
SenseNet: A Physics-Informed Deep
Learning Model for Shape Sensing

Yitao Qiu1; Prajwal Kammardi Arunachala2; and Christian Linder3

Abstract: Shape sensing is an emerging technique for the reconstruction of deformed shapes using data from a discrete network of strain
sensors. The prominence is due to its suitability in promising applications such as structural health monitoring in multiple engineering fields
and shape capturing in the medical field. In this work, a physics-informed deep learning model, named SenseNet, was developed for shape
sensing applications. Unlike existing neural network approaches for shape sensing, SenseNet incorporates the knowledge of the physics of the
problem, so its performance does not rely on the choices of the training data. Compared with numerical physics-based approaches, SenseNet is
a mesh-free method, and therefore it offers convenience to problems with complex geometries. SenseNet is composed of two parts: a neural
network to predict displacements at the given input coordinates, and a physics part to compute the loss using a function incorporated with
physics information. The prior knowledge considered in the loss function includes the boundary conditions and physics relations such as the
strain–displacement relation, material constitutive equation, and the governing equation obtained from the law of balance of linear momentum.
SenseNet was validated with finite-element solutions for cases with nonlinear displacement fields and stress fields using bending and fixed
tension tests, respectively, in both two and three dimensions. A study of the sensor density effects illustrated the fact that the accuracy of the
model can be improved using a larger amount of strain data. Because general three dimensional governing equations are incorporated in the
model, it was found that SenseNet is capable of reconstructing deformations in volumes with reasonable accuracy using just the surface strain
data. Hence, unlike most existing models, SenseNet is not specialized for certain types of elements, and can be extended universally for even
thick-body applications. DOI: 10.1061/JENMDT.EMENG-6901. © 2023 American Society of Civil Engineers.

Introduction

Over the last few decades, structural health monitoring (SHM)
has been studied extensively by researchers from different com-
munities, such as civil engineering, aerospace engineering, and
mechanical engineering (Brownjohn 2007; Giurgiutiu 2016; Xiang
et al. 2018). One of the goals of SHM is to detect real-time struc-
tural health information to (1) increase human and environmental
safety, (2) make structures intelligent and improve maintenance ef-
ficiency, and (3) reduce maintenance costs and enhance sustainabil-
ity. As an emerging technology with interdisciplinary applications,
the development of SHM involves sensor technologies (Liang et al.
2009; Shen et al. 2015; Fernando 2005), tracking system deforma-
tion (Castro-Toscano et al. 2021), damage identification (Feng
and Feng 2018), data analysis, and Internet of things (IoT) (Dervilis
et al. 2015; Jo et al. 2018; Arcadius Tokognon et al. 2017). In con-
ventional static structure analysis, the loading information is uti-
lized for computing system deformation. Nevertheless, accurate
estimation of the actual applied loads can be difficult in most
practical cases. In these scenarios, shape sensing, which refers
to a technique for real-time reconstruction of deformed structures

using a discrete network of strain sensors, has been found to be
significantly important.

In addition to SHM, the shape sensing technique also has prom-
ising applications in the field of medicine. One such prominent ap-
plication is in transtibial prosthetics, wherein shape capturing
approaches are in great demand for the creation of a representation
of the residual limb (Yang et al. 2019). Currently, the design is ei-
ther done manually, which is based completely on the prosthetist’s
skill and experience, or performed computationally based on theo-
retical models, which have been found to be inaccurate for complex
shapes (Yang et al. 2019). Similar to transtibial prosthetics, custom-
ized orthopedic casts have been found to notably improve the com-
fortability and functionality for patients (Rao et al. 2019). In this
regard, additive manufacturing is an emerging technology that can
be used to print personal orthopedic casts (Kumar et al. 2022), and
shape sensing technique can help compute the desired shapes.
Therefore, an accurate shape sensing technique which can recon-
struct precisely the deformed shapes based on sensor data is essen-
tial owing to such significant practical applications.

In general, existing shape sensing approaches can be classified
into four categories (Gherlone et al. 2018). The first category is
based mostly on Ko’s displacement theory, which performs the
numerical integration of discrete strain measurements (Ko et al.
2007). The key idea was proposed for beamlike structures, and
follow-up work extended the application to wing-boxes and plates
(Ko et al. 2007, 2009; Ko and Fleischer 2009; Jutte et al. 2011;
Bakalyar and Jutte 2012). The second category approximates the
displacement field using global or piecewise continuous basis func-
tions fitted with experimental strain data (Foss and Haugse 1995;
Pisoni et al. 1995; Davis et al. 1996; Bogert et al. 2003; Kim and
Cho 2004). One of the representative methods of this category is the
modal method, which employs normal modes as basis functions to
predict the deformation (Foss and Haugse 1995; Pisoni et al. 1995;
Bogert et al. 2003). The third category is based on finite-element
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discrete variational principles, one of which is known as the inverse
finite-element method (iFEM), which was developed by Tessler and
Spangler (2003, 2005). Compared with the aforementioned ap-
proaches, the iFEM approach is the most robust and versatile, be-
cause it enforces strain–displacement relations in the formulation
and enables the reconstruction of deformed shapes without any prior
knowledge of loading conditions and material properties (Gherlone
et al. 2018; Kefal et al. 2021). Owing to the great advantages of the
iFEM approach, further enhancements and extensions to different
types of structures such as plates, shells, beams, and frame structures
have been explored (Tessler and Spangler 2004; Tessler et al. 2011;
Kefal and Oterkus 2015; Kefal et al. 2016; Gherlone et al. 2012,
2014). The experimental validation of the iFEM approach and its
applications to realistic scenarios were presented by Quach et al.
(2005), Gherlone et al. (2014), and Kefal and Oterkus (2016a, b).
The iFEM approach was extended further to multilayered composite
and sandwich structures by Cerracchio et al. (2013, 2015), Kefal
et al. (2017), and Kefal and Yildiz (2017) using the Refined Zigzag
Theory (Tessler et al. 2010). The last category consists of methods
based on neural networks (Bruno et al. 1994; Mao and Todd 2008).
In contrast to the previous approaches, these models do not consider
any physics laws binding the system. However, they require a train-
ing data set with input data, such as member length changes, and the
corresponding labelled output data, such as the body deformations.
Due to the nature of conventional purely data-driven neural networks,
the performance of these models relies strongly on the choices of the
training data.

Raissi et al. (2019) developed the concept of physics-informed
neural networks (PINNs) by incorporating prior knowledge of the
problem as soft constraints into the loss function to solve super-
vised learning tasks. The prior knowledge includes the governing
physics laws expressed using partial differential equations, initial
conditions, and boundary conditions, which help reduce the solu-
tion space of target problems. Thus, PINNs do not require labelled
solutions, unlike conventional purely data-driven neural networks,
and therefore their performance is not biased by the training data. It
has been demonstrated that this framework has great success in
solving complex systems such as the Schrödinger equation, the
Allen–Cahn equation, the Navier–Stokes equations, and Burgers’
equation (Raissi et al. 2019). Following Raissi et al. (2019), exten-
sive efforts have investigated the application of PINNs in other re-
search fields such as fluid mechanics (Cai et al. 2022; Lucor et al.
2021; Sun and Wang 2020; Mahmoudabadbozchelou et al. 2021a,
b), solid mechanics (Zhang et al. 2020a, b; Li et al. 2021; Liu et al.
2021; Bahmani and Sun 2021; Zhang and Garikipati 2021), heat
transfer problems (Cai et al. 2021), power systems (Huang and
Wang 2022), climate modeling (Kashinath et al. 2021), biological
applications (Sahli Costabal et al. 2020; Linka et al. 2022), and
chemical reactions (Ji et al. 2021). However, the application of this
method for shape sensing is lacking in literature.

Because of the prominence of shape sensing technique for inter-
disciplinary applications, this paper introduces a physics-informed
deep learning model, named SenseNet, for reconstructing deformed
shapes using sensor data without prior knowledge of the loading
information. Inspired by Raissi et al. (2019), SenseNet uses a sim-
ple fully connected neural network to compute displacements as
the output corresponding to the input coordinates. Using automatic
differentiation (Baydin et al. 2018) and physics relations such as
the strain–displacement relation and the material constitutive equa-
tion, SenseNet is able to compute the corresponding mechanical
strain, mechanical stress, and residual of the governing equation
obtained from balance of linear momentum. This physics knowl-
edge, along with the boundary conditions, is incorporated during
the formulation of the loss function in order to train the model.

The model was tested by simulating a bending test as a case with
a nonlinear displacement field and a fixed tension test as a case with
a nonlinear stress field, in both two and three dimensions. Further-
more, a study of the effects of the amount of sensor data on the
performance of the model was conducted for the two-dimensional
(2D) simulations. Unlike iFEM (Tessler and Spangler 2003, 2005),
SenseNet does not require a mesh, but only the geometry of the
continuum. Therefore, SenseNet is a mesh-free approach for shape
sensing, with a potential advantage in tackling problems with com-
plex geometries. Because the physics knowledge of the problem is
incorporated, its performance is expected to be more robust than the
traditional neural network approaches, which are biased depending
on the choices of the training data set. Furthermore, unlike most
existing approaches, incorporation of the general three-dimensional
(3D) governing equations can help the model predict volume de-
formations utilizing just the surface strain data.

The outline of the paper is as follows. We start by explaining
the mechanism of SenseNet and the workflow of the current study
using SenseNet in the section “Methods.” Numerical examples
in 2D and 3D contexts are discussed in the section “Numerical
Results for 2D Applications” and section “Numerical Results for
3D Applications,” respectively. Because sensor density is one of
the primary factors that can affect the results, its effects are stud-
ied in the section “Sensor Density Effects.” Finally, the SenseNet
approach and the numerical results are summarized in the section
“Conclusions.”

Methods

SenseNet is a physics-informed deep learning model for recon-
structing deformed shapes using sensor data without prior knowl-
edge of the loading information. SenseNet consists of two parts
(Fig. 1): the neural network and the physics part. The neural net-
work takes the spatial coordinates vector x as the input and predicts
the displacement vector u at corresponding input coordinates as
the output. In a 2D context, x ¼ fx; yg, u ¼ fux; uyg; in 3D,
x ¼ fx; y; zg, u ¼ fux; uy; uzg. Using these displacements and uti-
lizing automatic differentiation, the physics part first computes the
mechanical strain tensor ε using the strain–displacement relation
given by

ε ¼ 1

2
ð∇uþ ∇TuÞ ð1Þ

Assuming a linear elastic material and utilizing Hooke’s law as
the material constitutive equation, the mechanical stress tensor is
computed as

Fig. 1. Schematic diagram of SenseNet with both the neural network
and the physics part.
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σ ¼ λtrεI þ 2με ð2Þ

where λ and μ = Lamé’s parameters. Further, the residual vector f
of the governing equation obtained from the balance of linear mo-
mentum is obtained as

f ¼ ∇ · σ ð3Þ

The loss function considered for SenseNet contains three
components

L ¼ MSEu þMSEε þMSEf ð4Þ

where MSEu = mean square error in displacements on fixed boun-
daries; MSEε = mean square error in projected strains compared
with strain data at given sensor locations and along predefined di-
rections; and MSEf = mean square error of residual f of governing
equation in the whole domain. In practice, each loss component can
be scaled by different weights to balance the total loss.

The first component of the loss function, MSEu, considers the
satisfaction of the fixed boundary conditions, wherein faces,
edges, or points can have zero displacement along a particular
direction. Assuming that upredðxÞ is the component of the pre-
dicted displacement, which ideally should be zero at any sampled
point x on such fixed boundaries, the mean squared error can be
written as

MSEu ¼
1

Nu

XNu

k¼1

ðupredðxkÞÞ2 ð5Þ

where Nu = total number of sampling points over which boundary
conditions are applied.

The second component of the loss function, MSEε, accounts for
the discrepancy between the sensor strain data and the predicted
strains at certain locations. Although SenseNet is generalized for
different types of sensors, we assume a certain type of sensor pair
that can measure strain information along two perpendicular direc-
tions. Considering practicality for the purpose of fabrication, each
sensor pair is assumed to measure strains along either 0° and 90°, or
45° and 135°, wherein angles are assumed to be measured anti-
clockwise from the x-axis. Using the predicted displacements of
the neural network, SenseNet first computes the mechanical strain

tensors ε using Eq. (1) at the locations of the strain sensors. Then
SenseNet transforms this strain tensor to a projected scalar strain
value εpred along the corresponding direction in which those sensor
data are reported. The projected strain along the sensor direction
vector t can be computed as

εpred ¼ t · εt ð6Þ

Using this, the mean square error component can be written as

MSEε ¼
1

Nε

XNε

k¼1

ðεpredk − εsensork Þ2 ð7Þ

where Nε = total number of strain data points; and εsensor = strain
values reported by sensors.

The last component of the loss function is considered to fulfill
the balance of linear momentum in the whole domain. The gov-
erning equation obtained from the balance law given by

ρv̇ ¼ ∇ · σ þ ρb ð8Þ

is the most fundamental equation of mechanics, describing the
mechanical equilibrium of an infinitesimal volume element. In
Eq. (8), ρ is the density of the material, v is the velocity field,
and b is the body force. This paper considers only static and
quasi-static problems, and hence neglects the term ρv̇. In addition,
for the sake of simplicity, the body force also is ignored, so Eq. (8)
is simplified to obtain

∇ · σ ¼ 0 ð9Þ

For the fulfillment of Eq. (9), the residual vector f is calculated
using Eq. (3) and the mean squared error component is defined as

MSEf ¼ 1

Nf

XNf

k¼1

k f kk2 ð10Þ

where Nf = total number of sampling points in the whole domain;
and the L2 norm is considered.

The work flow of this study is depicted in Fig. 2. Owing to the
lack of experimental data, we first ran forward finite-element

Fig. 2. Work flow for this study.
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simulations using the mesh generated from the geometry, material
properties, boundary conditions, and loading conditions in order to
generate strain and displacement data. SenseNet utilizes these strain
data along with the geometry, material properties, and boundary
conditions for the training process. Finally, predictions of SenseNet
were validated using the displacement data obtained from the
forward finite-element simulations. For better visualization, the
processes related to the forward finite-element simulations are rep-
resented by dashed lines in Fig. 2, whereas the solid lines denote
SenseNet-related processes. Unlike traditional numerical methods,
SenseNet requires only the geometry of the problem, rather than the
mesh generated from the geometry. Therefore, SenseNet is a mesh-
free method which is convenient for problems with either complex
geometry or extremely large deformations.

The accuracy of the predictions of SenseNet was assessed using
the normalized RMS error (RMSE) metric (Gherlone et al. 2018;
Zhao et al. 2020), which is defined as

normalized RMSE ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1
N

PN
i¼1ðkuref − upredk2Þ

q

maxðkurefkÞ
ð11Þ

The numerator is the RMSE of the predicted displacements
upred with respect to the reference displacements uref at N different
locations. In this work, uref represents the displacements calcu-
lated using forward finite-element simulations, although it also
can use experimental measurements if these are available. The de-
nominator is the maximal magnitude of the reference displace-
ments. The magnitudes of the vectors are obtained using the
L2 norm.

Numerical Results for 2D Applications

The ability of SenseNet to reconstruct the deformed shapes using
discrete sensor data was verified by performing benchmark simu-
lations and comparing the predicted displacements with the for-
ward finite-element solutions. The schematic diagrams of all
these tests are presented in Fig. 3, in which dashed and solid lines
represent the outlines of the undeformed and deformed shapes,
respectively, and the black strips and dotted lines represent the vis-
ible and unseen sensor pairs, respectively. In all our simulations, we
assumed E ¼ 100 and ν ¼ 0.4 as the material parameters. Further-
more, a simple fully connected neural network with 7 hidden
layers, with each layer consisting of 20–40 neurons and using the
tanh activation function, was used. In practice, we used the Adam
optimizer rather than the Broyden–Fletcher–Goldfarb–Shanno
(BFGS) optimizer, because the latter was found to be more vulner-
able to local minima. Moreover, an exponential learning rate decay
is applied in the training of SenseNet, which helps the optimi-
zation and generalization of the model. As a multiobjective opti-
mization problem, weights of different loss components need to
be adjusted carefully to avoid potential gradient conflict issues.
In this work, the weight of MSEf was set to 1, and the weights
of MSEu and MSEε were set to 10,000 to mitigate the scaling effect
of E on MSEf .

Although most practical applications are 3D in nature, many of
these problems can be simplified as 2D problems using assumptions
such as plane strain, plane stress, and axisymmetry, which can re-
duce the computational complexity significantly. Therefore, we first
validated SenseNet for different 2D problems by assuming plane
strain conditions. Specifically, SenseNet was tested for 2D bending
and 2D fixed tension problems in the following two subsections.

(a) (b)

(c) (d)

Fig. 3. Schematic diagrams of bending and fixed tension tests in 2D and 3D contexts: (a) 2D bending test; (b) 2D fixed tension test; (c) 3D bending
test; and (d) 3D fixed tension test.
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Two-Dimensional Bending Test

To validate if our model is capable of reproducing nonuniform
displacement fields, a simple bending test of a 2D beam was per-
formed in this subsection. The domain of the beam was assumed to
be within (0,0) and (5,1) [Fig. 3(a)]. Regarding the boundary
conditions, the left end of the beam is fixed in the x-direction, im-
plying that ux ¼ 0 at x ¼ 0. In addition, the center point on the left
boundary was fixed in both the x- and y-directions, implying that
ux ¼ uy ¼ 0 at x ¼ 0; y ¼ 0.5. In the forward finite-element sim-
ulation, the right end of the beam was applied with a moment,
which remained unknown to SenseNet. The moment was achieved
using a Neumann boundary condition with the distributive traction
only along the x-direction as Fx ¼ 0.5 − y, where a positive stress
value implies a rightward stress and a negative stress value implies
a leftward stress.

We assumed that nine sensor pairs were used in this problem,
which were located at the intersections of x ¼ f1.25; 2.5; 3.75g and
y ¼ f0.25; 0.5; 0.75g. The orientation of each sensor pair was dif-
ferent from that of its neighboring pairs, so that the sensors could
capture strain information along different directions.

Fig. 4 plots the contours of the displacement magnitude umag
and the displacement components ux, uy obtained by the forward
finite-element simulation in the first column on the deformed con-
figuration. The second column plots the deformed shape predicted
by SenseNet, with the contours of umag, ux, and uy. The deformed
shape in these two columns are scaled by a factor of 10 for better
visualization. The absolute differences in umag, ux, and uy between
the finite-element solution and the SenseNet prediction, denoted by
jΔumagj, jΔuxj, and jΔuyj, are plotted on the undeformed geometry
of the beam in the third column. The deformed shape predicted by
SenseNet matched reasonably well with the shape obtained by the

forward finite-element simulation. The maximal absolute differen-
ces jΔumagj, jΔuxj, and jΔuyj all were of the same order of mag-
nitude, 10−4. Because the left boundary was constrained in the
x-direction by minimizing the loss, the error in ux on that boundary
was the least. In the y-direction, only the center point of the left
boundary (x ¼ 0; y ¼ 0.5) was fixed, and therefore jΔuyj was the
least at that point.

To show the relative accuracy, we define the percentage differ-
ence (PD) (Kefal and Oterkus 2016b) as

PD ¼ jΔuij
maxjuij

ð12Þ

where ui can be ux, uy, or umag. The maximal PDs computed were
0.27% in umag, 0.62% in ux, and 0.29% in uy. The maximal PD was
much larger in ux due to its smaller magnitude, because the main
deflection was in the y-direction. Whereas the contour plots of ab-
solute differences exhibit the local accuracy information, the nor-
malized RMSE represents the global accuracy, which was 0.129%
for this problem (Table 1).

Fig. 4. Comparison of SenseNet prediction with finite-element solution for 2D bending test.

Table 1. Normalized RMSE and maximal PDs of 2D bending and fixed
tension tests (%)

Problems 2D bending 2D fixed tension

Normalized RMSE 0.129 0.934
Maximal PD (umag) 0.27 5.7
Maximal PD (ux) 0.62 6.6
Maximal PD (uy) 0.29 13.5

© ASCE 04023002-5 J. Eng. Mech.
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Two-Dimensional Fixed Tension Test

To validate our model for predicting the deformed shapes for cases
with nonlinear stress distributions, a simple fixed tension test was
performed on a unit square, the domain of which was within (0,0)
and (1,1). The left boundary of the plate was fixed in both the x- and
y-directions, whereas the right boundary was fixed only in the
y-direction and imposed with a displacement in the x-direction
[Fig. 3(b)]. We assumed ux ¼ uy ¼ 0 at x ¼ 0 for the boundary
conditions and ux ¼ 0.1 and uy ¼ 0 at x ¼ 1 for the loading con-
ditions. Both the boundary and loading conditions were known to
the forward finite-element simulation, whereas SenseNet was
unaware of the loading conditions.

Nine sensor pairs were assumed in this problem, which were
located at the intersections of x ¼ f0.25; 0.5; 0.75g and y ¼
f0.25; 0.5; 0.75g [Fig. 3(b)]. Similar to the previous 2D bending
test case, we differed the orientation of each sensor pair from its
neighboring pairs to collect more strain information along different
directions.

Due to the imposed boundary and loading conditions, there
were stress concentrations in the fixed tension test. Stress concen-
trations arose mainly around the four corners in the contour plots of
σxx, σxy, and σyy (Fig. 5). Because calculating the residual of the
governing equation in Eq. (3) involves the gradient of each stress
component, the stress concentration phenomenon may hinder the
performance of the model.

The normalized RMSE for this problem was 0.934% (Table 1),
which was higher than that in the 2D bending test. However, the
visualization of the deformed shape predicted by SenseNet
matched reasonably well with the shape obtained by the forward
finite-element simulation (Fig. 6). The first and second columns
in Fig. 6 present the contours of umag, ux, and uy on the deformed
shapes obtained by the forward finite-element simulation and pre-
dicted by SenseNet, respectively. The deformed shapes are scaled
by a factor of 10 for better visualization. The contour plots of ab-
solute differences in umag, ux, and uy are presented on the unde-
formed configuration in the third column. The maximal values of
umag, ux, and uy had the same order of magnitude, 10−4. The pre-
diction of SenseNet mostly captured the deformed shape, although
there were some differences around the four corners. The left end of
the plate remained flat, because a Dirichlet boundary condition was
imposed to keep it clamped. However, small curvatures occurred at
the top and bottom of the right end of the plate, although it also was
expected to be flat. These small curvatures resulted in a smoother
stress distribution at the right boundary, and hence it can be one
of the consequences resulting from the stress concentrations.
The maximal absolute differences in umag, ux, and uy were located

at the four corners and the right boundary, which may be caused by
the stress concentrations, as explained previously. The maximal
PDs were about 5.7% in umag, 6.6% in ux, and 13.5% in uy.
The larger maximal PD in uy was due to the fact that juyj was much
smaller than juxj and umag.

These examples show the ability of the model to capture the
deformed shapes for cases with nonlinear displacement and stress
fields in 2D.

Numerical Results for 3D Applications

The practicality of 3D applications makes it vital to study the
behavior of our model for such cases. The reconstruction of
the deformed volumes using just the available surface sensor data
adds to the complexity of the problem. To validate the perfor-
mance of SenseNet for 3D applications, we studied similar tests
in 3D in this section, specifically, 3D bending and 3D fixed ten-
sion tests.

Three-Dimensional Bending Test

Similar to the 2D bending test in the previous section, SenseNet
was validated with a 3D beam in a bending test in this subsection.
The beam had a length of 5 in the x-direction, a thickness of 1
in the y-direction, and a height of 1 in the z-direction [Fig. 3(c)].
The beam was clamped at the left end, with ux ¼ uy ¼ uz ¼ 0
at x ¼ 0, which was the boundary condition for this problem
and which was known to both the forward finite-element simula-
tion and SenseNet. At the right end, a moment, achieved by a
distributive traction Fx ¼ 0.5 − z, was imposed in the forward
finite-element simulation, which remained unknown to SenseNet.
Owing to the complexity of 3D modeling, sensors were distrib-
uted on the front, rear, top, and bottom surfaces to collect strain
information on both the x-y and x-z planes. On each of these four
surfaces, nine sensor pairs were assumed to be located at equally
spaced intervals at the intersections of x ¼ f1.25; 2.5; 3.75g and y
or z ¼ f0.25; 0.5; 0.75g. Hence, a total of 36 sensor pairs were
assumed to be attached to the beam. The orientations of the sensor
pairs on each surface differed from those of their neighboring
pairs, to collect more-diverse strain information.

Fig. 7 plots the SenseNet predictions of the 3D bending test
results and the finite-element solution. The first and second col-
umns show the contour plots of umag, ux, uy, and uz on the de-
formed shape computed by the forward finite-element simulation
and SenseNet, respectively. The deformed shapes are scaled by a
factor of 10 for better visualization. The SenseNet prediction

(a) (b) (c)

Fig. 5. Stress distributions in 2D fixed tension test: (a) σxx; (b) σxy; and (c) σyy.
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matched well with the finite-element solution. The last column
plots the absolute differences in umag, ux, uy, and uz between
the finite-element solution and the SenseNet prediction on the un-
deformed shape. The maximal absolute differences jΔumagj,
jΔuxj, jΔuyj, and jΔuzj, which mostly were located at the right
end due to the unknown loading condition in SenseNet, were all
of the same order of magnitude, 10−3. The maximal PDs were
about 6.4% in umag, 6.8% in ux, 100%, in uy and 6.3% in uz.
In this problem, uy mainly resulted from the Poisson effect,
and therefore the magnitude of uy was much smaller than the
magnitude of other displacements, which further led to the largest
maximal PD in uy. The normalized RMSE was 1.97% for this
problem (Table 2). Although the small transverse displacement

was not well captured by the model using just 72 sensor strain
data, the small value of the holistic RMSE shows that SenseNet
can capture the overall deformed shapes for the case of 3D bend-
ing reasonably well.

Three-Dimensional Fixed Tension Test

This subsection extends the 2D fixed tension test in the previous
section into a 3D context by converting the unit square into a unit
cube within (0,0,0) and (1,1,1). The boundary conditions included
clamping left surface of the unit cube (ux ¼ uy ¼ uz ¼ 0), which
was known to both the forward finite-element simulation and
SenseNet. In addition, the right surface of the cube was imposed

Fig. 6. Comparison of SenseNet prediction with finite-element solution for 2D fixed tension test.
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with a loading condition ux ¼ 0.01 and uy ¼ uz ¼ 0 in the forward
finite-element simulation, which remained unknown to SenseNet.
One can expect stress concentrations around the eight corners of the
cube analogous to those in the 2D fixed tension test. To collect
more sensor information from different surfaces, 36 sensor pairs
were assumed at the intersections of x ¼ f0.25; 0.5; 0.75g and y

or z ¼ f0.25; 0.5; 0.75g on the front, rear, top, and bottom surfaces
[Fig. 3(d)]. The sensor pairs on each surface had different orienta-
tions than their neighbors.

Fig. 8 plots the 3D fixed tension results computed by the for-
ward finite-element simulation and predicted by SenseNet. For
better visualization of the complete deformation of the cube, the
deformations in both the x-y and x-z planes are presented, and
all the deformed shapes are scaled by a factor of 10. The first
two columns contain the contours of umag, ux, uy, and uz obtained
by the finite-element method on the deformed shape. The SenseNet
predictions of umag, ux, uy, and uz are plotted on the deformed
shape in the middle two columns. The absolute differences in
umag, ux, uy, and uz between the finite-element solution and
SenseNet prediction are plotted on the undeformed shape in the
last column. The SenseNet prediction matched the finite-element
solution well. The absolute differences had the same order of
magnitude, 10−4. In the contour plots, the maximal absolute

Fig. 7. Comparison of SenseNet prediction with finite-element solution for 3D bending test.

Table 2. Normalized RMSE and maximal PDs of 3D bending and fixed
tension tests (%)

Problems 3D bending 3D fixed tension

Normalized RMSE 1.97 4.19
Maximal PD (umag) 6.4 7.5
Maximal PD (ux) 6.8 8.0
Maximal PD (uy) 100.0 27.0
Maximal PD (uz) 6.3 24.8
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differences occurred more around the boundary lines of the left
(x ¼ 0) and right (x ¼ 1) surfaces, where stress concentrations
arose. The maximal PDs were about 7.5% in umag, 8.0% in ux,
27.0% in uy, and 24.8% in uz. The maximal PD in ux occurred
mainly at the x ¼ 1 boundary because SenseNet did not have
any information, either in terms of boundary conditions or surface
sensor strain data, about that face (Fig. 8). The maximal PDs in uy
and uz were much larger than those in ux and umag due to their
smaller values, because the main deflection of this problem was
along the x-axis. The normalized RMSE was 4.19% for this prob-
lem (Table 2).

Although 3D applications present a challenge due to the
unavailability of strain information inside the volume, these

numerical results validate the ability of our model to reconstruct
the deformed shapes using just the surface sensor data with reason-
able accuracy.

Sensor Density Effects

In addition to the neural network parameters which can be
tuned, a few other factors, such as sensor density, directions,
and locations, can impact the accuracy of the results. Practically,
sensor directions and locations can be problem-specific. However,
in all the examples in this study, we assumed a consistent strategy,
wherein sensor directions can capture strain information along

Fig. 8. Comparison of SenseNet prediction with finite-element solution for 3D fixed tension test.
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four directions (0°, 45°, 90°, and 135°), and the locations are
chosen for a uniform pattern of sensors. This strategy not only
is experimentally feasible for fabrication, but also can be adopted
across different problems with insignificant effects on the results.
A major factor that can affect the resource cost of experiments
and the accuracy of the SenseNet predictions is the amount
of sensor data required. Therefore, this section discusses the ef-
fects of sensor density on the accuracy of SenseNet. The 2D
bending and the 2D fixed tension tests with varying number
of sensor pairs were considered for the discussion. The normal-
ized RMSE was used as the metric for evaluating the accuracy of
the predicted results.

In both the tests, four representative cases with different
numbers of sensor pairs (1 × 1, 3 × 3, 7 × 7, and 15 × 15) were
studied. All the sensors were spaced equally within the domain
[ð0; 0Þ × ð5; 1Þ for the bending test and ð0; 0Þ × ð1; 1Þ for the fixed
tension test] in each case.

The normalized RMSE decreased with an increase in the num-
ber of sensors (Fig. 9). Due to the nonlinear nature of the neural
network, a larger amount of sensor data results in higher accuracy
of the predictions. Because a larger number of sensors contributes
to additional financial costs and mechanical efforts for fabrication,
an optimal and practical sensor pair pattern 3 × 3, was utilized in
all the simulations of this study. The results show that this minimal
amount of data was sufficient for reconstructing the deformed
shapes within an error tolerance of 1%, which is acceptable for
most practical purposes. Furthermore, this study shows that
although our model is reasonably accurate with a 3 × 3 sensor pair
pattern, a larger amount of data potentially can improve its
precision.

Conclusions

Shape sensing is an emerging technique with many interdiscipli-
nary applications. Hence, a model for recapturing the deformed
shapes using data from a discrete network of strain sensors
and having widespread applicability to even thick 3D volumes
is indispensable. This study proposes SenseNet, a physics-
informed deep learning model, which predicts the displacement
vector as the output corresponding to the input spatial position
vector, for such applications. SenseNet consists of a fully con-
nected neural network and a physics part which incorporates
the prior knowledge of the problem. In the physics part, automatic
differentiation is utilized to compute the mechanical strain and the
governing equation residual information, using physics relations
such as the strain–displacement relation, material constitutive

equation, and the law of balance of linear momentum. The loss
function is assumed to consist of the error due to fulfillment of
fixed boundary conditions, the error due to difference in the sen-
sor strain data and predicted strains, and the error in satisfying the
governing equation. The incorporation of these prior knowledge
of the problem into the loss function is instrumental in making
SenseNet physics-informed, and thus more robust than the
existing conventional neural network approaches, which are
biased depending on the choice of training data. SenseNet was
validated using data generated from finite-element simulations
for bending and fixed tension tests, in both 2D and 3D contexts.
The normalized RMSEs obtained for the 2D bending and fixed
tension tests and their 3D counterparts were 0.128%, 0.934%,
1.97%, and 4.19%, respectively. The fixed tension tests had larger
normalized RMSEs than the bending tests mostly due to the oc-
currence of the stress concentrations. Due to the lack of strain
information within the volume, the errors for the 3D tests were
much larger than their 2D counterparts. Overall, the results cor-
roborate the capability of our model to reconstruct the deformed
shapes with reasonable accuracy using discrete strain sensor
data. The study of the sensor density effects showed that the ac-
curacy of the model can be improved with larger amounts of
strain data.

Because SenseNet is a mesh-free method, it can be applicable to
more-complex geometries. Due to the incorporation of the general
3D governing equation, the model is able to capture volume defor-
mation using just the surface sensor data. Hence, unlike most
existing models, SenseNet is not specialized for certain types of
elements only, but can be applied universally to thick bodies as
well. In the future, studies considering realistic complex applica-
tions and noise in sensor information are essential to prove the prac-
ticability of SenseNet. A study of the computational efficiency of
the proposed model compared with other discretization methods
also would be worthy future research work. The extension of
the model for dynamic loading cases would be an interesting study
for real-time shape sensing applications. Moreover, transfer learn-
ing can be promising in the generalization of reconstruction
with respect to various deformations and structures (Lejeune and
Zhao 2021).

Data Availability Statement

Some data, models, or code (e.g., finite-element and SenseNet
results) that support the findings of this study are available from
the corresponding author upon reasonable request.

(a) (b)

Fig. 9. Plots of the normalized RMSE versus the sensor pair pattern (nx × ny) studies: (a) 2D bending test; and (b) 2D fixed tension test.
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