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Abstract
This paper analyzes the privacy of traditional Statistical Dis-
closure Control (SDC) systems under a differential privacy
interpretation. SDCs, such as cell suppression and swapping,
promise to safeguard the confidentiality of data and are rou-
tinely adopted in data analyses with profound societal and
economic impacts. Through a formal analysis and empirical
evaluation on demographic data from real household in the
U.S., the paper shows that widely adopted SDC systems not
only induce vastly larger privacy losses than classical differ-
ential privacy mechanisms, but, they may also come at a cost
of larger accuracy and fairness.

1 Introduction
Statistical Disclosure Control (SDC) techniques are used to
protect confidentiality while still enabling data analyses and
dissemination in various fields with profound societal im-
pacts, such as economics, public health, social science, and
data science. These techniques have a long history, with their
use dating back to the 1930 decennial release by the US
Census Bureau, which leveraged traditional SDC techniques
such as suppressing certain tables based on the number of
people or households in a given area and swapping data in
records with similar characteristics (Kelly, Golden, and As-
sad 1992; Dalenius and Reiss 1982).

While SDC techniques have traditionally been important
for protecting against accidental or intentional disclosure,
they lack formal guarantees that quantify the privacy risks
that individuals incur upon data releases. This limitation re-
stricts the ability of participants to assess the impact of these
protections on published data, leading to potential vulner-
abilities and privacy leaks. In contrast, differential privacy
(DP) (Dwork et al. 2006) offers a rigorous definition of pri-
vacy and provides quantifiable privacy guarantees. Its de-
ployments are increasing at a fast rate, with the US Census
Bureau adopting DP for their 2020 release (Abowd et al.
2022), marking a significant shift towards more rigorous
privacy protections. However, this adoption has also cre-
ated controversy among data users, citing errors introduced
by the noisy process adopted to ensure differential privacy,
leading to skepticism and even legal action to block the bu-
reau from using DP (US Court 2021). Despite the debate,
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many data agencies and organizations around the world con-
tinue to rely on traditional SDC techniques to protect their
data confidentiality. While these approaches can be effective
at protecting against accidental or intentional disclosures, it
is unclear what privacy guarantees they provide when com-
pared to differential privacy. On the other hand, while dif-
ferential privacy can provide formal privacy guarantees, it
may come with a cost in terms of accuracy, fairness, and eq-
uity (Kuppam et al. 2019; Tran et al. 2021; Fioretto et al.
2022; Tran, Dinh, and Fioretto 2021; Zhu, Hentenryck, and
Fioretto 2021), a topic of considerable debate recently.

Considering their significant societal and economic con-
sequences, a rigorous comparison of traditional SDC and DP
is essential. Conducting this comparison, however, is chal-
lenged by the absence of a standardized framework for eval-
uating privacy protections: While DP provides quantifiable
privacy guarantees, traditional SDC techniques often lack a
distinct set of privacy metrics, complicating direct compar-
isons of the privacy protection levels they offer.
Contributions. This paper aims to address this challenge:
it proposes a framework to compare traditional SDC to dif-
ferential privacy for the first time and makes four distinct
contributions. (1) It first proposes carefully randomized ver-
sions of two widely adopted SDC: suppression and swap-
ping. The resulting randomized mechanisms are designed to
closely resemble their original counterparts to preserve fi-
delity while allowing us to derive (ϵ, δ)-DP bounds. Given
these bounds, a key takeaway of the paper is the recogni-
tion that SDC mechanisms often fail to provide meaningful
privacy guarantees. (2) The paper then derives bounds for
the bias and variance of the SDC mechanisms, allowing for
a direct comparison with classical DP techniques for which
such bounds exist. (3) Next, we analyze the fairness impact
induced by the considered SDC systems and show that the
fairness violations incurred by the randomized SDC algo-
rithms are close to those of their traditional counterparts. A
second takeaway of the paper is the recognition that tradi-
tional SDC algorithms can induce much higher fairness vio-
lations than those reported by classical DP mechanisms. (4)
Finally, the paper provides an extensive empirical analysis
of the performance of the SDC mechanisms and a compar-
ison with two classical DP algorithms on data release and
classification tasks.

From a broader perspective, the paper demonstrates that,
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Assets

Gender Block Voting Age

Male 1 Yes

Male 2 Yes

Male 2 Yes

Female 2 No

Male 2 Yes

Male 1 No

Female 1 No

Female 1 Yes

Female 2 No

Assets

Gender Block Voting Age Count

Female 1 Yes 1

Female 1 No 1

Female 2 Yes 0

Female 2 No 2

Male 1 Yes 1

Male 1 No 1

Male 2 Yes 3

Male 2 No 0

QI

Dataset Histogram

Assets

Gender Block Voting Age Count

Female 1 Yes 1

Female 1 No 1

Female 2 Yes 1

Female 2 No 1

Male 1 Yes 1

Male 1 No 1

Male 2 Yes 3

Male 2 No 1

Cell Suppression 

(a) (b) (c) (d)

Assets

Gender Block Voting Age Count

Female 1 Yes 0

Female 1 No 2

Female 2 Yes 0

Female 2 No 2

Male 1 Yes 2

Male 1 No 0

Male 2 Yes 3

Male 2 No 0

Histogram on Swapped Data

Figure 1: Illustration of the various traditional SDC mechanisms. Gender is taken as a quasi-identifier (QI). The dotted arrows
represent swapping operations from donor to target records. Counts changed by SDC mechanisms are highlighted in bold.

contrary to popular belief, classical differential privacy
mechanisms may be superior to traditional SDC systems in
important data release and learning tasks in terms of accu-
racy and fairness for the same privacy levels. As a conse-
quence, the results of this study have the potential to impact
the way in which data agencies and organizations approach
disclosure avoidance.

2 Problem Setting
The paper considers datasets D = {ri}i=1n of m records.
Each record is a d-dimensional tuple of attributes associ-
ated with a unique individual from a data universe X . A his-
togram x(D) of datasetD is an n-dimensional vector whose
ith entry, written xi(D), represents the count of the individ-
ual records with the ith combination of attributes inX . When
there is no ambiguity, the datasetD is omitted in the expres-
sion x(D) for simplicity. Additionally, and without loss of
generality, the histogram x is assumed to be sorted in some
increasing order, i.e., xi ≤ xj , for any i < j. Finally, each
entry of the histogramx is assumed to be bounded by a value
B > 0, i.e., x ∈ [B]n.

Consider, for example, the illustration in Figure 1(a);
The dataset D contains records with three attributes: (ge-
ographic) “Block”, “Gender”, and “Voting Age”. The as-
sociated histogram is illustrated in Figure 1(b). In this in-
stance, the attribute “Gender”, when combined with external
information like “Zip code”, can become personally iden-
tifying information and thus is known as a quasi-identifier
(QI) while the remaining attributes are referred to as non-
quasi-identifiers. Throughout the paper, the sets of quasi-
identifiers and non-quasi-identifiers are denoted by Q and
N , respectively. Given a record r and a set S of attributes,
r[S] is the vector of values for attributes S in r.

The goal of the paper is to analyze the privacy, utility,
and fairness properties of traditional statistical disclosure
control systems (reviewed next) on the task of releasing a
privacy-preserving version x̃(D) of the histogram x(D).
The notion of privacy considered in this paper is that of dif-
ferential privacy, which is reviewed in the next section. The
notions of utility and fairness central to the analysis rely on
the concept of (statistical) bias. For any entry i ∈ [n], the

bias associated with a mechanismM is

B(M)i = E [M(D)i]− xi(D) ,

where the expectation is over the randomness of the mecha-
nism. Fairness is defined as the maximal difference in biases
across the histogram entries.
Definition 1 (α-fairness (Zhu, Fioretto, and Van Hentenryck
2022)). A mechanismM is said to be α-fair if the maximum
difference among the biases is bounded by α, i.e.,

∥B (M)∥! = max
i∈[n]

B (M)i − min
i∈[n]

B (M)i ≤ α,

where B (M)=[B (M)1 . . . B (M)n].

3 SDC for Private Data Release
This section provides an overview of Differential Privacy
and the prevalent SDC methods utilized by data agencies
to safeguard sensitive information within datasets.
! Differential Privacy (DP) (Dwork et al. 2006) is a pri-
vacy notion which quantifies and bounds the privacy loss
of an individual participation to a computation. Changing a
record from a dataset D, resulting in a new dataset D′, de-
fines the notion of adjacency, denoted D ∼ D′.
Definition 2. A mechanism M :D→R with domain D and
rangeR is (ϵ, δ)-differentially private, if, for any two inputs
D ∼ D′∈D, and any subset of output responses R ⊆ R:

Pr[M(D) ∈ R] ≤ eϵ Pr[M(D′) ∈ R] + δ.

Parameter ϵ > 0 describes the algorithm’s privacy loss
while parameter δ ∈ [0, 1) captures the probability of
failure of the algorithm to satisfy ϵ-DP. In particular, the
Laplace mechanism for histogram data release, defined by
MLap(x) = x + Lap(2/ϵ), where Lap(η) is the Laplace
distribution centered at 0 and with scaling factor η, sat-
isfies (ϵ, 0)-DP. Additionally, the discrete Gaussian mech-
anism (Canonne, Kamath, and Steinke 2020), defined by
MGaus(x) = x+NZ(0, 4/ϵ2),whereNZ(0,σ) is the discrete
Gaussian distribution with 0mean and standard deviation σ,
satisfies ( 12ϵ

2 + ϵ
√

2 log(1/δ), δ)-DP.
We next discuss two predominant SDC systems which, in

contrast to differential privacy, do not provide formal bounds
on privacy leakage.
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! Cell suppression (Kelly, Golden, and Assad 1992), a
technique frequently employed by statistical agencies (e.g.,
(Tatauranga Aotearoa 2020)), aims at concealing the low-
frequency counts in histograms before data dissemination.
Definition 3. Given a histogram x and a threshold value
k > 0, cell suppression returns a private histogram x̃ with
entries x̃i = xi, for all xi ≥ k, and ⌊k/2⌋ otherwise.
Figure 1(c) illustrates the application of cell suppression
with threshold k = 3 to the histogram of Figure 1(b). The
affected row counts are highlighted in red. Notice, how, for
this choice of k, cell suppression returns a histogram where
a large number of counts are revealed even after suppression,
thus highlighting its privacy risks. A significant limitation of
this approach is that it only protects sensitive attributes with
a low number of records while neglecting others.
! Swapping (Dalenius and Reiss 1982) replaces the values
of sensitive attributes (the quasi-identifiers) in a record with
those of another record. The version considered in this paper
(Christ, Radway, and Bellovin 2022) consists of the follow-
ing basic steps:
1. Select a target record r and then choose a donor record

rs ̸=r from the dataset with minimal discrepancy with r;
2. Replace r quasi-identifiers’ values with those of rs.
In the above, the discrepancy of a record from another
is defined with respect to some metric. Like cell suppres-
sion, swapping aims to produce a privacy-preserving dataset,
which can produce a private histogram x̃. However, contrary
to cell suppression (and DPmechanisms), swapping requires
knowledge of the quasi-identifier attributes of the dataset.
Figure 1(a) and (d) illustrate the application of swapping us-
ing “Gender” as the quasi-identifier attribute. The affected
quasi-identifiers are highlighted in red. While swapping has
been commonly used, for example by the US Census Bu-
reau, to swap individuals with similar characteristics within
close geographies, it is susceptible to reconstruction attacks
(Garfinkel, Abowd, and Martindale 2019).

4 SDC Analysis Roadmap
This section outlines the methods used in the paper. Sec-
tion 5 presents DP analogs of cell suppression and swap-
ping. Our objective is to illustrate that these DP equivalents
retain the primary attributes of the original methods while
offering a comprehensive analysis of their privacy and error
rates under a unified privacy framework. Importantly, these
DP analogs are designed to closely resemble their original
SDC counterparts, even if it means not necessarily achiev-
ing the best possible δ bounds for a fixed ϵ. Indeed, a key
takeaway of this paper is to demonstrate that existing SDC
mechanisms fail to provide robust privacy guarantees.

Note also that classical DP algorithms (e.g., Laplace
mechanism) and cell suppression, make no assumptions
about data attributes. In contrast, swapping relies on the use
of quasi-identifiers. Finally, we emphasize that while the DP
SDC mechanisms share many characteristics with their tra-
ditional SDC counterparts, they should not be considered as
“noisy” versions of them. As a result, the presented results
may not necessarily show a decrease in error as the privacy

budget increases. In fact, they may even be more precise than
the traditional mechanisms for some privacy budgets.

Next, we present the DP versions of the SDC algorithms
and their privacy analyses. These analyses specify the value
of the δ parameter for a given value of ϵ. Section 6 ana-
lyzes the fairness results. Finally, Section 7 presents an ex-
perimental evaluation on an extract of the 2019 American
Community Survey (ACS) data (NIST 2021).

5 Privacy and Errors Analysis
This section presents the first main contribution of the paper.
The approach involves introducing minimal modifications to
the SDC presented earlier to derive their ϵ and δ parameters
while maintaining their inherent characteristics as closely as
possible. The section starts with a technical lemma that spec-
ifies a sufficient condition for (ϵ, δ)-DP, providing a crucial
tool to derive the privacy guarantees of the randomized ver-
sions of the SDC discussed next.
Lemma 1. Let D ∼ D′ be adjacent datasets, and let S :={
o

∣∣∣∣
Pr (M(D) = o)

Pr (M(D′) = o)
≤ exp(ϵ)

}
and S" be its comple-

ment set. If Pr
(
M(D) ∈ S"

)
≤ δ, thenM is (ϵ, δ)-DP.

Differentially Private Cell Suppression
While cell suppression protects the privacy of minorities in
the dataset, it does so deterministically and it neglects the
privacy protection of the majority, thus, it does not satisfy
the requirements of differential privacy. Indeed, the deter-
ministic nature of this mechanism prevents it from generat-
ing different outputs for two neighboring datasets. Finding ϵ
and δ values for cell suppression requires the introduction of
a small amount of randomization. This randomized version,
referred to as DP cell suppression, and denoted by MCS,
releases a private count for every i ∈ [n] as follows:

MCS(D)i = x̂i =

{
k/2 if xi + ηi < k
xi otherwise

, (1)

where ηi ∼ Lap (2/ϵ) is an additive noise variable drawn
from a 0-centered Laplace distribution with factor 2/ϵ and k
is the cell suppression threshold. DP-cell suppression is de-
signed to avoid a significant alteration in the behavior of its
deterministic counterparts while simultaneously, enabling us
to quantify the worst-case privacy loss.

Figure 2 (left) illustrates the empirical errors of MCS for
several threshold values k (x-axis) and ϵ parameters. The
errors are given for the ACS Massachusetts dataset (NIST
2021): they report the ℓ1 distances ∥x̃ − x∥1 between the
histograms of the cell suppression and its DP counterpart.
Notice how close the errors incurred byMCS are to the orig-
inal mechanism. This is important as it enables a meaningful
comparison ofMCS and other DP mechanisms.

Privacy and Error Analysis. The next theorem reports
the privacy guarantee provided byMCS.
Theorem 1. Given ϵ > 0 and a threshold k < B, mecha-
nism MCS is (ϵ, δ)-DP with δ = 1 − 1

4 exp (−ϵ(B − k)) ,
where B is a bound on the histogram entries.
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Figure 2: MA ACS dataset: Errors ∥x̃ − x∥1 (left) and fairness values α (right) for cell suppression and swapping (right) in
comparison to their differentially private counterparts (average of 200 repetitions). Note how the DP version resembles the
original counterpart of the algorithms for the metrics of interest.

Notice that the δ-values can be large: the randomized mecha-
nisms introduced in this paper do not aim to establish strong
DP versions of their original counterparts. Their goal is to
derive DP privacy bounds while closely resembling the be-
havior of their original counterparts, as shown in Figure 2.

Having examined privacy, we next show how close the
histograms x̃ returned byMCS are to the original histogram
x, focusing on the statistical bias which, for each entry i ∈
[n], is expressed as

B (MCS)i = E [MCS(D)i]− xi

= (k/2 − xi) · Pr (xi + ηi < k) .

Observe that the error merely takes place when the noisy
count is below the threshold k and is quantified as the differ-
ence between half of the threshold and the true count. There-
fore, the following theorem relates the errors associated with
MCS with the probabilities of noisy counts being below the
threshold, and the differences between half of the threshold
and the counts of the original histogram.
Theorem 2. The statistical bias of DP cell suppression
MCS is bounded as follows,

∥B (MCS)∥1 ≤ ∥k/2 · 1n − x∥2 · ∥p∥2 ,

where p is a shorthand for the vector [Pr (xi + ηi < k)]ni=1.

Differentially Private Swapping
Despite the randomized nature of swapping, the choice of
swapping partners for a record is deterministic, and thus the
swapping mechanism fails to meet the requirements of dif-
ferential privacy. To illustrate its failure, let us take a look
at an instance of two neighboring datasets D and D′ with
differing last records r and r′, without loss of generality.

For these datasets to be the same after swapping, the QIs
of r and r′ need to be the same after swapping. However, it
may be the case that the donor records (chosen as being the
closest records to r and r′ without the same QIs) in their re-
spective datasets may not be the same and thus r and r′ may
receive different sets of QIs, leading to different outputs.

To obtain a DP counterpart to swapping, record swapping
can be performed by choosing donor records with some ran-
domness. In particular, we swap a record to its donor with in-
verse proportional probability to their discrepancy. Differen-
tially private selection mechanisms such as the exponential

mechanism (McSherry and Talwar 2007) and permute-and-
flip (McKenna and Sheldon 2020) provide ways to select the
best object with respect to a score function (here, discrep-
ancy scores) in a differentially private manner. This paper
adopts a permute-and-flip strategy to choose donor records
in the DP analog of swapping.

The mechanism, referred to as DP swapping and denoted
by MSW, works as follows: Given ϵ > 0 and γ ∈ [0, 1],
MSW chooses a record ri and outputs its swapped version
r̃i, where r̃i[N ] = ri[N ] and

r̃i[Q] =

{
ri[Q] w.p. γ
rdi [Q] w.p. 1− γ

(2)

where rdi is another record of the dataset chosen using the
permute-and-flip mechanism using record distance/discrep-
ancy scores as the scores. Notice that MSW only modifies
quasi-identifiers and produces a private dataset D̃, similar to
what is done by the original swapping algorithm.

Figure 2 (center left) compares the ℓ1 distances ∥x̃−x∥1
between the histograms generated by MSW and its tradi-
tional counterpart for various amounts of rows swapped (in
%) and parameters ϵ. Once again, observe how close the er-
rors of the two mechanisms are; the lines for swapping and
its DP variant are very close, and while almost indistinguish-
able, with increasing ϵ, DP swapping’s errors approach those
of swapping (refer to table 1). As with cell suppression, the
goal here is to be able to modify the original swapping algo-
rithm so that its performance is comparable to its determin-
istic counterpart while allowing us to derive DP bounds.

Privacy and Error analysis. With the definition of MSW
in hand, the privacy offered by (DP) swapping can now be
quantified in terms of differential privacy. The privacy anal-
ysis ofMSW is reported in the following theorem.
Theorem 3. For any ϵ > 0, DP swapping is (ϵ, δ)-DP with

δ = 1− 2γ(1− γ)L− 3(1− γ)2L2,

where L " exp(−ϵ/2)
m , γ defined as in Equation (2), and m

is the number of records in the dataset D.
Notice that δ is controlled by the privacy budget ϵ and the
size of the dataset, but once again we stress that such values
can be large, which is indicative of the poor privacy protec-
tion offered by SDC methods.
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Next, we discuss bounds on how close histograms on the
deidentified data returned by the swapping and its DP coun-
terpart are. These bounds serve as useful worst-case quan-
tifications of the utility we may expect from this mechanism
and are useful to provide fairness guarantees, discussed be-
low.
Proposition 1. The bias of each element i ∈ [n] of the his-
togram formed using DP swapped data is bounded as

(1− γ)(L−m2) ≤ B(M)i ≤ m2(1− γ).

Theorem 4. The statistical bias of the DP swapping mech-
anismMSW can be bounded as follows,

0 ≤ ∥B (MSW)∥1 ≤ αSW,

where αSW " (1− γ)m3.

6 Fairness analysis
The second main contribution of this paper is an analysis
of the fairness of various SDC algorithms. Fairness (Defini-
tion 1) is expressed as the maximum difference in biases in
the privacy-preserving histograms and the next result quanti-
fies the unfairness of the DP cell suppression and swapping,
along with the Laplace mechanism.
Theorem 5 (α-fairness for MCS). DP cell suppression is
αCS-fair with αCS given by

(xn − x1) p1 +max {|k/2 − x1| , |k/2 − xn|} (p1 − pn),

where p1 and pn are the first and last entries of p defined in
Theorem 2 respectively.
Theorem 6 (α-fairness forMSW). DP swapping is αSW-fair
with αSW given by αSW as defined in Theorem 4.
Theorem 7 (α-fairness forMLap). The Laplace mechanism
MLap is αLap-fair with αLap given by

exp (−ϵx1/2)

2
∥x∥! =

exp (−ϵx1/2)

2
(xn − x1) .

Figure 2 (right) illustrates the fairness violations, repre-
sented by the value α, for cell suppression (third subplot)
and swapping (fourth subplot), as well as their DP counter-
parts, for various privacy parameters ϵ and values of k (for
cell suppression) or percentage of rows swapped (for swap-
ping). It can be observed that the fairness violations of the
differentially private mechanisms are comparable (or better)
to those of their traditional counterparts. This is particularly
noteworthy as the privacy parameter ϵ increases.

The following theorem is the third key result of this pa-
per. It establishes a relation between the Laplace mechanism
and DP cell suppression and swapping with respect to un-
fairness.
Theorem 8. Suppose that the minimum count of the original
histogram x(D) is between 2 and the threshold k, i.e., 2 ≤
x1 ≤ k and that γ ≤ 1− (B/2m3).

Then, the fairness error associated with the Laplace
mechanism is not greater than that of the DP cell suppres-
sion or DP swapping mechanism, namely,

αLap ≤ αCS and αLap ≤ αSW.

ϵ M δ Error Fairness Variance

0.5

Lap 0 763.77 3.65 39.50
DGauss 0.36∗ 980.81 4.94 45.06
DP-Sup 0.99∗ 745.39 3.47 6.37
DP-Swap 0.99∗ 3462.16 1774.72 64920.40

1

Lap 0 342.88 1.84 9.97
DGauss 0.13 659.21 3.06 22.94
DP-Sup 0.99∗ 676.37 3.38 2.94
DP-Swap 0.99∗ 3652.08 1945.24 113.87

2

Lap 0 154.78 0.90 2.06
DGauss 0.01 436.92 2.20 12.03
DP-Sup 0.99∗ 510.18 3.49 2.22
DP-Swap 0.99∗ 3653.04 1946.84 112.22

4

Lap 0 67.34 0.46 0.68
DGauss 3E-4 290.71 1.49 5.74
DP-Sup 0.99∗ 336.54 3.83 1.37
DP-Swap 0.99∗ 3658.16 1949.00 117.29

Table 1: MA dataset: Comparison of DP and SDC mech-
anisms on privacy violations δ, errors ∥B (M) ∥1, fairness
w.r.t. bias (∥B (M)∥!), and ℓ∞ norm of the empirical vari-
ance (∥V (M) ∥∞).

Note that the upper bound on γ should be very close to 1 for
real datasets as B is upper bounded by (and usually much
smaller than)m.

The paper next presents empirical evidence that, under
common regimes, the Laplace mechanism may have a sig-
nificant advantage over the DP SDC mechanisms as well.

7 Experimental Evaluation
This section assesses the performance of the DP variants of
cell suppression and swapping and compares them with two
key DP mechanisms, the Laplace and the Discrete Gaus-
sian Mechanisms, reviewed in Section 3. The experiments
use the 2019 Diverse Community Data Excerpts datasets
for Massachusetts, Texas, and National PUMAs (Task et al.
2022). All the experiments report averages of 200 repeti-
tions. When not otherwise stated, we use k = 6 as the
threshold for cell suppression, a swap rate of 25% for swap-
ping, and a feature set comprising of PUMA, race, sex,
house ownership status, and whether an individual earns
≥ $50, 000 per year for histograms. This section focuses
on evaluating the mechanisms in three settings: data release,
classification, and subgroup distribution. An empirical pri-
vacy assessment is also provided.

Data Release
The first task compares datasets reconstructed from his-
tograms generated by the various DP mechanisms studied.
Table 1 assesses the performance of the DP variants of the
traditional SDC mechanisms and the Laplace and discrete
Gaussian mechanisms in terms of errors and fairness viola-
tions. When negative counts are produced, a simple post-
processing projection into the non-negative orthant is ap-
plied. In addition, while performing suppression the cell
suppression algorithm and its DP variants, zero counts are
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Figure 3: National ACS Dataset: Heatplots for two-way marginals on income decile and education for the Laplace mechanism,
Discrete Gaussian mechanism, DP Cell Suppression, and DP Swapping (left to right) comparing White vs Black Men sub-
groups.

left untouched to reflect what is done in practice (Templ,
Kowarik, and Meindl 2015). These results are particularly
significant: contrary to commonly held beliefs, in these
datasets, classical DP algorithms not only provide strong pri-
vacy guarantees (see the unreasonably large δ values, high-
lighted with ∗, for other mechanisms), but also produce his-
tograms with better accuracy, fairness, and variance, in most
cases.

While the above relies on worst-case analysis, we also
report an empirical privacy assessment conducted on the
datasets generated by the various privacy-preserving meth-
ods analyzed in a later subsection.

Classification
The next task compares the performance of the various SDC
mechanisms studied in this paper in a classification task.
Emulating classical studies performed by data agencies, this
setting employs the private datasets obtained through a data-
release query in order to train a logistic regression classifier.
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Figure 4: MA dataset: Logistic Regression on datasets gen-
erated by various privacy-preserving mechanisms.

The task is to predict whether an individual earns at least
$50,000 per year, given their race, age (discretized into 5
bins of equal size), sex, and house ownership status, and the
results in Figure 4 are presented in terms of accuracy on the
original, non-private dataset.

Observe how the Laplace and discrete Gaussian mecha-
nisms lead to classifiers with much higher accuracies than
classifiers trained over data produced by other traditional
SDC mechanisms in all instances but for ϵ = 0.5. Also, no-
tice that the accuracies for the DP variants of the SDCmech-
anisms are largely dependent on the values of the parameters
(k and swap rate) than on ϵ. Notably, the classification ac-
curacy of Laplace and discrete Gaussian is much closer to
that of the baseline method (trained on non-private datasets)
than any other method, for these parameter choices. Again,
this is significant: despite their simplicity, these tasks are the
basis for numerous statistical analyses performed routinely
by data agencies and organizations.

Subgroup Distributions
The next task describes the errors attained by a basic statis-
tical analysis: a two-way-marginal query and simple linear
regression. The attributes adopted are income decile—the
person’s total income rank, with respect to their state, dis-
cretized into 10% bins—and educational status—which de-
scribes twelve educational attainment levels from no school-
ing to doctorate degree. A two-way marginal query reports
the frequencies of individuals distributed across the com-
bined categories of the two target variables. This is com-
puted on both the original (target) data and the deidenti-
fied data, and the resulting errors are visually represented
through a heatplot: redder hues indicate a deficit of individ-
uals, while bluer hues signal a surplus. Linear regression is
performed to fit a line summarizing the relationship between
education and income—the red line indicates the true rela-
tionship, the green line is fit to the deidentified data.
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Figure 3 presents the results for the National ACS dataset,
focusing on a subpopulation of white men (top) and black
men (bottom). The results were obtained using ϵ = 2,
with a swap rate of 25% for DP swapping, and a thresh-
old k = 10 for DP cell suppression. Two main observa-
tions can be made: (1) The plots reveal relatively small er-
rors for the Laplace, Discrete Gaussian, and DP cell sup-
pression mechanisms. In contrast, DP Swapping exhibits
significantly higher errors in its heatplot for black males
for the same value of ϵ. This difference can be attributed
to how DP mechanisms like Laplace and Discrete Gaus-
sian add precisely calibrated noise to bin counts, while DP
cell suppression only suppresses counts below a certain
threshold, leaving the rest intact. Swapping, by exchanging
quasi-identifiers (in this case, race) among rows, can cause
more pronounced changes. Of all the methods analyzed, the
Laplace mechanism induces the least amount of errors, con-
sistent with the results observed in the previous section. (2)
All methods display disparate impacts when comparing the
errors induced on the white group versus those on the black
group. Notably, the Laplace mechanism shows the least im-
pact in such error disparity, while the Discrete Gaussian
mechanism and DP cell suppression behave similarly.

It is worth noting that while DP algorithms offer distinct
advantages in terms of worst-case privacy guarantees com-
pared to cell suppression and swapping, they tend to perform
worse than the DP versions of traditional SDC mechanisms
as the sparsity of the analyzed subpopulation increases. This
observation underscores the natural tradeoff between accu-
racy, privacy, and data complexity.

Empirical Privacy Assessment
The theoretical results presented in the paper and the em-
pirical assessment reported in Table 1 focus on worst-case
privacy leakage. Next, the paper considers an empirical as-
sessment that offers a nuanced understanding of the poten-
tial risk of the various de-identification processes. Since the
objective of the paper is to analyze the privacy of different
mechanisms in data release tasks, we utilize a unique exact
match (UEM) metric (NIST 2021) as an empirical measure-
ment of privacy. This method counts the number of unique
rows or singleton bins in the intersection of the original data
and its deidentified counterpart. These are records that are
uniquely identifiable in the target data, and are also easily
reidentifiable as they appear unmodified in the de-identified
data. Privacy risks are subsequently quantified as the pro-
portion of unique individuals whose data was presumably
deidentified but disclosed with their sensitive attributes un-
altered. Thus, a higher score indicates a reduced privacy risk.

Figure 5 shows the UEM values (as the percentage of
identified unique individuals over the set of all individuals)
for the Massachusetts and Texas states of the ACS datasets
obtained after using Laplace, Discrete Gaussian, and DP
Swapping mechanisms for various ϵ values. DP cell sup-
pression is excluded as, by removing individuals that fall
below the threshold, it attains a (near) perfect score; how-
ever, such observation is not a cell suppression property but
an artifact of the UEMmetric, which fails to account for that
data deidentified using cell suppression leaves many rows
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Figure 5: MA (left) and TX (right): Empirical privacy as-
sessment with the Unique Exact Match metric.

untouched, posing reidentification risks. This phenomenon
occurs because all singleton bins are imputed with the value
⌊k/2⌋ after being suppressed, unless their noised counts hap-
pen to exceed k in the case of DP cell suppression.

Not surprisingly, the results in Figure 5 reveal that DP data
release methods become more susceptible to UEM as ϵ in-
creases, indicating a greater risk of reidentification for indi-
viduals. However, notice that while DP swapping, by virtue
of its closeness to swapping, is more robust to increase in
ϵ, it also has a significantly higher risk of reidentification
vis-à-vis DP methods, even for higher values of ϵ, for the
swapping rate adopted.

Finally, we notice that the Discrete Gaussian mechanism
appears more resilient to this privacy risk as ϵ increases. This
behavior aligns with the observation made in the previous
section, where this mechanism was shown to induce larger
errors than the Laplace mechanism. As a result, it is more
likely to produce fewer unique exact match values, reflecting
a more robust stance against reidentification risks.

8 Conclusion
This paper presented a framework for comparing tradi-
tional statistical disclosure control (SDC) to differential
privacy. It proposed carefully randomized versions of two
widely adopted traditional SDC methods, i.e., suppression
and swapping, and derived (ϵ, δ)-DP bounds for these mech-
anisms. The paper also analyzed these DP algorithms em-
pirically and showed that they are close to their traditional
counterparts both in terms of accuracy and fairness. The DP
SDC mechanisms were then compared experimentally with
traditional DP mechanisms (i.e., the Laplace or the discrete
Gaussian mechanisms) on widely adopted data release and
classification tasks. Importantly, and contrary to popular be-
lief, the experimental evaluation showed that classical DP
mechanisms not only achieve much higher privacy protec-
tions than SDC methods but they may also be superior in
terms of accuracy and fairness for the same privacy levels.

We hope this work will stimulate additional research in
the important direction of rigorously comparing distinct
privacy-preserving techniques. Besides additional empirical
assessments on different data formats, additional exploration
venues may consider more elaborate settings where SDC
and DP mechanisms may compose multiple operations (e.g.,
they may operate on different data universes and adopt post-
processing steps), which is often the case in practice.
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