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Abstract

Glasses have the interesting feature of being neither integrable nor fully chaotic. They
thermalize quickly within a subspace but thermalize much more slowly across the full
space due to high free energy barriers which partition the configuration space into sec-
tors. Past works have examined the Rosenzweig-Porter (RP) model as a minimal quan-
tum model which transitions from localized to chaotic behavior. In this work we general-
ize the RP model in such a way that it becomes a minimal model which transitions from
glassy to chaotic behavior, which we term the “Block Rosenzweig-Porter” (BRP) model.
We calculate the spectral form factors of both models at all timescales larger than the
inverse spectral width. Whereas the RP model exhibits a crossover from localized to er-
godic behavior at the Thouless timescale, the new BRP model instead crosses over from
glassy to fully chaotic behavior, as seen by a change in the steepness of the ramp of the
spectral form factor.
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1 Introduction

Random Hermitian matrices provide a simple model for the energy levels of a wide variety of
quantum systems, including complex nuclei [1-6], systems with a chaotic classical limit [7-
12], strongly interacting quantum field theories [13-17], and much more. The wide preva-
lence of random-matrix-like energy levels is known as random matrix universality [7,18,19],
and it is one of the key manifestations of quantum chaos. Given an ensemble of Hamiltonians
{H}, one way to characterize random matrix universality is in terms of the statistical correla-
tions of eigenvalues. Letting p(E) denote the density of eigenvalues of a particular random
H, then although the average density p(E) is not universal, the pair-correlation p(E)p(E’)
does turn out to be. Indeed, one finds that the pair-correlation is closely related to the pair-
correlation of a Gaussian random matrix of the appropriate symmetry.

However, while many systems ultimately exhibit random-matrix-like behavior at the finest
energy scales, i.e. for sufficiently small E — E’, real systems typically have additional structure
in their energy spectrum which is not random-matrix-like. This structure may be eventually
washed out at the finest energy scales, but it does cause a deviation from the random matrix
behavior of p(E)p(E’) when E — E’ is of some intermediate size. Perhaps the simplest such
structure occurs when the Hamiltonian breaks up into approximately decoupled blocks labelled
by some almost-conserved quantity. This situation is common and is broadly related to the
presence of slow dynamics, e.g. a slowly diffusing charge or almost-frozen glassy dynamics. In
the simplest case, each block is statistically independent and the blocks are connected by some
additional weak perturbations. Then as a function of E — E’, the pair-correlation can exhibit
a crossover from multiple small random blocks to a single large random block. Recently, a set
of effective theories have been formulated to describe this crossover [20]. Here we present
a new solvable model in which this crossover can be analytically verified and studied. The
results are consistent with Ref. [20], but they also offer new insights into various regimes.

This new model is a generalization of the unitary Rosenzweig-Porter (RP) model, which
is itself a slight generalization of the original model constructed by Rosenzweig and Porter to
describe complex atomic spectra [21]. The RP Hamiltonian is

A
H—A+WV, (1

where A is a diagonal matrix with independent and identically distributed elements, and V
is a random matrix drawn from the Gaussian Unitary Ensemble (GUE) [22] whose matrix
elements have unit variance. N is the size of the Hilbert space. Several studies [23-29,29-37]
have examined this model at different values of y. The RP model has also been generalized in
several different ways to create a family of interesting random matrix ensembles [38-44].
Motivated by the problem of many-body localization, Kravtsov et al. [27] studied this RP
ensemble as a simple random matrix model with both localization and ergodicity-breaking
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Figure 1: Schematic representation on a log-log scale of the unfolded SFF for the RP
model in each of the three identified phases. The lower gray curve is the GUE SFF
while the upper gray curve is the Poissonian result.

transitions. Consistent with previous results [23-26, 45], they found Poissonian statistics for
y > 2, indicating Anderson localized behavior, and GUE statistics for y < 1, indicating chaotic
behavior. They found that intermediate values of y led to a non-ergodic extended phase in
which eigenstates are neither localized nor fully ergodic.

One useful tool for studying spectral statistics is the unfolded spectral form factor (SFF),
which is the Fourier transform of the unfolded two-point correlation function. Unfolding refers
to the process of rescaling the spectrum in such a way that the local mean level spacing becomes
unity, bringing the universal features of the SFF to the fore. Ref. [27] provides a calculation of
the RP SFF for all y > 1 at the Thouless timescale, i.e., the timescale at which random matrix
statistics first appear. Other timescales are then examined by rescaling time in this result.

We can form schematic expectations for the behavior of the RP SFF at different values of
y by comparing the Thouless time to the two other cardinal times: the inverse spectral width
w™! and the Heisenberg time, which is the inverse mean level spacing. These schematics are
shown in Fig. 1. In the figure u/N is the unfolded time, that is the real time divided by the
level density. When the Thouless time is smaller than the inverse spectral width, which occurs
when y < 1, we expect GUE statistics indicating chaotic behavior. When it is larger than the
Heisenberg time, which occurs when y > 2, we expect Poissonian statistics indicating localized
behavior. If the Thouless time is larger than the inverse spectral width but smaller than the
Heisenberg time we expect to see a crossover between the two behaviors. Phase transitions
occur when the Thouless timescale coincides with one of the cardinal timescales.

As an initial result of the present work, we directly calculate the SFF of the RP model at
all timescales larger than the inverse spectral width. This approach has the added benefit of
more closely paralleling the calculation of the SFF for the new model we examine. The result
is shown in Eq. (66). We find that this result does follow the schematic expectations shown in
Fig. 1 and is in good agreement with the numerical results we obtain. All these findings are in
agreement with Ref. [27].

In the bulk of this work, we generalize the RP model to obtain a random matrix model
which transitions from chaotic to glassy behavior, where glassiness is identified by the presence
of multiple thermalization timescales. This is accomplished by redefining A in Eq. (1) to be
the block-diagonal matrix

p
A=Dav, 2)
i=1
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where each block A®) is an independent GUE matrix of size M = N /P whose elements have
variance M ™! (so that the eigenvalues of each A®) are finite at large M). We call this gen-
eralization of the RP model the Block Rosenzweig-Porter (BRP) model. Because of the the
normalization of each A®) the system thermalizes in O(1) time within each block but can fully
thermalize only at times diverging with N (if at all). Due to the different structure of the A
matrix, the BRP model will have a localized phase different from that of the RP model. In this
phase the system will be confined to the subspaces corresponding to the blocks of A instead of
individual states.

This generalization of the RP model is motivated by our recent work examining the SFF of a
canonical quantum spin glass model [46]. In that work we found that the SFF has a linear ramp
at times sub-exponential in the system size, as would a chaotic system. However, the ramp is
steeper by a factor of the number of distinct metastable states. This enhancement of the ramp
is a hallmark of glassy behavior. It indicates that, at these early timescales, the Hamiltonian
can be viewed as a direct sum of independent random matrices. However, it has been argued
that, for appropriate values of the coupling between spins and at a sufficiently late timescale,
the system will escape from the metastable configurations and fully thermalize [47-49]. At
this timescale we would expect the SFF to experience a crossover from the enhanced ramp to
the GUE ramp. Due to the challenge of calculating the SFF of canonical quantum spin glass
models at late times with current methods, we turn to the BRP model as a simpler model of a
quantum glass for which the SFF can be calculated at late timescales and the crossover from
glassy to chaotic behavior can be seen.

As we did for the RP model, we form schematic expectations for the behavior of the SFF
at different values of y by comparing the Thouless time with the other cardinal times. These
schematics are shown in Fig. 2. When the Thouless time is less than the inverse spectral width,
which we find occurs when y < 1, we expect GUE statistics indicating chaotic behavior. When
it is larger than the Heisenberg time, which we find occurs when y > 2, we expect the statistics
of uncoupled GUE blocks, indicating localization within the blocks. Note that in this case the
SFF reaches its plateau value at a time earlier than the Heisenberg time. This is the block
Heisenberg time, which is the inverse mean level spacing for a single block of A. This means
that the block Heisenberg time is smaller than the full Heisenberg time by a factor of P, the
number of blocks. The block Heisenberg time is an additional cardinal time in the BRP model.

If the Thouless time is larger than the inverse spectral width and smaller than the Heisen-
berg time we expect to see a crossover between the block localized and chaotic behaviors at
the Thouless timescale. Further, if the Thouless time is smaller than the block Heisenberg time,
which occurs when y < 1+ d where d = logy M, this crossover will occur before the SFF can
reach its plateau value at the block Heisenberg time. If the Thouless time is greater than the
block Heisenberg time, which occurs when y > 1 + d, the SFF will reach its plateau value at
the block Heisenberg time, drop down to the GUE result at the Thouless timecale, then reach
the plateau value again at the Heisenberg time.

Our primary result is the calculation of the SFF of the BRP model at all timescales larger
than the inverse spectral width, which is O(1). This result is shown in Egs. (132)-(133). It fol-
lows the schematic expectations shown in Fig. 2 and is in good agreement with the numerical
results we obtain. At the Thouless timescale, if it is not of the same order as the Heisenberg
time, the SFF decays exponentially over time from its glassy result to the GUE SFE as shown
in Eq. (155). In the case where the Thouless time is of the same order as the Heisenberg time,
a more complicated crossover behavior emerges, shown in Egs. (156)-(157).

Our results indicate that for y < 1 the system will immediately thermalize while for y > 2
the system will always remain localized within blocks. For intermediate values of y the system
will initially be confined to a single block, but will escape and thermalize at the Thouless time.
We also find a transition at y = 1 +d. This transition has an important interpretation in terms
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Figure 2: Schematic representation on a log-log scale of the unfolded SFF for the
BRP model in each of the four identified phases. The lower gray curve is the GUE
SFF while the gray curve above it is the SFF for completely uncoupled GUE blocks.

of the eigenstates. It is the point at which the eigenstates become fully delocalized across the
Hilbert space.

The remainder of this work is organized as follows. In section 2 we review the spectral form
factor’s definition, features, and role as a diagnostic of quantum chaos. In section 3 we outline
the aspects of the construction of the SFF which are common to both the RP and BRP models
and discuss the unfolding procedure. In section 4 we examine the RP SFE discussing the
results of previous works and directly calculating the SFF at relevant timescales. We compare
our analytical results with numerics. Section 5 contains the bulk of our results, an examination
of the BRP model and the calculation of its SFE, again comparing to numerical results. Finally,
we conclude with section 6.

2 Review of the spectral form factor

The spectral form factor (SFF) has a long history as a diagnostic of quantum chaos [7,18,22].
Examples of random-matrix-like SFFs in chaotic systems appear in numerous areas of physics,
from nuclear systems [6, 50] to condensed matter [51-53] to holographic theories [11, 12].
The SFF diagnoses whether energy levels repel as they do in random matrices [51], have
independent Poissonian statistics [54], or have some more exotic behavior [55-57]. The SFF
can be written as

SFF(¢, f) = |ule Ht £ (H)]|?, 3)
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Figure 3: A log-log plot of the disorder-averaged SFF for the Gaussian unitary en-
semble (GUE). The matrices in this ensemble have dimension N = 5000. The SFF
was computed numerically by exactly diagonalizing five hundred realizations. The
three regimes of the SFE—dip, ramp, plateau—are each labeled.

where f is a filter function used to pick an energy band of interest, and the overline denotes
a disorder average over an entire ensemble of Hamiltonians.
The SFF can also be expressed as the two-point function of the density of states. Defining

p(E.f)= ) 6(E—E,)f (E,)=tr(6(H—E)f (H)), @)

we have

SFE(t, f) = / dE\dEyp(Ey, f)p(Ey, f )eitBrE )

As a two-point function, the SFF can be broken down into connected and disconnected com-
ponents. These components have very different behaviors, as discussed below.
For random-matrix-like systems, the spectral form factor has three regimes of interest.

* The “dip”, also known as the slope, occurs at early times. It comes from the disconnected
piece of the SFF (and thus its precise shape is non-universal and depends on the details
of f and the thermodynamics of the system). Its downward nature reflects a loss of
constructive interference: at t = 0 the terms in tr[e 't f (H)] are all positive, but the
different terms of tre *'* acquire different phase factors as t increases.

* The “ramp” occurs at intermediate times. It is arguably the most interesting regime, and
marks the beginning of the universal behavior in the connected spectral form factor. In
the canonical matrix ensembles, it is a consequence of the result [22]

oo (54 )0 (e 3] 2lo (54 2)]elo (- 2]~ ©

where b = 1, 2, 4 for the orthogonal, unitary, and symplectic ensembles respectively.
The fact that the right hand side is negative is a manifestation of level repulsion [50].
Taking the Fourier transform of Eq. (6) with respect to w gives a term proportional to t
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for the connected SFE Such a linear-in-t ramp is often taken as a defining signature of
quantum chaos.

The exact coefficient of the ramp can tell us a lot about a quantum system. For instance,
if H is not a GUE matrix but the direct sum H; @ H, of two GUE matrices, the ramp will be
enhanced by a factor of two. This enhancement shows up in realistic systems such as the
Bunimovich stadium [58,59], which have different sectors of their Hamiltonian which
behave differently under reflection symmetry. It has recently been shown [46] that at
times sub-exponential in system size, all-to-all spin glasses exhibit an enhancement of
the ramp equal to the number of effective “sectors”, i.e., regions of configuration space
rendered dynamically disconnected by large energy barriers. This work serves as an
extension of that result for a toy model of spin glasses, going out to late times.

* The “plateau” occurs at late times. It is a signature of the discreteness of the spec-
trum. It is part of the connected spectral form factor and is completely universal to all
systems, whether thermalizing, integrable, glassy, or many-body localized [60,61]. At
times much larger than the inverse level spacing or “Heisenberg time”, one expects that
all off-diagonal terms in the double-trace of the SFF average to zero, meaning that

SFF(t,f) =) e {EnEtf (B, )f (E) ~ ) f (E,)?. 7)

mn

For integrable systems, the plateau is reached very quickly with little to no ramp
regime [54, 56, 57], whereas for chaotic systems the plateau isn’t reached until a time
exponential in system size.

In the bulk of this paper we calculate the unfolded connected SFF for the RP and BRP
models at all timescales larger than the inverse spectral width, thus we capture both the ramp
and the plateau regimes. We find that when the sectors of the BRP model are uncoupled the
ramp of the SFF is enhanced by a factor of the number of sectors. As the coupling strength is
increased there will be a crossover to the regular ramp at the Thouless timescale.

3 Construction of the spectral form factor

In this section we lay out the initial steps of the construction of the SFF which are common to
both the RP model and the new BRP model. In fact, the results of this section are applicable
to any Hamiltonian which is perturbed by a GUE matrix. Both of the models can be expressed
as a Hamiltonian matrix of size N with the form

H=A+V, (8)

where the spectrum of A is centered at 0 and has a width that is O(1) with respect to N. V is
a random GUE matrix drawn from the distribution

(V) ~ex (—i tr Vz) o= A—Z 9
pV p 20_ > - NY .
The exact details of A will depend on whether we are working with the RP or BRP ensemble,

but are unimportant at this initial stage.
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3.1 The joint probability density function

Our first step is to find the joint probability density function (JPDF) of the eigenvalues of the
Hamiltonian H. We follow the method of Kunz and Shapiro [45]. For the moment we will
hold A constant. The probability distribution of H is then

_ 1 2, 2 1 T
pr(H) = py(H—A) ~ exp [—g Zl: (E? + & )] exp (; trAUEU ) , (10)
where {a;} are the eigenvalues of A, {E;} are the eigenvalues of H, E = diag(E, ..., Ey) is the
diagonal matrix similar to H, and U is the unitary matrix which diagonalizes H.

We now make the change of variables H — {U, E}. The Jacobian of this change is A?(E),
where A(E) = ]_[i> j(Ei — E;) is the Vandermonde determinant. The JPDF is

p(E) ~ A%(E) exp [—% Z (B2 + a?)] /dUexp (é trAUEU"”) , (11)

i
where dU is the Haar measure over the unitary group U(N). We can evaluate the integral over
U using the Itzykson-Zuber integral identity [14]

1 . detexp(q;E;/0)
d —trAUEU" | ~ . 12
/ Uexp(gtr U U) AAE) (12)
Applying this identity, we find that the JPDF is
_ AE) 1 2., 2 (a EJ)
P(B)=c(o.N)Z e [ 2UZ(E +af) |detexp| —= |, (13)

with ¢(o,N) to be determined by normalization.
To normalize we calculate

:/dE p(E) :M dE A(E)eXp[_%Z(EiZ+a?)]detexp(afj

A(a) )

i

N ETL’ 1
:c(z(ﬁ\)’) dE A(E)exp[—% Ei (Ei2+ai2)]ﬁ§5 51gn(7r)| |exp(a ())
=c(o, N)_A( ) dE A(E)exp[ o tr(E —a) :|,

(14)
where a = diag(ay,...,ay). In the second line above Sy is the set of permutations of N
elements. The third line follows because A(E) is antisymmetric under all transpositions. We
now use the identity (proven in the appendix of [45])

/ dE A(E)exp [—zi tr(E — a)z] = A(Q)(2no)V/?, (15)
o
to find that the normalization factor is
c(o,N)= ]%(27’[0‘)_]\]/2. (16)

We now let A also be a random matrix. From Egs. (13) and (16) we see that, for any
function W (E) which is symmetric in the eigenvalues of H, the ensemble average is

W(E)z(Zna)_N/2<ﬁ / dE W(E)A(E)exp[—% tr(E—a)2]>, (17)

where the angle brackets indicate that the average over the distribution of A still needs to
be performed. Fortunately the SFF and the correlation functions examined below are such
symmetric functions.
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3.2 Correlation functions

We now examine two correlation functions which we will use to construct the SFE The first is
the Fourier transform of the level density

Ci(t) = eithi. (18)

k

Averaging with respect to the JPDF and making use of Eq. (15) yields

— g2 - Ala+6,7) 2 . T
_ —ot?/2 itag k _ ,—ot?/2 ita
Ci(t)=e < E e —(a) >—e < E e | |(1+ak aj)>, (19)

k k j#k

where T = ito and §, is the projection matrix onto the k™ dimension. In order to average
over the eigenvalues of A we rewrite this as

— e=ot’/2 dz T
C = — elt? 1 20
1(0) T c2ni€ <U( +z—a-)>’ (20)

J

where C is a rectangular integration contour of infinitesimal width in the imaginary direction
which encompasses the real axis. Using this form is advantageous because each term within
the angle brackets now depends on only a single eigenvalue of A.

We now consider the Fourier transform of the two-point correlation function (excepting
the k = [ terms)

Cy(t) = Z eit(Ex—E)) (21)
kL

Again, averaging with respect to the JPDF and using Eq. (15) yields

Cy(t)=e°% <Z elt(a—a) A(a+1(6x—6))) >

A(a)
K (22)
2
= ¢t e“(ak—al)[l—(+) ] (1+ ! ) (1— ! ) .
<kZ7él a—a—7T _!;I! ak—aj !;l[ al—aj
We can also write this in terms of contour integrals as
— e [ dgz dz’ . T 2 T T
Cy(t)=— — —”(Z_Z)[l—(—)] 1+ 1-— . (23
2(0) T2 7%21‘& ch'e 2/ —z—7 U z—a; 2/ —a; (23)
3.3 The unfolded spectral form factor
We now combine the correlation functions considered above to form the function
1 ,— — 2
)=~ (Co-[aol). (24)

which is the connected SFF apart from the missing k = [ terms in C,(t). We will now demon-
strate how C(t) can be used to find the unfolded SFE We note that

C(t) = —1% /dz dz’ etz (p(z)p(z’) —po(z,2") + Z 6(z—E)d(z’ — Ek)) , (25)
k

p(z)=D 8z —Ep), pa(z,5) =D 6G—E)5(E—E). (26)
k k,l
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We now unfold by making the change of variables

N _ Y
(z,Z)—xi—zp(x), 27)

t=p(x)T. (28)

In these new variables x is the central energy and y is the distance between the energies in
units of local mean level spacings at the central energy. With this change we find

C(t)= /dx p(x)(K(x,T)—1), (29)

Ko, T) = — / dy Y(x,y)e™, 30)

)= g 2 (5 )~ ) e )| @

where p(x) = p(x)/N is the probability distribution function, Y (x,y) is the unfolded con-
nected two-point correlation function, also called the unfolded two-point cluster function, and
K(x, T) is the unfolded connected SFE Our approach, whichever model we are examining, will
be to put C(t) in the form of Eq. (29) and extract the unfolded connected SFE which we will
simply call the SFF going forward.

For the models we study in this work it is reasonable to assume that Y (x, y) vanishes in
the large N limit for y > 1, so we can restrict the interval of integration in Eq. (30) to be
of order 1. For these values of y the disconnected part of Y (x, y) will tend to 1, thus it will
not contribute to the SFF for T # 0. In the calculations that follow we will therefore neglect
the disconnected piece of the two-level cluster function. This is an advantage of the unfolding
procedure; we no longer need to worry about subtracting out the disconnected part in order
to observe the universal features of the SFE We will also find that if we unfold the coupling
parameter A as well, Y(x, y) and the SFF will become independent of the center energy x.
So, although C(t) is not universal due to its dependence on p(x), the unfolded connected
two-point correlation function and the SFF will be universal.

It will be helpful to use the time variable u = N|T| = |t|/p(x), so u is of the same order
as the real time t. This means that u is the time unfolded by the level probability density
instead of the level density. The modulus may be taken since the SFF is symmetric in time.
Because the SFF is the Fourier transform of the two-point cluster function, at time u it probes
the correlations between energy levels with separations on the order of u™!. For this reason
we consider only timescales larger than the inverse spectral width.

4 The Rosenzweig-Porter model

The Hamiltonian matrix for the RP model has the form of Eq. (8), with the additional condition
that the eigenvalues of A are all independent and identically distributed. We can consider A to
be diagonal such that

A=diag(ay,...,ay), (32)

where each q; is independently drawn from some distribution p(a) with a variance of order 1
inN.

We can view this as an Anderson model [62] of N sites with independent random on-site
potentials and all-to-all random couplings on the order of N™"/2. From Fermi’s golden rule,
we can determine that the tunneling rate from one of these sites is on the order of N'=". Thus

10
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the Thouless time, the time at which the system will escape a single site and random matrix
statistics first appears, is

tTh ~ NY_1 . (33)

The ergodicity-breaking transition occurs at the point where the tunneling rate is the same
order as the spectral width [32,48,49, 63], or, equivalently, when the Thouless time becomes
of the same order as the inverse spectral width. The spectral width of the GUE matrix V is on
the order of N(!=1)/2 [22], while the spectral width of A is of order 1. So the spectral width of
the RP model is

w~ maX(l,N(l_”/z) . (34

This indicates that the ergodicity-breaking transition occurs at y = 1. For all y < 1 the RP
model will exhibit GUE statistics.

The localization transition of the model, on the other hand, can be determined from the
Mott criterion [32, 49, 63, 64], i.e., when the number of sites in resonance with a given one
becomes finite at large N. For the RP model this number of sites is on the order of N~1/2,
indicating that the localization transition occurs at y = 2. Equivalently, we can understand the
localization transition as occuring when the Thouless and Heisenberg times are of the same
order. From our result for the spectral width we find that the Heisenberg time, which is the
inverse mean level spacing, is

theis ~ min(N, N(1+Y)/2) . (35)

The Thouless and Heisenberg times are of the same order when y = 2, which matches our
earlier reasoning for the localization transition through the Mott criterion. For y > 2 the
Thouless time is larger than the Heisenberg time. Since the SFF reaches its plateau value at
the Heisenberg timescale, there is no chance for random-matrix-like ramp to appear. The RP
model will behave as if H = A. That is, Poissonian statistics will emerge. This analysis informs
our determination of which values of y lead to which phase in the schematics of Fig. 1.

It’s clear from the above discussion that the region 1 < y < 2 is particularly interesting
because random-matrix-like behavior should be found, but only after a long period of time
has elapsed. This case in which the Thouless time is larger than the inverse spectral width
but smaller than the Heisenberg time is the nonergodic extended phase [27]. In this region
eigenstates are not localized, but they are not spread sufficiently to be ergodic. For these values
of y the calculation of the SFF is nontrivial because the behavior of the SFF depends not only
on v but also the timescale. Going forward we will assume that y > 1.

As a warm-up we calculate the Fourier transform of the density of states C;(t) to leading
order. Due to the independence of the eigenvalues of A we can simplify Eq. (20) as

. —ot?/2 i
G="° 95 97 g (2, )Y, 36)
T ¢ 2mi

1
gl(z,f)=1+7:<z_a/>, (37)

where a’ is any eigenvalue of A. C; (t) contains information about the average density of states.
Expanding with the binomial theorem, we find

N .
1— 1 2 dz N . 1 J
—Ci(t)= —e Ot /2 Ye itz ( ) iot ]—1< > . 38
N 1(0) Ne c277:ie JZ(; j (iot) z—a’ (38)

Note that we have divided by N to probe the average density of states but we have not per-
formed the unfolding procedure. We want to examine this quantity on the scale of the spectral
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width, so we let t be order 1. For y > 1, No goes to 0, meaning only the j = 1 term remains.

So
1— dz 1 o
_C t)= 7 itz — ita . 39
N 1) ch'e <z—a’> <e > (39
This means that the average level density is the same as the probability density of the eigen-
values of A [19].
As discussed above, we can neglect the disconnected contribution' so the unfolded SFF at
non-zero times is determined entirely by C,(t). In the RP model, Eq. (23) simplifies as

C_z(t):_e;a: é;—; c%eit(z_z,)[l_(ﬁ)z} [gs(z, 752", —)IV, (40)
vl 1) = i S
g2(2, 735", —7) <(1+z—a/)T(1 z’—il’)> ) (41)
:1+T(1—2,_2)(<2_a,>_<z/_a/>)'

Inserting Eq. (40) into Eq. (24) and neglecting the disconnected contribution, we obtain

We now make the change of variables

(z,2)=x =+ % —i(g,q")0", 43)

where q,q" = %1, indicating which leg of the contour C the variables are on. Note that this
definition of y differs from that of Eq. (27) by a factor of p(x), but it has the same scaling with
N and the argument for taking y to be order 1 still applies. This change is made purely for
convenience. With it we obtain

_ —O'tz d_)/ I NT 2 o .
cle)= (N )quq /2%1/27‘[1 y[ (y_l‘(q_q/)0+ +NT) ][gz(z,T,Z, Y.
(44)

4.1 The spectral form factor

Kunz and Shapiro [45] used the process outlined above to find the SFF wheny =2 and t ~ N
(for which the Thouless and Heisenberg timescales coincide). They found that, if the coupling
parameter is also unfolded by replacing A with A/p(x), the two-level cluster function and
the SFF become independent of the center energy x. Later Kravtsov et al. [27] generalized
this result to all y > 1 at the Thouless timescale. Additional timescales may be examined by
rescaling time in this result. We first review this result and then present our direct calculation
of the SFF at all timescales of interest. This calculation more closely parallels that of the SFF
for the BRP model presented in section 5.
Making the change of variables in Eq. (43), we find that

< : > ][d /pla) = +ingp(x) + 0N, )

z—a’

IStrictly speaking, the argument above for neglecting the disconnected contribution to the SFF only applies for
T #0, i.e., t/N # 0. Nonetheless, we make the same approximation for times that scale as a smaller (but still non-
zero) power of N as well. We find good agreement between the resulting expressions and numerical calculations
for all timescales of interest.
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where the { symbol indicates the principal value of the integral. Using this result in Eq. (41),
we determine that

g2(z,7;2,—1) =1+t [inp(x)(q—q)+ON)] (1 + y—l(;\[ﬁ) . (46)

We examine the Thouless timescale by rescaling time as
t=N""ls, (47)

where s is independent of N. Using this we can rewrite the above equation as

_ iA%s _
g-(2,7;2,—1)=1—-N"1nA2%sp(x)(q—q') (1 + m) +0(N7?). (48)
With this we determine that, to leading order in N -1
, N 9 , iA%s
[82(2, 752", —1)]" =exp| —mAZp(X)q—g) | 1+ ————F~ | | - (49)
y—i(g—q')o0
Inserting this result into Eq. (44) and then unfolding by setting

v=s/p(x), (50)

A=2p(x), (51)

yields the result that the Thouless-timescale SFF is
K%)(v) — 1 + ¢ 2mAPV-NT2A%?

3/2
X[ZIl(Kv ? 1 SN T2

Kv32  an \/_

where k = V871 A*NY~2 and I, (x) is the modified Bessel function of the first kind. See Ref. [27]
for full details. Note that we have unfolded using the probability density instead of the level
density, which differ by a factor of N. Eq. (52) may also be used to examine other timescales
by rescaling v. However, we note that the intermediate step Eq. (49) only holds for s < +/N,
that is when t < N""/2. Even restricting ourselves to times not larger than the Heisenberg
time (t » N), we see that this is not always the case.

We now present a direct calculation of the SFF for the RP model at all relevant timescales.
We make the same change of variables {z,z’} — {x, y} shown in Eq. (43), but we will not set
the N-dependence of t yet. We can now write

Il(Kv3/ 2/E+De N ”szzg} , (52)

Cw= [ ax pe)e (s, +5), (53)
_ 1 / d_y iN“lty .o/ _\IN
S = P rip ()N T)? qu /zme [82(2, 752, —1)]", (54)
[g2(z, 752, =)V
1N ty
52= Zmp(x) qu 2m [y—i(q—q)Ot+N1]2° (55)
Instead of seeking an asymptotic form for [g(z, T;2’,—7)]N as in Eq. (49), we write
N 27T - / —1 j
, N Nz*|inp(x)(@—q)+O(N"")
[eate, 732, -1 = ) () ) wel —— ) 4
=N {1+ 1 linp(x)(@—q)+ O [y —i(g—q)0+} (56)

N J
Z (N,j,intp(x)(q' —q) + O(N~ T))(ﬁ) ’
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where

pui(N, j,x) = (]D(l —x)N % (57)

is the binomial probability density function. We take it(q’—q) to be positive because, when it
is not, the integrals over y in Egs. (54)-(55) vanish due to a lack of singularities in the half of
the complex plane in which the contour of integration may be closed. At this point we restrict
ourselves to times not larger than the Heisenberg time, so |T| = ot < 1. This is not a problem
since we already know that the SFF goes to 1 for times larger than the Heisenberg time. With
this restriction, we see by inspection of the first line of Eq. (56) that we can neglect the O(N ™)
terms when j < N. The probability density py;(N, j, x) is peaked near its mean at j = Nx with
a variance of Nx(1—x). Far from the peak the probability density is exponentially small in N.
So only the j ~ N|7| terms will contribute in Eq. (56). This means that the j ~ N terms will
not contribute and we can therefore neglect the O(N!) terms. With these considerations we
can write, for positive it(q’ —q),

l Nt j
[g2(z, 752", —)]Y = ;pbi (N,j,inTp(x)(q —q)) (m) . (58)

Inserting this into Eq. (54) we find

__ZZ( ) @uiNe’p()) ™ [ dy Nt 59)
B = (1 +2mitgp(x))—N J 2mi(y —i0t)i’

where we have made the change of variable y — qy. Note that the j = 0 term vanishes
due to the integrand having no singularities. For the remaining terms the integral over y
vanishes when tq < 0, so we can remove the sum over q by making the replacement tq — [t|.
Performing the integral over y, we find that

Z ((lTJlrltll;. Pyi (N —1,j,27|7|p(x)) - (60)

We now turn our attention to S,. Inserting Eq. (56) into Eq. (55), we find

271iN 2 Jj d iN“ltqy
3 [
27Tp(x) (1+2mitgp(x))N J 27i (y + Ntq)2(y —i0t)J
where we have again made the change of variable y — qy. The j = 0 term vanishes because
the integrand has no singularities in the half of the complex plane in which the contour of
integration may be closed. For the remaining terms the integral over y vanishes when tq < 0,

so we again remove the sum over q by making the replacement tq — |t|. Performing the
integral over y, we find that

2

N-1
Sa=—e"" D PN -1 J,ZTEITIP(X))[F(J+2 ot 2)} (62)
j=0
where _
B 1 Ie) ) J ok
rG+1,2)= .—/ dEElet=e2) — (63)
it Jz = k!

is the regularized upper incomplete gamma function. Note that I satisfies the recurrence

relation )
- - zle
r(j+1,2)=T(,2) +

(64)
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We take our results for S; and S, in Egs. (60) and (62) and insert them into Eq. (53), then
extract the SFF using Eq. (29). Then unfolding time by setting

u=|t|/p(x) =NIT|, (65)

and unfolding A using Eq. (51), we obtain the SFF
N-1

KODW/N)=1+ > py(N —1,7,2nN 7 Au)
j=0
_NTAZ2 , —rA2,2
) NTA2u2
(NTTA2E) T (j+2,NTAME) + ———T(j+1,NTA22) |
G+1) j+1

(66)

With this result we have generalized the Thouless-timescale result of Eq. (52) to all times
larger than the inverse spectral width. Although it was derived considering only times not
larger than the Heisenberg time, it continues to hold for later times, as we will discuss in the
following section.

Fig. 4 plots Eq. (66) for y = 1.6 and various values of the coupling parameter A and com-
pares to numerical results obtained through exact diagonalization. There is good agreement
between theory and numerics at not-too-early times (note in particular that the agreement is
already good by the Thouless timescale). The discrepancy at early times which are still larger
than the inverse spectral width is a result of calculating the numerical SFF using only the eigen-
values within a finite window in order to perform the unfolding procedure. At times earlier
than this inverse window width the SFF probes correlations between eigenvalues at separa-
tions larger than the width of the window, but these eigenvalues are cut off in the numerical
unfolding procedure. We observe that the SFF decays from the Poissonian result to the GUE
SFF over time, with the rate of decay controlled by A. As we vary A we can see the SFF moving
between the behaviors we predicted schematically in Fig. 1. For small values of A we see that
the SFF reaches its plateau at times greater (but not much greater) than the Heisenberg time.
The agreement between theory and numerics is still very good at these late times.

If we examine the Thouless timescale by setting u = N"~!v in Eq. (66) we can write

3/2)

— 21, (kv
KD() = KON 2y) = 1 4 ¢ 2entvow et 2h0V) gy 67)
Kv3/2
60) 21 A2y (2mA*v)) 2 2,2 APNT22 . 2 2.2
BU(v)=e 2" Z— F(j+2, N2+ ————— TG+ LANNT) |, (68)
j!

j=0

where we have discarded some vanishing terms and used the fact that the modified Bessel
function may be written as the infinite series

(X/2)m+1
. 6
L(x)= ;0 G+ (69)

Writing the regularized upper incomplete gamma functions in the integral form shown in
Eq. (63), using Eq. (69), and making the change of variable £ — /& + 1, we recover the
Thouless-timescale SFF shown in Eq. (52).

4.2 The infinite matrix size limit

We can now determine the large N limit of the SFF at different timescales. We begin by
examining the Thouless timescale where u ~ N7~!. When y > 2 the regularized incomplete
gamma functions in Eq. (68) vanish, so

BU(v)=0. (70)
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Figure 4: The SFF of the RP model when y = 1.6 for several values of the coupling
parameter A. The dark thin lines show the analytical results while the lighter, thicker
lines show numerical results. The dotted line indicates the Heisenberg time. In the
numerics the diagonal elements of A are drawn from the Gaussian distribution with 0
mean and a variance of 1. The numerics are obtained through exact diagonalization
of size N = 1000 random matrices and are averaged over 10° realizations. The
numerics are restricted to eigenvalues within the window [-1,1].

Inserting this result in Eq. (67) and noting that the second term of the SFF vanishes for large
N, we find that the SFF is
KPv)=1, (71)

indicating localized behavior.
When y < 2 the regularized incomplete gamma functions become complete and go to 1.
Resumming then gives

T -
B0 =1—o—(1-e?™), (72)

where T = t/p(x) = N"2y is the fully unfolded (including all factors of N) time. We again
2
insert this in Eq. (67). We note that the second term of the SFF goes to e 2™, so the SFF for
1<y<2is
A2 T A2
KD ()= e 2 4 o (1—e2). (73)

The second term is subleading, but we include it to make the crossover to GUE behavior for

large A apparent. K%)(v) does not have a simple limit.
Pulling together all the results for the Thouless timescale SFF at different values of y we
have

1, r>2,
3/2
K ) = { 14002020 g -y =2, (74)
e2mAtY % (1 —6_27”\2") , 1<y<2.

When 1 < y < 2 the behavior of the SFF is dependent on A. It moves to the Poissonian result
for small A and the GUE result for large A. This can be seen explicitly in the above equation
when 1 <y < 2.
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0 T o 3 A
T

Figure 5: The SFF for the RP model when the Thouless and Heisenberg timescales
coincide for various values of the coupling parameter A. The dotted vertical line
indicates the Heisenberg time.

It is not surprising that the SFF does not have a simple limit when y = 2 since, in this case,
the Thouless and Heisenberg timescales are the same. By plotting this case, shown in Fig. 5,
we can observe that there is still a crossover from the Poissonian to the GUE result controlled
by A. An interesting feature of this crossover is that, for finite A, the SFF saturates at times
later than the Heisenberg time. There is a trade-off: increasing the level repulsion at large
energy separations decreases the level repulsion at small separations and vice versa. This phe-
nomenon can be shown through the fact that the area between the SFF and its plateau value is
independent of the coupling strength for any nonzero coupling. This property is demonstrated
in the Appendix.

We can now examine the large N limit of the SFF at other timescales. For convenience we
rewrite the SFF of Eq. (66) as

N—-1 i
_ NTA2u2)
KO (u/N) =1+ 0" ((H—ll)‘,)pm(zv —1,j,2aN A2 —BP (W), (75
=0 '
N—-1 _
g N7TA%u?.
BO(w) =" py(N —1,j,2nN 7 A%) [r (j+2,NTA22) - — = F (j + 1,N—YA2u2)] .
=0

(76)

The regularized upper incomplete gamma function I'(j, x) is the cumulative distribution
function for a Poissonian random variable with parameter x. This means that these functions in
Eq. (76) have a crossover from O to 1, where the location of the crossover is at approximately
j = N7"A%u? and the width of the crossover is on the order of N~"/2Au. Meanwhile the
binomial probability density function in Eq. (76) has a mean and variance of approximately
27N A%y for large N and u not larger than order N.

In the following considerations we will assume that the crossover point of the upper in-
complete gamma functions and the mean of the binomial distribution are much larger than
the crossover width and the binomial distribution width. Fortunately, for the timescales we are
considering, this is only violated when u ~ N and y = 2. This is the case where the Thouless
and Heisenberg timescales coincide, which we have already considered above.
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The binomial distribution is exponentially small far from its mean, so only the terms with
j close to 2rN'"YA%u may not vanish. If the mean of the binomial distribution is less than
the crossover point of the regularized upper incomplete gamma functions, which occurs when
u> 27N and y < 2, we see from Eq. (63) that those functions will be exponentially small
and can therefore be replaced with 0. If the mean of the binomial distribution is greater than
the crossover point, which occurs when u < 27N, they can be replaced with 1. We can also
observe that when y > 2, the regularized incomplete gamma functions will become complete
and approach 1. With these considerations we find, after performing the sum over j, that for

uPN

2. \N
B(”(u)z{1 g [1-(—27N7A2)Y], u<2nNory>2, (77)

u>2nN and y < 2.

We now seek to find the large N limit of the SFF for times smaller than the Thouless time
and not larger than the Heisenberg time, that is when u < t, ~ N"™! and u % tye ~ N.
Under these conditions we find that e "A** — 1 and the mean and variance of the binomial
density in Eq. (75) go to 0, leaving only the j = 0 contribution nonvanishing in the second
term. We also find that (1 —2nN7A%u)N — 1. Using these limits in Egs. (75) and (77) we
find that the SFF is

Ki(T)=1. (78)

This matches the result for the SFF at times much later than the Heisenberg time, so this result
is valid for all times smaller than the Thouless time but larger than the inverse spectral width.

At these times the SFF indicates Poissonian statistics. This can also be determined directly
from Egs. (19) and (22). When ot? and Nt are both less than order 1, which is the case for
times smaller than the Thouless time and not larger than the Heisenberg time, we find in the
N — oo limit that

G = <Zei“‘k> . GO)= <Ze"““"‘“’)> , (79)

k [

indicating that the SFF is simply that of A. Since the eigenvalues of A are uncorrelated, Pois-
sonian statistics are found.

We now seek to find the large N limit of the SFF for times larger than the Thouless time
but not larger than the Heisenberg time, that is when u>> t, ~ N""! and u % ty.;s ~ N. We
note that the maximum value of the binomial probability density is on the order of the inverse
of its standard deviation. This tells us that

NTTACEY XU(NTTAZ2Y
Z( (]+1)|) bi(N_LJ':z“N_YAzu)<<Z#:eN AN 80)
=0

Therefore the second term in Eq. (75) vanishes. We also note that (1 — 2N~ 7A%2u)Y — 0.
With these considerations we find that the SFF is

KW(T) = min(l, 1) . (81)
21

This result for the SFF is equal to 1 for all times later than the Heisenberg time, so it is valid
for all times larger than the Thouless time and inverse spectral width. We have recovered the
GUE SFE We know that GUE statistics hold for y < 1, so we can conclude that this result is
valid for all values of y.

Finally we examine the large N behavior of the SFF at times larger than the Heisenberg
time, where u > ty.;s ~ N. Although we derived the SFF assuming earlier times, the numerical

18


https://scipost.org
https://scipost.org/SciPostPhys.15.3.084

Scil SciPost Phys. 15, 084 (2023)

results shown in Fig. 4 indicate that our result may also capture the plateau behavior. The way
to determine the large N behavior at these late times depends on y. When y > 2logy u we see
that the mean and variance of the binomial distribution in Egs. (75)-(76) vanish, meaning the
distribution goes to 6. Additionally, the regularized incomplete gamma functions become
complete in this case and go to 1. Making these replacements we see that the SFF goes to
1. When logy u < v < 2logy u the crossovers of the regularized incomplete gamma functions
are much larger than the mean of the binomial distribution, so the gamma functions may be
taken to be 0, meaning B’)(u) vanishes. Eq. (80) holds in this case, so the second term in
Eq. (75) also vanishes, showing that the SFF goes to 1. In the last case, where 1 <y <logy u,
the function py;(N — 1, j,2tN~"A?u) can no longer be considered a probability distribution
since its parameter is larger than 1, causing it to take on negative values for odd j. Because
NYA%u? > N in this case, we see from Eq. (63) that the regularized incomplete gamma
functions are dominated by their highest order terms. Taking the summand in Eq. (66) to
leading order we find that the SFF is

N-1 .

KO(W/N)=1—2e N A Z PN — 1,7, 2N A2u)——(NTA2u2)~1. (82)
= (G+1)

The sum in the above expression is also dominated by its highest order term, which grows
slower than the exponential factor vanishes. Again the SFF goes to 1. These considerations
show that the plateau behavior is recovered for all times much larger than the Heisenberg
time. This accounts for the good agreement between the theory and numerics at these late
times.

We can visualize the results of Ref. [27] and the new results found here with a diagram for
the behavior of the SFF at different timescales and values of y, shown in Fig. 6. The SFF is 1
before the Thouless timescale and equal to the GUE SFF after. At the Thouless timescale, when
it is not greater than the Heisenberg time, there is a crossover between these two behaviors.
At times larger than the Heisenberg time the SFF is simply 1.

5 The block Rosenzweig-Porter model

Motivated by our recent results for the early time ramp of the SFF for a quantum spin glass [46],
we construct a minimal quantum model which can also exhibit glassy behavior. We create this
model by generalizing the RP model examined in the previous section. The diagonal matrix A
in Eq. (32) is redefined as a block-diagonal matrix with P independent GUE matrices of size
M = N/P. Each block in this matrix corresponds to a single sector and the fact that the block
is a GUE matrix means that the system is ergodic within that sector. The Hamiltonian is the
sum of this block-diagonal matrix and a size N GUE matrix which couples the sectors.

More formally, the Hamiltonian matrix for the BRP model has the form of Eq. (8), but now
with the condition that the eigenvalues of A are those of P independent size M GUE matrices
drawn from the distribution

p(A0) ~ exp | 5w (A0 . (83)

This means that the spectral width of Ais order 1 and, if M is large, the eigenvalues of A cannot
have magnitude greater than 2 [4]. We can consider A to be block diagonal such that

P
A=PAD. (84)
i=1
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P —————————

GUE Ramp

logy u

Figure 6: The SFF of the RP model at different timescales and values of the coupling
parameter y. The magenta dot indicates the point where the Thouless and Heisen-
berg timescales coincide, where a closed form expression for the SFF is not known.
The dotted lines indicate the values of y at which there is a phase transition. The
dashed line indicates the Heisenberg time.

Similar to our analysis of the RP model, we can use the Fermi golden rule to determine
the Thouless timescale and determine the locations of the transitions by comparing to the
other cardinal timescales. We are interested in the escape rate from a particular site to sites
outside that starting site’s sector. The number of such sites to escape to is of order N, the
coupling is of order N ~¥/2 and the spectral width of A is order 1. It follows that the RP results
for the Thouless time, the spectral width, and the Heisenberg time, shown in Egs. (33)-(35)
respectively, are valid for the BRP model also.

The localization transition occurs when the Thouless and Heisenberg times are of the same
order, which is when y = 2. Notice that the block-diagonal structure of A leads to a localized
phase in the BRP model which is distinct from that of the RP model. Within this phase the
system will be confined to the subspaces corresponding the the blocks of A instead of individual
states. The transition to full GUE statistics occurs when the Thouless time is of the same order
as the inverse spectral width. This occurs when y = 1.

For the BRP model there is another timescale of interest—the block Heisenberg time
tHeis Bl = tHeis/P. This is the inverse mean level spacing for a single block of A. In the large
vy limit where the coupling between the blocks vanishes, tye;sp; is the time at which the SFF
will reach its plateau value. Comparing the Thouless time to the block Heisenberg time, we
see that there will be another transition at y = 14 d, where d = logy M, which is when these
timescales are of the same order. This analysis informs our determination of which values of
v lead to which phase in the schematics of Fig. 2.

Two of the transitions we have discussed have an important interpretation in terms of
the size of the support set of the energy eigenstates. Starting with an unperturbed energy
eigenstate of A, which is spread over M sites in a single block, the perturbation from the V
matrix causes each of those M sites to hybridize with other sites within an energy interval
on the order of Epy, ~ t;}} Assuming this interval is not smaller than the mean level spacing
6 = w/N, the number of sites in this interval is Ep, /5. This means that the size of the support
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set for the energy eigenstates is on the order of MEp, /6 = N> "*4_ This is of order M when
Y = 2, indicating the localization transition. For larger vy, Eq;, becomes smaller than 6 and
no hybridization occurs. The size of the support set is of order N when y = 1 + d, indicating
delocalization over the entire Hilbert space. It is an interesting feature of the BRP model that
this transition is, in general, separate from the transition to full GUE spectral statistics at y = 1.

We note that if the block size M is of order 1, the BRP model becomes equivalent to the RP
model. In this case the full eigenstate delocalization transition occurs at y = 1 as it does for
the RP model. In terms of the SFE the eigenvalues of A are uncorrelated on timescales larger
than the block Heisenberg time. When M is of order 1 the block Heisenberg time is of the
same order as the inverse spectral width. Since the eigenvalues of A are uncorrelated for the
relevant timescales, the BRP model reduces to the RP model. Going forward we will consider
M to be larger than order 1.

We may now turn our attention to the calculation of the SFF for the BRP model. We will
once again assume in our calculations that y > 1. With the additional information about
the structure of A we can simplify Egs. (20) and (23) for C;(t) and C,(t) respectively. Each
eigenvalue of A will be correlated only with the eigenvalues from the same block so

2
eat/z dz

Gt =— C%el”[z 12,07, (85)
Z4(z,7) = <%> , (86)

and

2
T2 ¢2m§£2m [ [ [Zy(z, 752", —7)]", (87)

Zo(a 35 —7) = <det(z +1—A)det(z' — 7 —A’)>
AT det(z —A") det(z’ —A') ’

Cy(t) =

(88)

where A’ is any of the AD). The functions Z; and Z, are actually generating functions. The
ensemble averaged Green’s function for a size M GUE matrix is

1 0
(G(z)) = < A’> [8 Z1(z, T)]rzo , (89)
and the correlator of two Green’s functions is
1 1 92
(G(z)G(z’)) = <tr — tr Y > = [ 8787’22(2’ T2, T/)]T,szo . (90)

We now consider whether the condition on the average level density which we derived in
Eq. (39) for the RP model holds for the BRP model also. From Eq. (86) we find that

Zl(Z,T)=1+MT< L />+O(T2). 9D
z—a

Using this in Eq. (85) and dividing by N while letting t be order 1, the same order as the inverse
spectral width, we find that Eq. (39) does indeed hold for the BRP model. This means that,
when y > 1, the average level density is equal to the probability density for the eigenvalues of
A, which is the average level density for size M GUE matrices. For infinitely large M this is

1
5-vV4—a?, |a|<2
27‘[ B )
a)= 92
p(a) {O, la] > 2. (%2)
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In this section we will make the change of variables

(z,2)=x% % +i(q,q')ot. (93)

This differs from the change of variables of Eq. (43) only in the signs of q and q’, which is done
purely for convenience. With this change of variables we see that

_ dy oINTt N7 ? oo/ TP
¢ = (N )quq /2751 2mi y|:1 (y+NT+i(q—q’)0+) ][ZZ(Z’T’Z’ U

94)
As we did for the calculation of the SFF for the RP model, we are neglecting the contribution
from the disconnected part of the two-level correlation function under the assumption that
correlations between energy levels with separations much larger than the mean level spacing
will vanish.

5.1 The two-point generating function

In this section we calculate the two-point generating function

det(z + 7 —A)det(z’ — 7 —A) >
Zy(z, 758, —1) = , 95
(2,732, =) < det(z —A") det(z’ —A") (95)
where A’ is a GUE matrix of size M drawn from the distribution
M
p(A") ~ exp (—? trA'z) ) (96)

We begin by writing the determinants in the numerator as fermionic integrals and the deter-
minants in the denominator as bosonic integrals. Doing so, we obtain

ZZ(Z) T;Z/) _T)

= </D(¢ WGXPZZ{Z%#“W@+Z(¢cl¢a D) HAL)

i>j

L (PEE —DEwE ) 3 — (9 = (-1)*7) 8gr +25 ] Z Vi } > , 97

i>j
where a = 1,2, (z(M,2?) = (2,2'), and ¢ = B, F, indicating bosonic and fermionic fields

respectively.
Performing the GUE average over A, we obtain the following mean-field sigma model:

_ 1 .
Zy(z,7;2 ,—1) =M /D(Qp,lp)exp {m str)

—ZC:ZZ[(Z(“)—(—D“T)% #2955, 155, |

a=(fe 3) ae-(FUmi E). o

(98)
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where 2 is a 4 x 4 matrix and strQ = tr Qg —tr Qp is the supertrace. We perform a Hubbard-
Stratonovich transformation to remove the quartic terms in the action by inserting the unity

1 1 ., - M,
1=— [ dQexp| ———strQ* —¥vQ¥ — —strQ- |, (100)
44 2M 2
Q Q Qll le i%
a-(gr o). aw-(gff gi ). w=|Yt]. aon
QFB lQFF é’C/ Ca:/ 'lrbg

where dQ = dQppdQprd(Qpp, Qpp). The field Q‘w, is bosonic when { = ¢’ and fermionic
when { # {’. Inserting this unity and integrating out the ¥ field, we find

1

Zy(z,7;2,—1) = s /dﬂ[sdet(ﬂ +E) M Mstr /2 (102)
T

E= diag(z(l),z(z),z(l) +1,2P 1), (103)

where sdetQ = det(Qpp — Qpr Q5 Qpp)(detQpp) ! = detQpp[det(Qpp — QppQpaQpp)] 7t i
the superdeterminant.

We now make the change of variable Q — UwU' — &, where U is an element of the
superunitary group U(2|2) and w = diag(a);,wﬁ,,iw}g,iw%). The Jacobian of this change
of variables is the supersymmetric generalization of the Vandermonde determinant [65]
Ay(Q2) = det(1/(wp; —iwp;)), where wg; are the Bose-Bose eigenvalues and iwy; are the

Fermi-Fermi eigenvalues. We can now write

Zy(z,7;5', 1) = ﬁ / d(w—E)AX(w)(sdetw)™ / dUe MUU'=EY/2, (104)
T

where dU is the Haar measure of the superunitary group U(2|2).
We can now use the supersymmetric generalization of the Itzykson-Zuber integral [65]:

/dUe_M str(UwU"‘—ﬁ)z ~ Mk[As((l))As(n)]_le_M str(w—r))z , (105)

where dU is the Haar measure of the superunitary group U(k|k), w is diagonal, and 7 is the
diagonal matrix similar to . Using this integral identity gives us

( ) —M ,—M ( 2 detR
vyl )~ S str(w—&E)°/2 _ =21
Zy(z,7;2",—7T) ( ) /d( A.) ———(sdetw)™ INGE (106)
o0
R = E/ / d'dewF —exp[—Mf (wp + iq(a)0+,z(a))
2m J_ oo Wg +1q@0T —iwg (107)
+Mf (lo)F 2% —(— 1)0‘ )]
flw,c)= %(a)—c)2+lnw, (108)

with (¢, ¢®) = (¢,¢).
The saddle points of the integrand in Eq. (107) are at

1
wp =W, = > (z(“) Tiy4— (z(“))z) , (109)

/ 1 / /
iwp =iop, =2 (z(a ) (-1)¥r+ i\/4— [2(a) —(—1)0%]2) : (110)
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Since M is large, the eigenvalues of A’ lie within the interval (—2,2); we only need to concern
ourselves with the case when |R(z)| < 2. This means that the terms under the square roots
in the equations above will always have a positive real part. Note that, due to the presence of
a singularity at wg = 0, only one saddle point value is reachable through deformation of the
contour of integration for wg. This is wy, when ¢ =1 and wj_ when ¢ = —1. We need to
consider both possible saddle point values for iwg.

The result of the saddle point approximation is

Re = ;L;‘(ﬁ; pexp(MFas ), 111
Fig = —f (fp2@) + £ (g2 = (1)7), (112)
L = (wgy— oy ) {2~ (wgﬂ)_z] [1- (iw%"ﬂ/)_z]}_l/z , (113)

where f8, 8’ = +. Expanding about infinite N and T = 0, we find that the exponents of the
exponential terms in Eq. (111) are, apart from the factor of M,

aa’ (_1)a’+1 . aa’ . /
Fod = o (x 7 2mip(e) {(1 - 6°)y +i(q —q)0* ]+ N} (114)
+0(t*)+O(N 1)+ O(N7?),
Fi‘gl == [iﬂ:xp(x) +In (%H
_1ya'+1 , ,
+ % {[(1 — 6% )x £ 6% 27'cip(x)]y +(x % 2m'p(x))NT} (115)
+0(?)+O0(N"17)+ O(N2).
The prefactors are
aa’ _ (_1)a/N -1
= 1 sad)y +i(q—q)0 1+ N7 +0(t)+O(N™ ), (116)
L% = Fi(2mp(x)) 2 +0(r) + O(N ). (117)

Writing these quantities in this way is useful for times not larger than the Heisenberg time,
where |7| < 1. We can restrict ourselves to these timescales since the SFF is already known
to be 1 at later times.

Recall that we are interested in the P™ power of the two-point generating function to use
in Eq. 94. If | 7| > N1, indicating times larger than the Thouless time, the P™ power of the
two-point generating function will be dominated by the saddle points that maximize the real
part of F g“;, excluding the unphysical combinations of saddle points that lead to the two-point
generating function having a complex phase that grows with N. Considering this and using
Egs. (114)-(115), we find that the dominant Fermi-Fermi saddle point in the calculation of
R s iwg () where

B*(a') = Baqq + (1= 500 )(~1)* . (118)

Our result for the P™ power of the two-point generating function at these timescales is then
, P
vo! VP — -P aa 11 22
[ZZ(Z) 152, T)] - [As(g)] I:dEt (Lq(a)ﬁ*(a’))] exp I:N (Fq/jx(l) + Fq’ﬁ*(Z))] E] (119)

11 22 _ pl2 21 :
where we have used the fact that F 56, T F Babs = F 6p, T F 5,p, L0 extract the exponential term

from the determinant. We can verify that the normalization is correct by setting © = 0 and
finding that the above expression is equal to 1, as we know it must be from Eq. (95).
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If |7| » N1, indicating times not larger than the Thouless time, the real parts of the expo-
nent of R*® will not be much larger than P!, so they will not contribute to the determination
of the dominant saddle points for the P™ power of the two-point generating function. The
saddle points that will dominate are instead determined by the prefactors L% We see from

BB
Egs. (116)-(117) that, at these timescales, the prefactor for the 3 = 8’ case is always greater
than that for the 5 = —f3’ case by at least a factor of N, so the non-dominant contributions

can be neglected. This means that the dominant Fermi-Fermi saddle point in the calculation

/ . . . / . . . . .
of R** is simply iwy ¢ With these considerations we find that the P™ power of the two-point
generating function at these timescales is

(2,2, 752, =) = [A(E)]F {det [L;‘(‘;‘;q(a) exp (MFggg)’q(a))]}P

217—P
_ o inNTla—qp() | 1 _ ( N© )
y+i(g—q’ )0t +N7

Nt 2 _
x[1— im(q—q")p(x)(y+2N7)/P
y+i(g—q’ )0t +N7

P

b

(120)
where we have neglected the vanishing terms in the second equality. Once again we can verify
that the normalization is correct by noting that the above expression becomes 1 when 7 = 0.

5.2 The spectral form factor

We are now in a position to calculate the SFE We begin with the case where time is not larger
than the Thouless time. Inserting Eq. (120) into the correlation function of Eq. (94), then
extracting the SFF using Eq. (29), we obtain

1-pP

.2
KO(T)=1+ _ e Z e—2migN Tp(x) d_yeiN’lty 1— (L)z
2mi(N7)2p(x) 7 2mi y+N7+iq0*t

2 p 2
x 1_(L) e2migp(x)(y+2NT)/P _/d_yeiN_lty 1_( N7 ) . (121)
y+N71+iq0* 2mi y+N71

The first term in the braces is the ¢ = —q’ contributions while the second term is the ¢ = ¢’
contributions. The integral over y in the second term never has singularities in the half of the
complex plane in which the contour of integration may be closed, so the term vanishes.

Making the changes of variable ¢ — —qg and then y — gy and expanding with the binomial
theorem, we obtain

—ot? 2 pP-1
K(Y)(T) =1+ . e? ZeZHinTp(x)/d_y‘eiNltqy (.y+qNT)
2mi(N7)2p(x) 7 2mi (y —i0*)(y +2gNT)
p 2]
X Z (P) (M) ! e—2mip(x)(y+2qN7)j/P (122)
N/ \y+agNT

We observe that the integrand contains no singularities in the half of the complex plane in
which the contour integral may be closed when tq < 0. So we can remove the sum over g by
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tl/p(x) > 27 Mj

[t /p(x) < 2nMy

Figure 7: The poles and contours of integration for the integrals over y in Egs. (123)
and (136). If |t|/p(x) is less (greater) than 27tM j the contour is closed in the lower
(upper) half of the complex plane.

making the substitution tq — |t|. This gives us
e—o‘t2—27tN|’c|p(x) P P dy
K9 =1+ ——mF—— ( ) —D.(y), 123
(7 27mi(N7)2p(x) ]Z:o: j 27mi i) (123)

(y + iN|g)2P~1)
(y —i0")P1(y + 2iN [T P

Di(y) = (N|7])¥ exp[iN~!|tly —2mip(x)(y + 2iN|z|)j/P] .

(124)

By examining the y-dependent terms in the exponent of the exponential term of Eq. (124),
we see that the contour of integration can be closed in the lower half of the complex plane when
|t]/p(x) < 2tMj. In this case there may be contributions from residues located at y = —iN| 7|
and y = —2iN|7|. When |t|/p(x) > 2tMj the contour of integration may be closed in the
upper half of the complex plane and there may be a contribution from the residue at y =i0".
Fig. 7 shows the contours of integration for each situation and the poles which they enclose.
We find that

e—UtZ—Zanrlp(x) p P — Res Dj(.y) — Res Dj(y)’ lt]/p(x) <2nMj,
K(Y)(T) =1+ _ ( ) y=—iN|7| y==2iN|7|
2ri(N7)?p(x) G\ yfi% Di(y), t|/p(x) >2nMj.
(125)
We first find the residue at y = —iN|t|. Observing that it is nonzero only when j = P, we
find that ,
Res Dp(y) = i(NI=[Y*(N ™" [¢| = 2mp(x))e” NI, (126)
y=—iN|t
The other two residues are
R )
Res D;(y) = 2i(-1)*IN|7|e?" > J(j,k) (ot? —2mjM|7Ip(x))", (127)
y=—2iN|z| =0
_ _ P—2 .
Reg+ Di(y)= 2i(=1)YN|z|e*™Mil7Ip() ZJ(j, k) (27’[jM|T|p(X) - otz) , (128)
I k=0
where )
k2P PEE  rop 1) 1-P
JG, k)= —— 2"( )( ) 129
Uk =" kZ:;) K P—2—k—Fk (129)
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Using Egs. (126)-(128) in Eq. (125) and unfolding by setting

u=|[t|/p(x) =NI|T|, (130)
A=2Ap(x), (131)
we find that the SFF is
T e 2NN Tu P (P
O(TY=min| — 115 N1y <)
K9O(T) mm(zn_,l) T ;( 1) (j)Qj (u), (132)

(o) A2N"TY? < 2nMi
ng)(u) = ZJ( 7,k) (AN Tulu—27Mj|)* {e i h= 7 (133)

27— ; .
P NN 7’u(47rM]—u)’ u>2mMj.

Note that we have raised the upper limit for the summation index k from P —2 to oco. We can
do this because J(j, k) = 0 for k > P — 2. Doing so removes the need for separate treatments
of the cases where P < 3. Although we have derived this result for times not larger than the
Thouless time, it turns out to be valid at all relevant timescales, as we will show.

We now examine the SFF at times larger than the Thouless time, where |t| > N™!. We
obtain the SFF by inserting Eq. (119) into the correlation function of Eq. (94) then extracting
the SFF using Eq. (29). This yields

—ot?

e ot dy .y Nt 2
K(T)=— / —~J JiN"'tq 1— ( )
(T) Zﬂi(NT)Zp(x)%:qq 27rie [ y+Nt+i(g—q’)0+

<A [der(Lgely )] e [N (Pl +F2 )] (139

We note from Eq. (118) that, for the ¢ = q’ terms, the dominant saddle points are the same
as for the case examined above for earlier times. This means that, although there may be
additional nonvanishing terms in the exponent of the exponential term of the integrand, they
will be subleading and the residue analysis is unchanged. There are no singularities in the half
of the complex plane in which the contour of integration may be closed. As they did for earlier
times, the ¢ = ¢’ terms of the SFF vanish.

We next consider the ¢ = —q’ = 1 term. From Eqgs. (114) and (116)-(117) we find that
(LﬂLEZ_ — Liz_ LE&)P and N (Fﬂ + F?2) have vanishing y-dependence. If we consider only
positive times, which we can do since the SFF is symmetric in time, we find that the inte-
grand once again has no singularities in the half of the complex plane in which the contour

of integration may be closed. For this reason, the ¢ = —q¢’ = 1 contribution to the SFF also
vanishes.
Finally we consider the only nonvanishing term, for which ¢ = —¢’ = —1. From Egs. (116)-

(117) we find that
N 2
11 722 12 721 _
LM12 22 =x+ (y —or s NT) , (135)

where X is a quantity of order 1 with its largest y-dependent terms being of order N, so
they can be neglected. Expanding with the binomial theorem, we find that the SFF is

Dry—qe_ ¢ NP 2 VP [ dY -,
KO (T)_1+zmp(x)(m)z;(j)(|ﬂ X) /ij(y), (136)

(y +iN|c[)2P-1)
(v — 0P 1(y + 2iN|z )P

Di(y) = (NIth¥ exp[iNVely +N(FIL +F2)].  (137)
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From Eq. (115) we learn that that the largest y-dependent term in N(F!} + F22) is
—27ip(x)y. This means that the contour of integration can be closed in the lower half of the
complex plane when |t|/p(x) < 2nN. In this case there may be contributions from residues
located at y = —iN|t| and y = —2iN|t|. When |t|/p(x) > 27N the contour of integration is
instead closed in the upper half of the complex plane and there may be a contribution from
the residue at y =i0%. So

&) L o TEA VRPN
K" (MN=1+———— ( ) T|°X
() 2ﬂip(X)(NT)2jZ(; j (1<)
— Res Di(y)— Res Di(y), It|/p(x)<2nN,
y=—iN|7| J y=—2iN|z| J (138)
Res Di(y), [t|/p(x) > 27N .
y=io+ J
It turns out that only the residue located at y = —iN|t| contributes for large N. The

exponent of the exponential factor of the terms coming from the residue at y = —2iN|t| is

—ot> +[iNYe|(y —i0T) + N(F!L + Ff_z_)]y:_zl.l\m| =ot? —271N|7|p(x) + O(N7?), (139)

which becomes infinitely negative when |t|/p(x) < 2nN. Similarly, the exponent of the expo-
nential factor of the terms coming from the residue at y =i0™" is

—ot> +[iN!e|(y —i0T) + N(F!L + F?2)] =—ot?+2nN|7|p(x)+ O(NT2), (140)

y=i0+
which becomes infinitely negative when |t|/p(x) > 27tN. The remaining residue at y = —iN|7|
is only nonzero when j = P. This residue is, to leading order,
Res lD;,(y) = i(N|TDA(N"Yt] — 27p(x))e”t” . (141)
y=—iN|t

This leads to the same contribution to the SFF as the residue at the same location in the case
examined above for earlier times. With this result we find that the SFF for times larger than
the Thouless time is
K1) =min(l,1). (142)
27
Noting that u > N7~! at these timescales, we see that this is consistent with the SFF we found
for earlier times in Eq. (132). Therefore Eq. (132) holds for all relevant timescales.

In Fig. 8 we compare this result for the SFF to numerical results obtained through exact
diagonalization for y = 1.6, P = 20 blocks, and various values of the coupling parameter A.
When numerically calculating the SFF with the full spectrum there is good agreement between
theory and numerics at early times, but the agreement is less good at later times. We can trade
this early-time agreement with later-time agreement by using only the eigenvalues within a
window smaller than the spectral width. We can combine these results to get good agreement
at all times of interest by determining the time at which the two approaches converge, then
using the full spectrum result before that time and the windowed results at later times. We
observe that the SFF decays from the fully uncoupled result to the GUE SFF over time, with the
rate of decay controlled by A. As we vary A we can see the SFF moving between the behaviors
we predicted schematically in Fig. 2. As in the RP model, for small values of A we see that
the SFF reaches its plateau at times greater (but not much greater) than the Heisenberg time.
The agreement between theory and numerics is still very good at these late times.

Somewhat similar SFFs with a short-time peak then a crossover to RMT behavior have
been found for random quantum circuits [66-68] and the mass-deformed Sachdev-Ye-Kitaev
model [69]. However, the enhanced ramps are faster than linear in time in these cases because
these models transition from many-body-localized to ergodic behavior, in contrast to the glassy
to ergodic transition we see in the BRP model.
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(a) Full spectrum (b) Eigenvalues within [-0.4,0.4]
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Figure 8: The SFF of the BRP model when y = 1.6 and there are P = 20 blocks for
several values of the coupling parameter A. The dark thin lines show the analytical
results while the lighter, thicker lines show numerical results. The left (right) dotted
line indicates the block (full) Heisenberg time. The numerics are obtained through
exact diagonalization of size N = 1000 random matrices and are averaged over 10°
realizations. In (a) the numerics are calculated with the full spectrum while in (b)
only the eigenvalues within the window [-0.4.0.4] are used. In (c) the results of (a)
are used at times before the numerical curves for a particular A converge and the
numerical results of (b) are used after.

5.3 The infinite matrix size limit

We now seek to find the behavior of the SFF in the large N limit for all timescales of interest.
Above we have already considered the SFF at times greater than the Thouless time and argued
that several terms vanish at large N, so Eq. (142) is the large N limit for the SFF at those
timescales. Going forward we will consider earlier times. We will assume for now that we are
not at the Thouless and Heisenberg timescales simultaneously, which occurs when y = 2 and
u~ tr, ~ N. This is a special case which we will examine later.

Under these conditions, the sum of the k = 0 contributions to the SFF in the time period
2nMj<u<2nM(j+1)is

—2nA2NTTu J

P
e [ 2§ e e ol S (Tl | s

2N 1-y
TASN U = 15541

Since y > 1, the exponents of the exponential terms within the brackets are small. Expanding
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them to first order, we can write this as

e—ZnAZNl’Yu i( 1)( )J(l,o)

nmA2N11u

—ZnAle Tu

Z( 1)( )J(l 0)(T —4nl/P)— Z( 1)( )J(Z,O)T . (144

[=j+1

We note that J(j, k) is a polynomial of order less than P in j. So, from the theory of finite

differences, we find that [70]
Z( 1)}( )J(J, k)= (145)

Using this fact, we find that the sum of the k < 2 contributions is, to first order in N},

j
2 oy gy (P )[J(z, 0)+J(L, DT —271/P). (146)
n 1=0 l

The sum of the k > 2 contributions will be subleading. So, to first order, the SFF in this time
range is

K(Y)(T)—mm(z— 1) g 2MAPNT Y”Z( 1)( )J(l,0)+J(l,1)](T—2nl/P). (147)

We now seek to simplify J(I,0) + J(I, 1). By shifting the summation index in J(I, 1)

k k 1 k ’

we find that
S 2P—1-D+1)/ 1-P
J(,0)+J(1,1) = 2722 2’<’( T X N )=JZ—120. 1
(1,0)+J(,1) kz 5 by ) =I0=1/2,0).  (149)

We can also find a closed-form expression for J(,0) by noting that it is the (P —2)™ coefficient
in the Maclaurin series expansion

J(1,0) = 272(P=D[zP=2](1 4 5)1-P Z(zz)k(z(P —1- l)) , (150)
k=0 k

where [z°72] is the (P—2)™ coefficient extractor. Now, summing over k, writing the coefficient
as a residue at z = 0, and making the change of variable z — (v4z +1—1)/2, we find that

J(1,0)=272(P- l)Res Z17P(1 4 42)P7173/2 = 4( —Pl_—23/2)_ (151)

Using Egs. (149) and (151) in Eq. (147), we find, for 2nj/P < T < 2n(j + 1)/P,

. (P—1)3:, j=0
2a71—
K(Y)(T)zmin(—,1)+e—2”AN wi1i-L 0<j<P, (152)
27 T
0, j=P
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This means that, overall, the SFF is

— T - T
K1) = (1 — gm2mAN! Y”) min (—, 1) + e 2NN U in (P—, 1) . (153)
27 21

This result becomes 1 for times greater than the Heisenberg time, so it is also valid at those
times. We conclude that Eq. (153) is valid at all relevant times, excepting the case of coin-
cident Thouless and Heisenberg timescales. For times smaller than the Thouless time, where
u < N1, we see that

K")(T) = min (pl, 1) ) (154)
27

This result is exactly what we would expect in the weak-coupling limit: the GUE SFF with time
enhanced by a factor of P, the number of blocks.

For the Thouless timescale, while different from the Heisenberg timescale (meaning y # 2),
we obtain

T T
KP(v) = KON 2v) = (1— 2" ) min (—, 1) +e72™ min (p—, 1) ,  (155)
2n 21

where v = N277T. We see that at the Thouless timescale there is a crossover from the GUE SFF
for large A to the uncoupled blocks result for small A. For times greater than the block Heisen-
berg time 27tM, this becomes identical to the RP SFE The reason for this is that the correlations
between the eigenvalues of A do not persist for times larger than the block Heisenberg time.
At these timescales we are justified in setting Z,(z, 7;2’,—7) = [g2(2, 7;2’,—7) M in Eq. (94),
which reduces the calculation of the SFF to that of the RP model.

We now examine the y = 2 case at the Thouless timescale. From Eq. (132) we find that

—2nA%y P
2, — (2 _ (Y €
KP(v) =K )(v)—mln(ﬂ,l)— — ;(—1)1( )QThJ(v) (156)
szz .
v <2mj/P,
&?](v)—ZJ(J K)(=A*v|y —2mj/P|) { O (157)

Due to the coincidence of the Thouless and Heisenberg timescales, the SFF in this case does
not generally have a closed form expression. Although the SFF is unwieldy in general, it does
simplify greatly for P < 3. When P = 1 we find the GUE result

L[V
Kgl)(v) = mln(%, 1) s (158)
while for P = 2, the simplest nontrivial case, we find

sinh(A%v?), 0<v<m,
esz(Zn—v) _ COSh(AZVz) , n<v<2m, (159)
-2 sinhz(rcsz)esz(z’T_v) , V=21

—21A%y
(2)(1/) = mln(L 1) ¢
27 27TA2y

The Thouless-Heisenberg timescale SFF is plotted in Fig. 9, for the cases of P = 4 and
P = 20. Also shown are numerical results obtained through exact diagonalization which are
in strong agreement with the theory. For times much greater than the block Heisenberg time
there is graphical evidence that the SFF moves to that of the RP model. By examining Fig. 9,
we can see that when the number of sectors P becomes large, making u > 2nM, the SFF
moves to the RP SFF shown in Fig. 5. As with the RP SFE we see that the SFF reaches its
plateau value at times greater than the Heisenberg time when A is finite. In this case there is
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Figure 9: The SFF for the BRP model when the Thouless and Heisenberg timescales
coincide for various values of the coupling parameter A. The dark thin lines show the
analytical results while the lighter, thicker lines show the numerical results. The nu-
merics are obtained through exact diagonalization of size N = 1000 random matrices
and are averaged over 10° realizations. The numerics are restricted to eigenvalues
within the window [-0.75,0.75]. In (a) there are P = 4 blocks while in (b) there are
P = 20. The left (right) dotted line indicates the block (full) Heisenberg time.

also a trade-off between level repulsion at early and late times. The area between the SFF and
its plateau value is independent of the coupling strength for any nonzero coupling between

the sectors, as is shown in the Appendix.

Bringing together all the results at the Thouless timescale we have that the SFF is

min(P%,l), y>2,
—271A2y .
KP0)={ min(,1) - S 321 (D)Q2,00, =2, (160)
(1 — e_Z"AZV)min(%, 1) + e 2™A% i (P%, 1) , 1<y<2.

32


https://scipost.org
https://scipost.org/SciPostPhys.15.3.084

Scil SciPost Phys. 15, 084 (2023)

c

S

i
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Figure 10: The SFF of the BRP model at different timescales and values of the cou-
pling parameter y when the size of the blocks M is much less than N. The green
line represents a crossover between the enhanced GUE ramp and the regular GUE
ramp. The magenta line represents the crossover between the Poissonian result and
the regular GUE ramp. The magenta dot indicates the point at which the Thouless
and Heisenberg timescales coincide and there is no closed form expression for the
SFE The dotted lines indicate the values of y at which there is a phase transition. The
left (right) dashed line indicates the block (full) Heisenberg time.

The behavior of the SFF is dependent of A when 1 < y < 2. For small A the SFF goes to the
result expected for uncoupled sectors, while for large A it goes to the GUE result. This can be
seen explicitly in the above equation for 1 < ¥ < 2 and can be observed graphically for the
y = 2 case in Fig. 9.

As we did for the RP model, we can create a diagram showing the behavior of the SFF
at different timescales and values of y, shown in Fig. 10. At times larger than the Thouless
time the SFF goes to the GUE result. At times smaller than the Thouless time the SFF goes
to the GUE SFF with time enhanced by a factor of P, the number of blocks. If y > 1+ d this
result first reaches its plateau value at the block Heisenberg time, which is smaller than the full
Heisenberg time by a factor of P. This means that at times larger than the block Heisenberg
time the SFF is the same as the RP SFE At the Thouless timescale, while it is not larger than the
Heisenberg timescale, there is a crossover between the enhanced GUE SFF and the standard
GUE SFE The SFF is 1 at times larger than the Heisenberg time.

6 Conclusion

In this paper we introduce a generalization of the Rosenzweig-Porter (RP) model called the
Block Rosenzweig-Porter (BRP) model. This is done by redefining the diagonal matrix in the
RP model to be a block diagonal matrix with each block being a GUE matrix. In doing so we
obtain a minimal quantum glass model which immediately thermalizes within the blocks but
has much slower global thermalization (if it thermalizes at all) depending on the strength of
the inter-block coupling. It is known that the RP model is chaotic for v < 1 and localized for
y > 2. For intermediate values of y the RP model is localized at early times, then thermalizes
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and becomes chaotic at the Thouless time. We find that the same is true for the BRP model.
However, the localized behaviors for the two models are different. Whereas the RP model
exhibits localization in single states, the BRP model instead exhibits localization within single
blocks.

Our main result is a calculation of the spectral form factor (SFF) at all timescales larger
than the inverse spectral width for y > 1 in the BRP model. As a lead-in to this, we perform
this calculation for the RP model. In the intermediate phase where 1 < y < 2, the SFF of
the RP model indicates Poissonian statistics before the Thouless timescale and GUE statistics
afterward. At the Thouless timescale there is a crossover between these behaviors mediated
by the unfolded coupling parameter A. These results are consistent with those of Ref. [27].
Within the same range for y, the BRP model has statistics consistent with independent GUE
blocks before the Thouless timescale. After the Thouless timescale statistics consistent with a
single large GUE block are found. As with the RP model, there is a crossover between these
behaviors at the Thouless timescale, again mediated by A. This indicates that the system is
initially frozen into a single sector, then escapes and thermalizes at the Thouless time.

An important feature of the SFF is the times at which it is equal to its plateau value, as
these indicate the disappearance of repulsion between eigenvalues at the energy separations
corresponding to these times. We find that if y < 1+ d, where d = logy M, the SFF will first
reach its plateau value at or near the Heisenberg time, meaning that eigenvalue correlations
first vanish at separations smaller than the mean level spacing, as they must for all discrete
quantum systems. However, if y > 1 + d the SFF first reaches its plateau value at the block
Heisenberg time, which is smaller than the full Heisenberg time by a factor of P, the number
of blocks. This means that correlations between eigenvalues first vanish at separations smaller
than the mean level spacing of a single block. If y < 2, meaning the system is not in its localized
phase, level repulsion may still be present at later times (smaller energy separations), causing
the SFF to drop back below its plateau value until the Heisenberg time.

While this work has been concerned with dynamics and associated spectral statistics, one
can also ask about the eigenstate properties in the three phases. In the RP model the eigen-
states are fully ergodic for vy < 1 and localized to a single state for y > 2. For intermediate
values of y the eigenstates are neither localized nor ergodic; they are termed nonergodic ex-
tended states [27]. A similar phenomenon occurs in the BRP model. For y > 2 the eigenstates
are localized to a single sector. However, the eigenstates become fully delocalized across the
Hilbert space for y < 1+ d (rather than merely y < 1), where M is the sector size. The fact
that this eigenstate transition is, in general, separate from the transition to full GUE statistics
at y = 1 is an interesting feature of the BRP model. Future work may examine this feature
and the eigenstate statistics in more detail.

The BRP model we introduce here is significant because it is a solvable random matrix
model with a glass transition. The SFF of the BRP model can be calculated at all relevant
timescales. In more complex quantum glass models one cannot probe times exponential in
the system size with currently available methods. Particularly interesting is the case in which
the Thouless time is of the same order as the Heisenberg time. The BRP model is thus a useful
starting point in understanding the spectral statistics of systems with slow dynamics.

Due to the simplicity of the BRP model it does not capture some features of more physical
models. Each block is taken to be the same size and independent of the others. More generally
we can expect the sectors to have some distribution in size with correlations between their
matrix elements. The BRP Hamiltonian also has only two levels in its hierarchy, making it a
model with a single nearly conserved quantity or slow mode. More realistic systems may have
a richer hierarchy of long timescales, which could be captured by a generalized BRP model
with more than two levels of nested blocks. An avenue for future work may be to modify the
BRP model to capture these features.
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A Appendix

Here we show that the area between the SFF and its plateau value is independent of the
strength of the coupling between different states, as long as the coupling is nonzero. Consider
the integral

I= /OO dt(SFF(t)—N), (A.1)

where

SFF(t) = > exp[i(E, — En)t] (A.2)

mn

is the SFE We can approximate I as

[e%s} 2
I(tiong) = / dt(SFF(t)—N)exp(—Z:Z ) (A3)

long

which goes to I as tjo,g — 00. We find that

e 2
I(tiong) = /_ dt Z exp[i(E, — E,,)t]exp (—2; )

m#n long

(A4)

_(En _Em)ztlzon
g
= V2Tl E exp( 2 .
m#n

If there is repulsion between all levels so that each level has a nonzero distance from the others,

I(t1ong) will vanish for ty,,, larger than the Heisenberg time. This indicates that I = 0.
Because the disconnected part of the SFF depends only on the level density, which for the

models considered in this work is independent of the coupling strength when y > 1, the area
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between the connected SFF and its plateau value will also be independent of the coupling
strength for those values of y. We found above that, as y — 17 for both models, the SFF goes
to the GUE result, which is also the result for all y < 1. From this we can conclude that the
area between the unfolded connected SFF and its plateau value is equal to the GUE result for
any nonzero coupling strength. This is simply a triangle with area 7N.
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