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ABSTRACT
Learning to Rank (LTR) is one of the most widely used machine
learning applications. It is a key component in platforms with pro-
found societal impacts, including job search, healthcare information
retrieval, and social media content feeds. Conventional LTR models
have been shown to produce biases results, stimulating a discourse
on how to address the disparities introduced by ranking systems
that solely prioritize user relevance. However, while several mod-
els of fair learning to rank have been proposed, they su�er from
de�ciencies either in accuracy or e�ciency, thus limiting their ap-
plicability to real-world ranking platforms. This paper shows how
e�ciently-solvable fair ranking models, based on the optimization
of Ordered Weighted Average (OWA) functions, can be integrated
into the training loop of an LTRmodel to achieve favorable balances
between fairness, user utility, and runtime e�ciency. In particu-
lar, this paper is the �rst to show how to backpropagate through
constrained optimizations of OWA objectives, enabling their use in
integrated prediction and decision models.
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1 INTRODUCTION
Ranking models have become a pervasive aspect of everyday life,
shaping how we access information online. They serve as the pri-
mary tools through which we discover products, consume content,
and connect with others. These systems rank a diverse array of
items, ranging from job candidates to research papers and beyond.
As machine learning-based models, they are primarily trained to
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provide maximum utility to users, by delivering the most relevant
results for their search queries. In today’s information-driven econ-
omy, an item’s position in the ranking signi�cantly impacts its
visibility, selection, and ultimately, its economic success.

This in�uence has drawn attention to the disparate impacts of
ranking systems on underrepresented groups, particularly in data-
driven systems where item relevance is determined by implicit user
feedback like clicks and dwell times. Such systems are prone to
disproportionate exposure and self-reinforcing feedback loops that
foster winner-take-all dynamics [24, 27]. For instance, in job search
systems, male candidates may receive overwhelmingly more expo-
sure, even if female candidates are only marginally less relevant.
Research by [9] demonstrates that minor di�erences in relevance
can result in signi�cant exposure disparities for minority group
candidates in job candidate ranking systems [31]. Controlling these
impacts is essential to avoid reinforcing biases, maintain market
health, and implement anti-discrimination measures [8, 23].

Fairness-aware ranking models address these concerns by mini-
mizing disparate exposure between groups while maximizing rel-
evance. However, designing such models is challenging, as they
require complex constraints to be integrated into machine learn-
ing outputs. For example, the popular listwise learning to rank
method, through modi�cations to its loss function, is only capa-
ble of modeling fairness of exposure in the top ranking position
[31]. An alternative paradigm, �rst investigated by [15], prioritizes
the precise satisfaction of fairness constraints by integrating fair
ranking optimization models end-to-end with predictive models of
user relevance. This enables precise control over the trade-o� be-
tween fairness and utility, but its reliance on hard constraints comes
with increased computational costs and limitations in dealing with
multi-group fairness criteria. By integrating e�cient optimization
of OWA functions with relevance score prediction, this paper shows
how the e�ciency and modeling �exibility of prior end-to-end op-
timization and learning solutions can be greatly improved upon,
while retaining their favorable fairness properties.

Contributions. To address these limitations, this paper makes
the following novel contributions: (1) It shows how to adopt an
alternative approach based on Ordered Weighted Averages (OWA)
to design e�cient policy optimization modules for the fair learning
to rank setting. (2) For the �rst time, it shows how to backpropa-
gate gradients through the highly discontinuous optimization of
OWA functions, enabling its use in end-to-end learning. (3) The re-
sulting end-to-end optimization and learning scheme, called Smart
OWA Optimization for Fair Learning to Rank (SOFaiR), is com-
pared with contemporary fair LTR methods, demonstrating not
only substantial advantages in fairness over previous fair LTR, but
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Table 1: Common symbols adopted throughout the paper.

Symbol Semantic

# Size of the training dataset
= Number of items to be ranked
< Number of protected groups
x@ = (G8@)

=
8=1 List of feature embeddings for items to rank, given query @

a@ = (08@)
=
8=1 Protected groups associated with items G8@

~@ = (~8@)
=
8=1 Relevance scores for each of = items given query @

⌧ The set of all protected group indicators
M\ End-to-end trainable fair ranking model with weights \

Symbol Semantic

f A permutation of the list [=] for some =
P A permutation matrix corresponding to some f
P= The set of all permutations of [=]
g The sorting operator
⇧ A ranking policy, or its representative bistochastic matrix
u (⇧,~) Expected utility of policy ⇧ under relevance scores ~
B Birkho� Polytope, the convex set of all ranking policies
E(8,f) Exposure of item 8

also advantages in e�ciency and modeling �exibility over the end-
to-end fair LTR scheme of [15]. A schematic illustration of the
proposed scheme is depicted in Figure 1.

These contributions are signi�cant: They demonstrate that by
incorporating modern fair ranking optimization techniques, the
integration of post-processing optimization models in end-to-end
LTR training can be a viable and scalable paradigm to achieve highly
accurate learning to rank system that also provides strong fairness
properties.

2 PRELIMINARIES
Throughout the paper, vectors and matrices are denoted in bold
font. The inner product of two vectors a and b is written a) b, while
the outer product is a b) . For a matrixM, the vector

�!
M is formed

by concatenation of its rows. A hatted vector â is the prediction of
a machine learning model, and a starred vector a¢ is the optimal
solution to some optimization problem. The list of integers {1 . . .=}
is written [=]. When a 2 R= and f is a permutation of [=], af is
the corresponding permuted vector. The vectors of all ones and
zeros are denoted 1 and 0, respectively. Commonly used symbols
throughout the paper are organized in Table 1 for reference.

2.1 Problem Setting and Goals
Given a user query, the goal is to predict a ranking over = items, in
order of most to least relevant, with respect to the query. Relevance
of each item to be ranked, with respect to a search query @, is gener-
ally measured by a vector of relevance scores~@ 2 R= , oftenmodeled
on the basis of empirical observations such as historical click rates
[26]. This setting considers a ground-truth dataset (x@, a@,~@)#@=1,
where x@ 2 X is a list of feature vectors (G8@)=8=1, one for each of =
items to be ranked in response to query @. a@ = (08@)

=
8=1 is a vector

that indicates which (protected) group 6 within domain⌧ to which
each item belongs.~@ = (~8@)

=
8=1 2 Y is a vector of relevance scores,

for each item with respect to query @. For example, on an image
web-search context as depicted in Figure 1, a query denotes the
search keywords, e.g., “CEO”, the vectors G8@ in x@ are feature em-
beddings for the images relative to @, each associated with a gender
(attribute 08@), and the associated relevance scores ~8@ describe the
relevance of item 8 to query @.
Rankings can be viewed as permutations which rearrange the order
of a prede�ned item list. Intermediate between the user input and
�nal ranking is often a ranking policy which produces discrete
rankings (randomly or deterministically).
Learning to Rank. In learning to rank (LTR), a ML model M\
is often adopted to estimate relevance scores ŷ@ of items given
their features x@ relative to user query @ (see �gure 1). From this a
ranking policy Π is constructed. Its expected utility D is

D (Π, yq) = Ef⇠Π [∆(f, yq)], (1)

where Π is viewed as a distribution from which rankings f are
sampled randomly, and their utility � is a measure of the overall rel-
evance of a given ranking f , with respect to given relevance scores
y@ . Although its framework is applicable to any linear utility met-
ric � for rankings, this paper uses the widely adopted Discounted
Cumulative Gain (DCG):

�(f, yq) = DCG(f, yq) =
n’
i=1

yiqbfi = yTqP
(f )b, (2)

where P(f ) is the corresponding permutation matrix, ~@ are the
true relevance scores, and b is a position bias vector which models
the probability that each position is viewed by a user, de�ned with
elements 1 9 = 1/log2 (1+9 ), for 9 2 [=].
Ranking policy representation. The methods of this paper adopt
a particular representation of the ranking policy, as bistochastic
matrix Π 2 R=⇥= , where Π9: indicates the probability that item 9
takes position : in the ranking. The set of feasible ranking policies
is expressed as Π 2 B where B is the Birkho� Polytope:

B = {Π s.t. 1)⇧ = 1, ⇧ 1 = 1, 0  ⇧  1}. (3)

Its conditions on a matrix Π require, in the order of (3), that each
column of Π sums to one, each row of Π sum to one, and each
element of Π lie between 0 and 1. Each of these conditions is a
linear constraint on the variables Π.

Linearity of the DCG function (1) w.r.t. P allows it to commute
with the expectation, leading to the practical closed form D (Π, y) =
y>Π b for D as a linear function of Π:

D (Π, y) = Ef⇠Π∆(f, y) = Ef⇠Π
h
y>P(f ) b

i
= y>

⇣
Ef⇠Π P(f )

⌘
b = y>Π b. (4)

This is an important observation that enables the constrained
optimization of utility functions on the policy ⇧ in end-to-end
di�erentiable pipelines, as discussed later in the paper.

2.2 Fairness of Exposure
Item exposure is commonly adopted in ranking systems, where
items in higher ranking positions receive more exposure, and it is
with respect to this metric that fairness is concerned. This paper
aims at learning ranking policies that satisfy group fairness of
exposure, while maintaining high relevance to user queries. The
exposure E(8,f) of item 8 within some ranking f is a function of
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Figure 1: The di�erentiable optimization module proposed in SOFaiR. Its forward pass is calculated by an e�cient Frank-Wolfe
method, and its backward pass computes the SPO+ subgradient of the OWA problem’s regret due to prediction error.

only its position, with higher positions receiving more exposure
than lower ones. Throughout the paper, the common modeling
choice E(8,f) = 1f8 .

Notions of item exposure in rankings can also be extended to
group exposure in ranking policies. The exposure of group 6 in
rankingf is measured by themean exposure inf of items belonging
to 6. The exposure of group 6 in ranking policy Π is the mean value
of its exposure over all rankings sampled from the policy:

E6 (Π) = E f⇠Π
8⇠[=]

h
E (8,f) |08@ = 6

i
, (5)

and we let E⌧ (Π) be the vector of values (5) for each6 in⌧ . Derived
similarly to (4), linearity of E leads to a closed form for (5) when
Π is represented by a bistochastic matrix, where 16 indicates 1 for
items in 6 and 0 elsewhere [22]:

E6 (Π) =
1
|6|

1)6Π b . (6)

Imposing fairness in LTR. It is well-known that individual rank-
ings f , as discrete structures, cannot exactly satisfy most notions
of individual or group fairness [30]. Therefore a common strategy
in fair ranking optimization is to view ranking policies as random
distributions of rankings, upon which a feasible notion of fairness
can be imposed in expectation [7, 22, 30]. For ranking policy Π and
query @, fairness of exposure requires that every group indicated by
6 2 ⌧ receives equal exposure on average over rankings produced
by the policy. This condition can be expressed by requiring that
the average exposure among items of each group is equal to the
average exposure among all items:

E6 (Π) = EU (Π), 86 2 ⌧, (7)

where U is the group containing all items. Enforcing the condition
(7) on each predicted policyΠ is the mechanism by which protected
groups are ensured equal exposure in SOFaiR. In the image search
example, it corresponds to male and female candidates receiving
equal exposure on average over rankings sampled from Π. The
violation of fairness with respect to group 6 is measured by the
absolute gap in this condition:

a6 (Π) =
�� E6 (Π) � EU (Π)

�� . (8)

Note that group fairness encompasses individual item fairness is
a special case, where each item belongs to a distinct group. While
the fairness and utility metrics described above are the ones used
throughout the paper, the methodology of the paper is compatible
with any alternative metrics D and E which are linear functions of
the policy Π. This is because the methodology of Sections 5 and 6
depend on linearity of (4) and (6).

3 LIMITATIONS OF FAIR LTR METHODS
Current Fair LTR models present a combination of the following
limitations: (A) inability to ensure fairness in each of its generated
policies, (B) inability or ine�ectiveness to handle multiple protected
groups, and (C) ine�ciency at training and inference time. This
section reviews current fair LTR methods in light of these limiting
factors.
Regardless of how the policy is represented, fair learning to rank
methods typically train a modelM\ to �nd parameters \⇤ that max-
imize its empirical utility, along with possibly a weighted penalty
term � which promotes fairness:

\⇤ = argmax
)

1
#

#’
@=1

D (M) (x@),~@) + _ · � (M) (x@)) (9)

For example, the fair LTR method of [31] (called DELTR) is based on
listwise learning to rank [4], and thus uses the modelM\ to predict
activation scores per each individual item, over which a softmax
layer de�nes the probabilities of each item taking the top ranking
position. Thus, [31] can only use � to encourage group fairness of
exposure in the top position, leading to poor overall satisfaction
of the fairness condition (7) (limitation A) as illustrated in Figure
2. To impose fairness over all ranking positions, [23] (FULTR) also
uses softmax over the activations of M\ to de�ne probabilities,
which are sampled without replacement to generate rankings using
a policy gradient method. However, this penalty-based method still
does not ensure fairness in each predicted policy, as illustrated
in �gure 2, since the penalty is imposed only on average over all
predicted policies (limitation A). By a similar reasoning, these
methods do not translate naturally to the case of multigroup fair-
ness, where < > 2 (limitation B): Because the penalty � must
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Figure 2: Yahoo-20: Fairness violation at query level.

scalarize the collection of all group fairness violations (8) (by taking
their overall sum), it is possible to reduce � while increasing the
exposure of a single outlier group [15].

Later work [15] shows how to overcome limitation A, by inte-
grating the fair ranking optimization model of [22] together with
prediction of relevance scores ŷ@ = M\ . The modeling of predicted
policies ⇧ as solutions to an optimization problem under fairness
constraints allows for their representation as bistochastic matri-
ces which satisfy the fairness notions (7) exactly. However, this
method su�ers limitation C as it requires to solve a linear pro-
gramming problem at each iteration of training and at inference,
whose number of variables in Π 2 R=⇥= scales quadratically as
O(=2) becoming prohibitively large as the item list grows. Addi-
tionally, at inference time, the policy must be sampled to produce
rankings; this requires a Birho�-Von Neumann (BVM) decompo-
sition of the matrix Π into a convex combination of permutation
matrices, which is also expensive when = is large [22]. Finally, in
the case of multiple groups (< > 2), the fairness constraints can
become infeasible, making this formulation unwieldly (limitation
B). An extended review of related work is provided in Appendix A.

Figure 2 shows the query-level fairness violations due to each
method discussed in this section, where fairness parameters in each
case are increased maximally without substantially compromising
utility. In addition to higher average violations, penalty-based meth-
ods [23, 31] also lead to prevalence of outliers. These three existing
fair LTR methods are used as baselines for comparison in Section 7.
The SOFaiR framework proposed next most resembles [15], as it
combines learning of relevance scores end-to-end with constrained
optimization. At the same time, it aims to improve over [15] by
addressing the three main limitations stated above. By integrating
an alternative optimization component with its predictive model,
SOFaiR can achieve faster runtime, and avoid the BVM decompo-
sition at inference time, while naturally accommodating fairness
over an arbitrary number of groups.

4 SMART OWA OPTIMIZATION FOR FAIR
LEARNING TO RANK (SOFAIR)

This section provides an overview of the proposed SOFaiR frame-
work for learning fair ranking policies that overcomes limitations
A, B, and C. Sections 5 and 6 will then detail the core solution

approaches required to incorporate its proposed fair ranking opti-
mizationmodule into e�cient, end-to-end trainable fair LTRmodels.
As illustrated in �gure 1, SOFaiR’s core concept is to integrate the
learning of relevance scores with a module which optimizes fair
ranking policies in-the-loop. By doing so it achieves a favorable bal-
ance of fairness and utility relative to other in-processing methods.
The key di�erence in its approach relative to [15] is in the design of
its optimization model which leverages Ordered Weighted Average
(OWA) objectives (reviewed next) to enforce fairness of exposure.
By avoiding the imposition of fairness of exposure (see Equation
7) as a set of hard constraints on the optimization as in [15, 22], it
maintains the simple feasible region Π 2 B, over which e�cient
Frank-Wolfe based solution methods can be employed to optimize
its OWA objective function as described in Section 5. In turn, the
particular form of the OWA optimization model in-the-loop necessi-
tates a novel technique for its backpropagation, detailed in Section
6. The OWA aggregation and its fairness properties in optimization
problems are introduced next, followed by its role in the SOFaiR
learning framework.

4.1 Ordered Weighted Averaging Operator
The Ordered Weighted Average (OWA) operator [28] has found ap-
plications in various decision-making �elds [29] as a means of fairly
aggregating multiple objective criteria. Let x 2 R< be a vector of
< distinct criteria, and g : R< ! R< be the sorting map for which
g (x) 2 R< holds the elements of x in increasing order. Then for any
w satisfying {w 2 R< :

Õ
8 F8 = 1,w � 0}, the OWA aggregation

with weight w is de�ned as a linear functional on g (x):

OWAw (x) = w) g (x), (10)

which is convex and piecewise-linear in x [18]. The so-called Gen-
eralized Gini Functions, or Fair OWA, are those for which the OWA
weightsF1 > F2 . . . > F= are decreasing. Fair OWA functions pos-
sess the following three key properties for fairness in optimizing
multiple criteria [18]. (1) Impartiality means that all criteria are
treated equally, in the sense that OWAw (x) = OWAw (xf ) for any
f 2 P< . (2) Equitability is the property that marginal transfers
from a criterion with higher value to one with lower value results
in an increase in aggregated OWA value. That is , when G8 > G 9 + n
and letting xn = x except at positions 8 and 9 where (xn )8 = x8 � n
and (xn ) 9 = x9 +n , it holds thatOWAw (xn ) > OWAw (x). (3)Mono-
tonicity means that OWAw (x) is an increasing function of each
element of x. The monotonicity property implies that solutions
which optimize (10) are Pareto E�cient solutions of the underlying
multiobjective problem, thus that no single criteria can be raised
without reducing another [18]. Taken together, it is known that
maximization of aggregation functions which satisfy these three
properties produces so-called equitably e�cient solutions, which
possess the main intuitive properties needed for a solution to be
deemed "fair"; see [13] for a formal de�nition. As shown next, the
SOFaiR framework ensures group fairness by leveraging a fair OWA
aggregation of group exposures OWAw (E⌧ (Π)) in the objective
function of its integrated fair ranking optimization module.
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4.2 End-to-End Learning in SOFaiR
As illustrated in �gure 1, the SOFaiR framework uses a prediction
model M\ with learnable weights \ , which produces relevance
scores ~̂@ from a list of item features x@ . Its key component is an
optimization module which maps the prediction ~̂@ to an associated
ranking policy⇧¢

(~̂@). The following optimization problem de�nes
⇧¢

(~̂@) as the ranking policy which optimizes a trade-o� between
fair OWA aggregation of group exposures with the expected DCG
(as per Equation 4) under relevance scores ~̂@ . In SOFaiR, it de�nes,
for any chosen weight 0  _  1, a mapping which can be viewed
akin to a neural network layer, representing the last layer ofM:

⇧¢
(~̂@) = argmax⇧2B (1�_)·D (⇧, ~̂@)+_·OWAw (E⌧ (⇧)), (11)

wherein the Birkho� Polytope B is the set of all bistochastic matri-
ces, as de�ned in Equation 3. Let the objective function of Equation
11 be named 5 (Π, ~̂@). It is a convex combination of two terms
measuring user utility and fairness, whose trade-o� is controlled by
a single coe�cient 0  _  1. The former term measures expected
user utilityD (⇧, ~̂@) = ~̂>@ ⇧ b , while the latter termmeasures OWA
aggregation of the group exposures. It is intuitive to see that when
_ = 1, the optimization (11) returns a ranking policy that minimizes
disparities in group exposure, without regard for relevance. When
_ = 0, it returns a deterministic policy which ranks the items in
order of the estimated scores ~̂@ . Intermediate values 0 < _ < 1
result in policies which trade o� the e�ects of each term, balancing
utility and fairness to various degrees. As _ increases, disparity
between the exposure of protected groups must decrease; this leads
to a practical mechanism for achieving a desired level of fairness
with minimal compromise to utility.

Since Equation 11 de�nes a direct mapping from ~̂@ to ⇧¢
(~̂@),

the problem of learning fair ranking policies reduces to a problem of
learning relevance scores. This corresponds to estimating the objec-
tive function 5 via its missing coe�cients ~@ . The SOFaiR training
method de�nes a loss function between predicted and ground-truth
relevance scores, as the loss of optimality in Π¢

(~̂@) with respect
to objective 5 under ground-truth ~@ , caused by prediction error in
~̂@ . That is, the training objective is to minimize regret in 5 induced
by ~̂@ , de�ned as:

regret(~̂@,~@) = 5 ( ⇧¢
(~@),~@ ) � 5 ( ⇧¢

(~̂@),~@ ) . (12)

The composition Π¢
�M\ de�nes an integrated prediction and

optimization model which maps item features to fair ranking poli-
cies. Training the integrated model by stochastic gradient descent
follows these steps in a single iteration:
(1) For sample query @ and item features x@ , a predictive model

M\ produces estimated relevance scores ŷ@ .
(2) The predicted scores ŷ@ are used to populate the unknown pa-

rameters of an optimization problem (11). A solution algorithm
is employed to �nd ⇧⇤ (ŷ@), the optimal fair ranking policy
relative to ŷ@ .

(3) The regret loss (12) is backpropagated through the calculations
of steps (1) and (2), in order to update the model weights \ by
a gradient descent step.

The following sections detail the main solution schemes for imple-
menting steps (2) and (3). Section 5 shows how recently proposed
fair ranking optimization techniques from [7] can be adapted to the
setting of this paper, in which fair ranking policies must be learned

from empirical data. From this choice of optimization design arises
a novel challenge in the backpropagation step (3), since no known
work has shown how to backpropagate the regret of a highly dis-
continuous OWA optimization program. Section 6 shows how to
e�ciently backpropagate the regret due to Equation 11 for end-
to-end learning. Then, Section 7 evaluates the SOFaiR framework
against several other methods for learning fair ranking policies, on
a set of benchmark tasks from the web search domain.

5 FORWARD PASS OPTIMIZATION
The main motivation for the formulation (11) of SOFaiR’s fair rank-
ing optimization layer is to render the optimization problem e�-
ciently solvable. Its main exploitable attribute is its feasible region
Π, over which a linear objective function can be quickly optimized
by simply sorting a vector in R= , which has time complexity = log=
[5]. This suggests an e�cient solution by Frank-Wolfe methods,
which solve a constrained optimization problem by a sequence of
subproblems optimizing a linear approximation of the true objec-
tive function [1]. This e�cient solution pattern is made possible by
the absence of additional group fairness constraints on the policy
variable Π.

Frank-Wolfe methods solve a convex constrained optimization
problem argmaxx2S 5 (x) by computing the iterations

x(:+1) = (1 � U (: )
)x(: ) + U (: ) argmax

y2S
hy,r5 (x(: ) )i. (13)

Convergence to an optimal solution is guaranteed when 5 is di�er-
entiable and with U (: ) = 2

:+2 [1]. However, the main obstruction
to solving (11) by the method (13) is that 5 in our case includes
a non-di�erentiable OWA function. A path forward is shown in
[16], which shows convergence can be guaranteed by optimizing a
smooth surrogate function 5 (: ) in place of the nondi�erentiable
5 at each step of (13), in such a way that the 5 (: ) converge to the
true 5 as : !1.

It is proposed in [7] to solve a two-sided fair ranking optimiza-
tion with OWA objective terms, by the method of [16], where 5 (: )

is chosen to be a Moreau envelope ⌘V: of 5 , a 1
V:

-smooth approxi-
mation of 5 de�ned as [1]:

⌘V (x) = min
y

5 (y) +
1
2V
ky � xk2 . (14)

When 5 = OWAw , let its Moreau envelope be denoted rOWAV
w ;

it is shown in [7] that its gradient can be computed as a projec-
tion onto the permutahedron induced by modi�ed OWA weights
w̃ = �(F<, . . . ,F1). By de�nition, the permutahedron C(w̃) =
����({wf : 8f 2 P<}) induced by a vector w̃ is the convex hull of
all its permutations. In turn, it is shown in [3] that the permutahe-
dral projection rOWAV

w (x) = projC(w̃ ) (
x/V) can be computed in

< log< time as the solution to an isotonic regression problem using
the Pool Adjacent Violators algorithm. To �nd the overall gradient
of OWAV

w with respect to optimization variables Π, a convenient
form can be derived from the chain rule:

r⇧ OWAV
w (E(⇧)) = -b) . (15)
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Figure 3: The di�erentiable optimization module employed in SOFaiR. It forward pass solves the problem (11) by an e�cent
Frank-Wolfe method. Its backward pass calculates the SPO+ subgradient, relative to its equivalent, but intractably large LP
form.

where - = projC(w̃ ) (
E (Π)/V) and E(⇧) is the vector of all item

exposures [7]. For the case where group exposures E⌧ (⇧) are ag-
gregated by OWA, �rst note that by Equation 6, E⌧ (⇧) = G⇧b ,
where G is the matrix composed of stacking together all group
indicator vectors 16 86 2 ⌧ . Since E(⇧) = ⇧b , this implies
E⌧ (⇧) = E(G⇧), thus

r⇧ OWAV
w (E⌧ (⇧)) = (G) -̃) b) . (16)

by the chain rule, and where -̃ = projC(w̃ ) (
E⌧ (GΠ)/V). It re-

mains now to compute the gradient of the user relevance term
D (⇧, ~̂@) = ~̂)@⇧ b in Equation 11. As a linear function of
the matrix variable ⇧, its gradient is r⇧ D (⇧, ~̂@) = ~̂@ b) ,
which is evident by comparing to the equivalent vectorized form

~̂)@⇧ b =
����!

~̂@ b) ·
�!
⇧ . Combining this with Equation 16, the total

gradient of the objective function in Equation 11 with smoothed
OWA term is (1 � _) · ~̂@ b) + _ · (G) -̃) b) , which is equal
to

⇣
(1 � _) · ~̂@ + _ · (G) -̃)

⌘
b) . Therefore the SOFaiR module’s

Frank-Wolfe linearized subproblem is

argmax
⇧2B

D
⇧,

⇣
(1 � _) · ~̂@ + _ · (G) -̃)

⌘
b)

E
(17)

To implement the Frank-Wolfe iteration (13), this linearized sub-
problem should have an e�cient solution. To this end, the form
of each gradient above as a cross-product of some vector with the
position biases b can be exploited. Note that as the expected DCG
under relevance scores ~, the function ~)⇧ b is maximized by the
permutation matrix V 2 P= which sorts the relevance scores ~

decreasingly. But since ~)⇧ b =
���!

~ b) ·
�!
⇧ , we identify ~)⇧ b as

the linear function of
�!
⇧ with gradient

���!

~ b) . Therefore equation
Equation 17 can be solved in O(= log=), simply by �nding V 2 P=
as the argsort of the vector ((1 � _) · ~̂@ + _ · (G) -̃)) in decreasing
order. A more formal proof, cited in [6], makes use of [11].

The overall method is presented in Algorithm 1. Decay of the
smoothing parameter VC =

V0
p
C
satis�es the conditions for conver-

gence stated in [16] when V0 is su�ciently large. Sparse matrix

Algorithm 1: Frank-Wolfe with Moreau Envelope Smooth-
ing to solve (11)
Input: predicted relevance scores ~̂ 2 R= , group mask G,

max iteration T, smooth seq. (V: )
Output: ranking policy ⇧ () )

2 R=⇥=

1 Initialize ⇧ (0) as V 2 P which sorts ~̂ in decreasing order;
2 for : = 1, . . . ,) do
3 -̃  projC(w̃ ) (

E⌧ (GΠ)/V: );
4 -̂  (1 � _) · ~̂@ + _ · (G) -̃);
5 f̂  argsort(�-̂);
6 Let V (: )

2 P such that V (: ) represents f̂ ;
7 ⇧ (: )

 
:

:+2⇧
(:�1)

+
2

:+2V
(: ) ;

8 Return ⇧ () ) ;

additions each require O(=) operations, so that Algorithm 1 main-
tains O(= log=) complexity per iteration. An important advantage
of Algorithm 1 over the fair ranking LP employed in SPOFR [15], is
that the solution iterates V (: ) automatically provide a decomposi-
tion of the policy matrix ⇧ = d:V

(: ) as a convex combination of
rankings, by which it can be readily sampled as a discrete proba-
bility distribution. In contrast, the LP module used in SPOFR [15]
provides as its solution only a matrix ⇧ 2 B, which must be de-
composed using the Birkho� Von Neumann decomposition, adding
substantially to its total runtime.

6 BACKPROPAGATION
The formulation of the optimization module (11) allows for e�-
cient solution via Algorithm 1, but gives rise to a novel challenge
in backpropagating the regret loss function through ⇧¢

(~̂@). By
including anOWAaggregation of group exposure, its objective func-
tion is nonlinear and nondi�erentiable. This section shows how
to train the integrated prediction and OWA optimization model
Π¢
�M\ to minimize the regret loss (12), despite this challenge.
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As a starting point, we recognize the existing literature on "Predict-
Then-Optimize" frameworks [14, 17] for minimizing the regret due
to prediction error in the objective coe�cients of a linear program,
denoted c below:

x¢(c) = argmin
Axb

c) x. (18)

Several known methods have been proposed [2, 10, 21, 25] and
well-established in the literature [17] for end-to-end training of
combined prediction and optimization models employing (18). Due
to its OWA objective term, the fair ranking module (11) does not
satisfy the LP form (18) for which the aforementioned methods
are taylored. The implementation of SOFaiR described here uses
the "Smart Predict-Then-Optimize" (SPO) approach [10], since its
simple backpropagation rule requires only a solution to (18) using
a blackbox solution oracle. This allows its adaptation to the OWA
optimization setting by constructing (but not solving) an equivalent
but intractable linear programming form to (11), as shown next.
End-to-End learning with SPO+ Loss. Viewed as a loss function,
the regret (12) in solutions to problem (18) is nondi�erentiable
and discontinuous with respect to predicted coe�cients ĉ , since
solutions x¢(c) must occur at one of �nitely many vertices in
Ax  b. The SPO+ loss function proposed in [10] is by construction
a Fischer-consistent, subdi�erentiable upper bound on regret. In
particular, it is shown in [10] that

!SPO+(ĉ, c) = max
x

(c) x � 2ĉ) x) + 2ĉ) x¢(c) � c) x¢(c), (19)

possesses these properties, and a subgradient at ĉ is

r!SPO+(ĉ, c) = x¢(2ĉ � c) � x¢(c) . (20)

Minimizing the surrogate loss (19) by gradient descent using (20) is
key to minimizing the solution regret in problem (18) due to error
in a predictive model which predicts the parameter c.
SPO+ loss in SOFaiR. We now show how the SPO training frame-
work described above for the problem type (18) can be used to
e�ciently learn optimal fair policies in conjunction with problem
(11). The main idea is to derive an SPO+ subgradient for regret in
(11), through an equivalent linear program (18), but without solving
it as such. This is made possible by the fact that the subgradient (20)
can be expressed as a di�erence of two optimal solutions, which can
be furnished by any optimization oracle which solves the mapping
(11), which includes Algorithm (1).

First note, as it is shown in [18], that the OWA function (10) can
be expressed as

OWAw (r) = minf2P wf · r, (21)

and as an equivalent linear programming problem which views
the minimum inner product above as the maximum lower bound
among all possible inner products with the permuted OWAweights:

OWAw (r) = maxI I (22a)
s.t. I  wf · r, 8f 2 P, (22b)

where P contains all possible permutations of [=] when w 2 R= .
This allows SOFaiR’s OWA optimization model (11) to be recast in
a linear programming form using auxiliary optimization variables

r and I:

(⇧¢, r¢, I¢) (~̂@) = argmax⇧2B, r, I (1 � _) · ~̂>@ ⇧ b + _ · I
(23a)

subject to: I  wf · A , 8f 2 P
(23b)

A = E⌧ (Π). (23c)

According to [18], this alternative LP form of OWA optimization
is mostly of theoretical signi�cance, since the set of constraints (23b)
grows factorially in the size of r, one for each possible permutation
thereof. This makes (23) impractical for computing a solution to the
original OWA problem (11), which we instead solve by Algorithm
1. On the other hand, we show that problem (23) is practical for
deriving a backpropagation rule through the OWA problem (11).

Since the unknown parameters ~̂@ appear only in its linear ob-
jective function, this parametric LP problem (23) �ts the form (18)
required for training with SPO+ subgradients. To derive the sub-
gradient explicitly, rewrite the linear objective term ~̂>@ ⇧ b =
����!

~̂@ b) ·
�!
⇧ . Then in terms of the augmented variables (Π, r, I), the

objective function (23a) is

(1 � _)G · ~̂>@ ⇧ b + _ · I =

2666664
(1 � _)

����!

~̂@ b)

0
_

3777775|             {z             }
$̂

) 266664

�!
⇧
r
I

377775
. (24)

Now the SPO+ loss subgradient can be readily expressed with
respect to the augmented scores $̂ de�ned as above:

r!SPO+($̂ ,$ ) =
266664

�!
⇧¢

(2$̂ �$ )
r¢(2$̂ �$ )
I¢(2$̂ �$ )

377775
�

266664

�!
⇧¢

($ )
r¢($ )
I¢($ )

377775
, (25)

using (20), and where $ is the augmented score based on ground-
truth y@ . Finally, backpropagation from $̂ to the base prediction
ŷ@ = M) (x@) is performed by automatic di�erentiation, and like-
wise from ŷ@ to the model weights ) .

Both terms in (25) can be produced by using Algorithm 1 to solve
(11) forΠ¢. Then, the remaining variables r¢ and I¢ are easily com-
pleted as groups exposures r = E⌧ (⇧¢

) and their associated OWA
value I, respectively. Importantly, the rightmost term of (25) is in-
dependent of any prediction; therefore it is precomputed in advance
of training. Thus, backpropagation using (25) consists of computing
the di�erence between two solutions, one of which comes from the
forward pass and while the other is precomputed before training.
The complexity of this backward pass consists of O(=2) subtrac-
tions, which grows only linearly in the size of the matrix variable
Π 2 R=⇥= . The di�erentiable fair ranking optimization module of
SOFaiR, with its forward and backward passes, is summarized in
�gure 3.

7 EXPERIMENTS
Next we evaluate SOFaiR against two prior in-processing methods
[23, 30], and the end-to-end framework [14], denoted as FULTR,
DELTR, and SPOFR, respectively. We assess the performance on
two datasets:
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• Microsoft Learn to Rank (MSLR) is a standard benchmark for LTR
with queries from Bing and manually-judged relevance labels.
It includes 30,000 queries, each with an average of 125 assessed
documents and 136 ranking feature. Binary protected groups is
de�ned using the 50th percentile of QualityScore attribute. For
multi-group cases, group labels are de�ned using evenly-spaced
quantiles.

• Yahoo! Learning to Rank Challenge (Yahoo LETOR) contains
19,944 queries and 473,134 documents with 519 ranking features.
Binary protected groups is de�ned using feature id 9 following
[12] and the 50th percentile as the threshold.

For MSLR, we randomly sample 10,000 queries for training and
1,000 queries each for validation and testing. We create datasets
with varying list sizes (20, 40, 60, 80, 100 documents) for MSLR and
(20, 40 documents) for Yahoo LETOR.
Models and hyperparameters.A neural network (NN) with three
hidden layers is trained using Adam Optimizer with a learning rate
of 0.1 and a batch size of 256. The size of each layer is halved, and
the output is a scalar item score. Results of each hyperparameter
setting is are taken on average over �ve random seeds.

Fairness parameters, considered as hyperparameters, are treated
di�erently. LTR systems aim to o�er a trade-o� between utility
and group fairness, since the cost of increased fairness results in
decreased utility. In DELTR, FULTR, and SOFaiR, this trade-o� is
indirectly controlled through the fairness weight, denoted as _ in
(9) and (11). Larger values of _ indicate more preference towards
fairness. In SPOFR, the allowed violation (8) of group fairness is
speci�ed directly. Ranking utility and fairness violation are assessed
using average DCG (Equation 1) and fairness violation (Equation 8),
respectively. The metrics are computed as averages over the entire
test dataset.

7.1 Running Time Analysis
We start by comparing the runtime of SOFaiR with other LTR frame-
works, emphasizing its e�ciency in training and inference (lim-
itation C), particularly in comparison to SPOFR. Figure 4 shows
the average training and inference time per query for each method,
focusing on the binary group MSLR dataset across various list sizes.
First notice the drastic runtime reduction of SOFaiR compared to
SPOFR, both during training and inference. While SPOFR’s training
time exponentially increases with the ranking list size, SOFaiR’s
runtime increases only moderately, reaching over one order of
magnitude speedup over SPOFR for large list sizes. Notably, the
number of iterations of Algorithm 1 required for su�cient accuracy
in training to compute SPO+ subgradients are found to less than
those required for solution of (11) at inference. Thus the reported
results use 100 iterations in training and 500 at inference. Impor-
tantly, reported runtimes under-estimate the e�ciency gained by
SOFaiR, since its PyTorch [19] implementation in Python is com-
pared against the highly optimized code implementation of Google
OR-Tools solver [20]. DELTR and FULTR, as penalty-based meth-
ods, are more competitive in runtime. However, this comes at a cost
of the achieved fairness level (limitation A), as shown in the next
section.

7.2 Fairness and Utility Tradeo�s Analysis
Next, we focus on comparing the utility and fairness of the various
LTR frameworks analyzed. This section focuses on the two-group
case, as none of the methods compared against was able to cope
with multi-group case in our experiments (see next section). Figure
5 presents the trade-o� between utility and fairness across the
test sets for both Yahoo LETOR and MSLR datasets, encompassing
their lowest and highest list sizes. For each method, the intensity
of colors represents the magnitude of its fairness parameter. A
progression from lighter to darker colors indicates an increase in
the importance placed on fairness. Consequently, darker colors are
expected to correspond with more restrictive models, characterized
by lower DCG scores (y-axis) but also fewer fairness violations
(x-axis). Each point in the �gure represents the largest DCG score
obtained from a fairness hyperparameter search, as detailed in
Appendix C. Note that points on the grid that are higher on the
y-axis and lower on the x-axis represent superior results.

Firstly, notice that most points associated with methods DELTR
and FULTR are clustered in a small region with both high DCG
and (log-scaled) fairness violations. While these methods reach an
order of magnitude reduction in fairness violation on some datasets,
the e�ect is inconsistent, especially as the item list size increases
(limitationA). In contrast, the end-to-endmethods (SPOFR and the
proposed SOFaiR) reachmuch lower fairness violations, underlining
their e�ectiveness of their optimization modules in enforcing the
fairness constraint.

Both DELTR and FULTR reach competitive utilities, but they
consistently display relatively high fairness violations, underscor-
ing their limitations in providing a fair ranking solution. SOFaiR
shows competitive fairness and utility performance compared to
SPOFR, with a marked advantage in utility on some datasets. SPOFR
ensures fairness but at the expense of e�ciency, whereas SOFaiR
reaches similar fairness levels at a fraction of the required runtime.
Additional results on datasets of various list sizes are included in
Appendix B.2.

7.3 Multi-Group Fairness Analysis
Finally, this section analyzes the fairness-utility trade-o� in multi-
group scenarios using the SOFaiR framework. The SPOFR method
returns infeasible solutions for most chosen fairness levels when
multiple groups are introduced, preventing its evaluation on these
datasets; this is naturally avoided in SOFaiR as the optimization
of OWA aggregation without constraints simply increases fairness
to the extent feasible. While FULTR provides no code to evaluate
multigroup fairness, its penalty function is in principle ill-equipped
to handle multiple groups as it must scalarize all group fairness
violations into a single loss function as mentioned in Section 3
(limitation C). Figure 6 compares the average test DCG against
the average fairness violation across various numbers of groups
(ranging from 3 to 7) in the MSLR dataset, for list sizes of 40 and
100. Additional results for other list sizes in the MSLR dataset are
available in Appendix B.1.

Each data point represents a single model’s performance, with
fairness parameters _ adjusted between 0 and 1. Models prioritiz-
ing fairness show reduced fairness violations and lower utilities,
indicated by darker colored points, compared to those with a lower
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Figure 4: Running time benchmark on MSLR-Web10k dataset

Figure 5: Benchmarking performance in term of fairnesss-
utility trade-o� on Yahoo-20 (top left), and Yahoo-40(top
right). MSLR-20(bottom-left), MSLR-100 (bottom-right)

emphasis on fairness, represented by lighter colored points. A dis-
tinct trend is observed: as fairness parameters are relaxed, utility

Figure 6: Fairness-utility tradeo� due to SOFaiR with multi-
ple groups on MSLR-40 (left) and MSLR-100 (right) list size

increases for all metrics and datasets. It is also evident that multi-
group fairness comes at a higher cost to utility. Predictably, satura-
tion occurs in each curve, indicating that beyond a certain point,
increasing the fairness weight does not further decrease fairness
violations but merely reduces utility.

8 CONCLUSIONS
This paper presented SOFaiR, a method that employs an Ordered
Weighted Average optimization model to integrate fairness consid-
erations into ranking processes. Its key contribution is to enable
backpropagation through optimization of discontinuous OWA func-
tions, which has makes it possible to precisely enforce �exible group
fairness measures directly into the training process of learning to
rank, without greatly compromising e�ciency. These advantages
show that by leveraging modern developments in fair ranking opti-
mization, the integration of constrained optimization and machine
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learning techniques can be a promising direction for future research
in fair LTR.

9 ETHICAL STATEMENT
This paper was developed on commonly used, open benchmark
datasets for learning to rank, and no sensitive data was used in
the production of its experiments. As is common in research on
fair ranking systems, protected groups were de�ned on the basis of
attributes contained in these datasets, in order to best evaluate the
performance of the algorithms. The authors’ intended contribution
is purely methodological, aimed at enhancing the performance of
ranking systems with respect to well-established utility and fairness
criteria. When considering possible unintended adverse impacts of
the work, it is important to consider that the paper’s methodology
is generic, and can be used oppositely to its stated goals. The mech-
anism used to enforce fairness of group exposures in rankings can
also be used to enforce arbitrary proportional exposures amongst
arbitarily de�ned groups. Therefore, it is possible to be used in a
discriminatory manner. An inherent limitation of the work, with
respect to potential fairness impact, is a lack of generalization to
two-sided fairness, in which fairness with respect to user utility is
enforced in addition to exposure of protected groups. This stems
from the fact that the machine learning methodology inherently
treats each user query sample independently, thus this fairness goal
is usually only pursued by post-processing methods without ML
integration.
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