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Multi-Period Power System Risk Minimization
Under Wildfire Disruptions
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Abstract—Natural wildfire becomes increasingly frequent as cli-
mate change evolves, posing a growing threat to power systems,
while grid failures simultaneously fuel the most destructive wild-
fires. Preemptive de-energization of grid equipment is effective in
mitigating grid-induced wildfires but may cause significant power
outages during natural wildfires. This paper proposes a novel two-
stage stochastic program for planning preemptive de-energization
and solves it via an enhanced Lagrangian cut decomposition al-
gorithm. We model wildfire events as stochastic disruptions with
random magnitude and timing. The stochastic program maximizes
the electricity delivered while proactively de-energizing compo-
nents over multiple time periods to reduce wildfire risks. We use
a cellular automaton process to sample grid failure and wildfire
scenarios driven by realistic risk and environmental factors. We
test our method on an augmented version of the RTS-GLMC test
case in Southern California and compare it with four benchmark
cases, including deterministic, wait-and-see, and robust optimiza-
tion formulations as well as a comparison with prior wildfire risk
optimization. Our method reduces wildfire damage costs and load-
shedding losses, and our nominal plan is robust against uncertainty
perturbation.

Index Terms—Decomposition algorithm, de-energization,
Lagrangian cut, optimal power flow, stochastic mixed-integer
programming, wildfire risk.

NOMENCLATURE

Indices and Index Sets

B set of buses.
g set of generators.
L set of transmission lines.
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set of load demand.

set of load components, C = BUG U L.

set of time periods, T = {1,2,...,T}.

index set of wildfire scenarios.

1¥ set of affected components by component ¢’s ignition
under scenario w € ().

SRR

[}

Parameters

Dy load d € D at time period t € T.

Wy the priority level of load d € D.

Te repair cost for component ¢ € C.

Eg;, ng maximum and minimum generation limits of g € G.
Wij the thermal power flow limit of the line (4, j) € L.

bij the susceptance of the line (4, j) € L.

6,0 the big-M values for voltage angle difference.

T disruption time for scenario w € ).

u¥ 1 if component ¢ € C faults under scenariow € 2,0
otherwise.

vy 1 if component ¢ € C is shut off by exogenous fire

under scenario w € 2, 0 otherwise.

Decision Variables
0t phase angle of the bus i € B attime ¢t € 7.

Pk, active power flow ontheline (¢, j) € Lattimet € T.
pg active power generation at generator g € G at time
‘ teT.

Tat percentage of demand satisfied at the load d € D at
timet € 7.

Zet 1 if component ¢ € C is functional at time ¢t € T, 0
otherwise.

Y 1 if component ¢ € C is functional at time ¢t € T
under scenarios w € €2, 0 otherwise.

ne, 1 if a fire damage is incurred at component ¢ € C at

time ¢ € 7 under scenarios w € €2, 0 otherwise.

1. INTRODUCTION

quent and severe in recent years across the United
States [1], [2]. A major aspect of the wildfire research focuses on
wildfire mitigation plans in power systems [3]. There is a mutual
impact between wildfire ignition and power system operations:
on the one hand, many catastrophic fires with significant loss
of life and property were sparked by power infrastructures; for
example, the Camp Fire in 2018, sparked by a transmission line,
caused 84 lives deaths and an estimated $9.3 billion in residential

W ILDFIRE-RELATED disasters have become more fre-
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property damage alone [4]; on the other hand, regardless of the
source, wildfires lead to damages in power system components,
which change the topology and resource availability within a
power system [5].

Utility companies have considered approaches in different
time scales to reduce the risk of wildfire ignitions [3]. Long-term
approaches can last for years, such as equipment inspection,
hardening, and vegetation management [6], may require enor-
mous costs and qualified personnel and should be complemented
with day-to-day operations such as public safety power shut-offs
(PSPS) [7] to eliminate risk. In this paper, we focus on optimiz-
ing the operational de-energization decisions over a short time
horizon similar to the setup in [8].

When optimizing the de-energization decisions, many previ-
ous works mainly focus on wildfire risks caused by power system
components but overlook the simultaneous natural/man-made
wildfires’ damage on power systems [1], [9], [10]. In addition,
previous literature and industry practices take a deterministic
approach because it is computationally challenging to solve
optimization under uncertainty models with binary variables for
de-energization, such as a wildfire hazard prevention system
based on data mining techniques [11], risk-based optimization
models for de-energization [8], [12], a data-driven wildfire
decision-making framework for power system resilience [13],
and industry practices using thresholds to indicate when to shut
off [3], [14]. However, incorporating wildfire spread dynamics
can significantly improve the performance of de-energization.
Recently, more models have started to incorporate stochastic as-
pects of wildfire risks, such as a dynamic programming model to
optimize a PSPS [15], a two-stage robust optimization model for
capacity expansion considering PSPS [16], a two-stage stochas-
tic integer program solved by progressive hedging [17], and
rolling horizon optimization models for joint de-energization
and restoration [18], [19]. That said, most of the literature still
carries a relatively simple decision structure and cannot fully
capture the temporal dynamics of the wildfire; for example, a
commonly used uncertainty set in robust optimization, such as
a budgeted uncertainty set [20], can only capture the number of
damaged components, but is not able to accurately characterize
the temporal effect of wildfire progress within a multi-period
horizon. Therefore, it requires new studies to examine the inter-
action between power system operations with high-fidelity and
dynamic wildfire progress [21].

To holistically analyze the two-way impact between the wild-
fire ignitions and the power system operations, we classify
wildfires into two categories, exogenous and endogenous fires:
exogenous fires are external to the power system, while power
system faults trigger endogenous fires. Extreme weather con-
ditions such as drought [22] can lead to exogenous wildfires,
which may cause damages in power system components; €.g.,
dysfunctional shunts [23], utility-scale converters [24], and line
conductors [25]. Endogenous fires are ignited when downed
transmission lines come into contact with surrounding vege-
tation and can damage nearby power system components [8].
A framework to assess endogenous wildfire risk is proposed
in [26], and simulation models based on such risk measures
can provide early warnings [27]. In this paper, we explicitly
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model both exogenous and endogenous wildfires’ impact via
binary parameters indicating whether either wildfire damages
each power system component in every period.

Optimizing a sequential decision process that models shut-off
and power flow decisions requires solving a multistage stochas-
tic program. This can be challenging because the computational
complexity increases exponentially with the planning horizon
length [28], and there may be integer variables involved [8].
We develop a two-stage stochastic mixed-integer programming
(SMIP) model that captures the interaction between power
system de-energization and both exogenous and endogenous
wildfires over multiple periods. We minimize our wildfire risk
measure, the expected total cost that incorporates the wild-
fire damage cost and the load-shedding cost. In addition, our
two-stage SMIP model incorporates the spatial and temporal
uncertainty of wildfires and represents real-world situations with
disruption scenarios, which can handle complex and dynamic
situations better and produce more resilient operations than
deterministic models. We use a cellular automaton process to
simulate wildfire spread and generate scenarios that describe
the magnitude and timing of wildfire disruptions. Since wildfire
occurs infrequently, we assume at most one wildfire occur-
rence during the planning horizon to reduce the multi-period
problem into two stages [29]. This two-stage scenario-based
setting fits the low-probability high-impact property of wildfire
ignition and can capture the dynamics of wildfire progress with
a high fidelity. We design a proactive scheme that executes an
effective de-energization plan before the wildfire and optimizes
power flow operations of the remaining available components
afterward.

We propose a decomposition algorithm for the two-stage
SMIP with non-convex and non-smooth value functions. Our
algorithm uses linear cutting planes, named Lagrangian cuts,
to approximate the value functions [30]. The vanilla version
of Lagrangian cuts is tight theoretically but can be inefficient
computationally. To overcome this limitation, we introduce
an enhanced version of the Lagrangian cut, named square-
minimization cut, which improves the quality of the approxi-
mations and speeds up the algorithm. Our method shows high
computational accuracy and reliability. The two-stage SMIP
model supports the decision-making process under uncertainty,
reduces the likelihood of a disaster, and maintains as much load
delivery as possible after a disruption.

The contributions of our paper are fourfold:

1) We propose a cellular automaton model that simulates the
onset and spread of exogenous and endogenous wildfires
based on environmental data. This enables us to assess
wildfire risk through scenarios used in the SMIP model.

2) We formulate a two-stage SMIP model that manages
wildfire risk in power system operations. Unlike the ex-
isting literature, our model captures the random nature of
wildfire ignitions using disruption scenarios with random
onset times to keep the model size manageable.

3) We develop a cutting plane algorithm that solves the SMIP
model with a finite convergence guarantee. We improve
its computational performance significantly with a new
square-minimization cut.
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4) We show our two-stage SMIP model yields significantly
more resilient solutions than its deterministic counterparts
and more economical solutions than the robust optimiza-
tion model. We also analyze the solution under different
parametric settings to gain operational insights.

The rest of the paper is organized as follows: Section II
presents the wildfire simulation model and the SMIP formula-
tion; Section III derives the cutting plane algorithm and its com-
putational enhancement; Section IV covers benchmark cases and
numerical analyses; and Section V concludes the paper with a
brief discussion of future work.

II. TWO-STAGE SMIP MODEL

We consider multi-period dispatch and de-energization oper-
ations under wildfire disruption over a short-term time horizon
(24 hours). The power network is represented by a graph (B, L),
where B is the set of buses and L is the set of lines. We use
D;, Gi, and L; to represent the subset of loads, generators, and
transmission lines connected to bus ¢, respectively. For each
period ¢t € T, we formulate DC power flow constraints to decide
the active power generation chf of generator g € G, the power
flow P, on transmission line (i, j) € £ from bus i to bus j, and
the phase angle 6;; of bus i € B.

In our model, we define wildfire risk as the combined cost
of load-shedding and wildfire damage under uncertain wild-
fire disruption over the specified time horizon. In model (1),
a de-energized generator will have zero generation capacity,
and a de-energized line will be considered open. If a bus is
shut off, all generators and lines connected to it will also be
de-energized. Our model uses binary decision variables z.; to
represent whether a component ¢ € C is de-energized at time
period t. We assume that a de-energized component will remain
off until the end of the time horizon due to safety considera-
tions [8]. Model (1) obtains a first-stage plan, i.e., a nominal
plan, that should be implemented until a disruption occurs or
the time horizon ends, whichever occurs first. If a fire disruption
is observed at period 7, given the current shut-off state z.,v_1,
the model enters the second stage and incurs the second-stage
value function f“, where we assume that the components at
revealed ignition locations will be shut off.

A. Wildfire Scenario Modeling

On top of the constructed electric power network, we model
wildfire uncertainty as a stochastic disruption with random oc-
currence timing, location, and spread. We consider a short-term
operation and thus assume at most one disruption will occur over
the time horizon. We form a portfolio of disruption scenarios
indexed by w € €2, within which we model i) endogenous fires,
which are caused by faults of operating electric components, and
i) exogenous fires, which are caused by random natural wildfire
ignitions.

We consider the smallest rectangular area that can cover the
entire power network and divide it into a two-dimensional grid
of a specified resolution, in which the set of cells is denoted by
/C. We then construct a mapping between the grid cells and the
buses and transmission lines based on their geographic locations.
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We let k; € KC denote the cell where the bus ¢ is located. A
transmission line, [ = (4, ), can span multiple cells, which is
denoted by KC;;. Furthermore, a cell & € K can contain multiple
transmission lines, and we denote the set of transmission lines
passing cell k by £¥. Finally, we let s and K/ be the collection
of cells containing at least a bus and at least a transmission line,
respectively.

We employ the cellular automaton method, with propagation
rules listed in [31], to simulate the spread of exogenous wildfires.
Overall, this setup leads to a wildfire disruption in approximately
95% of scenarios. Each cell is characterized by four states which
evolve in discrete time. The four states are as follows: (i) cell has
no forest fuel; (i) cell has forest fuel that has not ignited, (iii)
cell has ignited forest fuel; (iv) cell has fully burning forest fuel.
Endogenous disruptions are caused by power system component
failures. The status of each component is normal, at fault, or
ignited. We define the onset time of a wildfire disruption 7% as
the earlier time between an exogenous wildfire occurrence and
any electric component’s fault.

a) Exogenous wildfires: We assume that there are no ex-
ogenous wildfires in the grid at the start of the time horizon. For
eachcell k € KCinperiodt € T,itreceives information from the
environment to update its state and interacts with surrounding
cells based on a set of defined rules:

1) if its state in period ¢t — 1 is the unburned fuel state (ii), it
has a probability p,, influenced by environmental factors,
to be ignited and its state will transfer from (ii) to the
ignited fuel state (iii);

2) ifits state in period ¢ — 1 is (iii), then the state will transfer
to the fully burning state (iv);

3) ifitis a fully burning cell, the state will stay at (iv) and can
spread flames to its 8 adjacent cells indexed by &/, igniting
them with probabilities ¢y if they are in status (ii), where
parameters g are subject to environmental factors like
vegetation, ground elevation, and wind.

We record the exogenous wildfire damage after the end of
time horizon 7, letting v¥ = 1 if a wildfire (state (iii) or (iv))
ever occurs on k; if ¢ is bus ¢ or any generator connected to bus
i, or on any cell in /C;;, if ¢ is transmission line (¢, j).

b) Endogenous wildfires: We simulate endogenous wild-
fires using a two-step procedure:

1) First, we simulate electrical component faults. To initialize
the fault simulation process, we assume there is no fault
component in the power system at the start of the time
horizon, similar to the exogenous wildfire simulation. For
every period t € T, a fault may occur at a component
c € C following a Bernoulli distribution with probability
Pte. Once acomponent faults, we record the state by letting
u¥ = 1.

2) Our second step runs an independent cellular automaton
process for each fault component ¢ from the fault period to
the end of the time horizon, initialized with the cell(s) that
contains the component in state (iii). After the cell evolves
to state (iv) in the next period, it will spread the simulated
wildfire to the adjacent cell k' with a probability ¢ s
at time period ¢ and further propagate. The components
damaged by this spread in the time horizon form a set 1.
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Fig. 1. Random set /3” illustration. A fault occurs at bus 4 (energized), which
causes an endogenous wildfire to spread and affect two transmission lines (%, j1 )
and (%, j2), bus j3, and generator g2, which are marked by blue dashed lines.

Fig. 1 provides an illustration of a set of components affected
by an endogenous fire: a fault occurs at an energized bus 1,
igniting an endogenous wildfire and impacting two transmission
lines, a bus, and a generator (marked by dashed lines). Notice
that we assume a fault directly leads to a wildfire because
we aim to simulate how an endogenous fire would spread if
the component ¢ were not de-energized. In addition, we build
independent simulation processes, each starting with only the
cell(s) containing the fault component c, in order to clearly trace
the spread of a wildfire to its origin and eliminate the interference
of endogenous wildfires started elsewhere.

In summary, for a specific scenario w € €2, we use a cellular
automaton procedure to generate the wildfire disruption un-
certainty £&¥ = {7%,v* u¥, I}, which includes the disruption
time 7, the binary parameters v¥ indicating the exogenous
fire locations, the binary parameters v indicating the fault
locations, and the set /2 characterizing components damaged
by the potential endogenous fire at component c. We detail the
parameter setup:

Mapping onto Grid: We convert the location of each bus
i € B from latitude and longitude [32] to Universal Transverse
Mercator(UTM) coordinates [33]. The smallest rectangle that
contains the entire power network has a length of 180,000 and a
width of 138,000 UTM unit. We divide such a rectangular area
into square cells with an edge length of 1,000 UTM units. Such
edge length ensures a high resolution of our simulation model
and is in the same order of magnitude as the average distance
that a wildfire can spread within a time period.

Probability of Exogenous Wildfire Ignition p.,: We assume
that only wildfires that occur in cells with at least one power
system component will threaten the electric power system. As
stated in Section II-A, we model the ignition of exogenous wild-
fires at time ¢ by a probability p;x, which describes the likelihood
ofacell k € K transitioning from the state (ii), un-burned fuel, to
state (iii), ignited the fuel. To estimate p;,, we use the Wildland
Fire Potential Index (WFPI) [34] as a measure of the relative
probability of ignition. The probability of an exogenous wildfire
occurring in cell k in which the set of all transmission lines
passing through cell k is £* is

g WP,

Dtk = -
> ver WEPIy
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Probability of Wildfire Spread q.j: Suppose there is a fully
burning cell. Each of the adjacent cells &' € K will be ignited
with probability ¢ This probability ¢;r depends on: 1) a
reference probability that cell " will be burning under no wind
and flat terrain, qox; 2) the vegetation type, qZ?g , and vegetation
density, q%f’n; 3) geographical information, ¢j,; and (iv) wind
speed and direction, g;,, as follows:

aw = qow (1 + qf) (1 + ™) aaiy -

We refer to Ref. [31] and [35] for detailed parameter values.

Probability of Fault p;.: Transmission lines are more prone
to failures than other electrical components due to environmen-
tal factors such as lightning and wind [36]. Therefore, in our
implementation, we focus on the fault at transmission lines and
set pr. = 0,Ve € BUG. This setup can be easily extended if we
want to consider the risk of fault at buses and generators. In any
time period, we assume a constant fault probability for each line
1€ Laspy=1—e*, where A is the estimated hourly failure
rate in the Poisson regression model of [36].

B. Two-Stage SMIP Model

When a fault occurs at an energized component, the associated
endogenous wildfire may incur high damage costs. To reduce
the endogenous risk of igniting a wildfire, the power system
operator can de-energize, i.e., shut off, power equipment. How-
ever, suppose multiple components are de-energized to prevent
endogenous fires. In that case, the power supply capacity may
be greatly reduced, resulting in the inability to meet crucial load
demand and causing serious secondary disasters. To improve the
reliability of the power system and mitigate wildfire damage, op-
erators should de-energize some potentially dangerous electrical
equipment under high-risk conditions to ensure enough power
supply while significantly reducing risk.

To achieve a balanced risk trade-off between endogenous fire
and load-shedding, we build a two-stage SMIP model (1) which
optimizes shut-off decisions under wildfire disruption uncer-
tainty over the given time horizon. In model (1), a de-energized
generator will have zero generation capacity, and a de-energized
line will be considered open. If a bus is shut off, all generators
and lines connected to it will also be de-energized. Our model
uses binary decision variables z.; to represent whether a com-
ponent ¢ € C is de-energized at time period t. We assume that
a de-energized component will remain off until the end of the
time horizon due to safety considerations [8]. Model (1) obtains a
first-stage plan, i.e., a nominal plan, that should be implemented
until a disruption occurs or the time horizon ends, whichever
occurs first. If a fire disruption is observed at period 7%, given
the current shut-off state z.,._1, the model enters the second
stage and incurs the second-stage value function f“, where we
assume that the components at revealed ignition locations will
be shut off.

T¢—1
Z* = min Zp“ Z de(l — Zat)+ [ (270 -1,89)
we t=1 deD
st. VteT:
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Fig.2.  Scenario-treeillustration of the wildfire disruption problem with " = 5
and 7% = 2. The branch in the red box represents the disruptive scenarios where
the disruption occurs in period 2. The branches in the blue boxes represent the
scenarios sharing the same historical information (the nodes in blue).

Py < =bij (0t — 0je +0(1 — zi50)) Y(i,j) € L (la)
PL > —by; (B — 050 +0(1— 25)) V(i j) €L (Ib)
= Wijzie < Py?f < Wijzije Y(i,j) € L (lc)
Y Pi+Y Pi=) Dawa Vie B (1d)
g€d; lel; deD;

PSzg < PG < PCay, Vge G (le)
Zit 2 Tat Vi e B,d e D; (If)
Zit 2 Zgt VieB,ge g, (lg)
Zit 2 Zijt Vi e B,(i,j) € L (1h)
Zit 2 Zjit Vie B, (j,i)e L (1i)
Zet 2 Zemin{t+1,T) VeeC (1))
zer € {0,1} VeeC. (1k)

The objective function considers the expected cost, which
consists of the load-shedding cost before the disruption and the
total cost after the disruption. Constraints (1a)—(1e) correspond
to the DC power flow model and constraints (1f)—(1i) model the
component interactions, equivalent to constraint (7)—(9) in [8].
Constraints (1j) describe the temporal logic of components’
status: once a component is shut off, it stays off, and the cor-
responding z variable is 0. The scenario tree of this two-stage
SMIP model is shown as Fig. 2, in which each node represents
the decisions at a time period, and each branch extending to
the right represents a disruption scenario. The black box of the
left diagonal branch represents the nominal plan obtained if no
disruption occurs. Suppose we have a scenario w with 7% = 2.
The red box on the right describes the decisions associated with
such value function f“, and the red node implies the disruption
time 7% = 2. The branches in the blue box are the scenarios
that are disrupted in period 4 and share the same historical
information (the nodes in blue).

We define the expected total cost after the disruption
Y wea P fC(+, &) as our wildfire risk measure. For each sce-
nario, the second-stage value function f“ takes in the shut-off
state variables Z.;«_; and the disruption uncertainty £% as its
input. It focuses on the operations after 7% and can be evaluated
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by solving the following mixed-integer program:
fW(ZA,'Tw717 fw)
T
=min Y Y wall —af) + ) red
t=71% deD ceC

st. Vee{r¥,...,T}:
PLE < —by (05— 05 +0(1—42)  Y@j) €L Q)
PLY 2 =iy (05— 05, +0(1—y5) V(i) eL (2)
— Wiyt < P < Wiyt V(i,j) € L (20)
S PTUY Py =" Dyt vieB (2d)
9€G; leL; deD;
PJ“ys < P < Py VgEeG (2e)
Y = wg VieB,deD; (2f)
Y > vy VieBgeGi (g
v >y Vi€ B, (i,j) €L (2h)
yi > Y5 VieB,(j,i) €L (20)
Yo <2 Yeel (2))
Yo <1-—mn VeeC (2k)
ne > vy VeelC (2l
Ny > U 2y VeeC kel (2m)
28 = Zerw_1 VeeC (2n)
y(:)an‘:7 Z‘: € {07 1} Vee C. (20)

The objective function includes the load-shedding cost after
the disruption and the wildfire damage cost. The wildfire damage
cost for a component ¢ € C, denoted by 7., consists of the
replacement cost of the electric components and the financial
loss to the nearby communities. In model (2), the energization
status will stay the same in the remaining time horizon, as we
assume that all wildfire damages reveal at period 7% and no
recovery decisions take place afterward. Constraints (2a)—(2e)
model an equivalent form of the DC power flow constraints as
in model (1). Constraints (2f)—(21) indicate the functioning state
of components, similar to their first-stage counterparts (1f)—(11).
We create a local copy of the first-stage shut-off decisions, 2,
via the nonanticipativity constraint (2n), which ensures that the
shut-off state of each component at the time of wildfire disrup-
tion is identical for all scenarios that share the same history.
The binding relationship is illustrated by Fig. 2 and discussed in
detail in [29]. With z¥ indicating whether component c has been
shut off, constraint (2j) makes sure that the shut-off components
stay down through the second stage. Constraint (2k) states that
damaged components no longer function, where we model the
exogenous fire damage by constraint (21) and the endogenous
fire damage by constraint (2m). Notice that an endogenous fire
started at component c requires both a fault occurrence u& =1
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and the component not being shut off z&

components k € .

= 1 and spreads to

III. DECOMPOSITION ALGORITHM BASED ON LAGRANGIAN
Cur

The value function f“ is a non-convex function without an
analytical form, as we need to solve a MIP subproblem (2) to
evaluate it. A common way to solve model (1) is to replace f*“
with closed-form approximation, such as linear cutting planes.
If the state variables are binary, we can generate Lagrangian
cuts to equivalently reformulate f“ as a convex piecewise linear
function for each w € 2 [30]. Such Lagrangian cuts can be
applied to model (1) as well because our state variables z
are binary. In this section, we first show the derivation of the
Lagrangian cut and the convergence properties of the cutting
plane method. In addition, we propose an improved Lagrangian
cut, square-minimization cut (SMC), and illustrate how it can
accelerate the cutting plane algorithm.

At (-th iteration, we solve a Lagrangian dual problem (3) to
obtain the cut intercept v*+ as its optimal value v* and gradient
A% as the optimal solution A*. It is worth noting that model
(3) is a convex program and we can efficiently solve it using
convex programming algorithms, such as the bundle method
with stabilization techniques [37]:

v = max R¥(z, 1), 3)

where the Lagrangian relaxation problem R“(Z, 1) is obtained
by relaxing the nonanticipativity constraint (2n):

T
R¥(2,3) =min > > wa(l—a%)

t=7% deD

+ 3 lren? + hel(Zeoot — 22)]

ceC

s.t. Constraints (2a)—(2m), (20). 4)

Since we can always find a feasible solution to subproblem (2)
by setting all variables in model (2) to zero, we do not need to
generate feasibility cuts to characterize the domain of f“ and
can focus on generating optimality cuts to approximate <« [28].
For a specific w, we denote the lower approximation of f¢ by
V¢, and write the /-th cut as follows:

Ve >0t 4 (A9 (2w — 25 ). (5)

With construction of I — 1 Lagrangian cuts (5), we can substi-
tute the function f“ by to obtain the lower approximation for
model (1) as (Mr). Since the cuts form a lower approximation
of f¢, the optimal value Z; is a lower bound of Z*.

T —1
(ML) ZZ = min pr Z wd(l — $dt) + Vw
we t=1

s.t. Constraints (1a)—(1j)

Vo Z ()\,w7€)T(Z.7—w,1 — 2_[7.4»,1)
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Algorithm 1: Decomposition Algorithm Based on La-
grangian Cuts to Solve Model (1).

1 Initialization cut iteration number ¢ = 1, lower bound LB = 0,
upper bound UB = oo and € > 0;
2 while “E—LE > ¢ do

/+ Forward Steps */

3 Solve the master problem (M) and obtain the first-stage
shut-off solution 2¢, optimal value Z;, and the
approximations of value function V¢ ;

4 Update LB = 7,
5 for w € Q do
6 | Solve model (2) with 2° and obtain f“ (25w, €°);
7 end
5| Let Z=2; +3,cqp” (¥ (2he,£) — V) ;
9 if Z < UB then
10 ‘ Update UB = Z and incumbent solution as z* = £*;
11 end

/* Backward Steps */
12 for w € 2 do
13 Solve the Lagrangian dual problem (3), and obtain the

optimal solution \*** and the optimal value
Uw,l — Rw(éé,)\w’é);

14 And add cut (5) to (My);
15 end
16 Letl=/0+1;
17 end

18 Output the e-optimal value UB and solution z*.

+ 0t YweQl=1,...,L—1.

(6)

Once we obtain the optimal solution (&, 2,V, P) to (My), it
is a feasible solution to model (1) and we can calculate an
upper bound by evaluating f“(Z.;«_1,&) for each w € 2. We
present the detailed steps of the decomposition algorithm in
Algorithm 1 below, which iteratively updates the bounds. In
the end, we terminate Algorithm 1 once the relative gap is
within a predefined tolerance threshold ¢ > 0. We can show that
Algorithm 1 converges to the optimal value in finite steps.

Theorem 1 (Convergence): When ¢ = 0, Algorithm 1 termi-
nates in a finite number of iterations and outputs an optimal
solution to model (1) after finitely many iterations L.

Proof: According to Theorem 3 in Ref. [30], for a given
incumbent first-stage solution Z and scenario w, the Lagrangian
cut generated at Z is proven to be tight, meaning that its value at
Z is equal to the value function (2. ;«_1, &) at this particular
point. Since all state variables are binary, there is a finite number
of distinct first-stage solutions z, allowing us to fully describe
the value function using a finite number of Lagrangian cuts.
Consequently, there exists a finite iteration number ki, after
which no new cuts are generated. For any iteration k& > k1,
with the resulting first-stage state variable 2* and approximate
second-stage value function values {V<"*}_cq, two cases may
arise: 1) for each scenario w, V<% = f¥(2F ., |, £¥); in this
scenario, the resulting upper bound Z equals the optimal value
of the master problem Z;, leading the algorithm to terminate
with a global optimum; 2) there exists a scenario w such that
Ve < f(zk 1, €¥); in this case, a Lagrangian cut is gen-

erated to enhance the approximation of the second-stage value
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Fig. 3. Illustration of different types of cuts: the black cut and the red cut are
tight at 2 = 0, but the blue cut is not since its value at Z is smaller than the
function value; the red cut has better performance than the black cut as it also
characterizes the function value exactly at another 2 = 1.

function. However, this contradicts the result that no new cuts
are generated after iteration k;. Consequently, the algorithm
converges to a global optimum in a finite number of steps. [
Although the Lagrangian cut (5) is tight and valid at the
incumbent binary solution 2 and results in finite convergence,
the cut may be steep and not provide a good lower approximation
at other solutions (shown as the black line in Fig. 3). Therefore,
We propose a rotated cut, the SMC, which is illustrated by the
red line in Fig. 3. Instead of solving model (3) to obtain the cut
coefficients A and v, we solve an alternative model:

min AT (7a)

st. RY(2,0) > (1—0)fY(2rw_1,£9), (7b)

and we let A*°¢ equal to its optimal solution A* and v =
R“(%,1*). Fig. 3 shows that the difference between a steep cut
and a flat cut lies in the angle they make with the horizontal
plane. We prefer a flat cut with a smaller A " A, as A represents the
linear cut’s coefficients. While we minimize A " A and rotate the
cut, it is possible that the cut becomes non-tight at the incumbent
solution Z. Therefore, we set up constraint (7b) to force the cut
value to be within a § neighborhood of f“ at Z, which can be
considered an “anchor point.” Model (7) is always feasible as
the Lagrangian cut coefficients obtained from solving model (3)
can serve as a feasible solution. As the function R“ is a concave
function of A given Z, constraint (7b) characterizes a convex set
and we can again use convex programming solution methods to
solve model (7).

IV. NUMERICAL RESULTS

In this section, we first describe the numerical experiment
setup, with which we evaluate the efficiency of our decompo-
sition method and the solution quality. We then compare our
two-stage SMIP model (1) with four benchmark cases: a deter-
ministic model that ignores wildfire disruption, a wait-and-see
model with perfect wildfire information, a model based on an
aggregate wildfire risk metric, and a robust optimization model
that seeks to minimize the total cost of the worst-case scenario.
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Fig. 4. Illustration of the RTS-GMLC system.

Finally, we examine the robustness of our nominal solution
against potential inaccuracy in wildfire disruption probability.

A. Experiment Setup

We use the RTS-GMLC 73-bus case [32] and run experiments
on a 24-hour horizon with each time period accounting for an
hour (7" = 24). We assume a constant electricity demand except
for the peak hours, 9 am to 12 pm and 3 pm to 7 pm, during
which the demand is 1.2 times the non-peak value.

The economic loss caused by fire and sudden power outages
depends on the fire intensity and the amount of load in the af-
fected area. To quantify the economic impact of wildfire damage
and load loss, we assign each electrical component a numerical
rating based on its importance and impact on the area, following
a similar approach to the Value Response Index in Texas Wildfire
Risk Rating System [38]. We assign each electrical component a
scaled cost based on value data from [39], [40], [41], and [42] to
create comparable cost values for equipment damage and shed
load. We obtain the following cost parameters:

1) Load priorities wy range from 50 to 1000;

2) The damage costs 7. of wind turbines, thermal and nuclear

power plants are 50, 1000, and 2500, respectively;

3) The damage cost r. of each bus is 50;

4) The damage cost r, of a transmission line is 0.285¢, where

{ is the length of the transmission line.

Fig. 4 color codes the load and generator priority levels based
on their load-shedding and damage costs, respectively.

All optimization models were implemented using JuMP [43]
in Julia v1.6 [44] and solved by Gurobi v9.5.1 [45] on a computer
with a 10-core M1 Pro CPU and 32 GB memory. The network
plots are generated using PowerPlot.jl, which depends on Pow-
erModels.jl package [46]. Scenario simulation is constructed by
an agent-based model package, Agent.jl [47]. For Algorithm 1
and SMC, we set e = 1% and 6 = 1074,

B. Computational Performance and Solution Analysis

We examine how the algorithm performance and solution
quality change with sample size. Our two-stage SMIP model,
utilizing a set of scenarios {2, can be considered sample average
approximation (SAA) and serve as a lower bound estimator
of the optimal value for the true stochastic process of wildfire
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Fig. 5. Confidence intervals (bar) and point estimates (circle) of the lower

and upper bounds for solutions with different sample sizes. The shaded area
indicates the range of extreme values (maximum and minimum).

TABLE I
RUN-TIME (SEC.) OF ALGORITHM 1 UTILIZING SMC AND LC WITH A
TOLERANCE OF 1.0%, COMPARED WITH A RUN-TIME OF SOLVING MODEL (1)
BY GUROBI WITH MIPGAP = 1%

Sample size Algorithm 1 Time Gurobi Time
SMC (Sec.) LC (Sec.) (Sec.)
20 712 3287 84
50 1248 8741 376
100 2604 17911 1510
200 5323 > 18000 9186
500 12776 > 18000 > 18000

progress. As the number of scenarios increases, the approxima-
tion precision improves, but the required computational effort
also increases [28]. Our objective is to determine a sample
size that yields a high-quality solution within an acceptable
computational budget. To achieve this, we first obtain twenty
first-stage SAA solutions X = {, 2,0, P} and optimal values
with sample sizes of 20, 50, 100, 200, and 500.

Next, we generate n = 5,000 wildfire scenarios ) using the
procedure outlined in Section II-A for the out-of-sample test.
We evaluate the expected total cost of each SAA solution using
those 5,000 scenarios as follows:

gn(X) =

1 T -1
min Z - Z de(l —Zat) + [ (Zre-1,6")] . (8)
wetr | Lt=1 deD

Such cost can serve as an upper-bound estimator for the true
wildfire progress. We take the mean of those twenty lower-
and upper-bound estimators and calculate their 95% confidence
intervals for each sample size, shown in Fig. 5. As the figure
illustrates, the gap between the lower- and upper-bound esti-
mators narrows, and both estimators become less variable with
increasing sample size. We consider this gap acceptable for a
sample size of 500.

As the sample size increases, solving the SMIP model (1)
becomes increasingly challenging. Table I shows the effective-
ness of Algorithm 1 with SMC. With a sample size of 500, this
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algorithm is capable of solving the model within a reasonable
time frame (18,000 seconds). In contrast, state-of-the-art solvers
like Gurobi are unable to handle such a problem. Table I high-
lights the necessity of computational improvement through the
use of SMC, as the algorithm with the original Lagrangian cuts
(LC) fails to reach the optimal solution within the given time
constraint.

We simulate scenarios and solve the two-stage SMIP offline
in advance of a specific day of operations, which provides a
nominal plan. During the day, we execute the nominal plan
until a wildfire disruption occurs. Given the wildfire disruption
realization, we can solve the second-stage problem to obtain
recourse decisions, a process that typically takes less than a
second. Therefore, the run-time of Algorithm 1 is sufficient for
the practical implementation of our model.

The nominal plan obtained by model (1) balances the trade-off
between minimizing load-shedding cost and reducing wildfire
risk. For example, transmission line 72 has a high risk of starting
an endogenous wildfire, as it ranks 10-th among all transmission
lines regarding the number of scenarios where an endogenous
wildfire occurs. However, in a 24 time-period horizon, the nomi-
nal plan does not de-energize it early because it connects to a bus
with multiple generators that supply a large amount of load; see
Fig. 6(a). To illustrate this trade-off, we compare the outcomes of
de-energizing and keeping line 72 energized. If we intentionally
de-energize line 72 early at ¢ = 12, it causes a significant loss of
generation and load-shed; see Fig. 6(b). The load-shedding cost
outweighs the expected damage cost caused by line 72, so the
nominal plan prefers to keep it energized. However, after period
22, the nominal plan de-energizes it (Fig. 6(c)) because the
expected damage cost from its fault exceeds the load-shedding
cost from less generation. We observe a similar “end-of-horizon”
effect when we extend the time horizon length to 7' = 36 and
T =48.

C. Benchmark Comparison

We choose the best optimal solution obtained from twenty
batches with a sample size of 500 in Section IV-B as the
solution to our two-stage SMIP model (1), denoted as X* =
{z*, 2%, 0%, P*}. We then compare this optimal solution, X *, to
the following three benchmark models:

1) A deterministic model where we maximize load satisfac-

tion without considering possible disruption:

T
(Mdet) min Zzwd(l—xdt)

t=1 deD

s.t. Constraints (1a)—(1j).

Since (M49¢t) does not consider the wildfire risk, the
optimal solution will return a nominal plan X% =
{xdet, zdet gdet | pdetl with no shut-off.

2) A wait-and-see model where we can make a scenario-
specific plan assuming £ is known before we make
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(a) The nominal load plan for the period 12
and its associated load-shedding percentage
illustrates how the nominal plan optimizes
the load distribution and minimizes the risk

exposure under uncertainty. plan keeps it on.

Fig. 6.
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Fig. 7. Illustration of wildfire risk Rt att = 13.

decisions. For each w € (), we solve

(Mws,w)

ws,w

gvs

TY -1
=min > > wa(l = zar) + [ (20 1,8

t=1 deD
s.t. Constraints (1a)—(1j),

and obtain a scenario-specific solution X"“5% =
{gwsw Zwsw gwsw pwswl An expected wait-and-see
cost can then be computed as g;; = >~ . %gws’w.

3) A wildfire-risk-based model proposed by [18] to simulta-

neously reduce wildfire risk and load-shedding:

> dep TatwaDay

RFZ’I‘E t
M) min {a =~ — (11—«
( ) ; RTot ( ) DTot
s.t. Constraints (1a)—(1j)
RFire,t = Z Rctzct vVt € Ta

ceC

The component-wise risk measure R is the mean number
of components affected by an endogenous fire started
at component ¢ across all scenarios. Fig. 7 illustrates
the value of R, for ¢t = 13. The components that face
significant wildfire risk are marked in the figure. By
controlling the number of energized components, we can

(b) The additional load shed in period 12 (¢) The nominal load plan for period 22,
when transmission line 72 is de-energized illustrates how the nominal plan optimizes

intentionally, compared to when the nomina

1 the load distribution and minimizes the risk
exposure under uncertainty.

Visualization of trade-off in the nominal plan. The red line in the bottom-right corner represents transmission line 72.

compute the total wildfire risk Rp;ye for the period ?.
We use the total load Dp,; = ZdeuteT Dy and total
wildfire risk R, = ZceC,teT R.; as the normalization
factors such that we can combine the wildfire risk and the
load-shedding in the objective function. The parameter
« € [0, 1] adjusts the trade-off between serving loads and
reducing wildfire risk. Solving model (M™) returns a
nominal plan X70® = {grba prba grba pro.al

4) A scenario-based robust optimization model, in which we
minimize the total cost of the worst-case scenario:

TY -1
(M") min max ; dez;wd(l—xdt)—i—f (zrw-1,&Y)

vVieT.

Solving model (M7°) returns a nominal plan X0 =
{xro, Z'r‘o7 97"07 PTO}.
Each model is solved, then evaluated with the same n =
5, 000 out-of-sample scenarios Q used to evaluate the two-stage
SMIP model (1). For the deterministic model and the wait-and-
see model, we obtain two following ratios to show their relative
difference compared to model (1):

gn (X %) — g, (X7) gn(X*) — g3,
— 0.639 and 2 ) " In
gn(X*) gn(X*)

The first ratio emphasizes that the two-stage SMIP can signif-
icantly improve the operations compared to the deterministic
approach agnostic to potential wildfires. The second ratio quan-
tifies the value of perfect information. We can save 41.6% of the
cost if we can forecast the wildfire perfectly before we make the
shut-off decisions. This large ratio reflects the high variance
in wildfire scenarios and the difficulty for a single nominal
shut-off plan to perform optimally in all scenarios. While it is not
entirely possible to obtain the perfect information, it is helpful
if we can obtain auxiliary data, conditioned on which we can
identify a better representation of the scenarios. For example,
we may exclude the scenarios with wildfires occurring in areas
with forecast precipitation.

Fig. 8 illustrates such effect by selecting a subset of twenty
scenarios: we can observe that the cost of the SMIP solution is

s.t. (1a)~(1k)

= 0.416.
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TABLE II
LOAD-SHEDDING COSTS AND DAMAGE COSTS OF NOMINAL PLANS X 0>
UNDER NON-DISRUPTIVE AND DISRUPTIVE SCENARIOS

Non-Disr. Disruptive Total Cost
@ Load shed | Load shed Damage | gn(-) RRI
0.0/ X det 0.0 3247.0 2814.0 5936.2  63.9%
0.1 148.6 3843.5 1767.5 5495.4  51.7%
0.2 162.9 3850.7 1739.8 5480.8  51.4%
0.3 221.4 3891.0 1713.9 5489.4 51.6%
0.4 171.6 3786.3 1783.4 5454.9  50.6%
0.5 251.1 3712.8 1773.9 5373.7  48.4%
0.6 106.7 3686.8 1817.0 5390.5  48.9%
0.7 469.3 3721.4 1754.1 5425.9  50.0%
0.8 883.6 3949.0 1700.1 5532.7 52.8%
0.9 1505.8 4285.3 1341.1 5510.5  52.2%
X* | 16782 | 23552  1333.6 | 36127  0.0%

significantly lower than the cost of the deterministic solution in
all but one of the selected scenarios and can approach the best
possible cost in two scenarios. If the auxiliary data happen to
show those two scenarios are likely to happen, our SMIP solution
will perform well. On the contrary, if the auxiliary data tell the
other way, we may want to re-solve the two-stage SMIP model 1
with a refined set of scenarios.

For the wildfire-risk-based model (M), we use the set of
scenarios 2%, with which we obtain X*, to calculate the wildfire
risk value Ry forall t € 7. We obtain a solution X b for
a €40.0,0.1,...,0.9}. We list the out-of-sample mean load-
shedding cost and wildfire damage cost under non-disruptive
scenarios (no wildfire ignitions) and disruptive scenarios in
Table II, evaluated with Q.

If the wildfire risk is ignored (o« = 0.0), it is equivalent to the
deterministic solution X ¢!, which leads to a large out-of-sample
cost g, (X ). By increasing «, we can first reduce the total cost
via the preventive shut-offs of potentially risky components, re-
sulting in less damage cost. However, as « increases further, the
nominal plan becomes too conservative, and many components
are de-energized such that the increasing load-shedding cost
outweighs the reduced damage costs. This illustrates a major
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TABLE III
LOAD-SHEDDING COSTS AND DAMAGE COSTS OF NOMINAL PLANS X "¢
UNDER NON-DISRUPTIVE AND DISRUPTIVE SCENARIOS

Cost
Worst-case

56848.3
28871.1

Disruptive
Load shed  Damage

18067.3
2355.2

Non-Disr.
Load shed

30130.2 |
1678.2 |

gn (")
2506.3 | 20770.5
1333.6 | 3612.7

Xro ‘
X
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Fig. 9.
t = 16.

Illustration of the power system under the nominal plan X" at time

challenge in the wildfire-risk-based model (M™) as there is
little guidance to select a proper a.

We then compare our SMIP model (1) with the wildfire-risk-
based model (M "), via the ratio of relative improvements (RRI)
(gn(XT0) — g,,(X*))/gn(X*) in Table II. The results show
that the nominal plan obtained by solving model (1) performs
significantly better, and the RRI values for X" exceed 45% for
all « selected. This indicates that, without considering wildfire
scenarios and potential adaptive recourse actions, static non-
robust planning is far from optimum, regardless of the level of
conservatism. The reason is that (M"?) only considers mini-
mizing the total wildfire risk and satisfying the power demand,
which leads to the nominal plans that de-energize any component
with R > 0 for some ¢ € T as early as possible, only if this
action does not affect the future supply of electricity. However,
this property may compromise the resilience of the power grid
by de-energizing an excessive number of components. If a
disruption occurs, there might be very high load-shedding costs.

We use a scenario-appending algorithm similar to that in
Ref. [48]. The algorithm starts with solving a relaxed model
considering only a prespecified subset of scenarios Qc O and
obtains a solution X. An oracle is run to find the worst-case
scenario w € )* given X. We append such a scenario to the
set () and repeat the above process until the obtained w is
already in ). The experiment demonstrates that the subset Q
includes 23 scenarios, much smaller than |Q2*| = 500, allowing
us to run the algorithm in 109 seconds. Although the robust
optimization algorithm runs faster, the robust solution X"
presents worse out-of-sample test results using scenario set Q
in Table III, compared with those of the SMIP solution X*.
The robust nominal plan X" de-energizes more components
early in the time horizon to mitigate endogenous wildfire risks,
which is illustrated in Fig. 9. Consequently, this conservative
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TABLE IV
LOAD-SHEDDING COSTS AND DAMAGE COSTS OF NOMINAL PLANS X 2P
UNDER NON-DISRUPTIVE AND DISRUPTIVE SCENARIOS

Non-Disr. Disruptive Total Cost

Ap Load shed | Load shed Damage gn(*) RRI
—0.05 1805.1 2553.0 1242.7 | 3782.8 4.5%
—0.015 1741.5 2513.7 1353.6 | 3787.3 4.6%
0.0/X* 1678.2 2355.2 1333.6 | 3612.7 0.0%
0.015 1660.0 2343.9 1341.7 | 3609.7 —0.1%
0.05 1504.9 2360.2 1325.4 | 3609.6 —0.1%
0.1 1250.7 2344.8 1317.1 | 3586.5 —0.7%
0.2 828.4 2196.5 1578.8 | 3697.5 2.3%
0.3 207.3 2181.1 1752.3 | 3882.5 7.3%
0.5 185.1 2343.5 1845.6 | 4109.1  13.5%
0.7 109.7 2410.8 1851.0 | 4153.3  15.0%
0.9 99.0 2476.8 1878.1 | 4276.7 18.4%

strategy results in a substantial amount of load-shedding in both
nominal and disruptive scenarios, leading to a total cost of up
to four times that of X*. The worst-case in-sample cost among
scenarios in * for X" is 32,374 compared to 34,016 for X*,
which is reasonable as X" optimizes the worst-case scenario.
However, the out-of-sample worst-case costs, as demonstrated
in the last column of Table III, indicate that X"° is sensitive
to the scenario selection and performs poorly when facing new
samples. In contrast, our stochastic programming solution X*
shows robustness as the out-of-sample worst-case cost is even
smaller than the in-sample one. Moreover, the performance of
X7 significantly lags behind that of X* across other scenar-
i0s. Although the robust model requires less time to generate
a feasible nominal plan, the numerical results show that the
robust nominal plan is conservative because it relies on lim-
ited scenario information and prioritizes minimizing worst-case
costs.

D. Sensitivity Analysis of Disruption Probability

We simulate the set of wildfire scenarios with a probabilistic
model described in Section II-A, which then serves as the
uncertainty model in the SMIP. It is necessary to examine the
robustness of the optimal solution to the SMIP against the
potential inaccuracy in such an uncertainty model. Therefore,
we perform a sensitivity analysis in this section to check the
out-of-sample performance of SMIP solutions obtained with
different uncertainty assumptions.

In Section II, we construct a scenario set 2* in the SMIP
model (1), each scenario with an equal probability of oc-
currence, 1/]Q*|. Such a scenario set can be partitioned as
O = Q5 U QY. where Q7 () represents the set of scenarios
with(out) a disruption. When there is no disruption, the nominal
plan is carried out over the entire time horizon. Therefore, the
partition is equivalent to Q* = Q% U {wo} with probabilities
po = |Qy|/1Q andp® = (1 — p*°) /|| forw € QF,, where
wp 1s a scenario without disruption.

For the sensitivity analysis, we add a perturbation Ap to p*°©
and adjust p* for w € Q}, accordingly. We solve the SMIP for
each Ap and test its solution’s out-of-sample performance over
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the scenario set (2, displayed in Table IV. The out-of-sample no-
disruption probability |Qx /|| is approximately 0.05, similar
to that of Q*.

We observe from Table IV that the optimal SMIP solu-
tion can yield a decent out-of-sample performance even when
the input perturbation is quadruple the original no-disruption
probability (Ap = 0.2). This indicates that the SMIP opti-
mal solution is robust against input inaccuracy. When Ap
keeps increasing, the SMIP values a nominal plan that shuts
off fewer components and thus minimizes the load-shedding
cost under scenarios without wildfire disruption. It leads to
higher out-of-sample load-shedding and damage costs simul-
taneously as insufficient shut-offs are executed to prevent en-
dogenous wildfires. The sensitivity analysis results show that
the SMIP optimal solution is reliable as long as the input
uncertainty model is not too liberal when estimating the wildfire
risk.

E. Interaction Between Endogenous and Exogenous Wildfires

In this section, we investigate how endogenous and exogenous
wildfires interact and affect the shut-off plans. Intuitively speak-
ing, considering endogenous wildfires tends to encourage more
shut-offs to prevent faults ignited by power system components,
while the presence of exogenous wildfires introduces additional
load-shedding costs which can be mitigated by keeping more
components energized. To quantify this interaction, we compare
three nominal plans: 1) X" obtained by solving model (1)
with 500 scenarios that only contain exogenous wildfires; 2)
Xend obtained by solving model (1) with 500 scenarios that
only contain endogenous wildfires; and 3) X* obtained in Sec-
tion I'V-C with 500 scenarios that contain a mixture of exogenous
and endogenous wildfires. Fig. 10 illustrates the power system
status, highlighting the de-energized components and load-shed
in period ¢ = 16. The nominal plan X“*°, shown in the left
plot, exhibits the fewest number of de-energized components. In
contrast, the right plot shows the nominal plan X "¢ leads to the
highest number of shut-offs. The nominal plan X ™, considering
both exogenous and endogenous wildfires, represents a trade-off
between the two. We perform three additional out-of-sample
tests to evaluate those nominal plans with 5,000 scenarios of: 1)
exogenous wildfires only; 2) endogenous wildfires only; and 3)
a mixture of endogenous and exogenous wildfires, as shown in
Fig. 10. The nominal plan X “*° exhibits inferior performance in
both load-shedding and damage costs when endogenous wild-
fires are possible. The nominal plan X "¢ becomes conservative
and shuts off too many components, resulting in consistently
high load-shedding costs. While the nominal plan X* achieves
a balance in between. Our finding confirms the intuition of how
exogenous and endogenous wildfires interact and highlights the
importance of modeling both types of wildfires in power system
operations.

V. CONCLUSION & FUTURE WORK

This work contributes to the literature on stochastic opti-
mization for power system operation under wildfire risk. We
propose a novel two-stage stochastic program that captures the
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Fig. 10. Visualization of interaction between endogenous and exogenous wildfire risk. (a) 15 transmission lines are de-energized in X ¢*“ in period 16. (b) 26
transmission lines are de-energized in X™* in period 16. (c) 31 transmission lines are de-energized in X ¢™< in period 16.

TABLE V
PERFORMANCE OF THE NOMINAL PLANS GENERATED FROM DIFFERENT SCENARIOS UNDER DIFFERENT TEST SETS

\ Exogenous Wildfire Scenario Set I Mixture Wildfire Scenario Set I Endogenous Wildfire Scenario Set
Non-Disr. Disruptive Total Non-Disr. Disruptive Total Non-Disr. Disruptive Total
Type | Load shed Load shed Damage  gn(:) Load shed Load shed Damage  gn(:) Load shed Load shed Damage  gn(-)
xere 0.0 707.1 636.5 1289.8 0.0 3231.8 2961.0  5960.2 0.0 3380.4 2979.8 6106.0
X* 1678.1 1892.8 636.5 2495.2 1678.2 2355.2 1333.6  3612.7 1678.2 3107.1 1814.0  4792.8
xend 1998.5 2249.9 636.5 2850.9 1998.5 2748.6 1240.3  3909.1 1998.5 3147.0 1514.0  4554.4

uncertainty of wildfire disruptions and temporal dynamics. We
also develop an efficient decomposition algorithm that exploits
the binary structure of state variables and generates valid cuts
for solving large-scale instances. Our numerical experiments
demonstrate the effectiveness and robustness of our approach
in terms of solution quality and computational speed. They
illustrate the benefits of the stochastic programming model by
comparing it with deterministic counterparts and the scenario-
based robust optimization model.

For future work, we plan to extend our research in several
directions. One direction is to investigate a theory-driven ap-
proach for generating effective and efficient cuts in our decom-
position algorithm. Another direction is to expand the current
modeling setting: 1) to relax the assumption of at most one
disruption and extend our model to a multistage problem; 2)
to include the unit commitment decisions, which would re-
quire an algorithmic development to handle the continuous
state variables to model the ramping constraints; 3) to for-
mulate a realistic multi-period uncertainty set/ambiguity set
based on high-fidelity wildfire simulators and model the wild-
fire disruption in robust/distributionally robust optimization. A
third direction is to address the challenge of ensuring feasibil-
ity with AC power flow when using a linear approximation
of power flow in our model. Finally, we aim to develop a
rolling horizon framework that can handle the wildfire fore-
cast updates and dynamically re-optimize the de-energization
schedule.
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