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Hyperbolic plasmons are collective electron excitations in layered conductors. They are of relevance to
a number of superconducting materials, including the cuprates and layered hyperbolic metamaterials [V. N.
Smolyaninova et al., Sci. Rep. 6, 34140 (2016)]. This work studies how the unusual dispersion of hyperbolic
plasmons affects Cooper pairing. We use the Migdal-Eliashberg equations, which are solved both numerically
and analytically using the Grabowski-Sham approximation, with consistent results. We do not find evidence
for plasmon-mediated pairing within a reasonable parameter range. However, it is shown that the hyperbolic
plasmons can significantly reduce the effects of Coulomb repulsion in the Cooper channel leading to an
enhancement of the transition temperature originating from other pairing mechanisms. In the model of a
hyperbolic material composed of identical layers, we find this enhancement to be the strongest in the d-wave
channel. We also discuss strategies for engineering an optimal hyperbolic plasmon background for a further
enhancement of superconductivity in both s-wave and d-wave channels.

DOI: 10.1103/PhysRevB.108.094506

I. INTRODUCTION

Plasmons are collective excitations of conducting elec-
trons [1]. In strongly anisotropic conductors, the plasmon
dispersion is hyperbolic and can strongly modify the electro-
magnetic properties of such materials [2,3]. Some examples
include the possibility of engineering a negative refraction
index and lensing [4] beyond the diffraction limit [5]. Hy-
perbolic materials were also proposed to enable long-range
dipole-dipole interactions [6], which is potentially useful for
efficient quantum information processing and transfer.

Hyperbolic plasmons in layered metals [7,8] have the
density of states, which is linear in energy, as was the-
oretically shown in [9]. As a result, such plasmons are
expected to strongly influence superconducting properties of
hyperbolic materials. Experimental investigations into plas-
mons in layered superconductors, including cuprates, have
been performed via resonant inelastic x-ray scattering in
Refs. [10–13]. In addition, the influence of electronic correla-
tions on the plasmon spectrum in nickelates has been analyzed
in Ref. [14]. The impact of layering on superconductivity
has been explored theoretically in Refs. [15,16], utilizing ap-
proximated versions of the pairing equations. These studies
proposed that layering could potentially enhance the transition
temperature.

The possibility of superconductivity mediated by two-
and three-dimensional bulk plasmons was first theoretically
considered in the early works by Takada [17,18] within
the so-called Kirzhnits-Maksimov-Khomskii (KMK) [19] ap-
proximation of the Migdal-Eliashberg equations. In particular,
it was suggested that pairing can occur at low charge carrier
densities. However, it was later realized (and we confirm this
conclusion here) that the KMK approximation is not reli-
able. In particular, it underestimates the transition temperature
[20,21] in the case of the phonon-induced superconductivity

and also fails to correctly describe the plasmonic mechanism
of Cooper pairing [22].

The proper treatment of the plasmon-induced and plasmon-
assisted pairing requires the use of full Migdal-Eliashberg
equations [23], which is the focus of this paper, where we
focus on layered materials. Here, in contrast to previous works
[16,24–26], we take into account the complete frequency and
momentum dependence of the superconducting order parame-
ter on the mean-field level. This research is partially motivated
by recent experimental works [27,28], which demonstrated a
strong enhancement of superconductivity in meta-materials
with epsilon-near-zero properties [5,29]. In particular, this
has been achieved in a layered structure composed of con-
ducting aluminium layers separated by thin dielectric layers
of aluminium oxide. Due to the strong anisotropy of such
materials, the plasmon spectrum is hyperbolic with the di-
electric constant approaching zero along a set of cones in
the phase space, as schematically shown in Fig. 1(a). Based
on the KMK arguments in Refs. [27,28] the authors directly
attribute the observed increased critical temperature to the
plasmon-induced mechanism of pairing. In the current work
by solving the Migdal-Eliashberg equations we rule out the
possibility of the superconductivity induced by hyperbolic
plasmons only. Therefore, the enhancement of the critical
temperature in Refs. [27,28] must be explained by other mech-
anisms, e.g., hyperbolic phonons, which will be considered
elsewhere. However, we find here that hyperbolic plasmons in
combination with an additional intrinsic attractive interaction
can lead to an enhancement of pairing.

In this work we perform a systematic study of the effect
of hyperbolic plasmons on superconductivity. We consider
both pairing due to a plasmon mechanism and a hyperbolic
plasmon-assisted pairing on top of another intrinsic pairing
mechanism, e.g., due to phonons or magnons. Here we ignore
the interlayer tunneling to encompass the extreme scenario
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FIG. 1. Superconductivity in a layered electron gas. (a) Sketch of
the setup: layered electron gas with interlayer distance a. Hyperbolic
plasmon dispersion is shown in orange. (b) Enhancement of super-
conductivity in a d-wave channel: coupling constant μ∗ as function
of the Wigner-Seitz parameter rs. The ratio between the supercon-
ducting transition temperatures in the layered electron gas and the
2DEG. The additional pairing interaction parameters are chosen as
λ = 0.5, ω0 = 0.1EF . The interlayer distance a = q−1

0 corresponds
to the inverse of the Thomas-Fermi screening vector.

when the plasmon hyperbolicity extends down to zero fre-
quencies. Within the random phase approximation (RPA) we
numerically solve the complete set requency-momentum de-
pendent of Migdal-Eliashberg equations [30], and as shown
in Fig. 1(b), find a significant enhancement of superconduc-
tivity in the d-wave channel and in the presence of additional
attractive pairing mechanism in the corresponding channel.
The latter may be of relevance to high-temperature super-
conductivity in cuprates [31]. We note that in the current
work, we resort to a mean-field analysis, and the problem
of vertex corrections [32,33] is left for future works. In
order to get a qualitative insight into our numerical solu-
tion, we employ the Grabowski-Sham approximation [23] and
consider the band-averaged electron-electron interaction. We
find that the effect of hyperbolic plasmons on the transition
temperature is twofold. On the one hand, they screen the
Coulomb repulsion more efficiently compared to the conven-
tional two-dimensional plasmons. On the other, they have a
larger effective screening energy range. These two effects are
found to compete in how they impact the superconducting
transition temperature. We also consider the possibility of
engineering [34] a plasmon structure of layered materials to
optimize the enhancement effect on superconductivity. One

proposed proof-of-principle scenario involves a layered struc-
ture, where one of the layers is distinct from the other identical
layers. We demonstrate a possible significant enhancement of
the superconducting transition temperature in such a configu-
ration in both s- and d-wave channels.

This paper is structured as follows: Sec. II introduces the
Migdal-Eliashberg formalism that takes into account retar-
dation effects. In Sec. III, we solve the Migdal-Eliashberg
equations numerically for pure Coulomb interaction in the
layered electron gas. To elucidate the numerical results, in
Sec. IV we introduce several approximation schemes that
allow us to provide an intuitive picture of the hyperbolic
plasmon-mediated pairing. In Sec. V, we consider the effect
of hyperbolic plasmons on other pairing mechanisms and
demonstrate a possible enhancement of pairing the d-wave
channel. Section VB provides an example of a setup for the
further enhancement of pairing by engineering the plasmon
dispersion in a hyperbolic/layered structure.

II. FORMULATION

We consider a layered electron gas with the interlayer
spacing a (see, Fig. 1) [7], which can be either a meta-material
structure [5] or a layered compound (e.g., a cuprate material).
We describe electron properties of each layer by a Coulomb-
interacting two-dimensional electron gas (2DEG) model. The
full Hamiltonian reads

Ĥfull = Ĥ0 + Ĥint, (1)

Ĥ0 =
∑
i,k,σ

ξkψ̂
(i)†
k,σ

ψ̂
(i)
k,σ , (2)

Ĥint = 1

2A

∑
i� j,k,k′,q,σ,σ ′

Ṽ (i, j)
q ψ̂

(i)†
k+k,σ

ψ̂
( j)†
k′−q,σ ′ψ̂

( j)
k′,σ ′ψ̂

(i)
k,σ

, (3)

where ψ̂
(i)
k,σ denotes the creation/annihilation operator of spin-

σ electron on ith layer. ξk = k2/2m − EF where m refers to
the bare electron mass, A is the surface area of each layer,
and EF is the Fermi energy. Ṽ (i, j)

q = 2πe2e−aq|i− j|/ε∞q de-
notes the bare Coulomb interaction of electrons on ith and
jth layers, a denotes the interlayer distance and ε∞ is the
background dielectric constant, and e is the electron charge. In
the following q denotes the two-dimensional in-plane momen-
tum. In our model Eq. (1) we neglected the electron tunneling
between layers. In Fourier space with respect to the layer
index the bare Coulomb interaction is

Ṽq,qz = 2πe2

ε∞q

sinh aq

cosh aq − cos qz
,

where qz ∈ [−π, π ] denotes the out-of-plane momentum. The
conventional RPA-renormalized interaction reads

Vq,qz (i	m) = 1

Ṽ−1
q,qz + m

π

q(i	m)

, (4)

where
q is the polarization operator of the 2DEG normalized
as 
q→0(0) = 1 and 	m = 2πm/β.

Vq,qz (i	m) = 2πe2

ε∞

1

q cosh aq−cos qz
sinh aq + q0
q(i	m)

, (5)
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where q0 = 2me2/ε∞ denotes the Thomas-Fermi screening
length. The latter characterizes the momentum-scale below
which the interaction is efficiently screened.

Within the RPA the normal-state electron Green’s function
has the following form:

Gk(iεn) ≡ −
∫ β

0
eiεnτ

〈
ψ̂

(i)
k,σ

(τ )ψ̂ (i)†
k,σ

(0)
〉

= 1

−ξk + iεn − �k(iεn)
, (6)

where εn = (2n + 1)π/β, n ∈ Z and β denotes the inverse
temperature. As we assume all layers to be identical and ne-
glect tunneling between layers, the Green function in Eq. (6)
is independent of the layer index. The normal state self-energy
denoted above as �k obeys the Dyson equation:

�k(iεn) = − 1

βA

∑
k′,m

Gk′ (iεm)V (i,i)
k−k′ (iεm − iεn), (7)

where V (i, j)
q (i	m) = (2π )−1

∫
dqzeiqz (i− j)Vq,qz (i	m) denotes

the Fourier transform of the interaction Eq. (4). The super-
conducting anomalous self-energy on i-th layer obeys the
following equation:

φk(iεn) = −(βA)−1
∑
k′,m

V (i,i)
k−k′ (iεn − iεm)

× Gk′ (iεm)G−k′ (−iεm)φk′ (iεm). (8)

We solve this equation numerically for both pure Coulomb
interaction and it coexists with other pairing mechanisms.
We also consider simplified analytical models for both cases,
which help us develop an intuitive physical picture behind the
numerical results.

A. Hypebolic plasmon dispersion

We now describe the plasmon structure of the layered
electron gas defined above. For that we perform the analytic
continuation of the Coulomb propagator to real-frequency:

ImVq,qz (ω + i0+) = 2πe2

ε∞
Im

1

q cosh aq−cos qz
sinh aq + q0
q(ω)

. (9)

Its poles correspond to the collective excitations of the layered
electron gas (plasmons). We readily find the long-wavelength
plasmon excitation dispersion for qz �= 0:

εq = vF

√
1 + aq0

2 sin2(qz/2)
q, (10)

where vF = kF/m is the Fermi velocity. For qz = 0 the spec-
trum is gapped and the dispersion is εq→0 ≈ vF

√
q0/a. For

any nonzero qz the fixed-frequency curves form cones in mo-
mentum space as schematically shown in Fig. 1(a). The full
plasmon spectrum is shown in Fig. 2. We note several fea-
tures of the spectrum Eq. (10). First, it has a finite density of
states at low energies. Second, it extends to higher frequencies
compared to the pure two-dimensional plasmons.

FIG. 2. Layered plasmon spectrum for the interlayer spacing a =
1/q0. Different gray curves correspond to different values of qz ∈
[0, π ]. Blue dashed line stands for the pure 2D plasmon spectrum.
Red curve corresponds to the particle-hole excitation spectrum of the
electron gas.

B. Angular averaging: Migdal-Eliashberg equations

To solve Eq. (8), we first project the gap function onto
a particular angular momentum eigenstate φk ∝ eilϑ + c.c.,
where ϑ is the angular coordinate. For the sake of convenience
below we express all energy and momentum variables in 4EF

and 2kF , respectively: k → 2kFk, a → a/2kF , β → β/4EF .
In these units the normal-state Green function has the follow-
ing form: G−1

k (iεm) = iεm − k2 + 1/4 − �k.
Let us now explicitly consider the gap equation Eq. (8) in

the l-wave channel. By transforming summations into inte-
grals we readily find

φ
(l )
k (iεn) = − T

∑
n

∫
k′dk′

∫ 2π

0

dϑ

2π

∫ π

−π

dkz
2π

× q0

u cosh au−cos kz
sinh au + q0
u

φ
(l )
k′ (iεm)∣∣G−1
k′ (iεm)

∣∣2 , (11)

where u ≡ |k − k′| =
√
k2 + k′2 − 2kk′ cos(ϑ ). As we see

from the expression the result depends only on two variables:
q0 and a. Now assuming a particular angular momentum l of
the gap we can perform the angular integral:

φ
(l )
k (iεn) = −T

∑
m

∫
k′dk′V (l )

k,k′ (iεn − iεm)
φ
(l )
k′ (iεm)∣∣G−1
k′ (iεm)

∣∣2 ,

(12)

where the angular-averaged interaction is defined as

V (l )
k,k′ (i	n) =

∫
dϑ

2π

∫ π

−π

dkz
2π

q0 cos(ϑ l )

u cosh au−cos qz
sinh au + q0
u

=
∫

dϑ

2π

q0 sinh(au) cos(ϑ l )√
(u cosh au + q0 sinh au
u(i	n))2 − u2.

(13)

We note that the propagator for the nearest-neighbor layers
can also be found analytically. Analogously, we find the cor-
responding equation for the normal-state self-energy:

�k (iεn) = −T
∑
m

∫
k′dk′V (l=0)

k,k′ (iεm − iεn)Gk′ (iεm). (14)
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We now define the conventional 2D Wigner-Seitz parame-
ter 2πa2Bohrr

2
s n = 1, where aBohr is the Bohr radius in dielectric

with the polarizability ε∞. rs can be expressed via the dimen-
sionless Thomas-Fermi vector as rs = √

2q0. In the following
section we solve Eqs. (12), (14) numerically.

III. NUMERICAL SOLUTION OF MIGDAL-ELIASHBERG
EQUATIONS

In this section we provide details of the numerical solution
of Migdal-Eliashberg equations Eqs. (12), (14). In Sec. III A
we discuss the calculation of the normal-state self energy. We
then numerically solve the gap equation for s- and d-wave
pairing channels. We find that the plasmon induced pairing is
impossible in the reasonable parameter range.

A. Normal state self-energy

The self-consistent solution of the gap equation in case of
Coulomb interaction requires caution as the interaction kernel
in Eqs. (12), (14) has a logarithmic singularity for k = k′ [22].
We, therefore, introduce a momentum grid which has density
of momentum points with the smallest �k ∝ 10−3kF . We first
solve Eq. (14) iteratively. As we explain in more detail below,
it is convenient to make the conventional variable change [22]:

χk (iεn) =�k (iεn) + �k (−iεn)

2
, (15)

Zk (iεn) =1 + i
�k (iεn) − �k (−iεn)

2εn
, (16)

where from Eq. (14) Zk (iεn) is found to obey

εn(Zk (iεn) − 1) = T
∫

k′dk′ ∑
m

εmZk′ (iεm)∣∣G−1
k′ (iεm)

∣∣2V (l=0)
k,k′

× (iεm − iεn), (17)

The even-frequency part of the normal-state self-energy
χk (iεn) function has static and dynamical contributions:

χk (iεn) = χ
(0)
k + χ

(1)
k (iεn) (18)

χ
(0)
k = −T

∫
k′dk′ ∑

m

ξk′ + χk′ (iεm)∣∣G−1
k′ (iεm)

∣∣2 Ṽ k,k′ , (19)

χ
(1)
k (iεn) = −T

∫
k′dk′∑

m

ξk′ + χk′ (iεm)∣∣G−1
k′ (iεm)

∣∣2 δV (l=0)
k,k′ (iεm − iεn),

(20)

where Ṽ k,k′ refers to the bare unrenormalized Coulomb in-
teraction and δV (l )

k,k′ ≡ V (l=0)
k,k′ − Ṽ k,k′ . The advantage of this

representation is that χ (0)
k is frequency-independent while χ

(1)
k

has finite frequency range and can be solved by introducing
a frequency cutoff. Equations for χ and Z can be solved
iteratively starting with some initial value [22].

B. Numerical results

Reserving certain technical details for Appendix C, we will
now proceed to discuss the numerical solution of the gap
equation, Eq.(12). In addition to the pure plasmon-induced
superconductivity, we also consider the case when some ad-
ditional attraction between electrons is present. For the latter

case here we only describe the final result leaving most of the
details to Sec. V.

At the electron densities corresponding to the regime of
validity of the RPA, we find no possible plasmon-induced
pairing in both layered and in the conventional 2DEG regime.
While in agreement with the earlier studies [17,22] the solu-
tion of Eliashberg equations exists for rs > r∗

s , where r
∗
s ≈ 2,

which is beyond the applicability of the RPA. In this case, it is
important to keep vertex corrections which may qualitatively
change the result. Extrapolating the results outside the RPA
validity range we find that the layering is decreasing the tran-
sition temperature for rs > r∗

s . The same behavior occurs in
the d-wave channel as well. In conclusion, within the RPA
we do not find a regime where plasmon-induced pairing is
possible.

The situation is, however, different if we add an additional
attractive interaction in the d-wave channel. More precisely,
we consider the following modification of the Coulomb
interaction Eq. (13):

V (l )
k,k′ (i	n) → V (l )

k,k′ (i	n) − λδl,2
ω2
0

ω2
0 + 	2

n

, (21)

where λ is some effective interaction strength and ω0 is the
characteristic frequency. We note that the additional interac-
tion in Eq. (21) can be induced by a single-frequency bosonic
mode. As shown in Fig. 1(b), we find an enhancement of
the transition temperature in a layered electron gas compared
to the conventional 2DEG. We note that depending on the
parameters the observed enhancement can be quite significant.
In particular for our choice of parameters in Fig. 1(b) the
critical temperature is doubled at rs = 1. In the next section,
we study a simplified model which, as we show, can explain
all the features of the transition temperature.

IV. TOY MODEL OF PLASMON-MEDIATED PAIRING

In this section, we discuss a toy model that reproduces
the behavior of Tc shown discussed above. The aim of this
section is solely to develop an intuitive picture of the plasmon-
mediated Cooper pairing. For that, we use a simplified model
with no renormalization of the normal-state Green’s function.
We start with Eq. (12):

φ
(l )
k (iεn) = −T

∑
m

∫
k′dk′V (l )

k,k′ (iεm − iεn)
φ
(l )
k′ (iεm)

ε2m + ξ 2
k′

. (22)

To get an analytical insight we now reduce the complete 2D
Migdal-Eliashberg equation (22) to an effective 1D form. Due
to the long-range nature of Coulomb interaction, we cannot
perform the conventional Fermi-surface averaging of the in-
teraction. Indeed, at high Matsubara frequencies we find

V (l )
kF ,kF

(i	n) ∝
∫ 2π

0
dϑ

cos(ϑ l )√
1 + cosϑ

.

The right-hand side of this integral logarithmically diverges
at ϑ ∼ π [22]. This divergence is present for all frequencies
except for the zeroth one. To circumvent this technical issue,
we resort to the heuristic Grabowski-Sham approximation
introduced in Ref. [23]. Following their approach (with a
slight modification that produces more accurate results in
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aq0aq0

aq0 aq0

V(
l=

0
)
(i

Ω
n
)/

q 0
V(

l=
2
)
(i

Ω
n
)/

q 0

ε s
c
/E

F
ε s

c
/E

F

ε s
c
/E

F
ε s

c
/E

F

(b)(a)

(c) (d)

FIG. 3. Effective interaction V (i	n) Eq. (23) for aq0 = 1 (blue),
aq0 ≈ 3.2 (orange) and aq0 = 10 (green). s-wave channel with elec-
tron density is (a) rs = 0.8, (b) rs = 1.5. d-wave channel with
electron density is (c) rs = 0.8, (d) rs = 1.5. Insets shows the effec-
tive screening energy εsc as function of the interlayer distance a. In
both figures the blue vertical line corresponds to the Fermi energy.

comparison with the brute-force numerical solution of the
original integral equation), we replace the momentum-
dependent interaction with

V (l )(i	n) ≡
∫
kdkθ (kc − k)V (l )

k,kF
(i	n)∫

kdkθ (kc − k)
, (23)

where θ is the Heaviside theta-function and kc is the cut-off
momentum chosen according to the bandwidth of the electron
gas. Overall, we can conveniently parametrize [23] the inter-
action as follows:

V (l )(iεm − iεn) ≡ μ(1 − σvm,n) (24)

with vm,n→∞ → 0, v0,0 = 1 and σ being a dimensionless co-
efficient, characterizing screening strength. A typical example
of this function is shown in Fig. 3. Here we observe a sup-
pression of the Coulomb interaction at Matsubara frequencies
below some characteristic screening energy scale εsc. The
latter can be heuristically inferred from the curves Fig. 3 by
fitting vm,n with, e.g., Lorentz curve (the result is shown in
insets). Since we now ignore the momentum dependence of
the interaction potential the gap equation simplifies to

φ(l )(iεn) = −T
∑
m

V (l )(iεm − iεn)
∫

φ(l )(iεm)dξk′

ε2m + ξ 2
k′

. (25)

Equation (25) is 1D and therefore it is straightforward
to solve numerically. It is, however, more practical to use
the pseudopotential method [23]. It allows us to define the
coupling strength even in the case when there is no super-
conductivity: μ∗ < 0. In the latter case the quantity −μ∗ is
typically referred to as the Coulomb pseudopotential. The
idea behind the pseudopotential method is to replace the long-
range (in frequency) interaction in Eq. (25) with a short-range
one. For the latter, the critical temperature can be found triv-
ially as discussed in Appendixes A, B. The superconducting
coupling constant obtained from the approximation Eq. (25)
is shown in Fig. 4. We observe that in the regime when μ∗ is

μ∗

rsrs

non superconducting

FIG. 4. Plasmon-induced coupling constant μ∗ as function of the
electron gas density rs for s- and d-wave pairing channels. The solid
line corresponds to an infinite inter-layer distance a → ∞, dashed
corresponds to aq0 = 1. Right panel: detailed zoom on the electron
density density range rs ∈ [0, 1].

positive the layering is typically detrimental for the pairing in
s- and d-wave channels. The only regime where layering is
useful is in d-wave channel at rs ≈ 1.

A. Analytical estimate of the transition temperature

In order to explain the properties of the plasmon-mediated
Cooper pairing it is instructive to consider the exactly solvable
model. More precisely, we assume a separable square-
well model for the interaction: vm,n ≈ θ (ε2sc − ε2m)θ (ε

2
sc − ε2n ),

where θ is the Heaviside theta-function. By inserting this
ansatz to Eq. (25) in the limit εsc 
 EF the transition tem-
perature is found to be (see Appendix A):

Tc = 1.134EFe
−1/μ∗

(26)

with μ∗ = − log(EF/εsc) + μ(σ − 1/(1 + μ log EF
εsc
)). The

condition on existence of the superconductivity is given by
μ∗ > 0. We also see the suppression of the overall Coulomb
repulsion term by the logarithmic prefactor. From Eq. (26) we
find the optimal value εsc = e(σ−2)/μσEF at which the critical
temperature is maximal. At larger values the critical tempera-
ture is decreasing becoming exactly zero at εsc = e(σ−1)/μσEF .

With the above in mind we now analyze the properties of
the effective interaction V (i	n) shown in Fig. 3. The effect of
layering is found to be twofold: first it increases the screening
strength, σ , and second, it increases the corresponding screen-
ing energy range εsc. As clear from Eq. (26), the two effects
discussed above contribute to Tc in the opposite way. Besides
the negative effect is usually dominating. The only regime
when the pairing is enhanced is found in the d-wave channel
at smaller values rs < 1. This can be explained by the fact
that the effective interaction has the lowest screening energy
scale εsc and the highest relative screening strength σ . We note
that although μ∗ is enhanced by layering, the Cooper pairing
itself is not possible due to the overall sign of μ∗ < 0. It there-
fore appears impossible to achieve a pure plasmon-induced
superconductivity or an enhancement thereof by hyperbolic
plasmons (unless we consider high rs values, where no reliable
theoretical methods exist).

In conclusion, in this section, we reiterate that the renor-
malization of the Coulomb pseudopotential by hyperbolic
plasmons contain two competing factors: the enhancement of
the plasmon-induced screening parameterized by σ and the
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increase of the effective screening energy range, εsc. In the
case of d-wave superconductivity, the microscopic details of
the interaction favor the increase of the coupling constant μ∗
thereby decreasing Coulomb repulsion. In the next section we
show that this effect can be beneficial in case when supercon-
ductivity is induced by other mechanisms.

V. PLASMON-ASSISTED PAIRING

In this section we study how hyperbolic plasmons in a
layered material affect other pairing mechanisms. We also
provide an example of plasmon-engineering, where supercon-
ductivity is enhanced more efficiently.

A. Additional attractive interaction

We now consider the Migdal-Eliashberg equations in the
presence of additional attractive interaction, e.g., phonon- or
magnon-induced. A physical origin of the additional attraction
is not important for the model we study, where on top of the
Coulomb repulsion we add another pairing interaction in the
l-wave angular momentum channel as follows [c.f., Eq. (21)]:

V (l )
k,k′ (i	n) → V (l )

k,k′ (i	n) − λ
ω2
0

ω2
0 + 	2

n

.

The numerical result of the solution of Eqs. (12) is shown in
Fig. 1(c) for the d-wave channel. Below we provide an expla-
nation of the enhancement based on the toy model. We note
that the interplay between different pairing mechanisms was
recently considered in Ref. [35], where the electron-electron
attraction is mediated by phonons and by quasiparticles in the
exciton-polariton condensate.

Analytically the transition temperature can be estimated
using the same formalism as in Sec. IV:

Tc = 1.134EFe
−1/μ̃∗

, (27)

where μ̃∗ = λEF + μ∗, where μ∗ is the coupling constant
due to plasmons only and the from the other pairing mech-
anism gives rise to the effective coupling λEF ≡ λ/[1 +
λ log(EF/ω0)] renormalized to the Fermi energy scale. Pro-
vided that μ∗ is approximately the same as we computed in
the previous section we can expect the overall energy scale in
Fig. 4 to be lifted by the amount of this renormalized coupling
λEF . This leads to the enhancement of the d-wave pairing.

We now solve the gap equation Eq. (22) including the
additional attractive interaction Eq. (21). The result of full
numerical solution is shown in Figs. 5(a) and 5(b). We find
an insignificant enhancement of superconductivity in the s-
wave channel for rs < 0.5. In contrast, in the d-wave channel
we find enhancement in a broad range of parameters as was
expected from our toy model. As can be seen from Figs. 5(c)
and 5(d) the toy-model results are in good qualitative agree-
ment with the Migdal-Eliasberg equation. In the following
section we provide an example of modifying the hyperbolic
metamaterial structure to achieve a plasmon dispersion that
both enhances the superconductivity more efficiently in the
d-wave channel and achieves a noticeable enhancement in the
conventional s-wave channel.

μ̃
∗

μ̃
∗

(a) (b)

(d)(c)

FIG. 5. Superconducting coupling constant μ̃∗ [Eq. (27)] ex-
tracted from solution of Migdal-Eliashberg equations. (a) s-wave
channel, (b) d-wave channel. The toy-model results in the s- and
d-wave channels are shown in (c) and (d). We take the following
parameters for the additional coupling constant projected onto the
corresponding angular momentum channel V = −λω2

0/(ω
2
0 + 	2

m):
λ = 0.5, ω0 = EF/10.

B. Engineered plasmon-assisted enhancement

In this section, we show how the superconducting transi-
tion temperature can be enhanced by varying the electronic
properties on one of the layers (i = 0) as shown in Figs. 6(a)
and 6(b). Guided by the qualitative analysis of Sec. IV, we
seek to reduce the screening energy range εsc on the layer
shown in red, which we label as i = 0. This is expected to have
a positive effect on the coupling strength based on the transi-
tion temperature estimate in Eqs. (26) and (27). As a simple
proof-of-principle example, we show that this can occur if the
target i = 0 layer is distinct from the other layers. Experimen-
tally this may correspond to inserting a layer of a different
material with a higher standalone Fermi energy than that in the
other layers (it may also occur by targeted gating/doping or
naturally on a boundary layer). We do not specify a particular
experimental realization, but point out that it seems to be a
reasonable setup, as Fermi energies in different metals may
vary by almost an order of magnitude [36]. For a quantitative
description of the realistic metamaterial structures of this type,
we may need to consider complications associated with a re-
distribution of charges, induced surface potentials in different
layers due to tunneling, Volta barrier, etc. The form and shape
of Fermi surfaces in different materials may also play a role.

We however disregard these possible complications and
consider the simplified toy model instead, where both materi-
als have a circular electronic dispersion, ξ i

k = k2/2mi − E (i)
F ,

with the the electron gas on the zeroth layer having a distinct
Fermi energy E (0)

F and Fermi momentum k(0)F , while the other
layers are characterized by E (1)

F and k(1)F as shown in Fig. 6(b).
Denoting the bare Coulomb interaction matrix as Ṽ (i, j)

q , the

complete RPA-renormalized interaction V̌ (i, j)
q can be written

in the following dimensionless matrix form (defined in the
layer space parameterized by i and j):(

V̌q−1

)(i, j) = (
Ṽq−1

)(i, j) + δi, jq1
qζK (i	nζE ) + δi,0δ j,0Ξq,

(28)
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−0.015

−0.010
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μ̃
∗
−

μ̃
∗ 2
D

μ̃
∗
−

μ̃
∗ 2
D

(a)

(b)

(c)

(d)

FIG. 6. Engineered enhancement of superconductivity in a lay-
ered electron gas. (a) Setup of an infinitely large layered electron
gas with interlayer distance a the layer having distinct properties is
shown in red. (b) Electron properties on different layers: we assume
massive dispersions but with the same Fermi momentum. Coupling
constant μ̃∗ in (c) s-wave and (d) d-wave (orange) channels as func-
tion of ζE for different electron mass ratios. The interlayer distance
and Wigner-Seitz parameters are respectively chosen to be a = 1/q0,
rs = 1. The additional pairing parameters are λ = 1, ω0 = 0.1EF .

where Ξq = q0
q(i	n) − q1
qζK (i	nζE ), ζE = E (0)
F /E (1)

F ,
ζK = k(0)F /k(1)F and q0, q1 are the Thomas-Fermi vectors of
the i = 0 and the rest layers, respectively. The first two terms
to the right-hand side of Eq. (28) represent the inverse of
the Coulomb interaction matrix in an infinite system of iden-
tical layers henceforth denoted as (V−1

q )(i, j) ≡ (̃V−1
q )(i, j) +

δi, jq(1)
qζK (i	nζE ). The matrix inversion in Eq. (28) can be
performed using the Sherman-Morrison formula [37]:

V̌q(i, j) = Vq(i, j) − Ξq
Vq(i,0)Vq(0, j)

1 + Vq(0,0)Ξq
. (29)

We thus expressed the interaction Eq. (28) in terms of the
Coulomb propagator of a translationally invariant system. The
latter can be straightforwardly found in Fourier space. In
particular, for the interaction on i = 0 layer we get

V̌q(0,0) = Vq(0,0)

1 + Vq(0,0)Ξq
. (30)

We now calculate the coupling constant induced by this in-
teraction. We employ the following parametrization ζK =√

ζEm1/m0 and vary only the ζE parameter for different

electron mass ratios. Larger values ζE correspond to the lower
value of the Fermi and screening energies εsc of i �= 0 layers.
Based on the qualitative analysis in Sec. IV we thus expect to
increase the coupling strength on i = 0 layer. Numerically ob-
tained coupling constant μ̃∗ is shown in Figs. 6(c) and 6(d) for
pairing in s- and d-wave channels, respectively. In case of the
d-wave channel the additional enhancement of the coupling
constant is found for all values ζE > 1. In the s-wave channel
at low values of ζE we find that the layering is decreasing
μ̃∗. We also find that higher values of ζE tend to increase
the coupling strength in accord with the qualitative discussion
above. As a result we find that there is a threshold value of
ζE above which the engineered layered structure enhances
the electron pairing. In particular, for the electron mass ratio
m1/m0 = 3 the threshold is ζE ≈ 3. At smaller electron mass
ratios the enhancement is expected to occur at larger values
of ζE .

In conclusion, in this section we studied the plasmon-
assisted pairing in layered metals. We found a significant
enhancement in the d-wave channel in the case of a perfectly
regular metallic array. We also provided a way to engineer the
plasmon environment in a layered metal such as to enhance
Cooper pairing of electrons in both s- and d-wave channels.

VI. CONCLUSIONS

The interplay between Coulomb interactions and su-
perconductivity has been studied since the early days of
superconductivity research. This includes numerous studies of
the effect of plasmons on phonon-mediated superconductivity
and also scenarios of plasmon-mediated superconductivity.
It is therefore somewhat surprising that a standard Migdal-
Eliashberg treatment of plasmons in layered materials, of
obvious interest to the cuprates for example, has not been
performed until this work. Here, we systematically studied
various effects of plasmons in layered structures on super-
conductivity using both full Migdal-Eliashberg theory and
qualitative arguments, which allowed us to develop useful
intuition.

While we find neither an enhancement of s-wave pairing
nor a plasmon-only pairing in hyperbolic structures, we do
find a surprising effect of a sizable enhancement of d-wave
pairing there. What it implies is that given a d-wave intrin-
sic superconductor (e.g., thin superconducting film), layering
such films would lead to a significant enhancement of Tc.
Furthermore, we point out that the “simple” layering is not
the only possible way to affect the plasmon physics, and show
that realistic paths exist to bootstrap both conventional s-wave
and unconventional superconductivity to higher temperatures
by engineering more favorable plasmon dispersions.

Apart from a possible connection to the layered oxide
superconductors, there are additional arguments for why such
a study is of interest and timely. Namely, there has been
much interest [38–45] recently in engineering electromagnetic
environment [46,47] in metamaterials and using cavities to
achieve an enhancement of superconductivity. Of particular
note are a series of works by Smolyaninova et al. [27,28],
where a clear and significant enhancement of both transition
temperature and critical field has been observed in fabri-
cated aluminum/aluminum oxide layered structures. It was
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speculated that this could happen because of the anomalous
hyperbolic plasmon dispersion, which may mediate supercon-
ductivity. The present work seems to rule out this scenario.
This negative result however points towards phonons as a
“culprit.” In particular, related hyperbolic phononic modes are
of interest and will be discussed in a separate study.
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APPENDIX A: ANALYTICAL SOLUTION

In this section we provide an exact solution of the gap
equation in the case of a simplistic model, where the energy-
dependence of the interaction is separable and is a product of
two step-functions–a “square-well” model.

a. “Square-well” model

In order to get an analytical estimate of the superconduct-
ing transition temperature we assume the following separable
form of the interaction in Eq. (24): vm,n ≈ vnvm with vn =
θ (ε2sc − ε2n ). The gap equation becomes

φ(i, j)(iεn) = −μ

β

∑
m

(1 − σvnvm) fmφ(l )(iεm), (A1)

where we denoted fm = ∫ EF

−EF
dξk′/(ε2m + ξ 2

k′ ). We note that
since we work with dimensionless units, the Fermi energy is
EF = 1/4. Due to the separability of the interaction, we de-
fine A = ∑

n vn fnφ(i, j)(iεn) and B = ∑
n(1 − vn) fnφ(i, j)(iεn),

which form the closed set of equations:

A = − μ

β
(A + B)

(∑
fnvn

)
+

(∑
fnvn

)μσ

β
A,

B = − μ

β
(A + B)

∑
n

(1 − vn) fn.

These equations lead to the self-consistency equation, which
determines temperature condition:

1 =μ

β

(
σ − 1

1 + μ

β

∑
n (1 − vn) fn

) ∑
fnvn.

We now use the following relations:

T
∑
n

fnvn ≈ log
2eγ εscβ

π
,

T
∑
n

fn =
∫ EF

0
dξk

tanh βξk
2

ξk
≈ log

2eγEFβ

π
.

By substituting this form to the Migdal-Eliashberg equa-
tion Eq. (A1) and using (24) we readily find the transition
temperature assuming εsc 
 EF :

Tc = 1.134εsce
−1/μ∗

pl , (A2)

where

μ∗
pl = μ

(
σ − 1

1 + μ log EF
εsc

)
. (A3)

Superconductivity is only present if μ∗ > 0. We observe that
the Coulomb repulsion is strongly suppressed at the energy
scales of order εsc 
 EF [48]. Although the realistic interac-
tion potential (see main text) is more complex than the one
used in this Appendix, the qualitative arguments behind the
result here–Eqs. (A2) and (A3)–are universal. Specifically,
the transition temperature is primarily determined by two di-
mensionless parameters: σ (effective screening strength) and
εsc/EF (effective screening energy range).

APPENDIX B: PSEUDOPOTENTIAL METHOD

In this section we provide details on the pseudopotential
method, which we use to determine the effective pairing
strength. The derivation follows Ref. [23]. We start with the
gap equation Eq (25):

φ(l )(iεn) = −T
∑
m

V (iεn − iεm) fmφ(l )(iεm),

where fm = ∫ EF

−EF
dξk′ 1

ε2m+ξ 2
k′
. We now introduce a low-energy

frequency cut-off function vn = θ (ε2c − ε2n ) with the assump-
tion εc 
 εsc 
 EF :

φ(l )(iεn) = − T
∑
m

V (iεn − iεm) fmvmφ(l )(iεm)

− T
∑
m

V (iεn − iεm) fm(1 − vm)φ
(l )(iεm).

With this, we now integrate out the high-energy modes and
find,

φ(l )(iεn) = −T
∑
m

Veff
n,m fmvmφ(l )(iεm) (B1)

with Veff obeying the equation,

Veff
n,m = V (iεn − iεm) − T

∑
n′

V (iεn − iεn′ )(1 − vn′ )Veff
n′,m.

(B2)

If the cut-off energy is low enough, we can safely assume
φ(l )
n ≈ φ(l )(iεn=0) and Veff

n,m ≈ Veff
0,0. The critical temperature is

then

T ≈ 2eγ εco

π
e

1
V eff
0,0 ≈ 1.134εcoe

1
V eff
0,0 .

We thus identify the term (−V eff
0,0 ) as the Coulomb pseudopo-

tential at energy εc. In this approach, the problem of finding
the critical temperature reduces to solving Eq. (B2). The latter
represents a system of linear equations, which can be solved
numerically. An estimate can be obtained for the separable
potential in analogy with Appendix A.

APPENDIX C: NUMERICAL PROCEDURE

We now discuss the specifics of the numerical approach
for resolving the Migdal-Eliashberg equations, as represented
in Eq. (12). It is important to note that the gap function is
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FIG. 7. (a) Coulomb pseudopotential for a → ∞. (b) effective interaction K expressed in energy Eq. (D2) for rs = 2.5.

subject to frequency variation and does not reduce to zero even
at elevated frequencies:

φ
(i, j)
k (±i∞) = −T

∑
m

∫
k′dk′ φ

(i, j)
k′ (iεm)∣∣G−1
k′ (iεm)

∣∣2 Ṽ k,k′ . (C1)

This implies that we cannot impose a simple frequency cutoff
in the integral equation. Here instead we introduce a cut-
off, ε∗, above which the gap function is assumed constant
and reaches its infinite-frequency value φ

(i, j)
k′ (i|εn| > εε∗ ) =

φ
(i, j)
k′ (i∞). The value of ε∗ is chosen to ensure the conver-

gence of the iterative procedure and by the condition that a
further increase of ε∗ does not affect the transition temperature
withing desired accuracy.

With the above in mind we now describe the iterative
numerical procedure for solving Eqs. (12), (14). We start
with the iterative procedure with the Green function for a
free Fermi gas; i.e., �

(0)
k = 0. Using the decomposition into

odd- and even-frequency parts described in Sec. III A, we
numerically apply the integral operator on the right-hand side
of Eq. (14) n times and find �

(n)
k . It is typically sufficient

to perform approximately 10 iterative steps until the differ-
ence |�(n)

k − �
(n−1)
k | 
 |�(n)| is negligible and the iteration

scheme converges. Once normal-state self-energy is obtained
we can solve the gap equation Eq. (12). A solution of this
equation determines the critical temperature Tc. Equivalently,
at the transition temperature the discretized integral operator
on the right-hand side of Eq. (12) has eigenvalue 1. We find
the transition point by changing temperature as a parameter of
the integral kernel.

APPENDIX D: KIRZHNITS-MAKSIMOV-KHOMSKII
THEORY

Here we briefly discuss the commonly-used approach
by KMK to plasmon-induced superconductivity based on
Ref. [19]. This theory deals with the gap equation in the real
frequency domain as opposed to the Matsubara formalism
in the conventional Eliashberg formulation presented in the
main text. The gap equation in the KMK approach is of the
Bardeen-Cooper-Schrieffer form:

�p = −
∫

dξkKp,k
tanh βξk

2

2ξk
�k, (D1)

where the gap is defined as �p ≡ 2εp
∫ ∞
0 dx f (x, p) and f

is the analytical continuation of the pair propagator Fq,n =
− ∫

eiεnτ 〈ψ̂ (i)
q (τ )ψ̂ (i)

−q(0)〉. The kernel of the KMK gap equa-
tion (D1) is given by

Kp,k = V (0)
p,k − 2

∫ ∞

0
dε

ImV R
p,k (ε)

ε + |εp| + |ξk| , (D2)

where V R
p,k is the analytically continued interaction Eq. (4).

KMK have derived Eq. (D1) by performing the analytical
continuation in the Eliashberg gap equation (22) and ne-
glecting several terms that are not singular at the transition
point. However, these terms will still be important for correct
determination of the transition temperature, as was argued
in Refs. [20,21]. The transition temperature in Eq. (D1)
can be estimated analytically assuming the separability of
the interaction kernel K analogously to Appendix A. We
solve Eq. (D1) numerically Takada [17]. The typical pairing
strength is shown in Fig. 7. We find that the KMK approxima-
tion severely underestimates the pairing strength compared to
the Migdal-Eliashberg equations. We, therefore, conclude that
the KMK approach is quantitatively unreliable.

APPENDIX E: EFFECTS OF DISORDER IN
LAYER POSITIONS

In this section we study the effect of disorder in layer
positions on the superconducting transition. For that we take
the bare Coulomb interaction matrix as Ṽ (i, j)

q = e−ai, j q|i− j|/q,
where ai, j is the set of random interlayer spacings. In the
following we will treat Ṽ (i, j)

q as a matrix in the layer-index
space as in Sec. VB. For the inter-layer spacings we assume
ai, j = a(0)i, j + aδ

i, j, where aδ
i, j is a uniformly distributed ran-

dom variable aδ
i, j ∈ [0, δ] and a(0)i, j is the minimal interlayer

distance. Adopting the formalism of Sec. VB, we write the
interaction matrix in the absence of translational symmetry
along the z axis as(

V−1
q

)(i, j) = (̃
V−1

q

)(i, j) + δi, jq0
q(i	n). (E1)

Below we find the transition temperature corresponding to
Eliashberg equations with interaction (E1).

a. Plasmon localization

Plasmon modes in a disordered layered gas correspond to
the eigenvalues of the matrix (E1). We denote them as {λ} and
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(a)

(b)

FIG. 8. Anderson localization of plasmons. (a) Typical plasmon
distribution for the lowest eigenvalue λ = 1 [Eq. (E2)], (b) Typical
static interaction V (0) as function of the electron gas Wigner-Seitz
density parameter rs for eight layers: the random layer spacing ai, j =
a(0)i, j + aδ

i, j shown in blue with the average spacing a
(0)
i, j = q−1

0 and δ =
q−1
0 , regular array result shown in orange. Inset shows the interaction
as function of the imaginary frequency 	n. The infinite layer number
is shown in green color for comparison.

the corresponding eigenvectors as {ζ (λ)
j }:∑

j

V (i, j)
q (i	n)ζ

(λ)
j = ελζ

(λ)
i . (E2)

Here, the eigenvalues are functions of both the in-plane mo-
mentum q and the frequency i	n: ελ = ελ(i	n). The typical
eigenvector of Eq. (E2) is shown in Fig. 8(a), where performed
the analytic continuation to real frequencies i	n → ω + i0+.
We observe Anderson localisation [49] of plasmons in the
apical direction [50] for N = 50 layers. In Fig. 8(b) we study

0.0 0.1 0.2 0.3
w/a

0.97

0.98

0.99

1.00

T
c/

T
c(

w
=
0)

FIG. 9. Superconducting transition temperature as function of
layer thickness. Simulation parameters are chosen as a = 1/q0, rs =
1, λ = 1.

the effective interaction between layers close to the center
of the sample. More precisely, we consider the approach of
Sec. (IV) for the disorder interaction given in Eq. (E1). As
can be seen in Fig. 8(b) the interaction is barely affected by the
disorder. We therefore conclude that disorder does not modify
the critical temperature.

APPENDIX F: FINITE THICKNESS OF LAYERS

In this section we consider the setup with the finite-
thickness layers [51,52]. In this section we follow the
approach in Ref. [53]. For a given thickness w of each layer
we now need to keep the quantization of electron wavefuntion
along the z direction. The generalization of electron polariza-
tion operator can be written as


(w)
q

(
i	m, z, z′

) = T

A

∑
k,n

∑
l,l ′

ζl (z)ζl (z′)

iεn − εk − k2l
2m

× ζl ′ (z)ζl ′ (z′)

iεn + i	m − εk+q − k2
l′

2m

,

where ζl (z) ≡ √
2/w sin(klz) denotes the lth subband mode

profile of the electron gas and kl = π l/w with l ∈ Z. Here
we restrict to the case when layers are sufficiently thin and
restrict our consideration to the lowest-energy subband:


(w)
q

(
z, z′

) ≈ ζ 2
1 (z)ζ

2
1

(
z′
)

q, (F1)

where 
q is the usual 2D polarization operator. It is now
convenient to project the Coulomb interaction onto the lowest
subband wave function. In particular, for the bare interaction
we have

Ṽ (i, j)
q (w) ≡ 1

q

∫
dzdz′e−q|z−z′ |ζ 2

1 (z + ai)ζ 2
1

(
z′ + a j

)
.

This integral can be taken analytically. In particular for i �= j
we find

Ṽ (i �= j)
q (w) = Ṽ (i �= j)

q (w = 0) × 16π4e−wq(ewq − 1)2

w2q2(w2q2 + 4π2)2
. (F2)

The term i = j is more cumbersome and we will not repro-
duce it here. We now transform into Fourier space with respect
to the layer index and get

Ṽq,qz (w) =
∑
j �=0

e−iqz jṼ ( j,0)
q (w) + Ṽ (0,0)

q (w)

= 1

q

sinh aq

cosh aq − cos qz

16π4e−wq(ewq − 1)2

w2q2(w2q2 + 4π2)2

+ Ṽ (0,0)
q (w) − 1

q
× 16π4e−wq(ewq − 1)2

w2q2(w2q2 + 4π2)2
.

We this we can now repeat the same procedure of the RPA
renormalization of the interaction:

Vq,qz (i	m,w) = 1

Ṽ−1
q,qz (w) + q0
q(i	m)

.

As shown in Fig. 9 the effect of layer thickness on the transi-
tion temperature is insignificant under our approximations.
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