–(14) given Dt;

7: Compute the action distribution qm
t ,∀m ∈ M

according to (22);

8: Draw the discrete task offloading decision cm
t+1

randomly according to qm
t ,∀m ∈M;

9: Acquire the analog-amplitude resource allocation deci-

sions xt+1 by solving (23);

10: Deploy decisions zt+1 := [c⊤t+1,x
⊤
t+1, t + 1]⊤ to MEC

system to observe yt+1;

11: Dt+1 = Dt ∪ {(zt+1, yt+1)} and update wm
t+1(k)

via (25), ∀k ∈ {0, 1, . . . , N},m ∈M;

12: end for

thus rendering the computational complexity of no concern.

Even in cases when |Dt| is rather large, one can rely on a

replay memory [40] to store the C most recent data samples,

reducing the complexity to O(C3) per slot. Alternatively, one

can effect scalability via the scalable GP approaches, of which

the two most prevalent ones are the inducing points-based

framework [41] and random feature-based paradigm [42].

IV. CONTEXTUAL TIME-VARYING BO FOR DYNAMIC

MEC MANAGEMENT

So far, we have introduced a time-varying BO approach for

dynamic MEC management under the bandit setting, where

the temporal dynamics of the black-box reward function φ
is captured by incorporating the temporal kernel. In some

scenarios, in addition to the observed reward value, one could

have access to a subset of the system state. Here, each WD m
could report its task characterization variables (Im

t , Lm
t ) to the

central controller per slot t. The goal of this section is then to

generalize the time-varying BO approach for more informed

decision-making by leveraging such state information, which

will also be termed as “context” hereafter.

In the resultant contextual time-varying BO approach,

the black-box reward function φ(z̄t) has the augmented

input z̄t := [z⊤t , s⊤t ]⊤, where st is the context vector

that collects the observed state information as st :=
[I1

t , . . . , IM
t , L1

t , . . . , L
M
t ]⊤. As with the time-varying BO

approach in the previous section, the generalized counterpart

here still consists of two steps per iteration, namely, GP-based

surrogate model learning and the acquisition of new decisions.

For the former, a GP prior is postulated for φ as φ ∼
GP(0, »̄(z̄, z̄′)), where the kernel function »̄ has to be adapted

to capture correlation from the contextual input. Inspired

by [43], »̄(z̄τ , z̄τ ′) is proposed as the product combination

of three separate kernels given by

»̄(̄zτ , z̄τ ′)=»s(sτ , sτ ′)»temp(Ä, Ä
′)»x,c([x

⊤
τ , c⊤τ ]⊤,[x⊤τ ′ , c

⊤
τ ′ ]

⊤)
(31)

where »s(sτ , sτ ′) is the contextual kernel over the observed

context variables, and »x,c and »temp are given by (17)

and (18). Given the GP prior and a set of input-output data

pairs D̄t := {(z̄τ , yτ )}t
τ=1, the posterior pdf for the reward

function is given by (cf. (12))

p(φ(z̄)|D̄t) = N (φ(z̄); µ̄t(z̄), Ã̄
2
t (z̄)) (32)

where the closed-form expressions of the mean µ̄t and variance

Ã̄2
t can be obtained similarly as in (13)–(14) by including the

context vectors in the input, i.e.,

µ̄t(z̄) = k̄⊤t (z̄)(K̄t + Ã2
oIt)

−1yt (33)

Ã̄2
t (z̄) = »̄(z̄, z̄)− k̄⊤t (z̄)(K̄t + Ã2

oIt)
−1k̄t(z̄). (34)

Here k̄t(z̄) := [»̄(z̄1, z̄), . . . , »̄(z̄t, z̄)]
⊤ and K̄t is the t × t

covariance matrix with (Ä, Ä ′)-th entry [K̄t]τ,τ ′ := »̄(z̄τ , z̄τ ′).
Similar as Remark 1 in Sec. III-A, the GP hyperparameters

θ̄ are optimized every ¶ slots via log marginal likelihood

maximization using (21).

As for the acquisition of task offloading and resource

allocation decisions for slot t + 1, contextual time-varying

BO proceeds as in Sec. III-B by first selecting the categorical

ct+1 via the EXP3 approach based on the multi-agent MAB

framework, and then choosing the continuous xt+1 using the

UCB rule. Here, the latter has to take into account the observed

context vector st+1, thus yielding xt+1 given by

xt+1 = arg max
0<x≤xpeak

ūt+1(x|D̄t, ct+1, st+1, t+1)

:= µ̄t(x, ct+1, st+1, t+1) +

√

·̄t+1

× Ã̄2
t (x, ct+1, st+1, t+1) (35)

where ·̄t+1 g 0 is the coefficient that balances exploration

and exploitation. Please refer to Algorithm 2 for the

detailed implementation of the contextual time-varying BO

approach.

V. SIMULATION RESULTS

In this section, numerical tests were conducted to evaluate

the performance of the proposed BO approaches for dynamic

MEC management. In the multi-user multi-server MEC system

with M WDs and N BSs, the time-varying wireless channel

hm,n
t from WD m to BS n is modelled as Rician fading

channel

hm,n
t =

√

K

K + 1
hm,n

t,LoS +

√

1

K + 1
hm,n

t,NLoS ,∀m,n, t (36)

where hm,n
t,LoS denotes the deterministic line of sight (LoS)

component determined by the locations of BS n and WD

m; hm,n
t,NLoS stands for the non-LoS component following

the independent and identically distributed (i.i.d.) standard

Gaussian distribution; and K g 0 is the Rician factor

representing the ratio of the power in the LoS component to the

power in the non-LoS component. Note that a larger K implies
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Algorithm 2 Contextual Time-Varying BO for Dynamic MEC

Management

1: Initialization: observation dataset D̄0 and wm
0 (k) =

1,∀k ∈ {0, 1, . . . , N},m ∈M;

2: for t = 0 : T − 1 do

3: if t mod ¶ = 1 then

4: Learn GP Hyperparameters θ̄ via multi-started

gradient descent using (21);

5: end if

6: Calculate the mean µ̄t and variance Ã̄2
t in the posterior

pdf (32) according to (33)–(34);

7: Observe the contextual information st+1;

8: Compute the action distribution qm
t ,∀m ∈ M

according to (22);

9: Draw the discrete task offloading decision cm
t+1

randomly according to qm
t ,∀m ∈M;

10: Acquire the analog-amplitude resource allocation deci-

sions xt+1 by solving (35);

11: Deploy decisions (ct+1,xt+1) to the MEC system to

observe yt+1;

12: D̄t+1 = D̄t ∪ {(z̄t+1, yt+1)} and update wm
t+1(k)

via (25), ∀k ∈ {0, 1, . . . , N},m ∈M;

13: end for

milder fading effect. The total average channel gain follows

the free-space path loss model |h̄m,n
t |2 = Ad(

3×108

4πφdm,n
)PL,∀t,

where Ad = 4.11 denotes the antenna gain, ϕ = 915 MHz is

the carrier frequency, dm,n represents the distance (measured

by meters) between WD m and BS n, and PL = 3 signifies

the pass loss exponent.

In addition, the means of time-varying edge CPU

frequencies {fn
c,t}n,t, task computational workloads {Lm

t }m,t,

and task input data sizes {Im
t }m,t are 26 GHz, 125 Mcycles,

and 1250 KBytes, respectively [3], [4], [7], [8]. Specifically,

the generation rules are as follows

fn
c,t = (f̄c + f̃n

c,t)× 109 Hz ∀n, t (37a)

Lm
t = (L̄ + L̃m

t )× 106 Cycles ∀m, t (37b)

Im
t = (Ī + Ĩm

t )× 104 Bytes ∀m, t (37c)

where f̄c = 26, L̄ = 125, Ī = 125, and the dynamic

components f̃n
c,t, L̃m

t , and Ĩm
t are evolved based on the

following first-order Markovian processes

f̃n
c,1 = en

f,1 L̃m
1 = em

L,1 Ĩm
1 = em

I,1 (38a)

f̃n
c,t+1 =

√

1− ¸f̃n
c,t +

√
¸en

f,t+1, en
f,t+1 ∼ N (0, 3) (38b)

L̃m
t+1 =

√

1− ¸L̃m
t +

√
¸em

L,t+1, em
L,t+1 ∼ N (0, 3) (38c)

Ĩm
t+1 =

√

1− ¸Ĩm
t +

√
¸em

I,t+1, em
I,t+1 ∼ N (0, 3) (38d)

where the process noises en
f,t, em

L,t, and em
I,t are i.i.d., and

¸ ∈ [0, 1] is the parameter adjusting the level of temporal

dynamics in these system state variables. In particular, ¸ =
0 represents the time-invariant scenario, while ¸ = 1 indicates

the independent system dynamics across time slots [37].

Besides, the peak transmit power Ppeak and computational

frequency fpeak of each WD are equal to 100 mW and 108

Hz, respectively. To be aligned with commercial practise, the

Fig. 2. Average regret under different temporal kernel hyperparameters ρ

for the time-varying BO approach.

computing efficiency coefficient À of the WDs in (3) is chosen

as À = 10−26 [44]. We set the channel additive white Gaussian

noise power Ã2 = 10−10 W, and the bandwidth W = 2 MHz.

The prior weights of the time delay and energy consumption

cost of the WDs in (10) are set as ´d = ´e = 0.5.

For the proposed (contextual) time-varying BO approaches,

the Matérn kernel (15) with parameter ¿ = 5/2 is adopted

for the kernel »x over continuous variables. The weight ¼
regarding the sum and product kernel compositions in (17) is

set to 0.5. The coefficients ·t = ·̂t = 2, ∀t, in UCB-based

acquisition rules (23) and (35). Unless otherwise stated, the

other kernel hyperparameters are optimized by maximizing the

log marginal likelihood every ¶ = 10 slots via multi-started

gradient descent. The performance measure of the competing

methods is given by the notion of regret. By denoting the

maximizer of φt as (c∗t ,x
∗
t ), the instantaneous regret per slot

t is

gt := φt(c
∗
t ,x

∗
t )− φt(ct,xt), (39)

based on which the cumulative and average regrets are denoted

as GT :=
∑T

t=1 gt and ḠT := GT /T , respectively. It is worth

mentioning that (c∗t ,x
∗
t ) are obtained by relying on explicit

cost function in (P2) with known system state information.

All the methods are run for 200 time slots and the average

performances over 100 random repetitions are reported.

A. Effect of Kernel Hyperparameters

To study the effect of temporal and contextual kernel

hyperparameters on the performance of the proposed BO

approaches, a 2-BS MEC system with M = 2 WDs is

first considered, where the distances from the WDs to BSs

are [d1,1, d1,2, d2,1, d2,2] = [20, 13, 15, 18] meters, the Rician

factor in (36) used to generate the channel gain is K = 4,

and ¸ in (38) is set to 0.2. Fig. 2 depicts the average regret of

time-varying BO as a function of the time slot under different

values of the temporal kernel hyperparameter Ä in (18). It can

be readily observed that the regret performance improves and

then deteriorates as the value of Ä increases. Specifically,
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Fig. 3. Average regret under different contextual and temporal kernel
hyperparameters for the contextual time-varying BO approach.

Ä = 0.048 achieves the lowest average regret by best capturing

the temporal variation in the black-box objective function.

Further considering the contextual time-varying BO where

a Matérn kernel with ¿ = 5/2 in (15) is adopted for

the contextual »s, the curves of the average regret for

various contextual and temporal kernel hyperparameters are

presented in Fig. 3, where it is evident that the best-performing

hyperparameter set is given by Ä = 0.02 and l = 0.2 in the

temporal and contextual kernel, respectively. Notice that the

best-performing hyperparameter Ä of the temporal kernel in

the contextual time-varying BO is smaller than that in the

time-varying BO. To put it equivalently, the temporal kernel

in the latter captures more dynamics in the objective function

than that in the former. This phenomenon can be explained by

that the observed contextual state information including time-

varying task computational workload Lm
t and input data size

Im
t accounts for a portion of the overall dynamics, yielding

lower degree of dynamics to be represented by the temporal

kernel in the contextual time-varying BO.

B. Performance Comparison

For performance comparison, four existing schemes are

employed as baselines, namely, the MAB [38], bandit convex

optimization (BCO) [15], the conventional time-invariant BO

approach [23], and the random scheme. Since MAB can

only cope with discrete decision variables, we discretized the

analog-amplitude resource allocation variables into 5 levels

and then adopted the multi-agent EXP3 method [38] for

learning. In BCO, the analog-amplitude resource allocation

variables are obtained by constructing gradient estimates

using evaluated function values, while the discrete offloading

variables are still sought based on MAB as in the proposed

BO approaches. Besides, time-invariant BO method neglects

both temporal and contextual information in MEC systems.

We additionally include a random server selection scheme with

resource allocation variables being half of their corresponding

peak values following [37].

With properly selected temporal and contextual kernel

hyperparameters, the average regret curves of all the

Fig. 4. Comparison of average regret under the 2-BS and 2-WD MEC system
with Rician factor K = 4 and η = 0.2.

Fig. 5. Comparison of average regret under the 2-BS and 2-WD MEC system
with Rician factor K = 9 and η = 0.02.

competing approaches are presented in Fig. 4 for the

2-BS and 2-WD MEC system with [d1,1, d1,2, d2,1, d2,2] =
[20, 13, 15, 18], K = 4 and ¸ = 0.2. Specifically, the

temporal kernel hyperparameter in the time-varying BO

approach is chosen as Ä = 0.048. As for contextual time-

varying BO algorithm, the temporal kernel hyperparameter

Ä and the lengthscale l of the contextual kernel are set

to 0.02 and 0.2, respectively. As shown in Fig. 4, it is

evident that all the bandit-based methods outperform the

random scheme. In addition, our proposed time-varying BO

approach outperforms the three benchmarks, namely, time-

invariant BO, MAB, and BCO, by around 1.21%, 8.51% and

25.72% in average regret after 200 time slots. This suggests

the benefits of adapting temporal information-aided Bayesian

approach to the black-box optimization with both categorical

(i.e., task offloading) and analog-amplitude (i.e., resource

allocation) variables. By further utilizing the observed context

information (i.e., the characteristics of computational tasks)

via the contextual kernel, the novel contextual time-varying

BO method achieves 1.81% and 3% lower average regret than

time-varying BO and traditional BO after 200 slots.
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Fig. 6. Comparison of average regret under the 2-BS and 5-WD MEC system
with Rician factor K = 5.67 and η = 0.2.

Further, the performances of the proposed BO approaches

are investigated in the 2-BS and 2-WD MEC system with

a smaller scale of system dynamics, that is given by the

Rician factor K = 9 in (36) and the temporal variation

parameter ¸ = 0.02 in (38). The temporal kernel parameter

Ä is set to 0.011 in the time-varying BO approach, while

Ä = 0.0045 and contextual kernel lengthscale l = 0.2 are

chosen in contextual time-varying BO. Here, the values of

Ä in both cases are smaller than the counterparts in Fig. 4,

what is in accordance with the degree of the underlying

temporal dynamics. Compared with the alternative time-

invariant BO, MAB, BCO, and random schemes, the proposed

(contextual) time-varying BO methods reduce the average

regret by approximately 1.49%, 34.77%, 47.75% and 47.89%
after 200 slots as showcased in Fig. 5. In addition, the

performance of the time-invariant BO method is close to the

proposed time-varying BO alternatives due to such small-scale

system dynamics.

C. Effect of Network Size

Lastly, the performances of all the schemes are assessed

as the number of WDs and BSs varies. Consider first a 2-

BS MEC system with a larger number M = 5 of WDs,

where the time-varying system state is generated using the

Rician factor K = 5.67 in (36) and temporal variation factor

¸ = 0.2 in (38). In this case, Ä = 0.018 in time-varying BO

approach, while Ä = 0.006 and l = 0.5 in contextual time-

varying BO strategy. Still, the proposed (contextual) time-

varying BO methods outperform the other four alternatives by

leveraging temporal and contextual information as shown in

Fig. 6. In addition, we observe that the random scheme attains

lower average regret than the BCO methods. It is because

the considered random scheme leverages the fixed half-peak

resource allocation strategy, while the whole continuous action

space needs to be explored in the BCO method for the resource

allocation.

Moreover, fixing the number M of WDs as 2, the average

EDC over slots is plotted as a function of the number N
of BSs for all the competing methods in Fig. 7. Here, the

Fig. 7. Impact of MEC network size on average energy-delay cost.

Fig. 8. Impact of mean of task input data size on average energy-delay cost
under real-world 2-BS and 2-WD MEC system.

Rician factor in (36) and value of ¸ in (38) are set to K =
4 and ¸ = 0.2 respectively. Apparently, the two proposed BO

approaches achieve lower average EDC than the other four

baselines. Additionally, the average EDC of all the methods

decreases as the network size grows by better exploiting the

diverse computing capacities and channel conditions of the

edge servers.

In Fig. 8, we further illustrate the impact of the mean

of task input data size on the average EDC over slots

under a real-world 2-BS and 2-WD MEC system with

Rician factor K = 4 and time variation parameter ¸ =
0.2. Specifically, we consider a widely-used public dataset

containing the geographical information of real-world edge

servers and anonymous mobile users in Melbourne CBD area

in Australia [45], [46]. In this experiment, the locations of

N = 2 edge servers and M = 2 WDs are extracted from the

dataset to simulate the MEC system. It is observed that the

proposed BO approaches attain lower average EDC than the

other baselines under different input data size settings in the

real-world MEC system.
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VI. CONCLUSION

BO for dynamic MEC management was studied in this

paper. Different from prior works in time-varying MEC

systems, the focus was online joint optimization of discrete

task offloading decisions and analog-amplitude resource

allocation strategies by minimizing the EDC using only bandit

observations at queried points. Specifically, by exploiting both

temporal and contextual information, we developed two novel

BO approaches that incorporate the strength of the MAB

framework. Numerical tests under different MEC network

sizes demonstrated the effectiveness of the proposed BO

approaches.
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