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Abstract

Rubber-like materials have a broad scope of applications due to their unique properties like high stretchability and increased
toughness. Hence, computational models for simulating their fracture behavior are paramount for designing them against failures.
In this study, the phase field fracture approach is integrated with a multiscale polymer model for predicting the fracture behavior
in elastomers. At the microscale, damaged polymer chains are modeled to be made up of a number of elastic chain segments
pinned together. Using the phase field approach, the damage in the chains is represented using a continuous variable. Both the
bond stretch internal energy and the entropic free energy of the chain are assumed to drive the damage, and the advantages of
this assumption are expounded. A framework for utilizing the non-affine microsphere model for damaged systems is proposed
by considering the minimization of a hypothetical undamaged free energy, ultimately connecting the chain stretch to the
macroscale deformation gradient. At the macroscale, a thermodynamically consistent formulation is derived in which the total
dissipation is assumed to be mainly due to the rupture of molecular bonds. Using a monolithic scheme, the proposed model is
numerically implemented and the resulting three-dimensional simulation predictions are compared with existing experimental
data. The capability of the model to qualitatively predict the propagation of complex crack paths and quantitatively estimate
the overall fracture behavior is verified. Additionally, the effect of the length scale parameter on the predicted fracture behavior
is studied for an inhomogeneous system.
© 2023 Elsevier B.V. All rights reserved.
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1. Introduction

Rubber-like materials are known for their desirable properties like high stretchability, low stiffness, and high
toughness, and hence find myriad applications in many blooming fields like stretchable electronics. Additionally,
the possibility of their combination with carbon nanotubes or conjugated polymers to create stretchable conductors
or semiconductors makes them a perfect choice for future applications in devices like self-actuators, epidermal
electronics, and implantable sensors [1,2]. Elastomers also find many biological applications in fields like soft
robotics [3,4], tissue engineering [5,6], and biomedical implants [7]. Due to their low cost and low weight, rubber-
based materials have a wide range of industrial applications like tires, seals, hoses, and airbags [8—10]. Therefore,
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computational models for simulating the fracture behavior of rubber-like materials are vital for quantifying their
behavior and designing against fracture or fatigue failures.

Early studies in this field often used classical fracture mechanics to present failure criteria for estimating the
crack initiation and the ultimate fracture behavior of rubber-like materials. One of the earliest investigations was
performed by Rivlin and Thomas [11], wherein a critical macroscopic fracture toughness or tearing energy of
rubbers was defined in line with the critical energy release rate proposed by Griffith [12] in order to predict the
incipient and catastrophic tearing of rubber specimens. Pidaparti et al. [13] applied this concept for predicting the
critical loads in specimens subjected to mixed mode loading. Further extending this concept, Hocine et al. [14,15]
and Hocine and Abdelaziz [16] studied the evaluation of the fracture toughness of rubber as the critical value of
J-integral at crack initiation in a notched specimen. In other works, Kawabata [17] proposed a fracture criterion
based on a critical stretch for rubber-like materials under biaxial stress states, and Hamdi et al. [18] extended this
for different biaxiality loading ratios. Even recently, failure criteria based on critical local energy release rate for
fatigue fracture [19], local strain energy density for cracked and V-notched specimens [20], and critical effective
stretch for mode-I crack loading [21], have been proposed for these elastomers. However, these methods have been
found to exhibit mesh dependency during numerical simulations, require additional crack propagation criteria and
become inapplicable for modeling complex multi-crack interactions [22]. This necessitates using continuum damage
models to simulate the crack propagation in rubber-like materials.

In order to overcome the above limitations, phase field method has been commonly used for modeling the
crack propagation in such materials. This continuum approach represents discontinuities in a diffusive manner
and involves a length scale for gradient effects of damage. In the mechanics community, the study by Francfort
and Marigo [23] was the pioneering work that proposed a variational formulation for brittle fracture using the
phase field idea. This method was regularized by Bourdin et al. [24] using a length scale, thus making it suitable
for numerical simulations. One of the first works to develop a framework in the finite deformation setting for
utilization of the phase field method for modeling fracture in rubbery polymers was by Miehe and Schinzel
[25]. Since then, the phase field method has been used in many large deformation applications like anisotropic
biological tissues [26,27], fiber-reinforced composite laminates [28,29], thermo-elastic-plastic solids [30], ductile
fracture [31,32] and hydrogels [33,34].

For rubber-like materials, many researchers have extended the framework proposed by Miehe and Schinzel [25]
and have developed models using the macroscale critical energy release rate, in line with Griffith’s theory. Wu
et al. [35] applied the phase field method to study rupture in carbon black reinforced natural rubber composites
and performed a Monte Carlo simulation to quantify the uncertainty in their failures. A phase-transition theory
was proposed by Kumar et al. [36] for modeling the crack propagation and healing in elastomers by assuming
the fracture nucleation to occur in regions of large stress concentrations. For capturing the rate-dependent behavior
of rubbers, Loew et al. [8] accounted for their viscosity in the description of the bulk as well as in the damage
driving force. Improving on this, Yin and Kaliske [37] proposed a phase field method coupled with a viscoelastic
rheological approach for general viscoelastic polymers while considering only the elastic stored energy to drive the
damage. The phase field method was extended for modeling high-speed crack instability in general hyperelastic
materials by Tian et al. [38] by deriving a dynamic model based on the non-conservative Lagrange equation. The
competition between the damage in the bulk and interfaces in bilayer composites made of rubber-like materials was
studied by Marulli et al. [39] by integrating with the cohesive zone approach to model the imperfect interfaces.
A higher-order phase field theory for hyperelastic rubbers was proposed by Peng et al. [40] for improving the
numerical efficiency. Many recent researchers have incorporated the incompressible nature of rubbers in their phase
field approaches and have proposed stabilized formulations [41-44]. The aforementioned phase field approaches
combined with macroscale elastomer models are based on Griffith’s theory. Although this has been found to hold
for specimens with macroscopic flaws, Chen et al. [45] used experiments to demonstrate that Griffith’s theory’s
fundamental flaw-sensitive behavior assumption fails at very small length scales, which can range from nanometers
to centimeters depending on the material. Further, it is advantageous to account for the micro-mechanical behavior of
the polymers for coupling the effects of complex microscale phenomena like strain-induced crystallization [46]. This
motivates the need for developing multiscale models and coupling them with the phase field theory for generalized
utility.

A key component of an effective multiscale theory is a network model that bridges the deformations at the
two scales. Early network theories like the three-chain model [47,48] assumed the deformation mapping of the
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chains along the principal stretch directions to be the same as that at the macroscale, which is referred to as
affine deformation. As this was observed to over-constrain the system, the concept of non-affine deformation was
introduced by allowing chain reorientations to redistribute the stress more flexibly and attain lower energy states
while simultaneously satisfying kinematic compatibility. The most commonly used eight-chain model [49] considers
an effective non-affine response of the overall network by assuming affine deformation of the representative
chains oriented along the diagonals of a unit cubic cell. However, this model has been found to exhibit a
fixed relationship between locking stretches for different deformation modes [50,51], and hence is inefficient
in simultaneously estimating different multi-axial responses [52]. To overcome this limitation, the microsphere
model proposed by Miehe et al. [50] introduces non-affinity with the help of a fluctuation field, which is solved
utilizing the principle of averaged free energy subjected to a p-root average constraint. Additionally, the restricted
movement of a single polymer chain using a tube-like constraint is considered in order to account for the effects
of crosslinks and entanglements. The effectiveness of this non-affine model in capturing inelastic effects in rubbers
like viscoelasticity [53,54], anisotropic Mullins-type damage [55] and strain-induced crystallization [56] has been
studied in the literature. Due to its capability, the non-affine microsphere model can be well suited for accurately
capturing the damaged response of rubber-like materials which are subjected to complex loadings.

Among the fracture studies that incorporate microscale properties, one of the earliest attempts was done by Lake
and Thomas [57], wherein the critical energy release rate of rubbers was expressed in terms of the binding energy
between the monomer units. Recognizing its importance, Mao et al. [58] incorporated the internal energy due to
molecular bond stretching by assuming the chain segments to be elastic and proposed a fracture criterion based
on the critical bond rupture energy. Building on this theory, Talamini et al. [59] utilized the eight-chain model and
developed a novel phase field model for elastomers by assuming fracture to be solely propelled by the internal
molecular distortional energy. Li and Bouklas [60] also used the eight-chain network model and simulated the
fracture in nearly-incompressible polydisperse elastomer networks by using a critical energy release rate obtained
with the help of the critical bond dissociation energy. Micromechanically motivated constitutive models, wherein
the effective macroscale damage is obtained by homogenization of the anisotropic microscale chain damage, were
developed and tested for uniaxial tension case by Mulderrig et al. [61]. The aforementioned study investigates the
efficacy of microsphere-based affine and non-affine models bridging the deformations at the two scales. Utilizing
the maximal advance path constraint network model [62], the effect of strain-induced crystallization on delaying the
onset of fracture initiation in certain rubbers was captured by incorporating bond and crystallite distortional energies
into the critical rupture energy by Arunachala et al. [46]. Despite the fact that Swamynathan et al. [63] utilized the
phenomenological Gent model of hyperelasticity [64], they considered the dissipation due to bond stretching and
validated their phase field approach for multiaxial loading cases of industrially relevant silicone material. Although
there is a lack of studies incorporating the non-affine microsphere model proposed by Miehe et al. [50] along with
the phase field approach, a few studies utilize it for modeling fracture in elastomers. Dal and Kaliske [51] used it
for modeling aging-induced fracture in rubber-like materials, wherein the Morse potential used for the interatomic
bond energy captures the failure due to bond rupture. Guo and Zairi [65] also utilized this non-affine network
model for modeling deformation-induced failure in elastomeric media by introducing elastic detachable bonds to
account for the time-dependent stochastic chain scission process. However, there is a dearth of studies exploring
the effectiveness of the non-affine microsphere network model in estimating fracture behavior for inhomogeneous
cases. Furthermore, most of these studies lack in illustrating the applicability of their models for capturing complex
crack paths and comparing them with experimental data.

To further the understanding of the fracture behavior and enhance the modeling capacity of the crack propagation
in elastomers, we propose a phase field fracture model built on top of a multiscale polymer model, which is bridged
using a non-affine network model. At the microscale, the physicality and numerical advantages of considering the
entropic energy contribution, in addition to the internal energy due to bond stretch, to the damage driving force
is discussed. The non-affine microsphere model is utilized for bridging the deformations at the two scales and a
framework for its amalgamation with the damage model is proposed. At the macroscale, a thermodynamically
consistent formulation is developed. The bulk energy is assumed to degrade faster than the chain-free energy,
and separate damage-driving history variables are introduced. The model is validated by comparing the three-
dimensional simulation results with existing experimental data for complex inhomogeneous systems. The effect
of the length scale parameter on the predicted load—displacement behavior and crack propagation paths is also
investigated.
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Ry = VNI R = ARy

Ly =Nl L=NI

(a) Undamaged chain in initial state (b) Damaged chain in current state

Fig. 1. Models assumed for the undamaged chain in the initial state and a damaged chain in the current state.

The outline of the paper is as follows. The phase field damage approach combined with the multiscale model for
elastomers is presented in Section 2. In particular, the microscale damaged chain model is proposed in Section 2.1,
a framework for bridging the deformations at the two scales using the non-affine microsphere model is introduced in
Section 2.2, and the unified multiscale model with the phase field fracture approach at the macroscale is presented
in Section 2.3. The numerical implementation of the model is detailed in Section 3. Numerical simulations are
performed and the predictions are validated with existing experimental data in Section 4. Finally, the conclusions
are summarized in Section 5, and additional information, derivations, and results are presented in the Appendices.

2. Multiscale fracture model using the phase field approach

The underlying polymer chain network contributes significantly to the unique characteristics of rubber-like
materials, which necessitates the microscale modeling for accurately predicting their behavior. Furthermore,
accounting for the microscopic molecular bond distortions has been found to be critical for modeling their fracture
behavior. On the other hand, the response to external actions can be studied using the macroscale model. The
deformations across these two scales can be bridged using network models, which assume kinematic compatibility.
A continuum fracture approach can be combined to model the system’s damaged response. In this study, the
polymer chains at the microscale are modeled to be made up of a number of chain segments. A continuum
formulation combined with the phase field fracture approach is utilized to model the damaged macroscale behavior.
The deformations in the two scales are connected using the non-affine microsphere model.

It is well-known that viscous dissipation at the crack tip is a contributor to the total energy dissipation at the
advancing crack in rubber-like materials [66,67]. However, tearing energies in agreement with the theoretical results
of Lake and Thomas [57], which are independent of the crack velocity and ambient temperature, have also been
experimentally measured in near-equilibrium conditions [68]. The current study focuses on such cases and neglects
viscoelastic effects, similar to many of the previous studies in this field [25,59,60].

2.1. Microscale damaged chain model

Many studies attribute the unique characteristics of rubber-like materials to their underlying polymer chain
networks, which makes it vital to model the chain behavior. The classical theories attributed the high stretchability
of these materials to the entropy of chain molecules between crosslinks. They modeled them with a series of freely
jointed rigid segments having equal lengths. However, the assumption that the chain segments are rigid has been
found to hinder the study of these materials at higher stretches [46,58,59]. Further, neglecting the bond distortions
that contribute to internal energy, which dominates during fracture [57] poses a challenge in using the classical
models for studying the fracture properties of rubber. To overcome this, Mao et al. [58] incorporated the extensibility
of the molecular bonds by assuming the chain segments to be elastic. In addition to these segment stretching due to
the deformation of the constituent molecular bonds, polymer chains also align in the most probable configuration
upon application of a load. This statistical behavior is modeled in this study using non-Gaussian Langevin chain
statistics.

In this study, each polymer chain is modeled to be made up of a number of elastic chain segments pinned to
each other, as illustrated in Fig. 1. As a simplifying assumption, the properties of all the segments in each chain are
assumed to be identical. For representation, an undamaged polymer chain in the initial configuration is assumed to be
made up of N chain segments of length [, each, with a total initial contour length Ly = NI, as depicted in Fig. 1(a).
Using the Gaussian theory, the initial end-to-end distance of the chain is determined by its root-mean-square value
Ry = /Nlp. Denoting the current end-to-end chain distance as R, the chain stretch is defined as A = R/Ry. Due
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to the extensibility of the molecular bonds, the chain segment length in the current state becomes /, and the bond
stretch can be defined as A, =1/1.
Further, the Langevin parameters, which estimate the stretch in the chain, are given by

A=rp=5-_"2
- L VN
In the above equation, A and 8 denote the Langevin parameters, £ (x) = cothx — x~' is the Langevin function,
and L = NI is the total current contour length of the chain. Physically, the Langevin parameter A is a measure
of the straightness of the chain, and its unnormalized form has also been referred to as the segment realignment
stretch in literature [59].

Using the Langevin statistics, the expression for the entropy of a single chain [69,70] in the current state is given
by

)]

1

o B
s =co—kgN (ﬁ/l+lnsinhﬁ>, 2)

where, kp represents the Boltzmann’s constant and ¢y represents an arbitrary constant. Using this entropy, the
expression for the total Helmholtz free energy function due to the entropy of the chain [70] is given by

Vent = =T (s — 50) = Ve — V0 - 3)

In the above equation, T represents the absolute temperature, and sy represents the chain entropy in the unstrained
state. Ignoring the constant 7'cy in both the terms, the expressions for the entropic free energy contributions in the
current state ¥, and the initial state ¥ are given by

B
sinh 8

Additionally, the bond stretch also contributes internal energy to the total free energy of the chain. Follow-
ing Talamini et al. [59] and Arunachala et al. [46], a canonical expression for the change in internal energy due to
stretching in each chain segment ¢}, (Ap) is used as

Ybond () = New (hp) = SN Ep (hp — 1)? . S

In the above equation, Ey, represents the elasticity modulus of the chain segments. Using these contributions, the
total free energy of an undamaged chain can be expressed as

Ye (X, Ap) = —Ts =kgTN (,3/1 +1In ) and Yeo = Ve . %)

A=l

sinh B8

In this study, it is assumed that the damage in the chain is not only driven by the weakening of the molecular
bond attractions but also by the decrease in the entropic free energy, which is caused by an increase in the entropic
freedom of the chain segments due to their softening. However, explicit changes in the structural configuration of
the chain due to damage are neglected, as observed in Fig. 1(b). In line with the phase field approach, a continuous
variable d € [0, 1] is assumed to represent the damaged state of the chain, with d = O referring to an undamaged
state and d = 1 implying complete damage. Irreversibility of the damage is assumed in this study, and hence d > 0
is enforced. Accordingly, the free energy of the damaged chain vy is assumed to be obtained by the degradation
of the total free energy of the chain and can be expressed as

Ya (A, Ap, d) = gchain (d) Yua (A, Ap) . (N

In this equation, gchain (d) represents the chain degradation function and accounts for the decrease in the force
response of the chain with damage. Assuming that the external power is expended only by the chain force f over
the rate of stretch A, the expression for the polymer chain dissipation using the second law of thermodynamics can
be written following Rastak and Linder [71] as
S 0va): OYa:  0Vu
Dehain = fA—Ya = —— |A——X— —d>0. 8
h fA—1q (f o ) o ad (®)

5

Yud (s Ab) = Yond (o) + Vent by Ap) = 3N Ep (A — D> + kgTN <l3/1 +In P ) — Yeo - (6)
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The constitutive relations for the chain are obtained utilizing the Coleman—Noll procedure [72]. Assuming that
the stretching in the chain is purely energetic, its thermodynamic conjugate force f is obtained as

_ W _ B
f== —gcham(d)kBTx/N)\b. )

As the bond stretch is assumed to be elastic, its contribution to the polymer chain dissipation is neglected.
Consequently, the elastic bond stretch is obtained as the minimizer of the total damaged free energy as

0Vq . kBT,B A
dAp - Ey YN
Neglecting the rate-dependent damage effects, the thermodynamic driving force for damage f; is considered to
be linearly proportional to the extent of damage in the system as

dYq
fa=—r = (1
The numerical advantages of this assumption are explained later in this section, while the rationale behind this
is discussed in Section 2.3. The term fd can also be viewed as the damage resistance force and can be expressed
using the energetics of bond rupture. Assuming that 8{, is the binding energy of each monomer unit [58,59], the total
amount of energy dissipated due to the breaking of N such chain segments would be N 8{;. As proposed in [59], the
proportionality constant § can be evaluated by assuming the total amount of chain dissipation to be resulting from

the breaking of these chain segments as

=0 — Ap (o — 1) (10)

o) 00 . 1 d=1 ) )
/ Dehaindt = / faddt = —jd*| =Ne = [=2Ne. (12)
0 0 27 a=o
In order to obtain an expression for the damage variable d using the above form of the damage driving force,
the chain degradation function is assumed to be of the form

Zehain (d) = (1 — d)2 +c, (13)

where ¢ is a small positive-valued constant introduced to prevent ill-conditioning when d ~ 1 [25,59]. With
the choice of this form of chain degradation function, elastic behavior is produced in the undamaged state as
&chain(0) =~ 1. Furthermore, a complete degradation of the stiffness is observed in the fully damaged state as
&chain(1) &~ 0, and the damage driving force fy also vanishes as the chain attains a fully damaged state as a result
of g/,...(1) = 0. Using this form of the degradation function and Eqs. (7), (11) and (12), an explicit expression can
be obtained for the damage d in the chain as

g=_ Y (14)
Yua + N Stf,

The current model considers the degradation of both bond stretch and entropic energy and a linear damage
driving force. The alternate formulations used in literature [33,59,61] consider one or both of the two assumptions,
namely, degradation of only bond stretch internal energy and constant damage driving force. The effects of these
assumptions are illustrated in Fig. 2 by juxtaposing the various aspects of the chain behavior resulting from those
formulations with the chain response obtained using the current model. The constitutive relations for the chain
models used for this comparison are tabulated in Table 1. The indicator function used in Table 1 is defined as

1x] = {1 x is True, (15)

0 otherwise.

As seen from Fig. 2(a), although all the models capture the softening behavior of the chains due to damage,
the current model predicts a smoother response as compared to Model 2, which assumes a constant fy. The
damage predicted by the current model can be seen to be a smooth continuous function starting from zero and
asymptotically reaching a value of one, as illustrated in Fig. 2(b), in line with many phase field fracture studies
on elastomers [8,25,60]. This accounts for the gradual aggravation in the bond strength as compared to Model 2,
wherein damage sets in abruptly when the damage driving free energy reaches a value of N ag /2. The current model
also overcomes the discontinuous jump observed in Model 1, which considers the degradation of only bond stretch
internal energy, and this is visually explained in Appendix A.

6



PK. Arunachala, S. Abrari Vajari, M. Neuner et al. Computer Methods in Applied Mechanics and Engineering 410 (2023) 115982

250 T T T 1.2 T T T
—— Current model —— Current model
--0- Alternate Model 1 L --o- Alternate Model 1 _
200 . - -4 - Alternate Model 2 1 --a- Alternate Model 2 . . & pugz===rs""
E\ i 08t 7 1
150 | o | .
&~ N = N
) A 0.6 f : ]
= DA
< 100 ey 1
78\ 04 | ] ]
i \ i
] R i
L . 4 1,
%0 \ 0.2 + AN 1
’I
~ /
........ ,’
0 . 1o oEEEEs 0 . .
1 2 } 4 5 1 2 § 4 5
A A
(a) ()
1.2 T T T 6 - - -
—o— Current model
s 5| --o-: Alternate Model 1
--------- - - -a - Alternate Model 2
n\
“~ — '
0.8 r “ 1 <& 4t . 1
! = "
< ! g "
0.6 ! b g 3r | ]
i 5 :
i Q .
04 r | 1 2t ; 1
i
—0— Current model ~~ TTTme=e-
02 1" -~ Alternate Model 1 | Ly 1
--&- Alternate Model 2
0 ! . . 0
1 2 3 4 5 1 5
A
©
0.015 T T T 5 T T T
—0o— Current model —— Current model
--0- Alternate Model 1 --0- Alternate Model 1
- -4 - Alternate Model 2 - -4 - Alternate Model 2
001 ¢ ] < ]
Z I
= =
: ] 2 “ ]
ﬁ' N\ 3 N
= \ > o
0.005 |- . 1 1
. N \\ 1
S ~ :
DA T—
\ '
™ 1
0 L > Lt _1 L L L
1 2 } 4 5 1 2 3 4 5
Pl Pl
(O] (f)

Fig. 2. Representation of the chain response to an applied stretch in terms of normalized values of (a) chain force, (b) chain damage, (c)
segment realignment stretch, (d) chain dissipation, (e) bond stretch internal energy component of 4, and (f) entropic free energy part of /4.
The current model considers degradation of both bond stretch and entropic energy, ¥4 = gchain (Vbond + Yent), and a linear damage driving
force, fqg = 2N agd. This model is compared with alternate formulations used in literature. Model 1 considers degradation of only bond
stretch energy, ¥4 = gchain¥bond + Yent, and a linear damage driving force. Model 2 considers a constant damage driving force, fy = Nslt;
and the degradation of both the undamaged chain free energy parts. The constitutive relations for these models are tabulated in Table 1.

The evolution of the Langevin parameter A in Fig. 2(c) shows that the current model predicts the chains to become
straighter with the applied stretch, even though they are getting damaged. This can be considered more physically
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Table 1
Constitutive relations for chain models compared in Fig. 2.
Quantity Current model Alternate model 1 Alternate model 2
Vd,bond SchainYbond chain¥bond SchainYbond
Vdent 8ehainVent Vent 8ehainVent
fa 2Neld 2Neld Nef
f
a (1= 582 ) 1o = w2
8 1301 130D 1301
EoVN kg T) —x &chain — 3, -

viable compared to the coiling due to large values of bond stretch, as predicted by Model 1. Furthermore, the current
model also overcomes the discontinuous jump in the segment realignment stretch resulting from formulations in
literature [65]. Although the model predicts straighter chains for larger stretch values, the increase in the entropy
of the system due to the weakening of the molecular bonds is captured by the model, which can be observed from
the decrease in the entropic energy part ¥q.n: Of the total damaged free energy, as shown in Fig. 2(f). For Model 1,
as the value of A at higher stretches is less than the initial one, the entropy is much higher at larger stretches. This
results in negative values of ¥qen, implying negative work of deformation done to achieve these configurations.
The trend observed for entropic energy is also seen in the evolution of the bond stretch internal energy part ¥4 pond
of the total free energy, as depicted in Fig. 2(e). The normalized 4 pona Values are seen to be much lower than the
corresponding normalized ¥4y values due to the large value of Ey/(kgT) considered in accordance with Talamini
et al. [59].

As seen from Fig. 2(d), the current model predicts a smooth dissipation curve that follows the damage curve’s
slope. Model 1 also follows a similar trend, albeit with an abrupt spike due to the aforementioned discontinuous
jump in the damage and A values. Model 2 also produces an abrupt jump at the point of damage initiation. It can
be noted that the area enclosed under all three curves is equal to Nef.

In summary, although other studies [60,61] also assume the degradation of both the entropic and bond
stretch contributions to the free energy, this work clearly highlights its advantages for modeling chain behavior.
Furthermore, a non-constant damage driving force is proposed in this study, which results in a smooth, continuous
chain response, and the total dissipation is assumed to be due to the breaking of the molecular bonds. The current
model captures a damaged chain response overcoming the discontinuous jumps and predicts a non-decreasing
segment realignment stretch for an increasing stretch, which can be considered more physically viable. The following
sections deal with the description of the macroscopic damage model and the bridge linking this with the microscopic
description of polymer chains within a vast random network.

2.2. Bridging micro- and macroscopic deformations using the non-affine microsphere model

For extending the microscale chain model to the macroscale, the normalized undamaged free energy and the
normalized chain parameters are defined using the density of chains per unit volume 7 as

Yua =nYua, p=nkgT, E=nEy. (16)

At the macroscale, a finite strain framework is utilized to capture rubber-like materials’ behavior owing to
their high stretchability. Further, due to their nearly incompressible response, a decoupled deformation gradient
approach [73] is used. Accordingly, the deformation gradient F' can be decomposed multiplicatively into volumetric
F ., and isochoric F components as

F=FuF where F.=J"7I F=J"'"3F, J=detF>0. (17)

The previous section modeled the response of a single polymer chain using a one-dimensional element.
However, tracking the behavior of each polymer chain in a vast network containing numerous chains oriented along
different directions is impractical. Therefore, homogenizing the network using simplifying assumptions is necessary.
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reference configuration current configuration

Fig. 3. Illustration of the reference and current orientation spaces of a unit volume of material containing chains oriented along different
directions.

Furthermore, the macroscopic deformation should be linked to the deformation of the chains at the microscale
using a suitable network model. The following explanation deals with a network homogenization method and the
subsequent utilization of the non-affine microsphere model developed by Miehe et al. [50].

Following the explanation of the network homogenization method elucidated in [46,71], it is assumed that all
polymer chains oriented in a specific direction A in the reference configuration share the same chain attributes,
such as stretch, bond stretch, and damage. If r( represents the initial end-to-end vector of a chain, then its reference
orientation vector is given by Ay = ro/|ro|. According to the aforementioned assumption, any two parallel chains in
the reference configuration act similarly throughout any deformation because the chain properties depend solely on
their reference orientations. This assumption is consistent with those used in many previous works [50,62,74,75].
Due to rubber’s isotropic behavior in its undeformed configuration, the assumptions of constant chain parameters
across all chains and a uniform distribution of polymer chains along all reference orientations are reasonable. This
enables us to map each reference orientation onto a point on the surface &y of a unit sphere, referred to as reference
orientation space, which can be utilized in simplifying the study of random networks in a statistical manner. As
a general case, assuming that the chain properties in the actual configuration vary with the reference orientation
vectors, the current orientation space forms an ellipsoid, as depicted in Fig. 3. If r represents the end-to-end chain
vector in the deformed configuration, the stretch vector can be obtained as A = r/|rg|.

A suitable network model is required to bridge these chain stretch vectors to the macroscopically observable
isochoric deformation tensor F while maintaining kinematic compatibility. The macro-stretch vector A along
reference orientation Ay mapped by the isochoric deformation of the continuum is given by

A=Fx and = |Fil. (18)

In the affine deformation model [74], the chain stretch vector is assumed to be mapped from the undeformed
configuration by this isochoric deformation tensor and hence, A = X is considered. Howeyver, as it has been found
that this strong local constraint limits the flexibility of the network and leads to an inaccurate response of the rubber
material [49,76], the non-affine microsphere model developed by Miehe et al. [50] is utilized in this study.

As presented in [50], the non-affine microsphere model is a generalization of the eight-chain model by Arruda
and Boyce [49], intended to extend the modeling capacity by introducing an additional material parameter. The
non-affine model allows the chain stretch A along each direction to fluctuate about their respective macro-stretch A
with the help of a fluctuation field f in a multiplicative form as

r=if. (19)
The non-affine constraint is assumed in terms of the p-root averaging operator as
. I/p
A)p=(1), with (), = ( (o)? dA) . (20)
|Sol Js,

9



PK. Arunachala, S. Abrari Vajari, M. Neuner et al. Computer Methods in Applied Mechanics and Engineering 410 (2023) 115982

However, this constraint specifies a space of possible solutions and does not uniquely identify a single possible
network response. The principle of minimum average free energy is employed to obtain a unique solution for the
fluctuation field f and hence the chain stretch A. However, from Figs. 2(e) and 2(f), it can be observed that the
damaged chain energy 4 is not a convex function of the chain stretch A and hence the minimization problem
may not guarantee a unique solution. Therefore, the minimization of the averaged free energy of a hypothetical
undamaged system is proposed in this study for obtaining a unique network response for the applied macroscopic
deformation. The constrained optimization problem can be formulated as

Minikmize (V)1 subject to (A)p = ()NL),,. 21

If Wuq = (Yua (A, Ap))1 represents the hypothetical average undamaged free energy of the chain, the Lagrangian
form of the minimization problem (21) for calculating the chain stretch in each direction can be written as

Lual v = g ) = v (1) = (3),) - (22)
To find the stationary point of the above Lagrangian along each direction, we have
8Lud 8Kzud 1— 1—
=0 — AP =v(0), P 23
o 7 Ton vy 23)

Since the function 4 is convex in A, the minimization problem is well-posed and it has been found that the
above equation has a non-trivial solution only if A = A f is constant along all directions [50]. From the non-affine
constraint in (20), we get the closed-form solution for the equal chain stretch along all directions given by

A= (A)p. 24)

On the other hand, if the average damaged free energy of the chain @d = (&d (A, Ap, d))1 is considered, the
Lagrangian form of the minimization problem can be expressed as

Lalrovl = T3 () —v (1), = (R),) (25)
To find the stationary point of the above Lagrangian along each direction, we have

dLq4 81/_&1 1— 1—-

— =0 — A P =), " 26

oA ~ Tox VA, (26)

Since the function 4 becomes non-convex in A as damage evolves, it leads to the ill-posedness of the
minimization problem. Hence, a unique solution for the above equation is not guaranteed. However, it can be seen
that the solution A = (X) p» Which is constant along all directions, satisfies (26). Therefore, it can be concluded
that the solution using the minimization of the undamaged free energy is also a solution if we consider the
damaged system. Physically, the chain reorientations are allowed so that they achieve the lowest energy state while
kinematically complying with the non-affine p-root constraint.

The Eq. (26) can have more than one solution, which can be easily seen for the special case of p = 1. As g
becomes non-convex with damage evolution, the equation dv/4/dA = v can be satisfied at two values of A. Thus,
chain stretch values can have either of these values in different directions. Hence, a constant chain stretch along all
directions is not a unique solution for the minimization problem.

Thus, an isotropic network response is predicted by this model for any macroscopic loading. In this way, the
stretch in the microscale chains is bridged to the macroscopic deformation gradient and this mapping helps in
extending the microscale chain model to a continuum model.

2.3. Macroscale damage model

The previous sub-sections describe the total free energy for a damaged chain and the mapping between the
microscale chain stretch and the macroscale deformation gradient. Using these, the single-chain model can be
extended to a macroscale continuum model. As a convention, the derivatives in the reference configuration are
denoted as

. d _ a ) d d
DIV(°)=§~(°), Vx(0)=ﬁ(°), Ax(°)=ﬁ'§(°)- 27
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Similarly, the derivatives in the current configuration are represented as

d 3 3 9
div(e)=-—-(0): Vi(®)=-—(0): Ac(o)=7--—(e). (28)

In the above equations, X and x represent the positions of the material points in the reference and current
configurations, respectively. As a result of the isotropic network response predicted by the microsphere model, it is
reasonable to assume that the chain damage and bond stretch values are constant in chains along all directions.
Hence, a single damage field d is assumed to represent the damage at both scales, similar to other works in
literature [33,59,60]. Similarly, the macroscopic variable representing the bond stretch in chains along all directions
can be considered as Ay. The free energy of the chains along all the directions is constant and hence the macroscale
free energy contribution due to the chains is given by (¥4); = V¥q.

As mentioned in Section 2.2, the volumetric and isochoric responses of the material at the continuum level
are separated, and the chain deformations are assumed to affect the isochoric part only. As a result of the slight
compressibility of the material, the free energy contribution due to the volumetric changes is accounted for, and the
bulk free energy expression is assumed as

1 1\?
Upuik (J) = §K (J - 7) , (29)

in line with many works in literature [59,77,78]. The parameter K represents the bulk modulus of the material. The
degradation of this bulk free energy is assumed to be of the form

Goulk () = (1 —d)* + Yo <. (30)

A cubic degradation of the bulk is assumed for degrading the bulk modulus K faster than the shear modulus

@ [60], and this eases the incompressibility constraint on the highly stretched damaged regions for overcoming

numerical issues. The small positive-valued constant ¢ is also scaled by a constant yu,x = (1/K) for numerical

stability, following Kumar et al. [36]. Further, the nonlocal nature of the damage is captured following Talamini
et al. [59] as

Fnontocar (Vxd) = 8567 Vxd |’

€29

wherein ¢ represents an intrinsic length scale for the damage process. The chain scission energy when all bonds
are broken is given by the expression

& =nNel . (32)

The above equation assumes negligible interaction between the polymer chains; hence, the effects of van der
Waal’s forces and even bond angle rotations are neglected. The above expression also implies a simultaneous failure
of all the chain segments in a unit volume, which is reasonable as we assume the chains to be made up of identical
chain segments. Additionally, the thermal fluctuations in the chain, which may lead to failure at a single bond,
are also neglected, considering the fact that the monomer binding energy is much larger than the average thermal
energy at usual operating temperatures [59]. As the internal energy due to molecular bond distortions dominates
during the rupture of polymers [57], the critical free energy at rupture ¥, can be approximated as the bond rupture
energy élf). Using this fact, the order of magnitude of the length scale ¢ for a material can be approximated based
on the work by Thomas [79], using the critical energy release rate G, and the bond rupture energy Eg as

€~ G| Uy~ G.Je. (33)

Accounting for the bulk free energy, contribution by the microscale chains, and the nonlocal damage effects, the
total macroscale free energy of the system is proposed as

W (F, k. d, Vxd) = gouk (d) Upuic (J) + &ehain (d) Yua(h, Ap) + 5b32|vxd|2 . (34)

The balance laws of mass, linear momentum, angular momentum, micro-forces, and the laws of thermodynamics
are utilized for obtaining the constitutive and governing equations. The complete derivation is expounded in
Appendix B.
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In terms of the Kirchhoff stress tensor 7, the governing equation obtained from the balance of linear momentum
is given by

div (;r) =0. (35)

Assuming the damage variable to be associated with the internal micro-force 74 and the micro-stress vector &,
micro-force balance leads to
Divéy+mg=0. (36)
Assuming the bond stretch variable to be associated with the internal micro-force my,, the micro-force balance
leads to
m, =0. (37)
The simplified form of the dissipation inequality obtained using the laws of thermodynamics can be expressed
as
T:D+E&; Vyd —mad — mphy — ¥ >0, (38)

wherein, D represents the rate of deformation tensor. The above dissipation inequality can be evaluated for the form
of the free energy function in (34) as

Y D+ (& 07 \ vyd ( +N d +M/ >0 (39)
T—-2—|: — . —|ma+—)d—m+— .
dg 47 9vgd ) ¥ 4T Ba LT M

In the above equation, g is the Eulerian metric tensor. The dissipation can be assumed to be mainly due to the
rupture of monomer molecular bonds. Similar to Talamini et al. [59], we consider the internal damage micro-force
14 to be made up of energetic and dissipative parts. As the other quantities do not contribute to dissipation, it can
be assumed that they are purely energetic. Applying the Coleman—Noll procedure [72], we obtain

5 ov £ oV ov ov

T=2—; =—— Mden=—"77; Tp=—7—.

dg 47 9Vyd den ad * T T

The dissipative part of the internal damage micro-force can be assumed as
Tadiss = — (280d + ¢d) . 41)

In the above equation, ¢ is a material parameter accounting for the rate-dependent damage effects. The form
of the rate-independent term is similar to that discussed in Section 2.1. Using Eqgs. (34), (36), (40) and (41), the
governing equation for the damage field d is obtained as

286,( Axd — d) = gl (&) Upak (1) + 8ipain (d) Yua (b, ) +¢d . 42)

For accounting for the irreversibility in damage, free energy history variables are introduced for the bulk and
undamaged chain free energies following Miehe et al. [80] as

Hou (J (1)) = S?[%)f] Upuk (J(s))  and  FHenain (A1), Ap(2)) = Sg}%’; Vud (A(5), Ap(s5)) - (43)

(40)

The necessity and effectiveness of these history variables in maintaining the fracture irreversibility criterion are
proved in Appendix C using a local damage model in a one-dimensional setting, following Miehe et al. [80]. Using
these history variables in (42), the governing equation for the damage field is obtained as

280> Axd — d) = g (d) Houik + 8linain (@) Henain + £ . (44)

Remark 1. It can be observed that the form of (44) resembles the equation obtained by Miehe and Schinzel
[25], who started with a crack surface functional by assuming regularization of a sharp crack using an exponential
function. This results from the linear form of damage driving force proposed in this formulation, thus explaining
the rationale behind this assumption. Although the study by Miehe and Schinzel [25] establishes the relationship
between the fracture toughness and the average bond dissociation energy, it must be noted that the current
micromechanically motivated model fundamentally differs from that developed by Miehe and Schinzel [25]. In
the proposed model, macroscale damage is driven by a significant contribution from the internal energy due to the
molecular stretching at the microscale. At the same time, the work by Miehe and Schinzel [25] assumes the damage
to be driven by the phenomenological hyperelastic free energy.
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The constitutive relation for the bond stretch variable can be obtained using Eqs. (37) and (40) as
o 8lpud

— =0 —>
Xy Xy
recovering the form (10) obtained in microscale formulation, but normalized with chain density per unit volume
n. With the governing equations for the displacement field in (35), the damage field in (44) and the constitutive

relation for the bond stretch internal variable in (45), the continuum model can be numerically implemented using
the finite element method.

=0, (45)

3. Numerical implementation

The proposed model is numerically implemented using the finite element method. As the gradient effects of
the damage are considered in the model, it cannot be solved locally at the element level. Therefore, in addition to
the displacements, the damage variable is also considered as an unknown degree of freedom. Due to its reduced
simulation time, the monolithic scheme is chosen over the staggered scheme for solving the global system. The
subsequent explanation delves into the details of the implementation at the Gauss point and element levels at the
current time step #,4.

3.1. Gauss point level

At each Gauss point, the constitutive relations are utilized for computing the relevant quantities like stress and
consistent tangent modulus, which are later required for computations at the element level. At each nonlinear
iteration loop of the finite element simulation, the initial values of the degrees of freedom u, d are available as
the inputs. Using this, the deformation gradient is calculated and further decomposed into volumetric and isochoric
parts using (17).

First, the chain stretch A is computed based on the isochoric deformation gradient F using the microsphere
model. As the model requires computing the p-root average of the affine stretch over the orientation space, the
numerical integration scheme for symmetric functions over a unit sphere proposed by Bazant and Oh [81] is
utilized. Accordingly, ni,, = 21 discrete quadrature directions are considered for the initial chain orientations in
the undeformed configuration, and along each integration direction A%, the macro-stretch A% is calculated using
(18) as

=|FA|. (46)

The chain stretch A, which is equal in all directions, is calculated using (24) as

Nint 1/
(Z we (i) ) N (47)

where W* represents the weight coefficient associated with the «th orientation direction. With the help of this chain
stretch A, the bond stretch A, in the chains can be calculated. As the equation for solving Xy, is nonlinear, Newton—
Raphson algorithm is employed and iterations are performed to minimize the residual expression considered as

Ry=m — 4. (48)

(o)
In the above equation, the Langevin parameters are calculated using the result from (45) as

A =cothp — p~! ﬂ:%)\%(kb—l)\/)\—ﬁ. (49)

The tangent for the iteration loop is obtained as

dR A
Ky=——2 = +L(B) = (3)\b )

G 2N 0

o=



PK. Arunachala, S. Abrari Vajari, M. Neuner et al. Computer Methods in Applied Mechanics and Engineering 410 (2023) 115982

The above expression’s derivation considers that the chain stretch A remains constant during the iteration loop.
For a faster convergence, the bond stretch Ay, value at the previous time step ¢, is used as the initial guess. With the
help of the chain stretch A and bond stretch A, values, the total undamaged free energy of the chain is calculated
similar to (6) as

. (51

- 1
FuaCs k) = SNE Oy = D 4N (ﬂA n
r=1

B - . - B
— e th Yo =puN|BA+1In—
sinh 8 Veo Wi Veo =N (P +nsmhﬂ
Using the Jacobian J and the input damage values d, the bulk free energy function Up, and the degradation
functions gpuk, gchain are computed using Eqs. (29), (30) and (13). Using the values of the free energy history
variables at the previous time step Houik n,» Fehain.n» the current step values are updated according to (43) as

ggbulk = max {Ubulkv ggbulk,n} and gechain = max {&ud’ gechain,n} . (52)
The undamaged isochoric Kirchhoff stress tensor can be obtained from the undamaged chain free energy (51)
as
Y N
Tog =2 g’“d = ENMy (Ay — DA Ph. (53)
4

The corresponding undamaged isochoric consistent tangent modulus is obtained as

= Ty Ay (Ap — 1 .. -

Cu=2 E)T d_ ENAP |:((2kb — D kyp — p%) AMPh@h+ (p—2)Ap (Xp — I)H] . (54)
In the above equation, the tensors il, T obtained using the macro-stretch are given by

h=0(r7?A@1); and H=(0"*AQAQAQ1);. (55)

Assuming that the Newton iteration loop for solving the bond stretch gets converged, it is reasonable to assume
R, = dRy, = 0 after the convergence of the loop. The total change in this residual can be written as

R oR
ARy = —2dh 4 ——2dhp = kgyrdh + kg dhp = 0. (56)
axr oy
Using the above expansion, the stiffness term k,,; used in (54) can be calculated as
b kry 1 1 E VN
ky, = — =——2 = [ ——=+LB) =2 —1)—] . (57
ApA a)\. Ry0 kaAb Kb ()\‘b\/ﬁ :B w b b )\'2
Considering the degradation and the bulk free energy, the total Kirchhoff stress can be computed as
ov -
T= 2@ = 8oulk (d) P + Zehain (d) Tua = P, (58)
and the corresponding total consistent tangent modulus can be computed following Miehe et al. [50] as
ok 4
C= 2@ = gouk (d) [(p + K) I Q@ I — 2pll] + gchain (d)
r = 2 2, 5 _
x | PT . (Cud+§(rud:1)}1 :]P’—g(IP’ Tw®I+1®Tw:P)|. (59)

In the above equations, I = §;; is the second order identity tensor, I;j; = %(6,-/43 i1+ 8ué jk) represents the
symmetric fourth order identity tensor and P = I — %1 ® 1 is the fourth order projection tensor. The terms p and
R are given by

p=JU,uw(J) and K= JUL, (). (60)
3.2. Element level

At the element level, the residuals and the tangent stiffness matrices are calculated for the nonlinear iterations.
First, the weak forms of the governing equations for the displacement # and damage d degrees of freedom are
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derived. Using du to represent the variations in the displacement degrees of freedom, the weak form of their
governing equation is obtained using (35) as

1
/div(—r)-(SudV:O — rn~8udAo—/ 7:V,dudVy=0, 61)
v J Aoy Yo

wherein, Vj and V represent the body in the reference and current configurations respectively, and A, indicates the
boundaries in the reference configuration on which Neumann boundary conditions are prescribed, as explained in
Appendix B. Using &d to represent the variations in the damage degree of freedom, the weak form of its governing
equation is obtained using (44) as

/ [28{(0*Axd — d) — gl (d) Foutc — &onain (@) Henain — ¢d]8d dVy = 0. (62)
Yo

To simplify the above equation, the boundary condition
Vxd-N =0 on A (63)

is imposed on all boundaries A in reference configuration, for driving the damage only by mechanical loading
and not by any other external boundary conditions [82]. The time derivative is numerically approximated as
d ~ (d — d,) / At using the damage value d, at the previous time step and the time increment Ar. Using these, the
simplified form of (62) is given by

d—d,
_ / I:Zélt;gzvxd - Vxéd + (ZEf,d + g{,ulk (d) Hpuix + géhain (d) Hehain + §T> 8di| dVp=0. (64)
Vo

The spatial discretization of the weak forms is performed using the Galerkin method. In each element of the
finite element simulation, both the displacement u and the damage d degrees of freedom are approximated using
the same set of shape functions as

Mnodes Mnodes

up= Y N and d= ) N*a*, (65)
A=1 A=1

wherein N represents the spatially varying shape function at node A in the element domain, while #* and d* denote
the discrete ith component of the nodal displacement and discrete nodal damage values at node A respectively. Note
that Einstein index notation is employed for representing the components in the current and reference configurations.
In a Bubnov Galerkin context, the same shape functions are used to approximate their variations at the elemental
level as well and can be written as

Nnodes Nnodes
Suj =Y NAsi! and 8d= ) N*sd". (66)
A=1 A=1

Using these discretizations, the residual expressions at the element level for the unknown degrees of freedom can
be calculated. Assuming that the traction boundary term is calculated separately only on the boundary elements,
the general element residual equation for the displacement degrees of freedom is obtained using (61) as

e\ A
(RY), =— / T N5 dVy. (67)
Vo
In the above equation, Vi represents the discretized element domain in the reference configuration. The element
residual equation for the damage degree of freedom is obtained using (64) as

A _f _f d—d,
(R)" = - f [2g{,ezd,KNf}< + (2g{,d + Gt (@) Houk + 8epain () Henain + ¢ —- ) NA} dvp. (68)
vs

As the residuals are coupled in terms of the unknown fields, the coupled element tangent stiffness matrix

composed of K, Ki,;, K3, and KJ; components needs to be computed. First, the K| term is composed of
material and geometric parts, and is derived using (67) as
AB

(Ke )AB 2/ NVQC,‘](.,'[N,? dV() and (Ke ) = N,?;‘L'kzcgijN.llg dV(). (69)

Vo

wum) jj uu,g

tj vy
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The component K, is also derived using (67) as

(Ks)!” = /V N (St (@) Pk + 8laain (&) (Faadyun Punit) N” dVp . (70)

0
The coupled component Kg, is calculated using (68) as

(K&);" = /V N (Gt (@) 1 [Fouic > Fouica] P8+ Zlnain () 1 [Hetain > Hetina] (Fu)un Ponji) NF dVo .
0

(71)
In the above equation, the indicator function is defined as in (15). The final component Kg; is also obtained
using (68) as

(Kgd)AB

- - 1 " l
= / |:2£££2N,‘}(N§< + (28{, + 8ok (@) Houk + Genain (@) Fehain + & E) NANB:| dvp . (72)
Vo

The above residual and stiffness terms can be assembled over all elements in order to obtain the global residual
vector and stiffness matrix. At each time step, the values of damage d, damage driving free energy history variables
Houik, Henain and bond stretch Ay at each Gauss point are stored as history variables, and are provided as inputs
to the next time step. The integrals at the element level are computed using the Gaussian quadrature rule and the
required quantities at the Gauss point level are computed as shown in Section 3.1. This model is implemented
using the finite element framework MOOSE [83] and the high performance tensor library Fastor [84] is used for
performing tensor manipulations. Finally, the model is validated by performing three-dimensional simulations and
comparing the predictions with experimental data present in literature.

4. Numerical results

For validating the proposed model, numerical simulations are performed and the predictions are compared
with the experimental data. First, the experimental data for a double-edge notched specimen under tensile loading
by Hocine et al. [15] is studied to verify the capability of the model to capture simple crack paths and estimate the
load—displacement behavior. For corroborating the ability of the model to accurately predict fracture nucleation and
complex crack paths in inhomogeneous systems, a rectangular film embedded with rigid inclusions and subjected to
uniaxial tensile loading is considered. The experimental load—displacement behavior and the crack propagation paths
presented in [85] are utilized for validating the model predictions. Finally, the effect of the length scale parameter
on the model’s predictive ability of fracture behavior is discussed.

In the following examples, three-dimensional simulations are performed by discretizing the specimen model
using brick elements. Additionally, the adaptive time-stepping feature of MOOSE is leveraged for optimizing the
simulation runtime.

4.1. Double-edge notch tensile specimen

The experimental data by Hocine et al. [15] for the fracture behavior of double-edge notched thin sheets of
styrene-butadiene rubber (SBR) subjected to uniaxial tension, as shown in Fig. 4, is used for this study. The
dimensions of the specimen, illustrated in Fig. 4(a), are 80 mm x 200 mm x 3 mm, with cracks of different
lengths a, = 12, 16, 20, 24, and 28 mm considered for the study. Similar to Talamini et al. [59] and Arunachala
et al. [46], the notch tip is considered to have a very small root radius as a modeling assumption. This initial
root radius is chosen to be R = 1 mm, which is a small value compared to the dimensions of the specimen, for
computational tractability. Leveraging the symmetry, only one-eighth of the specimen is modeled for the simulations.
The boundary conditions include fixed bottom and top edges, while the top edge is provided a vertical strain at a
rate of 1 x 1073 s~

The material parameters tabulated in Table 2 are calibrated for a, = 16 mm case and the same set is used for
the other cases too. The microscale parameters ©, N, and E, and the non-affinity parameter p are calibrated based
on the pre-peak behavior. The value of the shear modulus w is in line with those used in previous studies [25,59].
Although Talamini et al. [59] required a large value of parameter N for modeling the Neo-Hookean behavior, we
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Fig. 4. Double-edge notched specimen in tension. (a) Geometry of the specimen; (b) Force—displacement response compared with the

experimental results by Hocine et al. [15]. The text labels on the load—displacement curve for a. = 12 mm specimen indicate the different
stages of the simulation at which the damage contours in Figs. 5 and 6 are depicted.
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Fig. 5. Evolution of damage in 3D for the case of a, = 12 mm at different stages of the simulation as depicted in Fig. 4(b). Symmetry is

leveraged and only 1/8th of the specimen is utilized for simulations.

Table 2
Parameters used for the double edge notch tensile specimen.
w N E p K & ¢ I
0.245 MPa 20 12 MPa 2.0 10 MPa 0.9 MPa 2 mm 1073 s7!

use a more physically viable value of N, similar to Arunachala et al. [46]. The choice of the length scale parameter
£ is made based on the dimensions of the specimen, and mesh elements are refined to a size of £/10 along the
expected crack path. The critical energy release rate values G. at crack initiation are estimated using the J-integral
in [15] and the average value is reported as J. = 1.26 kJ/m?. The value of the bond rupture energy é{; is chosen
such that the relation (33) is approximately satisfied. As a sudden force drop is observed in the post-peak segment
of the load—displacement curves, a small value of ¢ is chosen. The value of the small positive constant ¢ used in
the degradation functions is taken as 10~3 for these simulations.

The resulting force—displacement curves obtained from the simulations compare well with the experimental data,
as shown in Fig. 4(b). The evolution of the damage on the 3D deformed shape is visualized in Fig. 5. Due to a
large value of bulk modulus K, the high-strain regions near the notch tip exhibit large out-of-plane contractions
to maintain the quasi-incompressibility condition. However, as damage evolves, the incompressibility constraint
is weakened as a result of the degradation in the bulk modulus due to gy (d). Therefore, the highly damaged
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(a) (b) © (d) (e

Fig. 6. Visualization of the crack propagation for the case of a, = 12 mm at different stages of the simulation as depicted in Fig. 4(b).
The damage contour is illustrated and the regions with d > 0.95 have been removed for the sake of better visualization.

elements do not undergo further out-of-plane contraction, which helps the system’s numerical stability. Realistically,
as the damaged elements do not have any physical meaning, this can be considered as an acceptable remedy for
numerical instabilities. The crack path is visualized at various levels of applied displacement in Fig. 6. The crack
can be observed to nucleate at the notch tips and propagate to the center of the specimen.

Using p = 2, it is well known that the microsphere network model reduces to the eight-chain model, and
this equivalence for even damaged systems is shown in Appendix D with the help of this example. Although the
simpler eight-chain network model can be utilized for simulating this example, this simulation is utilized to verify
the capability of the current model in estimating the load—displacement behavior and predicting simple crack paths.
The current formulation’s potential in simulating stable crack propagation using 3D finite elements is also exhibited.

4.2. Rectangular film with rigid inclusions

The crack propagation in a rectangular film made of soft elastomeric TangoBlackPlus material with rigid
VeroWhite material circular inclusions has been experimentally studied by Russ et al. [85]. The specimen geometry
is as depicted in Fig. 7. The rectangular film has the dimensions 48 mm x 24 mm x 2.5 mm, while the circular
inclusions have a diameter of 7.5 mm. The crack lengths a. considered in the aforementioned study are 5%, 10%,
and 20% of the width of the specimen, while the separation distances d; between the outermost inclusions are
chosen to be 18, 24, and 30 mm. Following the convention used in [85] for representing different geometries, the
NxxDyy specimen has a crack length a. of xx% of the width of the specimen and has a separation distance d; of
yy mm. As a modeling assumption, the notch tips are considered to have a very small root radius of R = 0.15 mm.
As the behavior of the rigid inclusions is not the main focus of this study, the simpler Neo-Hookean damage model
proposed by Miehe and Schiénzel [25] is utilized for modeling the behavior of the VeroWhite material. In contrast,
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Fig. 7. Geometry of the rectangular film with rigid inclusions specimen represented as NxxDyy.

Maximum Principal Stretch

(a) Experimental observation (b) Simulation prediction

Fig. 8. Comparison of the predicted maximum principal stretch contour with the experimental in-plane stretch distribution for NO5D18
specimen at a prescribed end-displacement of 11.8 mm. The rigid inclusions are removed for the sake of better visualization. The figure
depicting the experimental stretch distribution obtained using digital image correlation is adapted with permission from [85].

g:rball;eiers used for the soft TangoBlackPlus and the rigid VeroWhite materials in the rectangular film with rigid inclusions specimen.
TangoBlackPlus VeroWhite
" N E P K &l V4 I's m v G,
0.19 MPa 5.0 50 MPa 2.7 5 MPa 1.6 MPa 0.2 mm 03 s7! 714 MPa 0.4 2 N/mm

the current model is used for modeling the elastomer behavior. The calibrated material parameters are tabulated in
Table 3.

For the VeroWhite material, the elasticity parameters are chosen following those used in [85]. For the elastomer,
a shear modulus of © = 0.19 MPa and a bulk modulus of K = 5 MPa, which results in a Poisson’s ratio
of v = 0.481, are selected during calibration and are along the lines of previously reported parameters for the
TangoBlackPlus material [86]. The other polymer material parameters N, E, and p are calibrated based on the pre-
failure behavior. The parameter ¢ is calibrated for capturing the post-peak segment slope of the load-displacement
curve, and an appropriate length scale parameter ¢ is also selected, as explained later. The critical rupture energy
é{; is approximated based on the critical energy density used in [85], for resulting in similar critical energy release
rates based on (33). Depending on this, a much higher value of G, is approximately chosen for the VeroWhite
material. The small positive constant is chosen as ¢ = 2 x 10~ for ensuring numerical stability of the simulations.

The specimen is subjected to tensile loading at a slow strain rate of 3.5 x 107> s~!. While the symmetry about
the horizontal axis is assumed in the model, the vertical symmetry is distorted following Russ et al. [85] so that
the simulation results match the experimental ones by providing a small perturbation of 0.024 mm to the center
inclusion.

19



PK. Arunachala, S. Abrari Vajari, M. Neuner et al.

(a) Experimental observation

Computer Methods in Applied Mechanics and Engineering 410 (2023) 115982

(b) Simulation prediction

Maximum Principal Stretch

Fig. 9. Comparison of the predicted maximum principal stretch contour with the experimental in-plane stretch distribution for N20D30
specimen at a prescribed end-displacement of 6.6 mm. The rigid inclusions are removed for the sake of better visualization. The figure
depicting the experimental stretch distribution obtained using digital image correlation is adapted with permission from [85].
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Fig. 10. Load—displacement behavior predicted by the simulations for the rectangular film with rigid inclusions for (a) dy = 18 mm, (b)
d; =24 mm and (¢) d; = 30 mm, compared with the experimental data from [85].

Firstly, the predicted maximum principal stretch is compared with the experimental maximum in-plane stretch
for verifying the stretch distributions. As it can be observed from Fig. 8, the stretch concentration is more between
the rigid inclusions for NO5SD18 specimen, while the maximum stretch concentration is at the notch tip for N20D30
specimen, as seen in Fig. 9. These also hint at the fracture nucleation regions in these specimens. As the smaller inter-
inclusion distance causes a larger stress concentration, the crack initiates in the region between the inclusions for the
NO5D18 specimen. However, as the notch tip stress concentration is much larger than that caused by the inclusions,
the fracture initiates from the notch tip for the N20D30 specimen. It can also be observed that the predicted maximal
principal stretch distributions match reasonably well with the experimental contours. Although the plane stress
assumption in [85] predicts the distribution reasonably well, the three-dimensional simulation estimates it slightly
better, especially in the region between the inclusions where the crack propagates.

4.2.1. Study of the load—displacement behavior and crack paths

The predicted load—displacement behavior of the specimens is compared with the experimental data reported
in [85] for the cases with different notch lengths @, and inclusion separation distances d; in Fig. 10. The load—
displacement behavior at various stages of crack propagation are visualized for the representative N20D18 and
N10D30 specimens in Fig. 11. Furthermore, the crack paths for a few cases are also compared with experimental
observations reported in [85], as shown in Figs. 12, 13 and 16. The global stretch values A reported in the above
figures are calculated as the ratio of the current length of the specimens to their initial lengths.

As seen in Fig. 11, crack nucleates in the region between the rigid inclusions at the peak load for the N20D18
specimen. As the crack propagates, the reaction force decreases. In the meanwhile, a second crack also initiates at
the notch tip, and finally, they combine smoothly, leading to a flat force drop.

For the N10D30 specimen, crack first nucleates at the notch tip. Due to the presence of the rate-dependent
damage term and the smaller damage values in the other regions, there is a gradual decrease in the slope of the
load—displacement curve. At the same time, the crack proceeds from the notch tip to the center inclusion. This
gradual drop is in good agreement with the experimental data, as seen in Fig. 10. As the crack cannot propagate
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Fig. 11. Depiction of the predicted crack path propagation at different stages of the simulations, following the study by Russ et al. [85]. (a)
Simulated load—displacement curves are plotted for the N10D30 and N20D18 specimens, with labels denoting the stages at which the crack

paths are depicted. The predicted crack propagation paths are illustrated for (b) N20D18 and (c) N10D30 specimens. The rigid inclusions
and the elements with d > 0.95 values are removed for the sake of better visualization.

A =1.2882 A =1.2847
A =1.3259 A =13194 A =13194
A=13611 A =1.3296 A =1.3264 A =1.3236

A =1.3680 A =1.3354 A =1.3264
A =13784 A =1.3368 A =1.3438 A =1.3368
(a) NO5D18

(b) N10D18

Fig. 12. Comparison of the predicted crack paths at different global stretch values A with experimental data for (a) NO5D18 and (b) N10D18
specimens, which have the same inter-inclusion distances, but different initial notch lengths.
Source: The experimental images are taken with permission from [85].

further, the specimen in this configuration takes in more load, which is observed in the stiffening segment of its
load—displacement curve. A second crack initiates in the region between the inclusions and propagates to join the
initial crack. This leads to a sudden decrease in load—displacement behavior.
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Fig. 13. Comparison of the predicted crack paths at different global stretch values A with experimental data for (a) N20D24 and (b) N20D30
specimens, which have the same initial notch lengths, but different inter-inclusion distances.
Source: The experimental images are taken with permission from [85].

As discussed earlier for the NOSD18 specimen, the crack nucleates in the region between the inclusions due
to higher strain concentration in that region as compared to the notch tip. Once the crack initiates, it propagates
through the width of the specimen, as seen in Fig. 12(a). This leads to a force drop, which can be noticed in
Fig. 10(a). The model is also able to capture the post-peak segment of the load—displacement curve well. Although
the predicted load—displacement behavior and the crack propagation path for the NO5D18 specimen match well
with the experimental observations, the global stretch values A at which the crack propagation is tracked, do
not have an ideal agreement with the corresponding values obtained during simulations. This is also observed
in [85], and is attributed to the material’s complexity and the fabrication process’s inconsistency. Moreover, a slight
discrepancy exists between the reported global stretch values and the load—displacement curves in [85]. For example,
the global stretch value A reported at crack initiation for the NO5D18 specimen is 1.3541, as seen in Fig. 12(a).
This corresponds to an applied displacement of 17 mm, while the experimental load—displacement data indicates
a complete failure of the specimen at this displacement, as observed in Fig. 10(a). This also contributes to the
discrepancies between the predicted and observed global stretch values.

Similar to NOSD18, the crack initiation in the N10D18 specimen also takes place in the region between the
inclusions. The force drop from the peak load is caused by this crack trying to propagate through the width of
the specimen. However, the simulations predict this crack to slow down and finally combine with that emanating
from the notch tip, as seen in Fig. 12(b). This results in a small deviation in the post-peak failure segment of the
load—displacement curve, as seen in Fig. 10(a). Although the final segment of the crack path slightly deviates from
the experimental observations, the model predicts the crack nucleation and its initial propagation well, with even
the global stretch values at the different stages being in good agreement.

In the cases with d; = 24 mm, the cracks are found to first initiate from the notch tips. In NO5D24, the crack
initiates at the notch tip and tries to propagate toward the center inclusion. However, as this occurs at a very high
global stretch value and the damage values in the other regions are significant as well, there is a sharper fall in the
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reaction force. In the meanwhile, another crack emanates from the region between the inclusions and joins with the
former one. Hence, there is a smooth force drop in the load—displacement behavior, as seen in Fig. 10(b).

In the N10D24 specimen, the crack again initiates at the notch tip and propagates till the center inclusion. As
this path length is considerably significant, there is an observable initial force drop, which is depicted by Fig. 10(b).
Although the specimen is damaged at the notch tip, the applied loading is still insufficient for initiating damage
in the region between the inclusions due to the larger inter-inclusion spacing. Hence, the specimen takes in more
displacement and a small stiffening segment is visible in Fig. 10(b). It can be noted that the slope of this segment
is much lesser due to an increase in the damage in the specimen. However, strain energy accumulates in the region
between the inclusions and fracture nucleates there too. The crack emanating from this region finally combines with
the crack which originated from the notch tip. This causes the final softening, as observed in Fig. 10(b).

Similar to the N10D24 case, the crack also initiates at the notch tip for the N20D24 specimen. However, due
to the large notch length, the amount of material damaged between the notch tip and the center inclusion is much
less. Therefore, the slight decrease in the slope of the load—displacement behavior only is observed in Fig. 10(b),
which is in good agreement with the experimental observations. Similar to N10D24, the specimen is able to carry
more load once the crack originating from the notch tip is arrested by the center inclusion. However, the stiffness
is degraded due to damage; hence, the stiffening region’s slope is much lesser. Due to the earlier notch tip failure,
the strain energy concentration in the region between the inclusions happens quicker than in the N10D24 specimen.
Therefore, the N20D24 specimen fails much faster than the N10D24 specimen. Similar to the N10D24 specimen,
a secondary crack emanates from the middle region and finally integrates with that starting from the notch tip, as
illustrated in Fig. 13(a).

The cases with d; = 30 mm behave similarly to those with d; = 24 mm. For the case of NO5D30, although the
experimental images show a major crack propagating from only one of the two regions between the inclusions, as
seen in Fig. 16, Russ et al. [85] predict cracks emanating on both sides. As illustrated in Fig. 16, this may be due to
the choice of a large length scale £ value, which helps in the accumulation of damage on both sides. This has been
overcome in the current study, and the crack propagation path matches well with the experimental observations.

In summary, although there are slight discrepancies in the predicted load—displacement curves as compared to
the experimental data, the overall trends are well captured by the proposed model. Besides, the capability of the
proposed model to predict fracture nucleation and complex crack propagation paths in inhomogeneous systems is
validated.

Remark 2. The work by Russ et al. [85] considers the damage evolution to initiate when the total free energy
exceeds a critical threshold value. As a result, although their model captures the slope of the stiffening regions much
better than our work, the failure stretches for cases like N10D30 and N20D30 are predicted to be similar. According
to their model, at the point when the cracks originating from the notch tips in N10D30 and N20D30 specimens
are arrested by the center inclusion, there would be no damage history in the regions between the inclusions. As
a result, both the specimens behave in a similar fashion post this point and hence result in similar failure stretch
values. This is overcome by the current model, which considers a continuous damage evolution due to loading, and
therefore is capable of distinguishing between the two specimens based on their damage histories at any loading
step. As compared to the model proposed by Russ et al. [85], additional traits in the load—displacement behavior
are also well captured by the current model due to accounting for the rate-dependent damage term.

4.2.2. Study of the effect of the length scale parameter on the predicted fracture behavior

It is well known that the length scale parameter ¢ is an intrinsic material property [45,58]. For the sake of
computational tractability, Talamini et al. [59] proposed to choose the parameter depending on the dimensions of
the specimen and to scale the critical bond rupture energy é{; so as to retain the order of the product E{) x £~ G,.
However, in complex systems wherein there are multiple stress concentration regions, it may be necessary to choose
an accurate value of £ for better predictions. Therefore, the effect of using different length scale parameters ¢ for
simulating the fracture behavior based on experimental data is investigated in this section. In this test, free energy
concentrations can occur at the notch tip and in the region between the rigid inclusions. A smaller value of £ can
better capture the free energy concentration at the notch tip. Still, it would require a higher value of free energy
in the regions between the inclusions for fracture initiation. Hence, a suitable length scale parameter ¢ needs to
be chosen for balancing the damage effects from these two stress concentration regions in order to improve the
accuracy of the predictions.
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Fig. 14. For studying the effect of the length scale parameter, load—displacement behavior predicted by the simulations using £ = 0.1 mm

with Eg = 2.1 MPa for (a) d; = 18 mm, (b) d; =24 mm and (c) d; = 30 mm cases, are compared with the experimental data from [85].
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Fig. 15. For studying the effect of the length scale parameter, load—displacement behavior predicted by the simulations using ¢ = 0.3 mm
with ég = 1.25 MPa for (a) d; = 18 mm, (b) d; =24 mm and (c) d; = 30 mm cases, are compared with the experimental data from [85].

For this study, all the material parameters tabulated in Table 3 are utilized except for the critical bond rupture
energy élf), which is calibrated for keeping the load—displacement behavior of NO5D18 specimen approximately
same for each of the length scale parameters used. With these, the predicted load—displacement behavior for all the
cases using £ = 0.1 mm and ¢ = 0.3 mm are shown in Figs. 14 and 15 respectively.

For the case of £ = 0.1 mm, the small deviation in the post-peak segment of the load—displacement curve,
which is due to the slowing down of the crack emanating in the region between the inclusions, before joining
that originating from the notch tip, for the N20D18 specimen is captured. Additionally, the slope of the stiffening
segment post the notch tip failure is also better. This stiffening segment in the NOSD30 specimen is also captured
well. However, the biggest drawback is the incapability of the model to capture the trends in the ultimate failure
stretch as obtained from experiments, especially for the cases d; = 24 mm and d; = 30 mm. This can be explained
intuitively for the case of d; = 30 mm. It can be observed from Fig. 14(c) that the crack from the notch tip initiates
earlier as compared to the cases using larger £. However, as more free energy concentration is required in the
region between the inclusions for crack initiation, there are extended stiffening segments for all the specimens, as
compared to their counterparts with larger ¢ in Fig. 10(c). Once the crack from the notch tip reaches the center
inclusion, the behavior of all three specimens can be expected to be nearly similar, except for the damage histories.
As the crack from the notch tip of the N20D30 specimen reaches the center inclusion first, the damage values in
the other parts of the specimen can be expected to be higher than those in the other two specimens, and hence
it fails first. The other two specimens also follow the same trend and fail at slightly higher global stretch values.
However, experimental data shows that the crack from the notch tip of NO5SD30 specimen originates near the failure
stretch of the other two specimens and hence has a much larger ultimate failure stretch. A similar trend can also
be observed for the case of d; = 24 mm, which is better captured by using £ = 0.2 mm. However, the crack paths
for the NO5SD30 specimen look similar for the cases using £ = 0.1 mm and ¢ = 0.2 mm, as seen in Fig. 16.

In contrast, £ = 0.3 mm captures the ultimate failure stretch trends much better than the £ = 0.1 mm case.
However, as the larger length scale value requires smaller free energy concentrations for fracture initiation, cracks
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Fig. 16. For studying the effect of length scale parameter £, comparison of the crack paths at different global stretch values A for the NO5SD30
specimen obtained by (a) experiments, with those predicted by simulations using (b) £ = 0.1 mm with 5{) =2.1 MPa, (c) £ =0.2 mm with
élf) = 1.6 MPa and (d) £ = 0.3 mm with élf) = 1.25 MPa. The value £ = 0.2 mm is chosen in this study.

Source: The experimental images are taken with permission from [85].

are found to appear on either side of the center inclusion, as depicted in Fig. 16(d). However, this fact is not
evident from the experimental data in Fig. 16(a). Therefore, this high value of the length scale parameter £ may
not be reasonable.

The crack propagation paths for the NOSD18 and N20D30 specimens remain the same irrespective of the length
scales used. Besides, the fracture behavior has been found to remain similar for a higher notch radius R = 0.25 mm
as well. Additionally, the smaller value of & chosen for the case of £ = 0.3 mm also does not impact the crack
propagation path. These additional findings are reported in Appendix E.

In summary, although the length scale parameter may not play a significant role in accurately predicting the
fracture behavior for some specimens like NO5SD18, it is vital for predicting the accurate trends and crack propagation
paths in many cases. This necessitates a proper calibration of this parameter using the experimental data. As a
result, more experiments investigating the fracture behavior of elastomers in such complex inhomogeneous systems
involving multiple competing stress concentration regions like Russ et al. [85] and Mang et al. [87] are essential
for an improved understanding of the physicality and an accurate calibration of the length scale parameter.

5. Conclusions

A multiscale fracture model using the phase field approach has been proposed in this study for computationally
estimating the fracture behavior of rubber-like materials. The multiscale elastomer model consists of a microscale
polymer chain model, a macroscale continuum model, and a non-affine network model bridging the deformations
at the two scales. The microscale damaged chain model assumes that the polymer chains are made up of a
number of elastic chain segments, and the damage in the chain is represented by a continuous phase field variable.
The total free energy, consisting of the internal energy contribution due to the molecular bond stretching and
a free energy component due to the entropy of the chains, is assumed to drive the damage. The role of this
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Table A4

Chain parameters used for plotting Fig. 2.

N Ep/(kgT) eh/(kgT)
3 1000 50

assumption in producing a smooth continuous chain response is illustrated. For establishing a relationship between
the microscale chain stretch and the macroscopic deformation gradient, the non-affine microsphere model is utilized.
However, for integration with the damage model, a new framework is proposed, wherein the minimization of
a hypothetical undamaged free energy is considered along with the non-affine constraint. A thermodynamically
consistent macroscale model, which is combined with the phase field method, is derived. The total dissipation
is assumed to be mainly contributed by molecular bond rupture. Separate history variables for the bulk and
chain damage driving energies are introduced and their necessity is discussed. The proposed model is numerically
implemented using a monolithic scheme. The standard double-edge notch tensile test is first performed to validate
the ability of the model to capture load—displacement behavior and simple crack propagation paths. Furthermore, the
tensile test of the rectangular film with rigid inclusions is performed for different notch lengths and inter-inclusion
distances. The efficacy of the proposed model in qualitatively estimating complex crack paths and quantitatively
predicting the overall fracture behavior in inhomogeneous systems is verified. The necessity of tests involving
multiple competing stress concentration regions for enhanced understanding and accurate estimation of the length
scale parameter is also illustrated.

In the future, mixed formulations can be developed to extend the applicability of the model to highly
incompressible cases. Furthermore, more complex multiscale phenomena like strain-induced crystallization can be
augmented with the current formulation for modeling their effects on fracture behavior. Biological applications of
the proposed model can also be explored by integrating anisotropy.
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Appendix A. Additional details and explanations of the chain response

The chain response using the microscale damaged chain model proposed in this study has been visualized in
Section 2.1 and compared with alternate formulations commonly used in literature. The equations tabulated in
Table 1, along with Egs. (1), (3), (4), (5), (6), (8) and (13), are used for plotting Fig. 2.

The values of the parameters used are in line with those used in [59] and are tabulated in Table A.4. However,
it must be noted that the value of slf) /(kgT) is halved in order to mimic a similar response as that obtained in the
aforementioned study.

For Model 1, which assumes ¥4 = gchain¥bond + Vent> there is an observable discontinuity in the chain response
as seen in Fig. 2 at an applied stretch of A = 4.12. In order to visualize the reason for such a jump, plots of A vs Ay
are produced at two applied stretches A = 4.0 and A = 4.3 as shown in Fig. A.17. Further, the above formulation
is compared with the current model in order to illustrate how the issue is overcome.
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Fig. A.17. Illustration of A = L () and A =1/ (Ab\/ﬁ), which are the LHS and RHS of (A.1) at applied stretches of (a) A = 4.0 and

(b) A = 4.3. The current model, wherein the degradation of the total free energy is assumed and thus g = B, is compared with Model 1,
which considers the degradation of only the bond stretch energy, thus leading to 8 = gchain 8. The expression for B is given by (A.2).

At any given applied stretch A, the magnitude of the bond stretch A, can be obtained as the minimizer of the
total damaged free energy using (10). One method for solving the resulting nonlinear equation is to consider the
expressions of Langevin parameter A obtained from its physical perspective and the Langevin statistics. From its
physical meaning, it can be expressed as A = A/ (Ab\/ﬁ , while it is given by A = L (8) using the Langevin
statistics. The expression for 8 can be obtained from the aforementioned minimization problem. If the plots of these
two expressions of A are produced for different values of Ay, the point of their intersection results in the root of

the nonlinear equation. This method has been used in Fig. A.17 in order to find the value of Ay at the two applied
stretches. So, the equation used for solving A, can be written as

L(B)=r/ (Abﬁ) . (A1)
‘/——/
LHS RHS

The value of 8 for the two formulations can be obtained from Table 1. For simplifying the notation, we assume S
as

- Expv/N X2 (hp—1
. G (A2)
kgT A
As the value of 8 degrades with damage for Model 1, which considers ¥4 = gchain¥bond + Vent> the value of Ay

obtained as the root of the equation at the two applied stretches has a large jump, which is overcome by the current
model.

Further, for the utilization of the current model with the microsphere network model, the plots of the damaged and
undamaged chain-free energies and their slopes are depicted in Fig. A.18. The same set of parameters in Table A.4 is
used for plotting these curves. The convex nature of the undamaged free energy function and the general non-convex
nature of the damaged free energy function are visible.

Appendix B. Derivation of macroscale constitutive equations

As rubber-like materials are known for their high stretchability, the constitutive framework is developed in the
finite deformation regime. The subsequent sections introduce the kinematics and derive the governing equations
using the balance laws, and are based on the frameworks described in [32,59,71,88-90].

B.1. Finite strain kinematics

A body is considered to be a collection of material points, which occupy the spatial configuration V C R"dim,
with 1 < ngm < 3 representing the spatial dimension, at time ¢ € Ry. The position of an individual material point
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Fig. A.18. Illustration of the convex nature of the undamaged chain free energy v,q and the non-convex behavior of the damaged chain
free energy yq with respect to the stretch A in the chain. (a) Free energy functions and (b) their slopes are plotted.

is given by x € V, while the boundary is denoted by A C R™im~!, The displacements of these points due to the
deformation of the body are described relative to a fixed reference configuration Vy C R™im  which for instance,
can be the configuration occupied by the body at time #. At this time, the position of the material point is given
by X € V,, while the boundary is denoted by Ay C R"dim=1,

A nonlinear deformation map ¢ (X) : X — x = ¢ (X ¢t) is utilized to map the reference positions X € V;, onto
the current positions x € V. The local deformation gradient F = Vx¢ (X; t) represents the linear mapping of the
tangent vectors between the reference and spatial configurations. The Jacobian J = det F > 0 represents the ratio
of the current local volume to its initial volume. The spatial velocity gradient I and the rate of deformation tensor
D are defined as

I=FF! D:syml:%(l—l—lT). (B.1)

The displacement field of any point is given by u = x — X. The damage at any point in the continuum is
represented using a continuous phase field variable d (X, t) € [0, 1]. At any point, d = 0 denotes a fully intact
material, while d = 1 indicates a fully fractured material. Further, the irreversibility of the microstructural changes
leading to fracture is taken into account by assuming the damage variable to grow monotonically d (X, 1) > 0.
Additionally, the dimensionless positive-valued internal variable A, > O is used as the macroscopic variable for
tracking chain bond stretch.

As the microsphere model predicts an isotropic network response, all the chains at a material point have the same
properties. In addition, we assume that the continuum damage is mainly due to the rupture of the molecular bonds in
the monomers. This makes it reasonable to approximate the continuum damage with the microscale chain damage,
which is caused due to the molecular bond rupture. Hence, in this study, the chain damage is also denoted by the
same variable d. Similarly, the chain bond stretch is also denoted by Ap, which is the same as the non-physical
macroscopic variable used for tracking it.

B.2. Balance laws

The constitutive relations are derived based on the macro-forces and micro-forces balance laws and the laws of
thermodynamics. The subsequent formulation is derived in the reference configuration, though a similar derivation
can also be performed in the spatial configuration.

Balance of mass. Assuming the conservation of mass of the system at all times, the local form of the balance of
mass in the reference configuration is given by

,(30 =0 in V() s (BZ)
wherein py represents the mass density per unit reference volume.
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Balance of linear momentum. By equating the rate of linear macro-momentum to the mechanical macro-forces, the
balance law in the reference configuration can be written as

dr

wherein B represents the body force per unit reference volume, P is the first Piola—Kirchhoff stress tensor
and N denotes the outward normal at the boundary in the reference configuration. The term ppit represents the
macro-momentum at a given point.

d
— pol'th():/ BdVo+/ PNdAy, — DivP+ B =pyit inV,, (B.3)
Vo Yo A

Balance of angular momentum. The balance of angular momentum in the reference configuration can be written
as

d
— | X x poudVy :/ XxBdVy+ | Xx PNdA, — PF'=FP" V. (B.4)
dr Yo Yo Ag

Balance of micro-forces. Due to the damage variable d, assuming that the stress level in the microscopic system
is characterized by an intrinsic micro-force my (X, t), an extrinsic micro-force hq (X, t) and a micro-stress vector
&4 (X, 1), the balance of the micro-forces due to the damage field can be written as

d .
— | poAqddVy = /

hq dV0+/ wqdVo+ ng dAy, — DiV£d+/’ld+7Td = ,O()ﬂdg in Vy, (B.5)
dr Jy, Vo Vo

Ao

wherein Ay represents the micro-inertia for damage and poAqd denotes the micro-momentum due to damage at
any given point. Note that the micro-inertia is assumed as time-independent. Defining similar counterparts for the
bond stretch variable Ay, the corresponding micro-force balance can be written as

d .
-— ,Ooﬂb)\.b dV() = /
dr Jy, Vo

As the bond stretch is defined as an internal variable without nonlocal effects, it is assumed that it is not associated
with a micro-stress, which is reflected in the above equation.

hydVy + / mdVy =  hy 47 = poAphy  in V. (B.6)
Yo

First law of thermodynamics. The total energy balance of the system can be expressed as

d I , .
a (p0€0+K0)dV0=/ (B-u+hdd+hb)hb+poro) dV0+/ (PN'M-l-Sd'Nd—qO'N) dAy,
Vo Vo Ao

(B.7)

wherein e represents the internal energy per unit reference mass, ry is the heat source per unit reference mass and
q, denotes the referential heat flux vector. The kinetic energy in the reference configuration K, can be expressed
as
| | 21 © N2
Ky = 5Ptk - + Epoﬂd (d)” + Epoﬂb (Ao)” - (B.8)
Utilizing all the above results, the equation for the first law of thermodynamics can be simplified to the local
form

poéo =P : F + &y Vxd — mad — mohy + poro — Divg, in Vy. (B.9)
Second law of thermodynamics. The second law of thermodynamics can be expressed as

d -N

S oesodvy > / P70 4y, — / Z0" N 44,. (B.10)

dt Vo Vo T Ag T

with T representing the absolute temperature of the system and sy denoting the referential entropy per unit mass.
This equation can be simplified to the local form as

-VxT
90 X in V0~ (Bll)

posoT > poro — Divgy +
The Helmholtz free energy function v is introduced using the Legendre-transformation
e =Y +Tsp. (B.12)
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Using Egs. (B.9), (B.11) and (B.12), we get

0. (B.13)

. . . . . . -VxT
P1F+Ed'vxd—ﬂdd—77b)»b—;001/f—POSOT—qOTX>

For this study, a quasi-static loading condition is assumed; hence, the inertial effects are neglected. The external
body macro-force B and micro-forces hy, hy are also neglected. Further, an isothermal process with a uniform
temperature distribution is assumed; therefore, T, VxT are approximated as zero. Let ¥ = pyy and the stresses
are expressed in terms of the symmetric Kirchhoff stress tensor T = P F. Using these assumptions and conventions,
the Eqgs. (35), (36), (37) and (38) are obtained.

Appendix C. History variables for damage driving fields

As the macroscopic free energy is split into volumetric and isochoric responses, and different degradation
functions are used, the necessity and validity of the history variables for both the damage driving fields need to
be studied. Following the study presented in [80], we consider a local damage model in a one-dimensional setting.
Although we do not explicitly use the expressions for Uy and ¥4, their convex nature with respect to the applied
loading is utilized. Let us consider the free energy function as

¥ = gouUpuik + gehainWud » (C.1)

with the cubic and quadratic forms of the gyuk and gcnain degradation functions, respectively, as used in the current
study. Using the second law of thermodynamics, the reduced dissipation inequality is given by

. ov -
D = fad >0 with fdz—a=3(1—d)2Ubu1k+2(1—d)1pud. (C2)

Similar to the threshold functional presented in [80], assuming the crack resistance force to be linear in damage,
as used in the current study, we get

(6Upuik + 29ua + f) — \/(Z%d + f)z + 12Upuxf
6Upuik .

_ Note that § is assumed to be a positive constant. Assuming damage to occur mainly in tension, both Upyx and
Yrua are positive. Hence, the other root of the above equation is discarded as it results in d > 1. Except for the point
Upux = 0, the damage field is defined everywhere. At very small loadings, we have

f—f
6¢
At very large loadings, three cases can be possible.

n (6+2+f/e)—\/(2+f/6)2+12f/e o

fa=id - d=

(C.3)

Ubuik ~ Iﬁud ~e€—>0 —> d =~ ~0. (C4)

Uik ~ Yua ~ € —> 00 —> 3 (C.5)
- 6Upuik + 2€ + ) — (2e +
Upk K Yug ~€ > 00 — d= (Ui 2 P ~1. (C.6)
6Upuik
- - 2
_ 6+ 2vYna/€ +1/€) —+/ (2¥ua/€ + f/€) + 12f/€
VY L Upux ~€ > 00 —> dw( ‘ ile) \/( ‘ ile) i ~l. (C.7)

6
Further, the partial derivatives of the damage variable with respect to the damage driving fields can be derived
and simplified as

ad g — (2w +17) _ —
— = 0 ith = 2Yrug + + 12Upuif - csa

8wud 3Ubulkg = w 8 \/( 1// d f) bi lkf ( )
od 6f2

_ - - > 0. (€9
A Upuik g [((lefud + f)2 + 6Ubu1kf> + (Zl/fud + f) g]

First, the damage variable has been shown to converge to zero at smaller loadings, and to one at very large
loadings, thus validating the choice of the degradation functions. Further, it has been proven that the damage variable
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Fig. D.19. Comparison of the simulation results using microsphere model with p = 2 and eight-chain model, using the same set of parameters,
with the experimental data from [15] for a double-edge notched specimen with @, = 12 mm.

is an increasing function concerning each damage driving field. Therefore, decreasing damage driving fields strictly
lead to a decrease in the damage variable.

As an example case, during the compressive part of the cyclic loading, both the damage driving fields tend
to decrease. For satisfying irreversibility of the damage d > 0, both the functions need to be non-decreasing,
and hence history variables are required for both the functions. Therefore, for a general model, history variables
are required for each of the damage driving fields and it has been proven that they ensure damage irreversibility
d>0.

Appendix D. Double-edge notch tensile specimen - Comparison with eight-chain model

The current formulation using the generalized microsphere model as the bridge linking the deformations at the
two scales can be shown to be equivalent to that using the eight-chain model when p = 2. For this sake, the
alternate formulation, wherein the eight-chain network model is used, is implemented in a similar manner with the
mapping between the chain stretch and the isochoric deformation gradient given by [49,91]

trC 7o
A:,/% with C=F"F. (D.1)

With this model, the double-edge notch tensile test is simulated for the specimen with a. = 12 mm using the
same set of material parameters as tabulated in Table 2. The resulting load—displacement behavior is compared with
that obtained using the microsphere network model, as shown in Fig. D.19. It can be observed that the results match
perfectly, thus verifying the equivalence.

Appendix E. Rectangular film with rigid inclusions - Additional details and results

A custom mesh, as depicted in Fig. E.20, is generated with the most refined regions having an element size of
0.03 mm. For the N20D30 specimen, this mesh results in 4.23 million degrees of freedom.

To study the effect of the length scale parameter £ on accurately predicting the fracture behavior, the crack
propagation paths using ¢ = 0.1 mm, £ = 0.2 mm, and £ = 0.3 mm are compared with the experimental data
for the NO5SD18 and N20D30 specimens in Figs. E.21 and E.22, respectively. It can be observed that the length
scale parameter has a negligible effect on the crack propagation path for the NOSD18 specimen. It is observed that
a small value of ¢ predicts additional cracks between those emanating from the notch tip and the region between
the inclusions, as seen in Fig. E.22(b) at a global stretch of A = 1.4790. However, this is quite insignificant, and
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Fig. E.20. N20D30 specimen mesh used for the simulation of the rectangular film with rigid inclusions tensile test. Symmetry is utilized
for modeling just one-fourth of the whole specimen.

I\ m
-

A =1.2882 A =1.2882 A =1.2882

A =1.3541 A =1.3259 A =1.3259 A =1.3261

A =1.3611 A =1.3296 A =1.3296

A =1.3391 A =1.3354
A =1.3784 A = 1.3406 A =1.3368 A =1.3373
(a) Experiment (b) £ =0.1 mm (¢) £ =0.2 mm* (d) £ =03 mm

Fig. E.21. For studying the effect of length scale parameter ¢, comparison of the crack paths at different global stretch values A for
the NOSD18 specimen obtained by (a) experiments, with those predicted by simulations using (b) £ = 0.1 mm with él; = 2.1 MPa, (c)
¢ =0.2 mm with é{) = 1.6 MPa and (d) ¢ = 0.3 mm with élf) = 1.25 MPa. The value £ = 0.2 mm is chosen in this study.

Source: The experimental images are taken with permission from [85].

it can be concluded that the length scale does not play a vital role in the crack propagation path for the N20D30
specimen. The effects of the assumed notch radius and the smaller value of & chosen for the £ = 0.3 mm case
are also studied on the crack propagation path for NOSD30 specimen. As seen in Fig. E.23, the crack paths are not
affected, and the length scale parameter can be concluded to be a major factor that influences the predicted fracture
behavior of the NO5D30 specimen.
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A =1.1563 A =1.1563 A =1.1563 A =1.1563

A =1.3889 A =1.3848

A =1.4390 A =1.4106

A =1.4688 A =1.4790 A =1.4394 A =14110

A =14722 A =14792 A =1.4399 A=14111
(a) Experiment (b) £=0.1 mm (¢) £ =0.2 mm* (d) £=0.3mm

Fig. E.22. For studying the effect of length scale parameter ¢, comparison of the crack paths at different global stretch values A for
the N20D30 specimen obtained by (a) experiments, with those predicted by simulations using (b) £ = 0.1 mm with & = 2.1 MPa, (¢)
£ =0.2 mm with E{) = 1.6 MPa and (d) £ = 0.3 mm with E{) = 1.25 MPa. The value £ = 0.2 mm is chosen in this study.

Source: The experimental images are taken with permission from [85].

A =1.2882 A =1.2882 A =1.2882 A =1.2882

A =13854 A =1.3854 A =1.3854 A =1.3854

A =1.4931 A =1.4864 A =14918 A =1.4221

A =1.4965 A =1.4879 A =1.4939 A =14238

A =1.5000 A =1.5000 A =1.4940 A =1.4240

(a) Experiment (b) R =0.15 mm, é{) = 1.6 MPa* (¢c) R =0.25 mm, élf’ = 1.6 MPa (d) R =0.15 mm, éﬁ =1.25 MPa

Fig. E.23. For studying the effect of notch radius R and the critical bond rupture energy ég, comparison of the crack paths at different
global stretch values A for the NO5D30 specimen obtained by (a) experiments, with those predicted by simulations using (b) R = 0.15 mm,
& = 1.6 MPa, (¢) R = 0.25 mm, &l = 1.6 MPa and (d) R = 0.15 mm, & = 1.25 MPa. The values R = 0.15 mm, &{ = 1.6 MPa are
chosen in this study.

Source: The experimental images are taken with permission from [85].
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