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Abstract— We introduce a gain function viewpoint of infor-
mation leakage by proposing maximal g-leakage, a rich class
of operationally meaningful leakage measures that subsumes
recently introduced leakage measures — maximal leakage and
maximal «-leakage. In maximal g-leakage, the gain of an
adversary in guessing an unknown random variable is measured
using a gain function applied to the probability of correctly
guessing. In particular, maximal g-leakage captures the multi-
plicative increase, upon observing Y, in the expected gain of an
adversary in guessing a randomized function of X, maximized
over all such randomized functions. We also consider the scenario
where an adversary can make multiple attempts to guess the
randomized function of interest. We show that maximal leakage
is an upper bound on maximal g-leakage under multiple guesses,
for any non-negative gain function g. We obtain a closed-form
expression for maximal g-leakage under multiple guesses for
a class of concave gain functions. We also study maximal g-
leakage measure for a specific class of gain functions related
to the a-loss, that interpolates log-loss (&« = 1) and (soft) 0-1
loss (¢ = o0). In particular, we first completely characterize
the minimal expected «-loss under multiple guesses and analyze
how the corresponding leakage measure is affected with the
number of guesses. We show that a new measure of divergence
that belongs to the class of Bregman divergences captures the
relative performance of an arbitrary adversarial strategy with
respect to an optimal strategy in minimizing the expected -loss.
Finally, we study two variants of maximal g-leakage depending
on the type of adversary and obtain closed-form expressions
for them, which do not depend on the particular gain function
considered as long as it satisfies some mild regularity conditions.
We do this by developing a variational characterization for the
Rényi divergence of order infinity which naturally generalizes the
definition of pointwise maximal leakage to incorporate arbitrary
gain functions.
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I. INTRODUCTION

FUNDAMENTAL question in many privacy and secrecy

problems is — how much information does a random
variable Y that represents observed data by an adversary leak
about a correlated random variable X that represents sensitive
data? For example, X may be a secret that must be kept
confidential and the observation Y could be an inevitable
consequence of a system design, for instance, in exchange
for certain services. A number of approaches to quantify such
information leakage have been proposed in both computer sci-
ence [1], [2], [3], [4], [5], [6], [7] and information theory [8],
[91, (101, (111, [12], [13], [14], [15], [16].

Leakage measures with an associated operational meaning
are of specific interest in the literature since an upper bound on
such a leakage measure allows the system designer to ensure
certain guarantees on the system. Recently, Issa et al. [13] pro-
posed one such leakage measure in the guessing framework.
In particular, Issa et al. [13] consider an adversary interested
in a (possibly randomized) function of X and study the
logarithm of the multiplicative increase, upon observing Y,
of the probability of correctly guessing a randomized function
of X, say, U. Moreover, this quantity is maximized over all
the random variables U such that U — X —Y forms a Markov
chain capturing the scenario that the function of interest U
is unknown to the system designer. The resulting quantity is
referred to as maximal leakage (MaxL) and an upper bound
on it limits the amount of information leakage of any arbitrary
randomized function of X through Y. Liao et al. [15] later
generalized MaxL to a family of leakages, maximal o-leakage
(Max-aL), for a € (1, 00), that allows tuning the measure to
specific applications. In particular, similar to MaxL, Max-aL
quantifies the maximal logarithmic increase in a monotonically
increasing power function (dependent on «) applied to the
probability of correctly guessing. We remark that Max-al
provides an operational interpretation to mutual information
(for « = 1) in the context of privacy leakage, which was
an open problem earlier [13], [17]. Saeidian et al. [16]
introduced a variant of maximal leakage, called pointwise
maximal leakage, capturing the amount of information leaked
about X due to disclosing a single outcome Y = y rather
than focusing on the average outcome as in maximal leakage.
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Maximize E[g(P(U = U)|Y)]

Fig. 1.
of correctly guessing a randomized function of X, denoted by U.

These operationally motivated leakage measures find applica-
tions in many areas such as in privacy-utility trade-offs [15],
private information retrieval [18], hypothesis testing [19],
source coding [20], membership inference [21], and age of
information [22].

We extend the aforementioned line of work by focusing
on arbitrary gain functions g : [0,1] — [0,00) applied
to the probability of correctness (see Fig. 1). In particular,
we define maximal g-leakage as the maximal logarithmic
increase in the gain (applied to the probability of correct-
ness) of an adversary and study its properties for arbitrary
g. We also consider maximal g-leakage under multiple
guesses where the adversary is allowed to make multiple
guesses. Further, we introduce and study variants of maximal
g-leakage depending on the type of adversary by developing
a new variational characterization for Rényi divergence of
order oo [23]. A variational characterization for a diver-
gence transforms its definition into an optimization problem.
Variational characterizations for Rényi divergences of order
a € R\ {0} [23] are studied in the literature [24],
[25], [26], [27], [28]. We also study information leakage
when the adversary is allowed to make multiple attempts
to guess the randomized function of interest by focus-
ing on a specific gain function related to the a-loss [15],
[29], [30], [31] interpolating log-loss (« 1) and (soft)
0-1 loss (o = o0).

A. Related Work

Most of the approaches in the literature start with a particu-
lar metric developed in other contexts and study the properties
that follow from the definition. It is difficult to associate an
operational meaning to such a leakage measures. In fact, such
approaches can label evidently insecure systems as secure
(see [17, Section 3.6]). An alternative approach is via a specific
threat model of a guessing adversary giving an operationally
meaningful interpretation to information leakage [2], [3], [5],
[13], [15], [16]. Smith [2] defines min-entropy leakage as the
logarithm of the multiplicative increase, upon observing Y,
of the probability of correctly guessing X. Braun et al. [3]
consider the maximization of min-entropy leakage over all
prior distributions on X resulting in a leakage measure (later
shown to be equal to maximal leakage [13]) known as min-
capacity that is dependent only on the conditional distribution
(or channel) Py x. Alvim et al. [5], [7] defined g-leakage and

A gain function viewpoint of leakage. An adversary observes Y and wants to maximize, on an average, the gain function applied to the probability

g-capacity by introducing a gain function g : X X X - R
instead of looking at the probability of correctly guessing
X. Alvim et al. [5] showed that maximizing g-capacity over
all gain functions g yields maximal leakage. Note that the
threat model in all these works focuses on guessing X itself
rather than a (potentially) randomized function U of X.
Issa et al. [13] considered maximal gain leakage based on the
gain functions and g-leakage introduced by Alvim et al. [5],
where the adversary is interested in a (potentially) randomized
function of X and maximum is taken over all gain functions
g:U xU — [0,1]. Similar to Alvim et al. [5], they showed
that maximal gain leakage is equal to maximal leakage. As we
show later, our definition of gain function where a real-valued
function is applied to the probability of correctly guessing
can be seen as a special case of the gain function definition
of Alvim et al. [5], [7]. However, the information leakage
measures we study in this work differ substantially from that
of the works [5], [7], [13]. In particular, Alvim et al. [5],
[7] and Issa et al. [13] consider leakage measures with a
maximum taken over all the gain functions while the problem
of computing leakage measures with specific gain functions
(other than the identity gain function that corresponds to
maximal leakage) remains open and is conjectured to be
challenging [7, Section VI.A]. In this work, we study leakage
measures with specific gain functions and obtain their closed-
form expressions. We present more details on the distinction
from Alvim et al. [5], [7] and Issa et al. [13] in Section III
(in particular, see Remark 3).

Instead of multiplicative increase, the notion of additive
increase has also been considered in quantifying privacy
leakage. For example, an additive version of g-leakage is
studied by Alvim et al. [7]. Also, the notion of semantic
security in cryptography defines ‘advantage’ as the addi-
tive increase, upon observing the encrypted message, of the
probability of correctly guessing the value of the function.
Calmon et al. [32] and Li and El Gamal [33] use maximal
correlation as a measure of information leakage. Mutual
information has been used as a privacy measure in many
works, see e.g., [9], [12], [34], [35], [36], [37], [38], and
[39]. Asoodeh et al. [40] use the probability of correctly
guessing as a privacy measure. Li et al. [41] use hypothesis
test performance of an adversary to measure leakage. Total
variation distance is used as privacy measure by Rassouli and
Giindiiz [14].
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Another line of work in privacy leakage is based on indistin-
guishability, i.e., whether an adversary can distinguish between
two items of interest. Differential privacy [1], proposed in
the context of querying databases, ensures that all databases
that differ only in one entry produce an output to a query
with almost equal probabilities. Similar to differential privacy
and pointwise maximal leakage, Calmon and Fawaz [9],
Issa et al. [13], and Jiang et al. [42] study privacy leakage
providing worst-case guarantees, note that Issa et al. [13]
study an average case leakage measure (maximal leakage)
also. An equivalent notion of differential privacy using (con-
ditional) mutual information is studied in [43]. The notion of
differential privacy is known to be very strict and has limited
applicability [44], [45]. Approximate differential privacy [46]
and Rényi differential privacy [47] are proposed as relaxations
of differential privacy to allow data releases with higher utility.
For an extensive list of leakage measures see the surveys by
Wagner and Eckhoff [48], Bloch et al. [49], and Hsu et al. [50].

B. Main Contributions

The main contributions of this paper are as follows:

o We show that maximal leakage is an upper bound on
maximal g-leakage under £ > 1 guesses for any arbitrary
non-negative gain function g (Proposition 1). We obtain
closed-form expression for maximal g-leakage under k >
1 guesses for a class of gain functions g. Specifically,
when g is a non-negative concave function with a finite
non-zero derivative at 0, we show that maximal g-leakage
under £ > 1 guesses is equal to the Sibson mutual
information of order infinity [51], i.e., the maximal leak-
age (Theorem 1). In addition, we obtain a closed-form
expression for maximal g-leakage when ¢(t) = 1 + ¢,
for binary X and Y (Theorem 2). An interesting aspect
of this expression is that it is fundamentally different in
structure from that of maximal leakage and maximal -
leakage.

e« We then focus on maximal g-leakage under multiple
guesses for a specific class of gain functions related to
the a-loss, a € (0,00) [15], [29], [30], [31], which
interpolates log-loss (« = 1) and 0-1 loss (a = o0).
We define two leakage measures, the a-leakage and the
maximal a-leakage under multiple guesses. We show that
a-leakage does not change with the number of guesses
for a class of probability distributions (Theorem 4) [52].
We prove that maximal a-leakage under multiple guesses
is at least that of with a single guess (Theorem 5).

o To prove these, we completely characterize the mini-
mal expected a-loss under k& guesses (Theorem 3) [52],
thereby recovering the known results for « = oo [13].
We illustrate an optimal guessing strategy of the adver-
sary through Examples 1 and 2. To the best of our
knowledge, such a result even for log-loss under multiples
guesses was not explored earlier. We derive a technique
for transforming the optimization problem over probabil-
ity simplex associated with multiple random variables to
that of with a single random variable using tools drawn

1351

from duality in linear programming, which may be of
independent interest.

e We introduce and study two variants of maximal
g-leakage, namely, opportunistic maximal g-leakage
(when the adversary could choose the function of inter-
est depending on the realization of Y) and maximal
realizable g-leakage (when the adversary is interested in
maximum guessing performance over all the realizations
of Y instead of average performance). We obtain closed-
form expressions for these leakage measures in terms
of Sibson mutual information of order oo and Rényi
divergence of order oo, respectively (Corollary 4).

o We do this by devising a new variational characterization
for Rényi divergence of order co expressed in terms
of the ratio of maximal expected gains in guessing a
randomized function of X, which may be of independent
interest (Theorem 6) [53]. An important aspect of our
characterization is that it remains agnostic to the partic-
ular gain function considered as long as it satisfies some
mild regularity conditions. Even though the variational
characterizations mentioned earlier are presented for any
finite order <, one can obtain such characterizations for
oo-Rényi divergence by applying a limiting argument (see
the discussion above Proposition 2). Our characterization
differs from those characterizations in view of its con-
nection to guessing, and more importantly because of its
robustness to the gain function. We also show that our
variational characterization naturally extends the notion
of pointwise maximal leakage [16] to incorporate arbi-
trary gain functions under mild regularity assumptions
retaining the same closed-form expression (Corollary 5).

C. Organization of the Paper

The remainder of this paper is organized as follows.
We introduce the gain function viewpoint and review maximal
leakage and maximal a-leakage in Section II. In Section III,
we present our results on maximal g-leakage under multiple
guesses. In Section IV, we present our results on maximal
g-leakage under multiple guesses by focusing on a class of
specific gain functions related to the a-loss [29], [30], [31],
parameterized by o € (0, 1)U(1, c0). In Section V, we develop
a variational characterization for oo-Rényi divergence and
show how it can be employed to obtain closed-form expres-
sions for variants of maximal g-leakage depending on the type
of adversary. The proofs of all the results are presented in
Appendix.

II. PRELIMINARIES

Notation. We use capital letters to denote random variables,
e.g., X, and capital calligraphic letters to denote their corre-
sponding alphabet, e.g., X'. We consider only finite alphabets
in this work. We use Ex[] to denote expectation with respect
to Px and U — X — Y to denote that the random variables
form a Markov chain. We use supp(X) := {x : Px(z) > 0}
to denote the support set of X. We use H(X), I(X;Y), and
D(Px||Qx) to denote entropy, mutual information, and rela-
tive entropy, respectively. Given two probability distributions
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Px and @Qx over an alphabet X, we write Px < Qx to
denote that Px is absolutely continuous with respect to ) x.
Finally, we use log to denote the natural logarithm.

We begin by defining the maximal expected gain of an
adversary in guessing an unknown random variable, which
is an impetus for this work. A gain function is defined as
a function g : [0,1] — [0,00), and can be interpreted as a
function that is applied to the probability of correctly guessing
an unknown random variable.

Definition 1 (Maximal Expected Gain): Given a gain func-
tion g : [0,1] — R and a probability distribution Px on a
finite alphabet X', the maximal expected gain is defined as

sup Ex [9(Pg(X)], (1)
Py
where X represents an estimator of X with same support as X.

Though maximal expected gain in (1) is defined for
real-valued gain functions, we restrict our attention to
non-negative gain functions for most of the time in this paper.
However, some of our results hold for negative gain functions
also, e.g., g(t) = logt, ¢t € [0, 1] (we discuss this in Remark 7
in Section V). The objective function in (1) is the expected
value of gain function g applied to the probability of correctly
guessing an unknown random variable X. Alvim et al. [5], [7]
consider a similar gain function viewpoint of information leak-
age with gain functions g : X' X X — R. It is worth mentioning
that the gain function of Alvim et al. [5], [7] subsumes the gain
function used in (1). In particular, if we consider the alphabet
X to be equal to the simplex of probability distributions P¢ on
X, we can define a gain function g(x, Py) = ¢'(Pg(x)) for a
function ¢’ : [0, 1] — R. However, our gain function viewpoint
is conceptually different from that of Alvim et al. [5], [7]
in that the maximal expected gain in (1) is expressed in
terms of the probability of correctly guessing. Moreover,
as mentioned earlier in Section I-A, our approach to study
information leakage measures differs substantially from that of
Alvim et al. [5], [7] (see Section III for more details). We note
that the notion of maximal expected gain in (1) for specific
gain functions, ¢g(¢t) = ¢ and g(t) = ﬁtafl, a € (1,00],
plays a crucial role in the definitions of maximal leakage [13]
and maximal a-leakage [15] (see the bulleted list near (26) for
optimal guessing strategies for these gain functions in addition
to the logarithmic gain function g(t) = logt).

Definition 2 (Maximal a-Leakage [15], [30]): Given a
joint distribution Pxy on a finite alphabet X x )/, the maximal

a-leakage from X to Y is defined as, for a € (0,1) U (1, 00),
LEH(X —Y)
maxp,  Eyy { < U\y(U|Y)%}
= sup log

voxoya—1 maxp, By [ﬁPg(U) =

2

where U represents any randomized function of X that the
adversary is interested in guessing and takes values in an
arbitrary finite alphabet. Moreover, U is an estimator of U
with the same support as U.

Maximal a-leakage captures the information leaked about
any function of the random variable X to an adversary that
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observes a correlated random variable Y. Maximal a-leakage
is proposed as a generalization of maximal leakage [13],
where the former recovers the latter when a@ — oo, to allow
tuning the measure to specific applications. The ratio inside the
logarithm in (2) is the multiplicative increase, upon observing
Y, of the maximal expected gain of an adversary in guessing
a randomized function of X, with gain function g¢(t) =
ﬁt%l, a € (0,1)U(1, 00). In this work, we study maximal
expected gain (1) and the associated leakage measures for
arbitrary gain functions g : [0, 1] — (0, c0). Maximal leakage,
maximal a-leakage, and the new leakage measures we study
in this work can be expressed in terms of Sibson mutual
information [51] and Rényi divergence [23].

Definition 3 (Sibson Mutual Information of Order o [51]):
For a given joint distribution Pxy on finite alphabet X x ),
the Sibson mutual information of order o € (0,1) U (1, 00) is

logz (Z Px (x

yey \zeX

1

a

I3(X:Y) z) Py |x (y|2)* )

It is defined by its continuous extension for & = 1 and o = o0,
respectively, and is given by
I(X;Y) = I(X;Y) (Shannon mutual information), (3)
I5(X;Y)=1o max P z). 4
gzm(;§>O v ix (/) 4)
Definition 4 (Rényi Divergence of Order o [23]): The

Rényi divergence of order o € (0,1) U (1,00) between two
probability distributions Py and Q) x on a finite alphabet X

is defined as
)1—a> . (5)

It is defined by its continuous extension for « = 1 and o = oo,
respectively, and is given by

Da(PXHQX) =

il log <Z Px(z)*Qx (z

reX

Px(z)
(P Yo p , 6
(Px||Qx) = P x ( Ox(@) (6)
Do (Px[|Qx) = maxlog Px(r) %

Qx(z)

Notice that for o > 1, D,(Px||@Qx) is finite if and
only if Px is absolutely continuous with respect to Qx.
Issa et al. [13] showed that maximal leakage is equal to Sibson
mutual information of order oo, i.e.,

LMNX - Y) =15 (X;Y) ®)
= log Z max  Prix(yle). O

Generalizing this, Liao et al. [15] proved that maximal
a-leakage is given by the Sibson mutual information of order
a, ie.,

LON(X - Y)=supIS(X;Y),

X

(10)

where the supremum is over all probability distributions Py
on the support of Px.
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III. MAXIMAL g-LEAKAGE UNDER MULTIPLE GUESSES

The definitions of maximal leakage and maximal a-leakage
consider the adversaries interested in maximizing the expected
values of specific gain functions, in particular, maximal leak-
age uses the gain function g(¢) = ¢ and maximal a-leakage
uses the gain function g(t) = ﬁt%l, a € (1,00). These
leakage measures can be seen as special cases of a more
general leakage measure incorporating an adversary interested
in maximizing an arbitrary gain function g.

Definition 5 (Maximal g-Leakage): Given a gain function
g :[0,1] — [0,00) and a joint probability distribution Pxy
on a finite alphabet X’ x ), the maximal g-leakage is defined
as

LON(X —Y)
supp,  Buy [9(Pyy (U1Y))]
supp, Ev [9(Py(U))]

Maximal g-leakage captures how much information an
adversary can learn about any randomized function of a
random variable X from a correlated random variable Y when
a single guess is allowed. We now define maximal g-leakage
under k guesses which captures the information an adversary
can learn when k guesses are allowed. This definition is also
related to maximal leakage under £ guesses [13, Definition 4].

Definition 6 (Maximal g-Leakage Under k Guesses):
Given a gain function g : [0,1] — [0,00) and a joint
probability distribution Pxy, the maximal g-leakage from X
to Y under k£ guesses is defined as

£§]k)—max(X _ Y)

= sup log (11)

U.U-X-Y

max E [g (P (L_kj (U;

I
=
=

N———
—

PU[MC]\Y
= sup log 5 ,
vy max E [g <P (U U; = U)))]
Po i=1
(12)
where U],UQ, .. .,Uk represent k estimators of U with the

same support as U.
k

We interpret P(|J (U; = u)|Y = y) as the probability
of correctly estimaztiig U = wu given Y = y in k guesses.
Due to the fact that gain function used in maximal g-leakage
is a special case of the gain function of Alvim et al. [5]
(as discussed in the paragraph after Definition 1), an upper
bound on maximal g-leakage directly follows from Issa et al.
[13, Theorem 5]. In particular, Issa et al. [13, Theorem 5]
showed that, for a given joint distribution Pxy,

supg(.) Euy[g(U, a(Y))]

su lo i =I5 (X;Y).
R U:Ui)lzfy & SUP4 1y EU[g(Uv U)] ( )
U,q:UXU—[0,00):
sup, iy Eulg(U,4)]>0
(13)

Thus, it follows from from (13) and Issa et al. [13, Theorem 1]
that

LyM(X = Y) < I3(X3Y) (14)
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with equality if ¢ is the identity gain function, g(¢) = ¢, for
te0,1].

In the following proposition, we show that the upper bound
in (14) holds for maximal g-leakage under k guesses also.

Proposition 1 (Upper Bound on Maximal g-Leakage
Under k Guesses): Given a gain function g : [0,1] — [0, c0)
and a joint probability distribution Pxy, we have that maximal
leakage is an upper bound on maximal g-leakage under k
guesses, i.e.,

k)—max S .
LEm (X V) < IS (X3Y), (15)

with equality if ¢ is the identity gain function, g(t) = ¢, for
t€10,1)

Remark 1: Proposition 1 follows from (13) together with
an observation that the gain function definition used by
Alvim et al. [5] (and Issa et al. [13, Theorem 5]) captures not
only our gain function definition but also the multiple guesses
scenario [7, Section III-C] simultaneously. In particular, let
U be the simplex of all probability distributions PU[M] with
each U; taking values in U/ and define

k
9Py )=y <P (U(Uf, = u))) , 36

i=1

for u € U, PU[M-] cu. Then, Proposition 1 follows from
(13) together with (16). We remark that this observation also
provides a simpler proof to the upper bound part in [13,
Proof of Theorem 4], i.e., maximal leakage upper bounds
maximal leakage under k£ guesses.

Proposition 1 shows that maximal g-leakage under mul-
tiple guesses is maximized when ¢(¢t) = ¢, for ¢t € [0,1],
which corresponds to maximal leakage under multiple guesses
[13, Theorem 4]. Also, we note that closed-form expres-
sions for even maximal g-leakage are known only for few
gain functions, in particular, when g(t) = ﬁtil, a €
(0,1)(1,00) [13], [15], [30], that corresponds to maximal
a-leakage (and maximal leakage when o — o0). In the follow-
ing theorem, we obtain closed-form expression for maximal
g-leakage under multiple guesses for a class of concave gain
functions.

Theorem 1 (Maximal g-Leakage Under Multiple Guesses):
Let Pxy be a joint probability distribution on a finite alphabet
X xYand g:[0,1] — [0,00) be a gain function satisfying
the following assumptions:

e g is a concave function,

e g(0)=0and 0 < ¢'(0) < .
Then we have that maximal g-leakage under k£ > 1 guesses is
exactly equal to maximal leakage, i.e.,

LPImN(X - Y) =I5 (X;Y).

Remark 2: An important consequence of Theorem 1 in
the design of privacy mechanisms is the following. Suppose
the inferential capability of an adversary in guessing about
X from Y is measured via a function g of the probability
of correctly guessing and we use maximal g-leakage as the
privacy measure. The system designer needs to find an optimal
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privacy mechanism Py|x minimizing the leakage L,(X —
Y) while maintaining a minimum level of utility measured
by, say, U(X,Y’). In many practical situations, we may have
only a limited knowledge about the inferential capability of
adversary. Specifically, assume that all we know about the
function g is that it belongs to a class of non-negative concave
gain functions ¢ that satisfy ¢g(0) = 0 with a finite positive
derivative at 0 (see the paragraph below Remark 4 for an
interpretation of this class). Now, as a result of Theorem 1,
it suffices for the system designer to find the optimal mech-
anism that minimizes the Sibson mutual information of order
infinity subject to utility constraints without worrying about
further details of g, i.e.,

inf I5.(X:;Y).

17
Py x UX,YV)>k an

Thus, notice that the effective situation is same as that of
knowing the exact form of the gain function g as the optimal
privacy mechanism with a particular g remains the same as
that of (17) as long as g belongs to the aforementioned class.

Remark 3: In this remark, using Theorem 1 we outline
the distinction between maximal g-leakage and the leakage
measures of Alvim et al. [5] and Issa et al. [13] based on gain
functions. Alvim et al. [5, Definition 3.4] define g-capacity of
a channel Py x as

R E X7 0%
ML,(X — Y) := suplog —2i0) xv[9(X,&(Y))]

s
Px Supjej{ EX [Q(X, i')] ( )

for any g : X' X — [0, 00), and showed that [5, Theorem 5.1]

MEY(X — Y) = log %glea;m\x(ym
Y

sup
X,9:X x X —[0,00):
sup, ¢ ¢ Ex [9(X,2)]>0

19)

which considers the worst-case scenario over all g (note that
the expression in RHS of (19) is equal to that of (13) if X has
a full support). Thus, Alvim et al. [5] and Issa et al. [13] (see
(13)) obtained conclusive results for leakage measures with a
maximum taken over all the gain functions rather than focusing
on leakage measures with specific gain functions. Theorem 1
provides closed-form expression for maximal g-leakage for a
specific class of concave gain functions.

Remark 4: Note that the gain function that corresponds to
maximal a-leakage (for o € (0,1) U (1,00)), i.e., g(t) =
ﬁt%l, does not belong to the class of gain functions for
which Theorem 1 holds even though the gain function is
concave; this is because ¢’(0) = co. However, as o — o0,
we have g(t) =t for which ¢’(0) = 1 < co. So, Theorem 1
recovers [13, Theorem 1] when g(t) = ¢. Some other examples
of gain functions for which Theorem 1 holds are ¢(t) =
1 — (1 —1t)? sint, min{ct, 1}, for some constant ¢ > 0.

To interpret the conditions on g in Theorem 1, we first note
that the concavity of g is natural in that we are examining the
optimization problems involving maximization of gain func-
tions in the definition of maximal g-leakage. The condition
¢(0) = 0 suggests that the minimum possible value of the gain
function be assigned to adversary when the probability of cor-
rectly guessing is zero. When the minimum possible value has
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been assigned to ¢(0), it has to be the case that g is increasing
at 0, in fact, we need g to be strictly increasing at O with a finite
derivative in Theorem 1. Extending this intuition, we may
impose an additional constraint that the maximum possible
value of the gain function be assigned when the probability
of correctly guessing is 1, i.e., g(1) = sup,cp,1)g(t) (though
it is not required for Theorem 1). Then because of concavity,
the function g needs to be non-decreasing in the probability of
correctly guessing,' which may be more relevant in practical
scenarios. A detailed proof of Theorem 1 is in Appendix A-A.
A consequence of Theorem 1 is that the maximum in (15) is
achieved by a class of concave gain functions with identity
gain function (that corresponds to maximal leakage) being one
of them.

Notice that maximal g-leakage in Theorem 1 and maximal
a-leakage depends on Px only through its support. The fol-
lowing theorem presents a closed-form expression for maximal
g-leakage that corresponds to the gain function g(t) = 1 + ¢,
t € [0, 1], for binary X and Y. Interestingly, it turns out that
this expression is fundamentally different in its structure from
that of maximal leakage and maximal a-leakage. In particular,
this leakage explicitly depends on Px (i.e., not just through
its support).

Theorem 2: Let Pxy be a joint probability distribution on
X x Y with |X| = |Y| = 2. Then, for g(t) =1+¢, t € [0,1],
we have

L+p* 37, ey maxzex Pyix (ylz)
1+ p*

)

L7(X —=Y) =log
(20)

where p* = ming.p, (z)>0 Px ().
A detailed proof of Theorem 2 is in Appendix A-B.

IV. EVALUATING MULTIPLE GUESSES VIA A
TUNABLE L0OSS FUNCTION

In this section, we focus on a specific class of gain func-
tions, related to the a-loss [29], [30], [31], parameterized
by a € (0,1) U (1,00) and the corresponding maximal g-
leakage measures under multiple guesses. We first characterize
the minimal expected a-loss (or equivalently, the associated
maximal expected gain) under multiples guesses, and then
study maximal g-leakage for the corresponding class of gain
functions parameterized by « € (0,1) U (1, 00).

Consider a setup where an adversary is interested in guess-
ing the unknown value of a random variable X on observing
another correlated random variable Y, where X and Y are
jointly distributed according to Pxy over the finite support
X x Y. The adversary can make a fixed number of guesses,
say k, to estimate X. We focus on evaluating the adversary’s
success using loss functions that in turn can measure the
information leaked by Y about X. To this end, we model
the adversary’s strategy using a-loss, a class of tunable loss
functions parameterized by a € (0,00] [30], [31]. This class

ITo see this, suppose that there exist x, 3 such that 2 < y and g(z) > g(y).
Since y € [z, 1], there exists A € [0,1] with y = Az + (1 — X). Then,
concavity of g implies that g(y) = g(Az+(1—X) > Ag(z)+(1—N)g(1) >
Ag(y)+(1=X)g(1) > Ag(y)+(1—X)g(y) = g(y), which is a contradiction.
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captures the well-known exponential loss (o = 1/2) [54], log-
loss (o = 1) [55], [56], [57], and the 0-1 loss (o = o0) [56],
[58]. The adversary then seeks to find the optimal (possibly
randomized) guessing strategy that minimizes the expected
a-loss over k guesses. We first review a-loss and then define
maximal expected a-loss under & guesses.

Definition 7 (a-Loss [29], [30], [31]): For a« € (0,1) U
(1,00), the a-loss is a function defined from [0, 1] to R, as

talp) = ozcil (1_pa;1>'

It is defined by continuous extension for o = 1 and o = oo,
respectively, and is given by

1
t(p) = log . lo(p) =1—p.

2n

(22)

Notice that ¢, (p) is decreasing in p.
Definition 8 (Minimal Expected o-Loss Under k Guesses):
Consider random variables (X,Y’) ~ Pxy and an adversary

that makes k guesses X[l;k] = X1, Xo,..., X} on observing
Y such that X —Y — X[y, is a Markov chain. Let Pf([l,k]\y

be a strategy for estimating X from Y in k guesses. For
a € (0,00], the minimal expected a-loss under k guesses is
defined as

MEF (Pxy)
k
‘= min ZPXy(amy)Ea (P (U(XZ =z)|Y = y)) .
Py g i=1
(23)
koo
P(U(X; = 2)]Y = y) is the probability of correctly

i=1
estimating X = x given Y = y in k guesses. An adversary

seeks to find the optimal guessing strategy in (23). Note that
the optimization problem in (23) was solved for a special case
of k =1 by Liao et al. [30, Lemma 1]. Notice that

ﬂ45§NFkY)::E:f@(wﬂ4ggnpxw:ﬂ»

Y

(24)

where we have slightly abused the notation in the R.H.S.
of (24). Hence, in view of (24), in order to solve the opti-
mization problem in (23), it suffices to solve for a case where
Y =10,ie.,

k
/\/lgg")(PX) = Pmin ZPX(:E)EQ (P (U(Xl = 33))) .

i=1

(25)

Also, in the sequel, it suffices to consider the optimization
problem in (25) only for the case where k < n, where Px

is supported on X = {x1,x9,...,2,} because if k > n,
we have MEWX (Px) = 0, since a strategy P)’f([ | such
1:k

that P)f([l_ ](l‘1,$2, ..., Zp) = 1 is optimal. We review some
simple special cases of (25) that are well known in the
literature.

o Consider (25) for the case of log-loss (o« = 1) and k =
1 [57]. It is well known that the expected log-loss can be
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expanded as

E [log 1} = H(X) + D(Px||Py), (26)

Pg(X)
which implies that the optimal guessing strategy is equal
to the original distribution, Px, and the minimal expected
log-loss is given by its entropy, H(X). Moreover, the
relative entropy D(Px||Pg) quantifies the relative per-
formance of an arbitrary adversarial guessing strategy
P; with respect to the optimal guessing strategy Px.
To the best of our knowledge, minimal expected loss
under multiple guesses was not explored even for log-
loss (o = 1) earlier.

o At the other extreme, Issa et al. [13] studied maximal
expected probability of correctness in a fixed number of
guesses which corresponds to minimal expected a-loss
for the special case of @ = oo. The optimal guessing
strategy here is to guess the k& most likely outcomes
according to the distribution Px.

e Liao et al. [15, Lemma 1] solved the optimization
problem in (25) for a special case of k = 1 and for
arbitrary « € (0, 0o], where they showed that the optimal
guessing strategy is a tglted probability distribution given

«@ Px (z
by P ) o T3

We completely characterize the minimal expected a-loss under
k guesses, for a € (0,00]. We first express the objective
function in (295), i.e., the expected a-loss, in a way similar
to (26) where it turns out that Bregman divergence [59],
a generalization of relative entropy, naturally arises. For a
continuously-differentiable convex function F' : Q — R,
the associated Bregman divergence between p and g in €2 is
defined as Br(p,q) = F(p) — F(q) — (VF(q),p — q).

Lemma 1 (Expected a-Loss Under k Guesses): For a fixed
probability distribution Px and an arbitrary guessing strategy
PX[M]’ we have

Ex [fa(PUL, (X; = X)))]

(e} a-1 l-a a-1 1
_ (1—k els HQ(X)) + k% Bp(Px, P,

a—1
27

P(Ui, (Xi=z (x) —
where 1Pj((:r) = w P () =
P)'((I)a . .
—x=— and Bpg(,- is the Bregman diver-
SYARE: F() g
gence associated with the function F(Px) =

1

225 (S, Px(@)?)s —1) given by Bp(Px,PY)) =
a—1 1 1o (@) p.
ks (>0, Px(z)%)= (1—e & Py (PP Moreover,

the minimal expected a-loss is given by MEW (Py) =
—e (1 — k"5 e s HaX)) if and only if PY(z) < 1, for
all z € X.

A detailed proof of Lemma 1 is in Appendix B-A. Note
that Pg () defined in Lemma 1 may not be even a probability
distribution from the way it is defined since 3 P(UF_ | (X; =
x)) < k, in general. However, as we prove later (see Lemma 5
and Remark 9), it suffices to consider the guessing strategies
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P that satisfy the condition > P(UF_ (Xi=2) =k
in order to solve the optimization problem in (25), thereby
making it sufficient to limit Py to be a probability distribution.
Note that Lemma 1 characterizes the minimal expected a -loss
under k guesses only for the case when P)((a)(a:) < 1. for
all x € X. This condition is trivially satisfied by any Px
when k£ = 1. Thus, when ng)(x) < 4. forall z € X,
Bregman divergence By (with the function F' in Lemma 1)
captures the relative performance of an arbitrary guessing
strategy with respect to an optimal strategy in minimizing
the expected a-loss. This generalizes the observation below
(26) that relative entropy quantifies the relative performance
of an arbitrary adversarial guessing strategy with respect to
the optimal guessing strategy in minimizing the expected log-
loss. We completely characterize the minimal expected a-loss
under k guesses in the next theorem, i.e., comprising the case
when P)((a)(x) > %, for some = € X also.

Theorem 3 (Minimal Expected a-Loss Under k Guesses):
Let Px be a probability distribution supported on
X = {x1,72,...,2,} such that pr > po > -+ > py,
where p; := Px(x;), for ¢ € [1 : n]. Then the minimal
expected a-loss under k guesses is given by

MEP (Py) = 3 pi<1 - <<kzi* = 13]9?)”;1),

i—g* j=s* pj
(28)
where
) (k—7r+1)p2 }
s =minqre{l1,2,... )k} : ——"<17. (29)
{ t J > P

Remark 5: Theorem 3 implies that the minimal expected
a-loss under k guesses induces a polychotomy on the simplex
of probability distributions Px on X depending on the value
of the parameter s*. Also, in an optimal guessing strategy,
the adversary always guesses each of the s* — 1 most likely
outcomes in one of the k guesses with probability 1, i.e.,
P(Uk (Xj =) =1, forie[l:s* —1], and guesses the
remaining outcomes with a probability proportional their tilted

probability values, i.e., P(U?_l(X] = x;)) = %’

_ox P§
for i € [s* : n]. It may not be immediately clear if there

indeed exists an optimal guessing strategy Py consis-

(1:k]

tent with these value assignments to P(Ule(f(j = 1)),
r € X. However, as we show in the proof of Theorem 3
(see Lemma 6 and the discussion above it), it follows from
Farkas’ lemma [60, Proposition 6.4.3] that an arbitrary value
assignment to P( _(Xj = z)), for each 2 € X, will
in fact guarantee the existence of a consistent probability

distribution PX[M] as long as the assignment is such that
Y osex P(U?zl(Xj = z)) = k, which is true for the case
above. For the special case when k = s* = 2, this optimal
strategy is exactly the same as that of a seemingly different
guessing problem considered in [61, Section II-B].

Remark 6: Notice that whenever s* = 1 in (29), the
expression in (28) simplifies to

Q (1_ka;161;aHa(X))’

(30)
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where Ho(X) = 2= log (31, p") is the Rényi entropy of
order o [23]. Also, note that for the special case of k = 1,
we always have s* = 1, thereby recovering [30, Lemma 1].

A detailed proof of Theorem 3 is in Appendix B-C. The
proof builds up on a careful decomposition of the simplex
of probability distributions Px and then solving the desired
optimization problem in each case using tools from convex
optimization. We present a simpler and a more descriptive
proof for the special case of log-loss (a« = 1) and k = 2 in
Appendix B-B. We remark that the proof of this special case
does not directly generalize to arbitrary o € (0, o0] (even for
the case of £ = 2). However, we remark that it essentially
captures the intuition and the main tools involved in the
relatively complex analysis in the proof for the more general
case with o € (0,00] and k € N.

We illustrate the optimal guessing strategies to achieve the
minimal expected a-loss in (28) through Examples 1 and 2.

Example 1 (Optimal Guessing Strategy With 'k = 2
Guesses): Consider a probability distribution Py supported on
X = {x1,x2,23}. Let p; = Px(x;) and pl(»a) = 55 e , for
i € [1:3] and fix @ = 2. Optimal guessing strateg]y 1dejpends
on the value of the parameter s* in (29). We present an optimal

guessing strategy for each case specified by s* € [1 : 2].
p)
Notice that Z, - p? S
With s* =1: Let py = 3, po = 2, a d ps = 1. This gives
us pga) =2, p§“> = 2, and pg @) — 2 1t can be verified

that s* = 1 for this Pyx. In particular, we have p( @) < , for
all ¢ € [1 : 3]. From (28), an optimal guessing strategy P)*( 2,
is such that the adversary always guesses x; in one of the two
guesses with a probability proportional to pgo‘), ie., P*(Xl =
Ir1 Oor Xg = 1‘1) = 2pga) = 191, P*(Xl = X9 Or Xg = 1‘2) =
2p{™ = 2 and P*(X, = -z or X2 =13) = 2p("‘) -

1
With s* =2:Letp; = and pg

3’ P2 = 45
us pga) = %, péa) = 74, and pz(,) -

that s* = 2 for this Py. In particular, we have p; * > 3.
From (28), an optimal guessing strategy P* is such that
the adversary always guesses x1 in one of the two guesses,
ie., P*(X1 =2 or Xy = xl) = 1, and guesses z; with a
probability proportronal( tp p ,forie[2:3],ie., P*(X; =

1 i
. This gives

4. It can be verified
(o) 1

T OI'XQ—IQ) %:Eand P*(X1=I3 OI'XQZ
j=2P;
(@)
-T3) de @ — 110
Example 2 ( Optimal Guessing Strategy With k = 3

Guesses): Let Py be supported on X = {x1,xa, 3,24} Let
pi = Px(z;) and p* = Zfl —, for i € [1 : 4] and fix
a =2 We present an optimal éﬁessmg strategy for each case
specified by s* € [1: 3].

With s* = 1: Notice that specifying a tilted distribution P(O‘)
uniquely determines the original distribution Px. Let Px be
such that p{® = pi® = 1, p{ = 1 and p{™ = 3. 1t can
be verified that s* = 1 for this Px. In particular, we have
pi) < %, for all i € [1 : 4]. From (28), an optimal guessing
strategy P* is such that the adversary guesses z; in
one of the three guesses with a probabrhty proportronal to

pi, for i € [1: 3], ie., PH(UA_y(X; = 21)) = 3p\") =
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8, PH(UL_ (X, = 22)) = 3p5Y) = &,

w3)) = 3p{*) = -

With s* = 2: Let PX be such that p!*) = 3, ) = 1,
() _ () _

and P*(szl (XJ =

Py = 16, and p, . It can be verified that s* = 2 for
(a)
this Px. In partlcular we have p( ) > 1 and % <

j=2Fj

1, for ¢ € [2 : 4]. From (28), an optimal guessing strategy
;i( 2% is such that the adversary always guesses z1 in one
1A2A3

of the three guesses with a probability 1, i.e., P*(U;’:l(f( =
x1)) = 1, and guesses z; with a probability proportional to

. (o
P, fori € [2: 4], ie, PH(UA_ (X = a2)) = % =
j=2P;
. R op(@)
%, and P*(U;j=1(X; = a)) = ﬁ =

S, fori € [3:4].

With s* = 3: Let Px be such that p{® = 2, p{* = 1,
and pf;‘> = pfla) = 5;. It can be verified that s* = 3 for
()
this Px. In particular, we have pga) > 1, % > 1,
j=25]
()
and 241’57 < 1. From (28), an optimal guessing strategy
,313
. %.%. 18 such that the adversary always guesses x; in one
1A2A3

of the three guesses with a probability 1, i.e., P*(U;’:l()z'j =
x;)) =1, for i € gl : 2], and guesses x; with a probability
proportional to p*, ie., PH UL (X = ;)= pi

47(00 -
i= 3 i
1, forie [3:4].

The following two corollaries of Theorem 3 give the expres-
sions for the minimal expected log-loss (v = 1) for k guesses
and the minimal expected 0-1 loss (v = oo) for k guesses,
respectively.

Corollary 1 (Minimal expected log-loss {o« = 1} for k
guesses): Under the notations of Theorem 3, the minimal
expected log-loss for k guesses is given by

MEW (Px) = H(X) - H,- <p1,p2, .

yPs*—1, Z pi>
. (z) log (— 5° + 1),

i=s*

€29

where s* = min {7" € {1 2,k U Tﬂp”’ < 1} and
Hy(q1,92,.--,qs+) i= Zz L qilog L - is the entropy function.

The proof of Corollary 1 follows by taking limit o —
1 using L’Hopital’s rule in the result of Theorem 3 and
rearranging the terms.

Corollary 2 (Minimal expected 0-1 loss {a = oo} for k
guesses): Under the notations of Theorem 3, the minimal
expected 0-1 loss for k guesses is given by

k
MEP (Px)=1-> p;
=1

(32)

The proof of Corollary 2 follows by taklng limit ¢« — oo
in Theorem 3. Interestingly, the polychotomy induced by
minimal expected a-loss for o € (0,00) collapses for the
case of o = oo [13] as clear from Corollary 2.
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A. a-Leakage and Maximal o-Leakage
Under Multiple Guesses

Notice that minimizing the expected a-loss in (25) amounts
to maximizing the expected gain for the gain function g(t) =
t*5, t € (0,1) U (1,00). Motivated by a-leakage [30,
Definition 5] (that is defined based on this gain function) which
captures how much information an adversary can learn about a
random variable X from a correlated random variable Y when
a single guess is allowed, we define a-leakage under multiple
guesses that captures the information an adversary can learn
when k guesses are allowed.

Definition 9 (a-leakage under k guesses): Given a joint
distribution Pxy, the a-leakage from X to Y under k guesses
is defined as

LP(X =Y)

a—1
k Ta
max E (ﬁlP(U(X X)|Y>
A a X[l:k]‘y i=1
Ta-1® k =1
max E | -25P (U (X; = X))
Py i=1
[1:k]
(33)
where Xl,f(g, R Xk represent k estimators of X with the

same support as X, for a € (0,1) U (1,00), and by the
continuous extension of (33) for « = 1 and a = co.

We call maximal g-leakage under k& guesses when special-
ized to the gain function g(t) = t“= , ¢t € (0,1) U (1,00),
as maximal a-leakage under k guesses.

Definition 10 (Maximal a-leakage under k guesses):
Given a joint distribution Pxy, the maximal «a-leakage from
X to Y under k guesses is defined as

LI LYY A s LO@ V), ()
U-X-Y
for a € (0,1) U (1, 00).
Let P)(ﬁ’lgf— denote the tilted distribution of Px|y—,, i..,
(a) _ P (z]y)™
PX|Y(x|y) = %'

Theorem 4 (Robustness of a—leakage
guesses): Consider a Pxy such that P

to number of
) (zly) < L and

X|Y
P)((a) (z) < £, for all z,y, and for o € (0,1) U (1, 00). Then
LOX 5Y)=O(X =Y. (35)

For k = 1, recall from Theorem 3 that in the optimal guessing
strategy, the adversary guesses x with a probability that is
equal to the tilted probability value P)((a) (), x € X. For
k > 1, when the condition P)((a)(x) < %, for all z, holds,
it follows from Theorem 3 that the adversary can apply
essentially the same guessing strategy as with £ = 1 in the
following sense. In particular, when this condition holds, in the
optimal guessing strategy, the adversary can still guess z in one
of the k£ guesses with a probability that is proportional to tilted
probability P (x), ie., P*(UE_(X; = 2)) = kPY(2),
x € X. Moreover, for the existence of a strategy to satisfy this
equality, the condition P)((O‘) (x) < %, for all z, is a necessary

1

and sufficient condition. This is because if P)((a)(ac) > 5,
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for some x € X, then P*(U?Zl(f(j = x)) cannot be equal

to kP)((a)(x) > 1. A detailed proof of Theorem 4 is in
Appendix B-D. It is shown in [13, Theorem 4] that maximal
leakage, i.e., maximal a-leakage with o« = o0, does not
change with the number of guesses, i.e., Eg’é)_max(X —-Y)=
£)7™™ (X = Y). The proof of this result does not directly
generalize to any arbitrary a € (0,00]. This is mainly due
to the fact that unlike the case for @« = oo, the minimal
expected a-loss for arbitrary o (# o0) induces a polychotomy
on the simplex of probability distributions. However, we are
able to show that maximal a-leakage under k guesses is at
least that of under a single guess where the proof relies on a
non-trivial observation about the optimizer in (34) and it also
uses Theorem 4.

Theorem 5 (Lower Bound on Maximal o-Leakage Under k
Guesses): Given a joint probability distribution Pxy on finite
alphabet X' x ), we have

L((xk)—max(X _ Y) > E(l)—max(X _ Y),

[e3%

(36)

for o € (0,1) U (1, 00).

A detailed proof of Theorem 5 is in Appendix B-E. We do
not know if the reverse direction of (36) is true, i.e.,
if 87X S Y) < 287" (X = Y), in general.

V. A VARIATIONAL FORMULA FOR co-RENYI
DIVERGENCE WITH APPLICATIONS TO
INFORMATION LEAKAGE

In the previous two sections, we examined information
leakage measures, in particular, maximal g-leakage, where the
adversary is allowed to make multiple guesses. In this section,
we study some variants of maximal g-leakage depending on
the type of adversary by obtaining a variational characteriza-
tion of Rényi divergence of order co. Such a characterization
adds to a growing set of information measures written in
a variational form, which may be of independent interest.
We focus on the scenario where the adversary can make
only a single guess in this section. In particular, we consider
maximal expected gains of an adversary in separately guessing
randomized functions of X and our variational characteri-
zation is in terms of the ratio of these maximal expected
gains.

Theorem 6 (A variational characterization for Doo(:|]-)):
Let Px and QQx be two probability distributions on a finite
alphabet X and g : [0,1] — [0,00) be a gain function
satisfying the following assumptions:

e g(0) =0 and g is continuous at 0,

o 0 <supyepoqy9(p) < oo,

Then, we have

supp. Eup, [9(Py(U))]
Doo(P = sup 1 -
(Px|l@x) PorCsupp, Ev~gy [9(Fy(0))]

where Py(u) = > Px(x)Pyx(ulr) and Qu(u) =
>u Qx (2) Pyix (ulz).

Remark 7: Interestingly, there are non-positive gain func-
tions also for which while the conditions in Theorem 6 are
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not satisfied, (37) still holds. For example, g(t) = logt is one
such function (see Appendix D for details).

A detailed proof of Theorem 6 is in Appendix C-A. The
numerator and the denominator in the ratio in (37) capture
the maximal expected gains in guessing an unknown random
variable U distributed according to Py or Qu, respectively.
In a way, this ratio compares the distributions Px and @ x
and is certainly dependent on the gain function g. However,
our variational characterization in (37) shows that this ratio
when optimized over all the channels Py x remains constant
irrespective of the gain function used, i.e., (37) holds for a
broad class of gain functions. Some examples of gain function
g that satisfy the conditions in Theorem 6 are

9(p) = % Lp=1/2}, —=p"= where a € (1,00).
We obtain the following corollary from Theorem 6 by substi-
tuting the latter gain function g, (t) = oﬁ1t%l’ where a €
(1, 00) (related to a class of adversarial loss functions, namely,
a-loss [30]) and using [30, Lemma 1] which gives closed-form
expressions for the corresponding optimization problems in the
numerator and the denominator in (37).

Corollary 3: Given two probability distributions Py and

Q@ x on a finite alphabet X, we have, for a € (1, 00),

Xy Po()?)™

» Qu(u)®

where Py(u) = > Px(z)Pyx(ulr) and Qu(u) =
>z @x (@) Py x (ulz).

As mentioned earlier, we note that the existing variational
characterizations for D, (-||-) (with finite «) also give rise to
variational characterizations for Do, (-||-) by taking limit o« —
oo. Shayevitz [24] and Birrell et al. [28] proved that

Doo(Px|[|Qx) = sup log

Py x

;o (38)

o] o=

aD(Rx||P
Da(PxllQx) = sw  (D(Rx[Qx) — UL,
Rx:Rx<Px o —

(39)
for a > 1, and
Do (Px||@x)

(a—1)g(X)
= Ssup (alogEXNQxe — logEXNPXeag(X)) ’
g:X—R a—1
(40)

for « € R\ {0,1}, respectively. More general forms of
(39) and an equivalent form of (40) appear in [25], [26],
[27], and [62], respectively. One can obtain the variational
characterizations for Do (+||-) by taking limit « — oo in
(39) and assuming interchangeability of the limit and the
supremum; one can similarly do so, in (40), using a change
of variable f = e“Y and assuming interchangeability of
the limit and the supremum. For the sake of completeness
and rigor, we summarize the resulting variational forms for
Doo(+||-) in the following proposition and present a proof in
Appendix C-B.
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Proposition 2: Given two probability distributions Px and
@Qx on a finite alphabet X', we have

Do (Px||Qx)= sup (D(Rx||@x)— D(Rx|Px)),
Rx:Rx<<Px
(41)
Ex~py [f(X)]
Do (P - s log —X~Px A2 )1 42
(Px]|Qx) fszil[lﬁ,o@ % F o (X)) (42)

Motivated by Issa et al. [13, Definitions 2 and 8], we define
the following variants of maximal g-leakage (see Definition 5)
depending on the type of adversary. In particular, note that the
definition of maximal g-leakage corresponds to an adversary
interested in a single randomized function of X. However,
in some scenarios, the adversary could choose the guessing
function depending on the realization of Y, leading to the
following definition.

Definition 11 (Opportunistic Maximal g-Leakage): Given
a gain function g : [0,1] — [0,00) and a joint probability
distribution Pxy on a finite alphabet X’ x )/, the opportunistic
maximal g-leakage is defined as

X —Y)=log S Pr(y)
y€Esupp(Y)
Supp.

U1y =y EU\Y:Z/ {g(PmY(U'y))}
sup

UiU—X-Y supp, E [g(Py(U))]
Maximal g-leakage captures the average guessing perfor-
mance of the adversary over all the realizations of Y. In some
contexts, it might be more relevant to consider maximum
instead of the average.

Definition 12 (Maximal realizable g-leakage): Given a
gain function g : [0,1] — [0,00) and a joint probability
distribution Pxy on a finite alphabet X x )/, the opportunistic
maximal g-leakage is defined as

(43)

LoM(X —Y)= sup (44)
U:U-X-Y
MaXy esupp(Y) SUP Py, Eujy=y [9(P0|Y(U|y))
log - . (45)

supp, E [9(Py (0))]

When ¢(t) = t, note that the Definitions 11 and 12
simplify to those of opportunistic maximal leakage [13, Defi-
nition 2] and maximal realizable leakage [13, Definition 8],
respectively. Unlike the expressions for maximal g-leakage
(e.g., for g(t) = t, g(t) = ﬁt%l), interestingly, it turns
out that the closed-form expressions for the opportunistic
maximal g-leakage and maximal realizable g-leakage do not
depend on the particular gain function g as long as it satisfies
some mild regularity conditions. This is a consequence of the
robustness of our variational characterization to gain function
(Theorem 6).

Corollary 4 (Opportunistic maximal, and maximal realiz-
able g-leakages): Let g : [0,1] — [0,00) be a function
satisfying the following assumptions:

e g(0) =0 and g is continuous at 0,

o 0 <suppepoq)9(p) < oo,

Then the opportunistic maximal g-leakage and maximal
realizable g-leakage defined in (43) and (44), respectively,
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simplify to
LYX —Y) =I5,(X;Y), (46)
E;—max(X N Y) = Doc(PXYHPX X PY) “mn

Note that the intuitive interpretation given for ¢(0) =
0 below Theorem 1 holds for Corollary 4 also. A detailed proof
of Corollary 4 is in Appendix C-C. When g(t) = ¢, Corollary 4
recovers the expressions for opportunistic maximal leakage
and maximal realizable leakage [13, Theorems 2 and 13].
As another concrete example, consider Theorem 4 for the
corresponding variants of maximal «-leakage with the gain
function ¢(t) = ﬁt%l, wherein the optimization problems
in the numerators and the denominators of (43) and (44)
have closed-form expressions [30, Lemma 1]. In particular,
for a € (1, 00), the opportunistic maximal «-leakage is given
by

Q=

«

g Y Py sy Py

1
yEsupp(Y) UU-X-Y (Y, Py(u)®)=
Q

= I3(X;Y)

a—1

and the maximal realizable a-leakage is given by

(48)

Q=

sup O g Eycsupp(r) (>, PUli(U\y)a)
(> u Pu(u)o)=

viu-x-y a—1

= ai 1Doo(PXYHPX X Py)
Note that when X and Y are independent, the opportunistic
maximal (o = 1)-leakage and the maximal realizable (« = 1)-
leakage defined by taking limit &« — 1 are both equal to zero.
When X and Y are not independent, it can be inferred from the
above expressions that opportunistic maximal (« = 1)-leakage
and maximal realizable (« = 1)-leakage are both equal to co.
However, note that maximal a-leakage as o — 1 is equal
to Shannon channel capacity or Shannon mutual information
depending on whether we define it using the supremum first
and the limit next, or the limit first and the supremum next
[30, Theorem 2]. We show in Appendix E that the latter way of
defining the opportunistic maximal 1-leakage and the maximal
realizable 1-leakage also yields oo.

Another interesting consequence of our variational char-
acterization is in its natural connection to the definition of
pointwise maximal leakage, another measure of information
leakage studied by Saeidian et al. [16]. Pointwise maximal
leakage captures the maximum multiplicative increase in the
probability of correctly guessing any randomized function of
X upon observing a single outcome Y = y.

Definition 13 (Pointwise maximal leakage [16]): Given a
joint distribution Pxy on a finite alphabet ¥ x Y anday € Y,
the pointwise maximal leakage is defined as

Epw—max (X N y)

(49)

supp, . Bujy=y {Pmy(my)}
= sup

UiU—-X-Y supp_ E [Py (U)]
Notice that pointwise maximal leakage is also defined in
terms of an adversary interested in maximizing the expected
value of the gain function g(t) = ¢ but it differs from

log (50)
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the maximal leakage because the latter captures the average
performance of the guessing adversary over all the realizations
of Y. Saeidian et al. [16] showed that

[:pw—maX(X — y) = Doo(PXlY:yHPX) (51)

following the techniques in the proof of the closed-form
expression for maximal realizable leakage [13, Theorem 13].

An immediate consequence of our variational characteriza-
tion is that the definition of the pointwise maximal leakage
can be generalized by incorporating an adversary interested in
maximizing the expected values of an arbitrary gain function
g that satisfies the mild regularity conditions mentioned in
Corollary 6.

Corollary 5 (Pointwise Maximal g-Leakage): Let Pxy be
a probability distribution on a finite alphabet X x ) and g :
[0,1] — [0,00) be a gain function satisfying the following
conditions:

e g(0) =0 and g is continuous at 0,

o 0 <sup,epoq1]9(p) < o0.
Then, for y € ), we have

Suppmy:y Eyjy—y [Q(Pmy(U‘y))}

supp, E [9(Py (U))]

The proof of this corollary follows directly from the proof
of Corollary 4. However, this result may be of separate
interest in view of the following observations. The expression
on the LHS in (52) can be thought of as a new leakage
measure, namely, pointwise maximal g-leakage (denoted by
L5 (X — y)) and Theorem 5 implies that pointwise
maximal g-leakage is exactly the same as pointwise maximal
leakage, ie., L)'"(X — y) = LP¥MX(X — ), for all
g satisfying some mild conditions. Moreover, adopting the
gain function approach of Alvim et al. [7], Saeidian et al.
[16] showed that the multiplicative increase in the maximal
expected value of the gain function (a function of the true
value and the guessed value) in guessing X after observ-
ing an outcomne Y = y when maximized over all gain
functions g(z, &) is equal to the pointwise maximal leakage
([16, Theorem 2 and Corollary 1]). On the other hand,
Theorem 5 implies that such a multiplicative increase with gain
function applied to the probability of correctly guessing a (ran-
domized) function of X when maximized over all the func-
tions of X is equal to pointwise maximal leakage, for any gain
function ¢ satisfying some mild conditions. Finally, we note
that all the properties and privacy guarantees of pointwise
maximal leakage studied in [16] (e.g., composition and data-
processing) will straightaway generalize to pointwise maximal
g-leakage.

log

sup
UU-X-Y

VI. CONCLUSION

We have proposed a gain function viewpoint of information
leakage using arbitrary non-negative functions applied to the
probability of correctly guessing. The primary benefit of
restricting the gain functions considered by [7] and [13] to the
ones using the probability of correctness (as in Definition 1) is
that it allows us to obtain closed-form expressions for maximal
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g-leakage for a class of concave gain functions (Theorem 1).
We have shown that maximal g-leakage under multiple guesses
is equal to Sibson mutual information of order infinity for
a class of concave gain functions. This is in contrast to the
corresponding results of [7] and [13] where the worst-case
scenario over all the gain functions is considered. Moreover,
obtaining a closed-form expression for such leakage measures
with a fixed gain function was conjectured to be challenging
in [7, Section VI-A] even when the threat model focuses on
guessing X itself (rather than a possibly randomized function
of X).

Even though the closed-form expression for maximal leak-
age is equal to that of min-capacity (i.e., the maximum
min-entropy leakage) [3], maximal leakage is important
mainly because of the relaxation of assumptions about the
adversary. In particular, in the threat model considered for
maximal leakage, the adversary is interested in the (possibly
randomized) function of X. In contrast, in the setup of min-
capacity, the adversary is interested in X itself. In the same
vein, we extended the framework of maximal leakage to incor-
porate arbitrary functions of probability of correctness in the
performance measure of the adversary. Thus, our setup actually
leads to considering a larger class of adversaries because
the gain functions in Theorem 1 recover the probability of
correctness as a special case. We also presented a variational
characterization of Rényi divergence of order infinity, which
is naturally related to the pointwise version of maximal
g-leakage.

We also studied the setting in which the adversary is
allowed multiple attempts in guessing by focusing on a specific
tunable gain function. Such a setting has not been explored
earlier even for log-loss (a special case of the tunable loss
function considered here) which is extensively used in machine
learning. We have proved that a new measure of divergence
that belongs to the class of Bregman divergences captures the
relative performance of an arbitrary adversarial strategy with
respect to an optimal strategy in minimizing the expected -
loss.

All these results strengthen the connection between privacy
leakage and the information measures — Sibson mutual infor-
mation and Rényi divergence of infinite orders. We believe
that these results are beneficial in applications where the
adversary’s performance is measured via generalized gain
functions. In terms of privacy-utility tradeoff, a consequence
of our results is that we can obtain the same utility even when
we consider various privacy leakage measures with potentially
different operational interpretations as per the adversary’s per-
formance measure of interest. Motivated by the results in this
work, we anticipate that closed-form expressions for maximal
g-leakage measures for more gain functions depending on
specific applications will be explored further. There are many
questions to be further studied. One limitation of our study
is that we have considered only the gain functions that are
non-negative (though we studied a particular non-positive gain
function, g(t) = logt in Appendix D). It would be interesting
to characterize maximal g-leakage for any general class of
gain functions. We have shown that maximal a-leakage under
multiple guesses is at least that of with a single guess. It would
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be worth studying if the reverse direction is also true as in
a = oo (maximal leakage) case.

APPENDIX A
PROOFS FOR SECTION III

A. Proof of Theorem 1

The upper bound £V ™ (X — V) < IS, (X;Y) follows
from Proposition 1. We prove the lower bound now. For this,
we use the “shattering” conditional distribution Py x [13,
Proof of Theorem 1], [15, Proof of Theorem 5]. Let U =

UzexU, (a disjoint union) and |U, | = m,. Then define

L uel
P = ma’ * 53
UlX(u|x) {0, otherwise. (>3)
This gives
PU(U):PX(CC)/mI,uEUm, (54)
Pypy (uly) = Pxy (zly)/me,u € Us. (55)
To simplify the notation, let
k
Py(u) :==P (U(Ui = u)> , (56)
i=1
A k A
Py(uly) :== P (U(U = u)|Y = ) : (57)
i=1
We upper bound the denominator of
swp,  Euy [g(A(UIY))]
— - (58)
swp, By [g(PL(U)]
[1:k]
as
sup Ey [g(ﬁk(U))}
Uli:k)
= Psup Zg(Pk (u))Pu(u) (59)
< S Z )Pe(u)) Py (u) (60)
= su P u)P, 61
il Pﬁ[i] Zuj il ©61)
k
IO BB iy 2 TOC) (O
= kg’ (0) max Py (u), (63)

where (60) follows because g(s) < g(t) + ¢'(¢)(s — t), for
all s,¢t € [0,1] since g is a concave function, (61) follows
because ¢g(0) = 0, and (63) follows from (54) if k& < m,, for
all z € X.

We now lower bound the numerator. Since the function g
is differentiable at 0, there exists a function h(z) such that

9(z) = 9(0) + ¢'(0)z + zh(z), lim h(z) =0.  (64)
Notice that
sup Eyy {g(f?k(U\Y))]

Pogiy
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=2 ), s Eoye, 9Bly)]. ©9)
Y Vi 1Y =v
Consider, for a fixed y € ),
~ SU]E) Eyjy=y [Q(Pk(UW))} (66)
Tlyop) 1Y =y
=, > 9(Pi(uly) Popy (uly) (67)
T lY=v u
= sup Y Pyy(aly) Y —g(Pk(uly)) (68)

UEU,

[ZPXY zly)

U[l:k] Y=y x

v

sup
P[ ]‘y qul,ugeum,aceX
Py (u1 |y) =P (uz|y)

> o(Bu(uly)] (69)
u€Uy "
[ZPXY zly)

= sup

U[l-k]\y qul,uQGL{ ,LEX

P, (u1|y)=Py (uzly)

<m$ > Piluly) )} (70)
uEU,
k
= 5w 3 P elg (G Pavein)) an
k /
> sup > Pxiy (@l)(9(0) + —— Py (xly)(9' (0) =€)
X|y=y =z z
(72)
=(9'(0) —¢) e > fow(xly) Pgy(zly)  (73)
X|Y=y =z
1
=k(g'(0) —¢) mgx(m—PX|y(x|y)) (74)
=k(g'(0) —¢) max max Pyy (uly) (75)
= k(¢'(0) — € max Pyy (uly), (76)

where (69) follows because sup,c, f(z) > sup,cp f(x)
when A O B and (70) follows because sup,.p f(z) =
sup,cp g(z) when f(z) = g(x), for x € B. We remark that
it suffices to consider Py, Y=y such that 3°, Py (uly) = k
in all the optimizations problems in (66)-(70) (see Lemma 5
and Remark 9 in Appendix B-C). Then, it follows that (70) <
(71) by defining Py, (x|y) := + 3,0 Pi(uly) which is a
probability distribution noticing that U, x € X, are disjoint
and that 3" Py (uly) = k. It follows that (70) > (71) by
defining Py (uly) = mLTPX‘Y(ﬂy), for u € U,, and using
Lemma 6 (see also the discussion above it) in Appendix B-C.
Thus, (70) = (71). The inequality (72) follows from (64) by
choosing m, appropriately large enough, for x € X and for
0 < e < ¢'(0). This gives

sup Eyy [g(Pk(UIY))}
P
'(0) —€) ZPY(Z/)

Ui:g 1Y

max Pyy (uly). (77
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Putting together the bounds in (62) and (77) and using (65),
we have

v |9y )]
Eq [g(Pu(U))]

> sup sup
0<e<g’(0) U:U-X-Y,
Py x in (53)

k(g'(0) — €) 3=, Py (y) max, Pyy (uly)
kg’ (0) max, Py(u)

su
pPU[l:k] 1Y

sup (78)
U:U-X-Y Supp.
Uli:k)

(79)

(¢'(0) —¢)
- 0 P 80
02 g(0) gmgx v (yle) (80)
— Zm:?x Py|X(y|$), (81)
Yy

where (80) follows because maximal leakage is achieved by
the shattering P |x (defined in (53)) with sufficiently large
m, [15] and (81) follows because 0 < ¢'(0) < oo.

B. Proof of Theorem 2
Note that

LM(X =)
L+ supp, | Eoy [Pmy(U|Y)}

= su lo (82)
voek-y 1+ supp, Eu [Py (U)]
14>, max, Py (u,y)
= 1 Y 83
U:USE)I;—Y o8 1+ max, Py (u) (83)

The lower bound follows directly by using the “Shat-

tering” conditional distribution PU| x used in [13, Proof
of Theorem 1]. In particular, let p* = ming.p, ()0
k(z) = 2@ for each 2 € supp(X), and U =

Upesupp(x) 1 (2, 1), ..., (z, [k(x)])}. For each u = (iy,ju) €
U and = € supp(X), define Py x as

5

m7 ’Lu =7, ]u € [1 : I_k(l')“,
0, otherwise.

(84)
By substituting this into the objective function of (83), we get
the lower bound
L4+ p" 2y cy MaXacupp(x) Prix (y]2)
14 p* ’

Ly(X —=Y) >log
(85)

We note that this lower bound holds for X and ) of arbitrary
cardinalities. The binary assumption on X and ) is required
for the upper bound. We prove the upper bound now. We have

Ly(X —Y)

supp, , Eoy [9(Pgyy (UY))]
= sup log (86)
UU—X-Y supp, Ey [9(P(U))]
= su (0]
voex—y C 1+ supp, Ev [Py (U)]
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1 + Zy max,, PUY (’U,7 y)

= su lo 88

U:Uf)Ing S max,, Py (u) (85)

1+ max, Pyy (u,y

= sup sup log 2y oy (u,y) (89)

¢€0,1] U:U-X-Y, 1+g¢

max, Py(u)<g
1+ sup max Py (u,
U:fo(f)y, zy: u oy ()
max,, Py(u)<q

= sup log (90)

4€[0,1] 1+¢

Let us consider just the optimization in the numerator in (90):

fla) = > max Py (u,y).

Y

sup
U.U-X-Y,
max,, Py (u)<q

oD

We may upper bound it by

f(q)
su max Py (u)P z|u) P T
UU}I?yZ ZU x v (]u) Py x (y|z)
max, Py(u)<q
(92)
< oS qzmgxszw(x\u)PY\X(y\x) 93)
ma;(uPU(u)S’q Y v
%94)

<) max Pyx(yle).
)

We will also need another upper bound on f(q) which uses
the assumption that X' and ) are binary. Let X = {z1,z2}
and YV = {y1,y2}. Assume without loss of generality that
Px(z1) < Px(x2). Also, assume without loss of generality
that z; = arg max, Py|x(y1|z). That is,

Py x (y1lz1) > Pyix (y1lz2). 95)
Since ) is binary, a consequence is that
Py x (y222) > Pyix (y2|r1). (96)

That is, x5 = arg max, Py|x (y2|x). We may write (91) as
fla)= sup
U.U-X-Y,

max,, Py(u)<q

max Pyy(u,y1) + max Pyy (u,ys).

7
Let u; = argmax,, Py y (u,y;) for i = 1,2. If u; = ug, then

flg) < sup
UU-X-Y,

max,, Py (u)<q

= Py(u1) <gq.

Pyy (u1,y1) + Puy (u1,y2)

(98)

Now consider the case where u; # us. We construct an upper
bound using weak duality as follows. Consider the constraints

2

ZPX(%)PU\X(W\%) <q, i1=12, 99)
j=1
2
> Pyix(uile;) <1, j=1,2,  (100)
=1
Pyix(uglz;) >0, i=1,2,5=1,2. (101)
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We may upper bound f(q) by
2

flg) < min sup E PX,Y(xjvyi)PU\X(ui‘xj)
Ai20, =12, p =
a;50) j=12, UIX 4,5=1
VLJ>h, 17{,2,]71 2
2
- E i E Px () Py x (uilz;) — q
i=1 j=1

=Y a, (Z Pyix (uilz;) — 1)
=1 i=1

2

i,j=1
2
- i >(I)I,111n 13 ;3‘2 '2';1 [PUlX(uz|$3)

1/1]>%] z’ {,2J ’1 LI=

X (Pxy (25,9:) = MiPx (2;) — a; + vi)
2 2
+ZAiq+Zaj]. (103)

=1 j=1

This leads to the upper bounding dual program

2 2
minimize Z/\qurZaj
i=1 j=1
subject to A\; >0, ¢ = 1,2,
a; >0, j=1,2,
vi; >0,1=1,2,5=1,2,
Pxy (z;,yi) — XiPx (x;) —
i1=1,2,7=1,2.

Qj + Vi = 0,

Using the equality constraint to eliminate v;;, this can be
further simplified to

2 2
minimize E Aiq + E a;
i=1 j=1

subject toA; > 0, i = 1,2,
Qg Z 07 ] = 1727
— Pxy(%j,y:i) + NiPx(z;) + a; >0,
i=1,2,j=1,2.
Noting that, for fixed o, j € {1, 2} the optimal value of )\,
is max; max{0, Py |x (yi|z;) — } the dual program can
again be simplified to
O[j }
Px (z;)

Px(w

2

minimize ¢ Z max max {0, Py x (yilz;) —
i=1

2
+2o
j=1
subject to a; > 0, j =1,2.

We can now form a further upper bound on f(g) by choosing
o as we like. With some hindsight, we set

o1 = Px(z1)(Pyx (y1]z1) oz =0.

(104)

— Py x(y1lz2)),
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By the assumption in (95), o is non-negative. Now we have
the upper bound

f(a) < q)_ max{0, Py|x (yilz1)

i=1

— (Pyx (y1]71) — Py x (y1]22)), Py x (yilz2)}

+ Px (1) (Py|x (y1]71) — Py x (y1]w2))  (105)
= q (Pyx (y1]z2) + Py x (y2]22))

+ Px (z1)(Py|x (y1lz1) — Pyix (y1lz2))  (106)
=q+ Px(z1)(Py|x(y1]21) — Pyx (y1]z2))  (107)

where in (106) we have used the assumption in (96). Note that
the bound in (107) is larger than the bound f(gq) < ¢ for the
case where u; = ug. Thus (107) is an upper bound on f(q) in
all cases. Let us now consider the quantity 1+f ( ) , separately
for ¢ < Px(z1) and for ¢ > Px (x1). For ¢ § PX(xl), by the
bound on f(g) in (94),

1+ fa) _ 1+ 4¢3, max,; Py|x(y|z) (108)
14+q — 14¢
1+ Px(z max, P T
< x ( 1)Zy vix (ylz) (109)

where the inequality (109) holds because the right-hand side
of (108) is non-decreasing in ¢ as ), max, Py|x(y[z) > 1.
For ¢ > Px(x1), by the bound on f(g) in (107),

1+ f(q)
1+g¢

1+ g+ Px(21)(Py|x (y1lz1) — Py x (y1|z2)) 110
< 1+q (110)
- 1+ Px (1) + Px(z1)(Py|x (y1|71) — Pyx (y1]22))
- 1+ Px(z1)

(111)

1+ Px(21)(Py x (y1]21) + Py x (y2]22)) (112)
N 14 Px(x1)
B 1 —i—PX(xl)Zy max, Py|x (y|x)
_ T e (113)

where (111) holds because the right-hand side of (110)
is non-increasing in ¢ since Px(z1)(Py|x(y1lr1) —
Py x (y1]|xz2)) > 0. This proves that

1
L3(X —Y) = sup log 1+ /o) (114)
4€[0,1] 1+¢
14 Px(z1) >_, max, Py|x (y|z)
< log .
1 + PX ($1)
(115)
By the assumption that Px (z1) = min, Px (z) = p*, we have

proven an upper bound on L7*(X — Y") matching the lower
bound in (85).
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APPENDIX B
PROOFS FOR SECTION IV

A. Proof of Proposition 1

Let Py (x) := P(Ulel(f(i:x)). Consider the following sim-

plification to the expected a-loss under k guesses.

Ex [ta(PUL, (X; = X)))]
= E [£a(kPg(X))]

= 23 () (1 (kPg () 7) (116)
== 1<f— > Px(a)(kPg (@) =) 17
== (1 - k‘%(;PX(x)a)% +k°‘%(§x: Px()*)=

- ¥ Px@iry ) ) 11

- (1 _ e Ha(X) k"%(z Px(2)*)w

- ZPXWkPX(x))“a”)

- (1 RS e(FRE Ha(X) k”‘T’I(Z Px(2)*)w

a—1
o)+ PX(x)a L 1—+
- (2 P i) o) a>)
(120)
= (1 KRl R (E (o
(121)

W (1S (EPx@) Vi, a-b
(1= 3 () P )

x

Q=

= af - (1 — kS Ha0) k5 (3 Py (a))

1

x (1- ZP§<“)<w>~Px<x>“‘i>)> (122)

a—1
< (1- el;‘D;<P§“>|Pg>))
1

= Y (1ot Ha() o (3)

- (1 _ RS Ha(X) 4 k‘%l(z Px (2)*)=

(123)

(124)

where  (124) follows from  Appendix F  with
Bregman divergence Bp associated with F(Px) =
2 (02, Px(z)*)s — 1). In view of Lemma 5 and
Remark 9 in Appendix B-C, we can consider Py to be a
probability distribution, i.e., ) Pg(x) = 1, for optimizing
the expected a-loss. Now from the non-negativity of the
Rényi divergence, it can be seen that the last term inside
the brackets in (123) is non-negative and is equal to zero if
and only if there exists a guessing strategy PX[M] such that
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Py = P)(f‘). There always exists such a guessing strategy
for the special case of £ = 1, in particular, PXl = P)((a),
thereby giving an alternative proof of [30, Lemma 1] in
addition to quantifying the relative performance of an
arbitrary guessing strategy with respect to the optimal
guessing strategy. However, this is not always possible when
k > 1. In particular, it follows from Lemma 6 and the
discussion above it (in Appendix B-C) that there exists a
guessing strategy PX[M] such that Pg = P)(f‘) if and only
if P)((a)(x) < %, for all x € X. Then the minimal expected
a-loss is given by MEX (Pyx) = (11— ko et Ha(X))
when P)((a)(x) < i forall z € X.

B. Minimal Expected Log-Loss Under 2 Guesses

Here we present a proof of Theorem 3 for the special case
of a =1 and k = 2 that essentially captures the intuition and
the main tools involved in the relatively complex analysis in
the proof of Theorem 3.

Theorem 7 (Minimal Expected log-loss {a = 1} under
2 guesses): Let Px be a probability distribution sup-
ported on X = {xzy,22,...,2,}, and let ppx =
max;e(i:n] Px(2i) = Px(Tmax). Then the minimal expected
log-loss under 2 guesses is given by

1
P (UL (% = 1)

= H(X) - hy <max{;pmax}) ,

min E |log
XI)A(Z

(125)

where hy,(+) is the binary entropy function defined by h,(t) :=
—tlogt—(1—t)log (1 — t) and the optimal guessing strategy
is given by Py ¢ such that

P(X, =z or Xy = 2) = 2Px(z),
ifPX(mmax) S %a
PXI,XQ (Tmax, T) + PXI,XZ (T, Tmax) = ZPX(JQX(z')’
ol Ewmax
X ?é xmaxaifPX(zmax) > %
(126)

Remark 8: In words, the optimal guessing strategy in (126)
is to guess x in either of the guesses with a probability
proportional to Px(x), for all z, if ppax < % If pmax > %
the optimal strategy is to guess xy.x With probability 1 (i.e.,
deterministically) and randomly guess the other z with a
probability proportional to Px (x), for & # Tmax.

It can be inferred from (125) that the minimal expected
log-loss under 2 guesses induces a dichotomy on the simplex
of probability distributions Px on X. Proof: [Proof of
Theorem 7] We first state some useful lemmas which will be
needed in the proof.

Lemma 2 (Non-Negativity): If Py is a probability distribu-
tion and Q x is such that Qx () > 0 forall z and 3~ Q x () <

1 with the same support set as Px. Then D(PXHC}X) > 0.
Lemma 2 is proved in Appendix G.
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Lemma 3 (Non-Equality): If P* is an optimal strategy
for the optimization problem in (125) then

P;(l %, (z,z) =0, for all z. (127)

Lemma 3 follows from Lemma 5 for the special case of
k=2.

Lemma 4: There
P(Xlzxongzx) =
only if Px(z) < %, for all x.

Lemma 4 follows from Lemma 6 for the special case of

exists le P such that

2Px(z), for all z if and

k = 2. A consequence of Lemma 3 is that if P)"i( % is an
1A2
optimal strategy, then we have
3 pr (X1 —gor Xy = m) —9 (128)

where the probability P* is taken with respect to the optimal
strategy P* < . So, it suffices to consider the optimization in
(125) over t]he strategies Py ¢~ satisfying (128). Notice that

Pr(X:= Xa=z) .

for such strategies, Pg(x) := w is a proba-
bility distribution. Now we are ready to prove Theorem 7. Let
Pmax < % Then we have

E {El(P(Xl =z or Xo= x))}

1
= Px(x)lo 129
Z x( & P(X, =z or X, =) (129
1
= P lo
> Px(x)log Pr(@)
Px(x)
+ Px(x)lo -
Z X g 1 =T or Xg = l‘)
(130)
2Px ()
= -1+ Px(z)lo
Z x( & (Xl_:cong—a:)
(131)
= H(X) — 1+ D(Px| Pg) (132)
> H(X) — (133)
where we have defined Py (x) = w in (132),

and (133) follows from the non-negativity of the relative
entropy. We remark that (132) can be obtained from (27) also
by substituting £ = 2 and taking limit « — 1. Notice that
the inequality in (133) can be tight if and only if there exists
Pg %, such that Py (z) = 2Px (), for all z, which is possible
if and only if ppux < % using Lemma 4.

Now, consider the case when pupa.x > % Without loss

of generality, suppose that pm.x = Px(z1). Let t, =
~ ~ n

P(X1 = z or X9 = z). For example, t,, = > p1; +
j=2

n n
> pj1 =23 pij, where Py ¢ (zi,2;) = pij. Also, note
j=2 j=2

that > ¢, = 2 in view of Lemma 3. Then we have
i=1

E [flog(X ; le,xz)}

1365

1 1
= Px(x;) log — + ZPX z;)log I

wl T4

(134)

n

1 1
= (Px(z1) ;PX z; )logz + (; Px (z;))log i
- 1
+ ZPX(xi)IOg PR IEREEN
71=2 3
;2 Px (z;)
Px(IL)
n Z Px (z;)
P i) log ———— 135
+ ; x () log I (135)
" 1
- ZPX(:ci) log —5—o5—
=2 ;2 Px ()
- 1
+ (Px(l‘l) — ;Px(xl))log a
Px(xl)
n Z Px ()
+ ZPX(xz)logW (136)

i=2
The second term in (136) is non-negative since Px(x1) >
0.5 is equivalent to Px(x1) > > Px(x;). Consider the third
term in (136). N

n Z2Px(a:j)
P i)l ==
> e log 5
( an(CEz)
n n PX( 2) EZ:QPX(wJ)
= Px()) (= )log ——— (137)
r A Y s (0 I
=2
ZPX (2;))D(Px||Qx) (138)
> 0, (139)
where (138) follows by defining Px (z;) = _Px(@) apq
3> Px(ey)

Qx(z;) = twltwl i=1[2:n], (139) follows from Lemma 2

noticing that Z Qx(z;) = trl(Zt )=t (2 —ty,) <
1. Equality in (139) is attained if and only if t;;, = 1 and

pri+pin = 2 e [2 : n]. Under this condition, note
_22 Px (z;)
=

that the second term in (136) is also zero and the first term

simplifies to H(X) — hp(Pmax)- O

C. Proof of Theorem 3

We begin with the following lemmas which will be useful
in the proof of Theorem 3. It is intuitive to expect that an
optimal strategy, P* g puts zero weight on ordered tuples

(a1,a2,...,ax) (denoted as aj.) in the sequel) whenever
a; = a; for some i # j, since there is no advantage in guessing
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the same estimate more than once. The following lemma based
on the monotonicity of the a-loss formalizes this.
Lemma 5: If P* is an optimal strategy for the optimiza-

tion problem in (2§) then

P)‘i([l:k] (ap1:17) =0, for all ap.x) s.t. a; = a;, for some i # j.
The proof of Lemma 5 is deferred to Appendix H.
Remark 9: An important consequence of Lemma 5 is that,

if P* is an optimal strategy for the optimization problem

in (2§) then we have
9) -k

(VES
i=1
where the probability P* is taken with respect to an optimal
strategy P* . Hence, it suffices to consider the optimization

X
in (25) over all the strategies PA[ - satisfying (140).
,tn) such that "1 | t; = k is said to

(140)

A vector (t1,to,...

be admissible if there exists a strategy Py i satisfying
k
ti=P | | J(X; =) |, foralliel[l:n]. (141)
j=1

Equivalently, (141) can be written as the following system of
linear equations.

t; = Z Pg . (ax), foralli € [1:n]. (142)
k
Kk U (aj==:)
j=1
In general, in order to determine whether a vector
(t1,t2,...,t,) is admissible or not, we need to solve a linear

programming problem (LPP) with number of variables and
constraints that are polynomial in the support size of Px,
i.e, n. Nonetheless, the following lemma based on Farkas’
lemma [60, Proposition 6.4.3] completely characterizes the
necessary and sufficient conditions for the admissibility of a
vector (t1,tg,...,tn).

Lemma 6: A vector (t1,ts,...,t,) such that Zt =kis

admissible if and only if 0 < ¢; <1, for all ¢ € [1 n]

The proof of Lemma 6 is deferred to Appendix I. We now
prove Theorem 7. From the definition of the minimal expected
a-loss for k guesses in (25), we have

MEP (Px)
~ a—1 -
n k Ta
e A R (VURE N
[1:k] =1 =1
(143)
_ a1y -
= mmin pi|1-P (X5 =)
P’?[m] a—1 |i=1 ( =1 |
n k R
S.t. ZP (Xj = xi) =k (144)
i=1 j=1
. le% n (x;l
= T [Z pl=t, >]
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n
S.t. Ztl = k,
i=1

0<t;<1,i€(l:n], (145)

where (144) follows from Lemma 5 and Remark 9, and (145)

follows from the change of variable ¢, = P U (X,
Jj=1

= x;)
and Lemma 6. Consider the Lagrangian

a 1 [;piu_t:al) A (Zti—k>

i=1

+ D pilti = 1) (146)
i=1
The Karush-Kuhn-Tucker (KKT) conditions [63, Chap-
ter 5.5.3] are given by
oL
(Stationarity): — = 0,i € [1: n],
at;
(147)

. Di @ .
1e., t; = ,i € (1:nf,
<)\+,Ui) it
n

(Primal feasibility): » t; =k,0 <t; < 1,4 € [L:n],
i=1
(148)
(Dual feasibility): u; > 0,47 € [1: n], (149)
(Complementary slackness): u;(t; — 1) = 0,4 € [1: n].
(150)

Notice that forav > 1, t%l is a concave function of ¢, meaning
the overall objective function in (145) is convex. For a < 1,
+%+ is a convex function of t, but since %1 is negative,
the overall function is again convex. Thus (145) amounts to a
convex optimization problem. Now since KKT conditions are
necessary and sufficient conditions for optimality in a convex
optimization problem, it suffices to find values of ¢;, i € [1 :
n), A, W, ¢ € [1: n] satisfying (147)—(150) in order to solve
the optimization problem (145).

First we simplify the KKT conditions (147)—-(150) in the
following manner.

e For ¢ such that (%)a
(5)"

o For i such that (ﬁ)a

< 1, we take pu; = 0 and ¢; =

> 1, we take p; = p; — A and

pY
t; = 1. Notice that for such ¢, we have p; > 0, since
pi > A
This is equivalent to choosing ¢; = min { (%)a ;1 and p; =

0 or p; = p; — A depending on whether ¢; = (%7) ort; =1,
respectively, for each ¢ € [1 : n]. Notice that this choice is
consistent with the KKT conditions (147)—-(150) except for
that A has to be chosen appropriately satisfying Y . t; = k
also. In effect, we have essentially reduced the KKT conditions
(147)—(150) to the following equations by eliminating p;’s:

t; —mm{(zi\l) 1},26
i=1

[1:n], (151)

(152)
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We solve the equations (151) and (152) by considering the
following k£ mutually exclusive and exhaustive cases (clarified
later) based on Pyx.

¢ 1).
Case 1: <m § E)
Consider the choice

1

n k Oé
A= (le> ti= et i€ [lin].  (153)
This choice satisfies (151) and (152) since prl - <1 and
P1=D2 " 2 Pn. (hsszype (k7 :
‘s, —s+2)ps_y é+1p
Case 's’: (2< 5 < k) ( R 1)
Consider the choice
1
Zn_ p‘?‘ o
= 1=811 , 154
(k —s5+1 (154)
k— 1)p
ti=1lie(lis—1],t = %z € [s:n]. (155)
2 j=s P
This choice satisfies (151)
. (k—s+2)pg 4
o for i € [1 : s — 1] because S e > 1 and p; >
i=s—14%4
p2 >+ > ps—1, and
(k 8+1)p<

o for i € [s: n] because <1 and ps > ps1 >
P
Also, this choice clearly satisfies (152). Finally, notice that the

condition for Case ‘s’, 2 < s < n, can be written as

2o,

k—1i+1)p¢ k— 1)pe
B DYy forjefiis—1), BosH DR
2 pf > P
j=i 1=s
(156)
since 7?2)])5’1 > 1and p; > py > --- > ps_q. This
2 Py

proves that the cases considered above are mutually exclusive
and exhaustive, and together with the case-wise analysis gives
the expression for the minimal expected a-loss for k£ guesses
as presented in Theorem 3.

D. Proof of Theorem 4

From the definition of a-leakage with k guesses in (33),
we have

LP(X =Y)

a—1
k Ta
max B |25 (U (%= )
o [1:k] i=1
= 1
a—1"% ) e}
max E | 25P (U (X; = X))
X1k i=1
(157)
o o ot tRHA(X]Y)
= log 2= 158
a_1% okt e e Ha(X) (158)
1—a gA(X|Y)
% e o @
- 1 159
a—1 8 Erm.x) (159)
=LW(X -Y), (160)
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where (158) follows from Theorem 3, in particular from the

case when s* = 1 since PX‘Y(:c|y) < 4, for all z,y and

P& (x) < L for all z, and HA(X|Y) in (158) is the

Arimoto conditional entropy [64] defined as HZ(X|Y) =
1

> (£ Perte)

o

E. Proof of Theorem 5
Consider

Cgﬁl)fmaX(X_)Y): sup If(U;Y).

U-X-Y

(161)

Then we have the following lemma proved later.
Lemma 7: There exists an optimizer Py« x for the opti-

mization problem in the RHS of (161) such that P(O:)‘Y(u|y)

P (u) < L, for all u,y, where P v (uly) = Pie |y (uly)

> Poey (uly)

@ PG (u

and P[(J*)(’LL) = &Upié*()u).
Then for Py« x in the Lemma 7, by definition we have

Egk)—maX(X _ Y)
1

B[z P(UL, (U = U)Y) "5 ]

maxp,

> 2 log L
— _ o k -~ o * a—1
0] ]. maXPU[l:k] E[ﬁp(utzl Ul = U ) a ]
(162)
_a Tt R HI(UTY)
« a—1
- 1 163
a—1" okt etw HalUT) (163)
=IAU*;Y) (164)
=LPmNX - Y), (165)

where (163) follows from Theorem 3, (165) follows because
Py x is an optimizer in (161). It remains to prove Lemma 7.

Proof of Lemma 7: Note that it suffices to prove that
for every Pyx, there exists Py such that I2(U;Y) =

IAU;Y) and PUlY (aly), PY (@) < . for all u,y. To that

end, we use the “shattering” condltlonal distribution Py x [13,
Proof of Theorem 1], [15, Proof of Theorem 5]. Let us first

define U = Uueuuu, with U, = {(u, 1), (u, 2) s (u,m)}
for some m to be fixed later. Let Py (u|u) = for i € U,.
This gives
_ Pyy (uly)
PU\Y (aly) = ZPUlY uly) U\U( lu) = lT’
for u € Z/[u, (166)
P, ~
ZPU Py (iifu) = P o i e iy, (167)
Py (ulu) =1 for @ € U,, (168)
PY‘U(ym) = Py y(y|u) for @ € Uy,. (169)
Now we have
IZ(U:Y)
1
o %y (S0 Taea, Priplvl) Py (@)
= og T
o (CuXaea, Po(@°)®
(170)
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Q=

0 Sy S P Sac, Poli))
a-1 (Cu Xaew, Po(@)®
(171)
P ozPUgi)la é
__«a log Z’g (Eu Y|U(y\u) T ) (172)
a—1 (Z PU(Eqi)la)E
I >, (. PY\U(?/|“)O‘JZU(U)Q)E (173)
a—1 (>, Pu(u)®)e
= I(U;Y), (174)

where (171) follows from (169), and (172) follows from (167).
Now consider

Pgy (aly)*
(@) oy
P2 (aly) = _ (175)
ury > 2aen, Loy (@ly)®
Pyy (u]y)®
=—m (176)
. P
_ 1 Py (uly)” 177)
m « Pu(uly)®
1
< —, (178)

m

where (176) follows from (166). Now we choosing any m
such that m > k guarantees that P( v aly) < 1 . Similarly,

P{(@) < }

APPENDIX C
PROOFS FOR SECTION V

A. Proof of Theorem 6
We first prove the lower bound LHS > RHS. Consider

supp, Ev~p, 9(Py(U))
supp, Ev~gu9(Py(U))

supp, >, Px (@) P x (ulz)g( Py (u)
Sbr, 5 e Q@) ol (07 (0
> v Px (2) Py x (ul2)g(Py (u
2w @x (@) Puix (u|2)g(Qp (u

sup log

Py x

= sup log

Py x

(179)

~— Nl
—_

= sup sup 1nf log
Py x

~

)
(180)

< sup sup log

Py x P,

)

Z”QX( )PU\X(UIx) (PU u))
Px(x) Y, Puix (ulz)g(Pg(u))

x(x) Y2, Puix (ulr)g(Py(u))

< sup sup max log
Py x P ©:Px (z)>0

£
5

(182)
_ Px (x)
o x:PIJr(l(a;§>010g QX (I) (183)
= Doo(Px[|@x)- (184)

where (182) follows because % ¢ < max; b , for b; > 0, Vi.

Now we prove the upper bound LHS < RHS. We lower
bound the RHS of (37) by using the “shattering” P x [13,
Proof of Theorem 1], [15, Proof of Theorem 5]. We pick a
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letter 2*, and let U = {z*} W), . Uy, where |U| = m for
each z # z*. Then define
1 u=x=z"
Pyix(ulz) = §1/m w €Uy, x # a*, (185)
0 otherwise.
Note that
P * — *
Pyu) = { PXt) - u= . (86)
Px(x)/m, u €Uy, #z*
and
Qx(z* u=zx*
Qu(u) = § X1 . (187)
Qx(x)/m, uw€ElUy,xz#x

Consider the numerator of the objective function in the RHS
of (37). We have

swEur, [9(Py (V)] = sngPU(wg(Pg(u)) (188)
2 sup Px (z7)g(Py (7)) - (189)
= Px(x*) sup g¢(q). (190)

q€[0,1]

Note that the expression in (190) is finite because of the
assumption on g that supyco,1) 9(q) < oo.

To bound the denominator of the objective function in the
RHS of (37), we will need the upper concave envelope of g,
denoted ¢g**. Since g is a function of a scalar, its upper concave
envelope can be written as

9" (q) = sup (191)

a,b,\€[0,1]:arA+b(1—X\)=q

Ag(a) + (L= A)g(b).
We claim that ¢**(0) = 0 and ¢** is continuous at 0. Fix
some € > 0. It suffices to show that there exists § > 0 where
g**(q) < e for all ¢ € [0, d]. By the assumption that g(0) =
0 and ¢ is continuous at 0, there exists a § small enough so
that g(q) < €/2 for all ¢ € [0,/5]. Now, for any ¢ € [0, 4],
consider any a,b, A where a) + b(1 — \) = ¢. We assume
without loss of generality that a < ¢ < b. If b < V8, then we

have Ag(a) + (1 — \)g(b) < €/2. If b > /4, then we have
g=ar+b(1—=X)>b1-X)>V61—-X). (192
So we get 1 — >\<\% 55§\/5.Thus
Ag(a) + (1= N)g(b) < e/24+ V3 sup g(g) <e, (193)
q€[0,1]

where (193) holds for sufficiently small §, and again we have
used the assumption that sup,c(o,1) 9(¢) < oc. This proves that
g**(q) < e whenever g € [0,4]. In particular, for sufficiently
large m,

sup ¢ (¢) <e. (194)

q€[0,1/m]

Now the denominator in (37) can be upper bounded as

Sup Eveqo [9(P(U)))]

= bupZQU (w)) (195)
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—sup(Qx( )g(Py (7))
+ ) Qx(@) ) %Q(PU(U))) (196)
THT* wEU,
< sup Qx (27)g (P (27))
+ D Qx(@)g™ ()] %sz(u)) (197)
THT* UEUy
< sup Qx(x + > Qx() sup g (g) (198)
g€0,1] P qE[O,l/m]
< sup Qx(2)g(q) + (1 - Qx(a"))e, (199)

q€[0,1]

where (197) follows from the definition of the upper concave
envelope and (199) follows from (194) for sufficiently large
m.

Putting together the bounds in (190) and (199), we have

0 (U))
o (U))

SUPge(0,1] Px(2*)g(q)

supp, Ev~p, 9(P,
supp, Ev~qug(P

sup log

Py x

> log max sup

¥ >0 SUPgeio) Qx (2%)g(q) + (1 — Qx (2%))e
(200)
Supgeo1] Px (2%)9(q)
=1 201
o8 IR SUPge(0,1] Qx(z*)g(q) 20h
Px(x*)
= log max Ox () (202)
= Doe(Px|Qx), (203)

where (202) uses the assumption that sup,¢jo179(¢) < oc.
Finally, we note that the assumption sup,cp,19(g) > 0 is
to ensure that the objective function in (37) is well-defined.
In particular, for any Py|x, fix a «’ such that Py(u’) > 0.
Then we have

supEu~p, [9(Py(U))] = SEPQ(PU(UI))PU(UI) (204)
= Py(u') sup g(q) >0. (205)
q€[0,1]
Similarly, supp, Ev~qy [9(P;(U))] > 0.
B. Proof of Proposition 2
For any Rx < Px, consider
D(Rx|Qx) — (RX||PX)
Rx(x) Rx(x)
- ZRX log Ox@ Zx: Rx (x)log P lo) (206)
PX (.CE)
= R 1 207
Zm: x(@) Qx(z) 20m
< %: Rx(x) (H;Z}X log giiii;) (208)
— maxlog Sf( ((“’J)) (209)
= Doo(Px||Qx)- (210)

1369

Moreover, for Rx such that Rx(z*) = 1 for a fixed z* €
arg max g Px(x) " (208) is tight. This proves (41).

To prove (182) for the upper bound, we give a choice of
the function f for which the objective function in the RHS
of (42) is equal to Do (Px||@x). In particular, fix an z* €
arg max S’; ((?) and consider a function f defined by

~ 1, ifx=2a"
@) = {0, otherwise @11
Clearly, we have
Ex~py [f(X)] Py (z*)
- =1 = D (P . (212
Brauf0] B | Dxl@0- 21
For the lower bound, consider
Ex-pry[f(X)] . >, Px(@)f(2)
8 B F0)] 8, Qx(@)f(2) .
Px(2)f(x)
< log max Ox@) () (214)
= maclog ((fj) — Doo(Px Q).
(215)

where (214) follows from the fact that %Z b’ < max; b , for
b; > 0, Vi. Taking supremum over all f, we get

Expy [f(X)] Py ()
log —/———2——~ = <] 216
LSBT S leem gy @1
Do (Px||Qx). (217)

This proves (42).

C. Proof of Corollary 4

The expression for opportunistic maximal g-leakage in (43)
can be simplified as

LM (X =)

yesupp(Y)
supp,  Eujy=yl9(Pyy (Uly))] .
sup
vo Xy sup, Bylg(Py(0))]
P
o Y A e OO Gy
y:Py (y)>0 z:Px |y (zly)>0  Px(x)
P;
= log Z Py(y)  max 1;\DX(Z/|T/) (220)
y:Py (y)>0 @:Pxy (zly)>0 Py (y)
=log Z _p,max 0Py|X(y|ﬂs) (221)
y:Py (3)>0 x|y (z|y)>
= log Z max Py |x(y|r) (222)
w:Px(1)>0
y:Py (y)>0
=I5.(X;Y), o)

where (219) follows from Theorem 6 and (220) follows from
the Bayes’” Rule.
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The expression for maximal realizable g-leakage in (44) can
be simplified as
LITM(X —Y)

log max

= sup
yesupp(Y)

U:U-X-Y
supp, E [g(Pmy(Uly))}
Supp, E [g(PU(U))]

=log max
gyesupp(y)
supp, | E [Py (Uly))]
sup (224)
vu-x-y  supp E[g(Py(U))]
Pxy (zly)
=1lo max ax _ (225)
gy:Py(y)>0 z:Px |y (z|y)>0 Px(,T)
PXY(xa y)
=lo max — (226)
& (2,y):Pxy (z,4)>0 Px (z) Py (y)
= Doo(PXYHPX X Py), (227)

where (225) follows from Theorem 6.

APPENDIX D
VARIATIONAL CHARACTERIZATION FOR D (Px||Qx)
WITH GAIN FUNCTION g(t) = logt

Here we show that (37) holds for the non-positive gain
function ¢(t) = logt that does not satisfy the conditions in
Theorem 6. The proof of the lower bound follows exactly
along the same lines as that of Theorem 6 with the only
difference that (182) holds for negative gain functions too
noticing that 21 - < max; ¢, for b; <0, Vi.

For the upper bound we ﬁrst note that

SIIDIP]EUNPU [log P (U)] = — inf (Hp(U) + D(Py||Py))
o4 U

= —Hp(U). (228)

We lower bound the RHS in (37) with gain function g(t) =
log t by using the “shattering” Py x [13, Proof of Theorem 1],
[15, Proof of Theorem 5]. Let U = Wocally, |Uz| = my,.
Define Py x(u|r) = ——, u € U,. So, we have
s supp, Ev~py, [log P (U)] —Hp(U)

Py x SupPﬁ IEUNQU [lOg QU(U)] N _HQ(U)

_ 2w (X, Px(@)Pyx (ulz)) log (3, Px (x) Pyjx (ulx))

Y (X, Qx (@) Py x (ulz)) log (32, Qx () Py x (ulx))

(229)

(230)
Y, Px(a)log Px2) o)
2.0 Qx (2)log = CHE)
—Hp( )/1ogml* — Px(l‘*)
= (232)
—Ho(X)/logmg- — Qx (%)
Px (=)
= (233)
Qx (z*)
_ 2D00(PX”QX)’ (234)
where (232) follows by fixing an z* € arg max, g ((i)) and

choosing m, = 1, for z # «*, and (233) then follows by

taking limit m,« — oco.
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APPENDIX E
OPPORTUNISTIC MAXIMAL AND MAXIMAL REALIZABLE
(o = 1)-LEAKAGES

We first note that opportunistic maximal a-leakage in LHS
of (48) can be written as (see [13, Equations (18)-(20)])

log Z Py (y

y€supp(Y)

(3. . Poixy (ulz,y) Pxpy (2]y)))
(3. . Poixy (ulz,y) Px () )™

Let us define opportunistic maximal and maximal realizable
(a = 1)-leakages as

LMY - Y) = sup

1
o

(235)

LO™(X —Y) = sup hm

UQH o —

1 log Z Py (y)

y€Esupp(Y)

1
x

(3. . Poixy (ulz,y) Pxpy (z]y) ") °

o (236)
(>, (X, Puixy (ulz,y) Px (%)) ®
L™ X -Y) = U:Usiu)lgiy yerglllzgg&)
o’ log (>, PU\Y(U|Z/)Z) “ , 237)
o-ta—1 (3. Pu(u))=

by taking the limit first and the supremum next. When X
and Y are independent, note that the expressions for both the
leakages above are equal to zero. The following proposition
plays a crucial role in proving that these leakages are equal to
infinity.

Proposition 3: Let Pxy be a probability distribution over a
finite alphabet X’ x ) such that X and Y are not independent.
We have

sup (HU)-HU|Y =y)) = (238)

UU-X-Y
Remark 10: It is easy to see that
supy.y_x—y (H(U) — HU|Y)) = supy.y—x-y I

(U;Y) = I(X;Y), since we have I(U;Y) < I(X;Y)
for every U such that U — X — Y by data processing
inequality. However, if we replace the conditional entropy in
the objective function with a conditional entropy where the
conditioning is on a particular realization of Y (instead of the
random variable itself), it is interesting that the supremum
blows up to infinity.
Proof: For a fixed Y = y, we have

sup (H(U)-H(UY =y))
U.U-X-Y
> sup (H(U) = HU|Y =y)). (239)
U:U—-X-Y,H(X|U)=0
In the RHS of (239), we further assume that ¢ = (J, . U.
be the alphabet of U such that
Poix(ule) = { 7o 1€ e (240)
ulr) =4 "=
vix 0, otherwise,
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where n, = |Uy| is to be fixed later. This together with the
Markov chain U — X — Y gives

ZPX x) Py x (ulz) = PX($>7 for u € Uy,
(241)
Pyy (uly) = ZPX\Y x|y) Py x (ulz) = w,
for u € Uy. (242)
Continuing (239), we get
sup  (H(U)-HUJY =y)) (243)
UU-—X-Y
=3 Py(u)log Py(u)
TEX uEU,
+> > Pyy(uly)log Pyyy (uly) (244)
rzEX ue€U,
rEX uEU, e
X|Y x|y (PX|Y(33Z/)>
+ (245)
:_ZPX 10g<P (x)>
zeX Nz
P
+ > Pxyy(aly) log (W) (246)
rzeX v
=— Z Px (z)log Px (x) + Z Px(x)logn,
+ZPX\Y (w|y)log Pxy (z|y) — ZPX|Y z|y) log ny
(247)
= H(X) = H(X]Y = )
+ Y logn, (Px(x) — Pxy (zly)) (248)

where (245) follows from (241) and (241), and (246) follows
because |U,| = n,. Note that 1 < n, < oo, for every z € X.
Now choosing

for x s.t. Px(x) < Pxy(z|y)

1
Ng =14 | (249)
oo, for z s.t. Px(x) > Pxy(zly),

implies that the summation term in (248) equals infinity. O
Then we have the following theorems.
Theorem 8: Let Pxy be a probability distribution over a
finite alphabet X’ x ) such that X and Y are not independent.
We have

LY(X - Y) =
Proof: Using L’Hospital’s rule and the fact that,

(250)

lim % (a” -l—bo')é = aloga +blogb— (a+b)log(a+b),
(251)

1371

for a,b > 0, we can Verify that, for p;, a;, b;, c;,d; > 0, and
t

ad + b

log zpl*>
=1 (C +da)

= Zpl- (a;loga; + b;logb; — ¢;logc; — d; logd;) .

i=1

lim

a—1l ¢ —

QI R

(252)
Now we have
LP™(X —Y)
= sup lim —— logyesuzpp:(y) Py (y)
(S (S Popor (ko) Py 6))* o
(X (Za Poixy (ulz, y) Px(2)))
= Y Z(PU.y<u|y>log<PU|y(u|y>>
yesupp(Y) v
- pU\Y(U|y) log (pUY(uL'U)))v (254)
where (254) follows from (252) with
Pyy (uly) = ZPU|XY(U\$ y) Pxy (zly), (255)
Pyy (uly) = ZPU|XY (ulz, y) Px (x). (256)

Continuing (254), we get
LI™(X =)

D Z(PUY(U|Z/)10€(PUY(U|Z/))

yEsuPP(Y)
~ Pury{uly) o (P (ul) s7)
= swp > Py
(Uy:yey)—X-Y yEsupp(Y)
Z (Py, v (uly)log Py, |y (uly)) — Py, (u)log Py, (u))
(258)
= > Prly)  sup
yesupp(Y) Uy:Uy—X-Y
> (Pu, v (uly) log Py, y (uly)) — P, (u) log Py, (u))
(259)
= Y. Py(y sup
y€Esupp(Y) U.U-X-Y
Z (Puyy (uly)log Pyy (uly)) — Py (u)log Py (u))
(260)
= >  Pyly) sup (HU)-HUY =y)) (261)
UU-X_Y
y€Esupp(Y)
= 00, (262)
where (262) follows from Proposition 3. J
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Theorem 9: Let Pxy be a probability distribution over a
finite alphabet X’ x ) such that X and Y are not independent.
We have

LT™X -Y)=0 (263)
Proof: Consider
LT™X -Y)
1
a (X, Pojy (uly)*)©
‘= sup max lim log 7
U:U—X—Y yEsupp(Y) a—1 o — 1 (>, Pul(u)®)=
(264)
= su max lim lo P, uly)®) =
e max iy (a : g(zu: oy (uly)®)

“)i> (265)

——log () Pu(w)

= sup max lim (Ho(U) — Hy(U|Y —y)) (266)
U:U—-X-Y y€Esupp(Y) a—1
= sup max (H(U)—-HUY =y)) (267)
U:U—-X—Y y€Esupp(Y)
= max sup (H(U)—-HU|Y =vy)) (268)
yesupp(Y) U:U - X —Y
~ o, (269)
where (269) follows from Proposition 3. O

We remark that Theorem 9 also fqllows from Theorem 8
by noticing that L"~™*(X —Y) > L™(X —Y).

APPENDIX F
BREGMAN DIVERGENCE

Let F :  — R be a continuously differentiable, strictly
convex function on a closed, convex set ). The Bregman
divergence associated with F' [59] for points p, g € € is the
difference between the value of F' at p and the value of the
first-order Taylor expansion of F' around ¢ evaluated at point

p, i.e.,

Br(p,q) = F(p) = F(a) = (VF(a),p—q).  (270)
Let p = (p1,..-,pa) and ¢ = (qi,...,qa) be
two discrete probability distributions. Consider F(p) =
((Z 5 ) o — 1) which is a strictly convex function on
the d-51mplex. The associated Bregman divergence is given by
Br(p,q) = F(p) — F(q) = (VF(q),p — q) 271
Q oy L ay L+
Ok —1—(2_%-)(1 +1
S i) O g T e 1] 272)
i J
L
-S| -
< g+ pigt T - Z q?>] (273)

a‘fl{(;p?ﬂ— (> a)'s “szqa 1] (274)
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| -

(275)

Lo p . (p(e)||gle)
25D 1 ('l >)]7 276)

where = (Zﬁlp] iel: d]) and ¢© =
(quq? 24 €[1:d]) are tilted versions of the distributions p
and ¢, respectively. Thus the associated Bregman divergence
is related to the Rényi divergence of order l in the manner

22D (0'1e)
ZpL l1-e a .

277)

Br(p,q)

Note that lim, 1 F(p) = Z?:l p;logp; and the resulting
Bregman divergence is equal to relative entropy.

APPENDIX G
PROOFS OF LEMMA 2

Let A= {z: Px(z) > 0}. Then

Qx(x)
D(P Py 4 278)
(Px||Qx) % (Px(x)> (
= Qx(x)
<1 Py (X)< 279)
og (Z; x ( )Px(x)> (
= log (Z Qx(x)> (280)
xEA
<log(1) (281)
=0, (282)

where (279) follows by Jensen’s inequality, (281) follows since

ZQX(I) <1

APPENDIX H
PROOF OF LEMMA 5
Let X = {x1,22,...,2,} and Px(x;) = p;, fori € [1: n].
Consider aj;.) such that a; = a; for some i # j. There exists
a byy.) such that for each i € [1 : k|, we have a; = b; for
some j and b, # a; for some r and any j. Consider

n k %
- 1 [sz (1 - P (U(X] = xz)) )] (283)

Let A and B denote the sets of all multiset permutations of
aq:x) and byy.x), respectively, when ajy.x and byy.x are treated
as multisets. Let ¢o, a5,....ar = P EA PX[M] (r[:%)) and
R = Zrm B PXM.] (r[1:%])- Each term out of the
n terms in (283) will either contain both g, ,, and g,
(say, type 1), contain just gp,,,, alone (say, type 2), or does
not contain both (say, type 3). We now construct a new
strategy PX[M] by incorporating the value of g¢q,,, into
by, making the value of new g¢q,,,, equal to zero. Now
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the values of the terms of type 2 strictly decrease as the
a-loss function is strictly decreasing in its argument while
retaining the values of the terms of types 1 and 3. This leads
to a contradiction since Py is assumed to be an optimal
strategy. So, Py 1:k]( [1:k]) = O Repeating the same argument
as above for ali such af.) s.t. a; = aj, for some i # j
completes the proof.

APPENDIX I
PROOF OF LEMMA 6

‘Only if” Part: Suppose a vector (t1,to,...,t,) is admis-
sible. Then there exists PA : satisfying (142). Using (141),
since t; is probability of a certaln event, we have

0<t; <1, forie[l:n].

‘If” Part: Suppose 0 < t; <1, for i € [1: n]. Summing up
all the equations in (142) over i € [1 : n| and using Y ;" | t; =
k, we get

PX[M] (ap:x)) = 0, for all ajy.) s.t. a; = ay, for some i # j.

With this, (142) can be written in the form of system of linear
equation only in terms of non-negative variables of the form

iy iz, ... = Z P X1 xlou)vzu(z)?' .- 7:17i0('n,))’ (284)
cES,
where 1,12, ..., 1 are all distinct and belong to [1 : n]. Here

the sum is computed over all the permutations o of the set
{1,2,...,n}. The set of all such permutations is denoted by
Sy With this, the system of equations in (142) can be written
in the form AQ = b, Q > 0. Here A is a n X (Z)-matrix,
where the rows are indexed by ¢ € [1 : n] and columns are
indexed by (41,12, ...,1k), where i1,19, ..., 4 are all distinct
and belong to [1 : n]. In particular, in the column indexed by
(1,12, ... ,1x), the entry of A corresponding to zgh row is 1, for
j € [1 : k]. All the remaining entries of the matrix A are zeros.
Q is (Z)-length vector of variables of the form ¢;, i, iy-
b is an n-length vector with b; = t;. We are interested in
the feasibility of the system AQ = b, @ > 0. We use the
Farkas’ lemma [60, Proposition 6.4.3] in linear programming
for checking this. It states that the system AQ b has
a non-negative solution if and only if every y € R™ with
yTA > 0 also implies yTb > 0. For our problem, yTA >0is
equivalent to

k
Zyij > 0, for all distinct 1,2, ...,
j=1

in€[1:n]. (285)

Without loss of generality, let us assume that y; < y;41, 7 €
[1:n — 1]. Then (285) is equivalent to
k
Z y; > 0.
i=1

(286)

Now consider

n
Z Yiti
i=1

1373
- Zyzt +yk+1tk+1 + Z yz 7 (287)
i=k+2
= Zyz - Zyz ti—1) + ykpaters + Z yiti  (288)

1=k-+2
> Zyv + Yk+1 Z(tz 1) + Yrratrsr + Z Yils
=1 =1 i=k+2
(289)
k k n
>yt v D (= 1) F gkpater F Yk ) b
i=1 i=1 i=k+2
(290)
k n
=D yityren | D ti—k (291)
=1 =1
k
=Y i (292)
i=1
>0, (293)

where (289) follows because y; < yr4+1 and t; — 1 < 0, for
i € [1: k], (290) follows because y; > yit1, fori € [k+2 : n],
and (292) follows because Z?:l t; = k, (293) follows from
(286). Now using the Farkas’ lemma, AQ) = b, has a non-
negative solution, i.e., the vector (¢1,t,...,t,) is admissible.
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