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Abstract—The rapidly growing number of distributed energy

resources is increasing uncertainty and variability in distribution

system operations. At the same time, better access to mea-

surement data is enabling new, data-driven methods for state

estimation and analysis. Unfortunately, topology changes pose

a significant challenge to existing methods, which are geared

towards approximating the power flow (PF) equations in a

continuous manner. To address this gap, this paper proposes

a data-driven topology-adaptive piecewise PF linearization ap-

proach which inherently adapts to topology changes in the

distribution system. The approach leverages measurements of a

topology-identifying variable that helps cluster the data according

to the system topology, without requiring explicit information

about the topology status. Specifically, when we fit a three-phase

piecewise linear PF model using a K-plane regression algorithm

while integrating the topology-identifying variables, we observe

that each linear piece only incorporates samples from a single

topology. Numerical tests demonstrate that the resulting piecewise

linear PF model enables high accuracy PF calculations, even

under system topology changes.

Index Terms—Topology-adaptive, data-driven, piecewise power

flow linearization

I. INTRODUCTION

The rapid increase in the number of distributed energy
resources (DERs) and the projected growth in electric ve-
hicle (EV) charging can stress distribution grids, potentially
resulting in power quality issues such as voltage magnitude
violations and excessive voltage unbalance [1]. Access to ac-
curate and efficient analysis tools is essential to adapt to these
challenges, with the three-phase power flow (PF) equations
forming the basis of the analysis. Unfortunately, solving tradi-
tional PF requires detailed feeder models, which many utilities
lack. Even utilities that have accurate feeder models often
struggle to keep them up to date as phase connections and
switch statuses frequently change, either intentionally (such
as in response to seasonal variabilities) or unintentionally (e.g.
during restoration efforts after power outages). Furthermore,
the nonlinear characteristic of the PF equations may result in
non-convergence problems and high computation burdens [2].
The above issues can be resolved by linearizing the three-
phase PF equations. However, existing linearization methods
typically struggle to remain accurate under various operational
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statuses, and particularly with changing topologies. In this
paper, we seek to address this gap.

There are two main types of PF linearization approaches:
the model-based approach and the data-driven approach. In
the model-based approach, the PF equations are linearized
around certain operating points [3] or assuming that, e.g., the
voltage magnitude is close to one [4]. This approach relies on
the knowledge of the feeder parameter and topology, which
may not available in practice. Furthermore, as the range of
operational conditions increases, the validity of the underlying
assumptions may be violated, causing the accuracy of the
model-based linearization approach to deteriorate.

Data-driven methods seek to address the issue of missing
model parameters and varying operating conditions by directly
leveraging feeder data. This approach has become more viable
in recent years, as the broad adoption of smart meters (SMs),
microphasor measurement units (µPMUs), and supervisory
control and data acquisition (SCADA) systems provides an
opportunity to obtain sufficient measurement data [5]. There
exist a range of different data-driven approaches for state
estimation and PF analysis in power systems, including several
approaches based on machine learning such as [6], [7]. Here,
we focus on linearized PF models which create a linear
mapping between measurement data such as injections of
active and reactive power and quantities of interest such as PFs
and voltage magnitudes. Since the measurement data reflects
the real and time-varying operational status of the system,
we can obtain an accurate linear model even without details
regarding the system parameters [8].

In recent years, data-driven PF calculations has received
significant attention in the literature. Many references employ
data-driven regression to obtain the linearized PF model,
including a single-phase equivalent PF linearization approach
based on partial least squares and Bayesian linear regression
[9] and a support vector-based approach to obtain a robust
three-phase PF linearization that addresses the issues of mea-
surement outliers and data collinearity [10]. Other references
use least squares regression [11], [12] or Gaussian process
regression [13] to build the linearized PF model. In [14], an
improved K-plane regression algorithm is proposed to train a
three-phase piecewise linear PF model that has high accuracy
across a larger range of operating conditions. A challenge
of the above data-driven linearization approaches is that they



only work properly if all measurement data is obtained from a
single topology. This is because a single set of power injections
might lead to vastly different voltage distributions depending
on the feeder configuration. It is however well known that
the topology of distribution feeders changes due to switching
actions (e.g., to manage transformer loading, reduce network
losses or restore load after a fault) and changes in the phase
connections (e.g., during restoration after a storm), and some
of these changes may never be properly recorded. Thus, PF
models that are able to automatically detect and adapt to new
feeder topologies can offer a significant advantage to distri-
bution operators. Related work includes [7], which proposes
a neural-network-based PF calculation approach using voltage
differences as the feature vector to characterize the system
topology. Unfortunately, the neural network lacks the clear
relationships and interpretability of a linearized PF model.
Thus, we seek to address this gap.

Specifically, we propose a data-driven three-phase piece-
wise PF linearization approach that automatically adapts to
topology changes in the distribution system. To achieve this,
we first analyze the limitation of the existing piecewise PF
linearization approach under feeder topology changes. Based
on this analysis, we introduce a set of topology-identifying
variables xadd that help differentiate between different feeder
topologies. These variables are real-time voltage measure-
ments at selected buses and are added to the other input
data (i.e., active and reactive power injections) to help cluster
the training data according to the feeder topology. We then
improve the K-plane regression method from [14] to obtain
a piecewise linear, three-phase PF representation. Once the
model is trained, we can leverage measurements of power
injections and the topology-identifying voltages to solve PF
in real time. We note that neither the training of the method
(i.e., the clustering and regression) nor the use of the method
in real time require explicit knowledge of the system model.

The contributions of this paper can be summarized as
follows. First, review the existing model and analyze its lim-
itations. Second, we develop a topology-adaptive, piecewise
linear three-phase PF model. Third, we devise a PF calculation
process based on the trained model, which automatically
identifies and uses the correct topology. Finally, we present
a case study that illustrates that the proposed approach can
identify the right topology for a given state and calculate the
PF accurately under system topology changes.

The remainder of this paper is organized as follows. Section
II reviews the data-driven three-phase piecewise PF lineariza-
tion approach in our previous work [14] and how it cannot
adequately adapt to changes in the feeder topology. Section
III proposes extensions to the existing approach to enable
better considerations of feeder topology changes. Section IV
provides numerical results and Section V concludes.

II. PRELIMINARIES
We start by summarizing the data-driven three-phase piece-

wise PF linearization approach in our previous work [14],
and analyze the limitation of this approach when the feeder
topology changes.

A. Data-driven Three-phase Piecewise PF Linearization Ap-

proach with One Topology

Reference [14] proposes a data-driven three-phase piece-
wise PF linearization approach which builds piecewise linear
relationships between the power injections and the voltage
magnitude and branch power flow. The method splits the train-
ing data into K partitions, and derives a linearized PF model
for each partition. Within the kth partition, the corresponding
linear model is given by

y = wT
k · x+ bk, (1)

uroot = uref, (2)

y =
⇥
PF T QF T uT P T

root QT
root

⇤T
,

x =
⇥
P T QT uT

root
⇤T

,
(3)

where x is the vector of independent variables and y is the
vector of dependent variables. The vectors PF ,QF repre-
sent the three-phase branch active and reactive power flow,
respectively, and P ,Q and u are the vectors of three-phase
active power injection, reactive power injection and square of
voltage magnitude of all nodes except for the root node. The
root node is the slack bus, with uroot and uref representing the
vector of three-phase squared root node voltage magnitudes
and reference voltage magnitudes, while P root ,Qroot are the
vectors of three-phase active and reactive power injections at
the root node. The superscript T denotes transpose. The matrix
wk is the coefficient matrix in partition k and bk is a vector
of constants in partition k.

The coefficients of the piecewise linearized PF model can
be fitted using the K-plane regression algorithm in [14]. The
fitting can be done either separately (clustering and fitting data
separately for each output variable) or together (clustering
and fitting data for multiple output variables at the same
time). In the following, we describe the fitting procedure for
a single variable. Consider the K-piecewise linear function
f(x) = y = wT

k x + bk, with k = 1, . . . ,K, where wk

and bk are the parameters we are aiming to fit and K is
the number of clusters. Assume that we have access to N
observed samples (xn, yn) where xn is the input variable and
yn is the output variable for sample n = 1, ..., N , respectively.
The vector µk is the cluster center for cluster k = 1, ...,K.
The corresponding error function is given by

E=
NX

n=1

min
w̃k,µk

⇣
w̃T

k x̃n�yn
⌘2
+�kxn�µkk

2+↵kw̃kk2
�

(4)

Here, the first term represents the prediction error with the
current coefficients. Note that the vectors w̃k =

⇥
wT

k bk
⇤T

and x̃n=
⇥
xT
n 1

⇤T , n = 1, . . . , N have been extended to
account for the constant term in (1). The second term of the
error function minimizes the distance between the samples xn

and the cluster center µk, while the third term is a regularizing
term that penalizes large coefficients and helps address the
issues associated with data co-linearity. The parameters ↵ and
� can be tuned to manage the relative weight of the terms.



1) Training the Piecewise Linear PF Model: To obtain
the best possible parameters (w̃k,µk), the error function is
minimized by iterating between (i) choosing hyperplane coef-
ficients w̃k and cluster centers µk to minimize the error for
a given partition of the data points into sets, and (ii) updating
which cluster each data point belongs to, given the hyperplane
coefficient w̃k and cluster center points µk. The detail of the
iteration can be found in [14]. After learning all parameters
(w̃k,µk), the piecewise linearized PF model is obtained as
y = w̃T

k x̃ with the partition center µk, k = 1, . . . ,K.
2) Using the Piecewise Linear PF Model: To solve the PF

calculations using the piecewise linear model, we first identify
the nearest partition j for the given vector of power injection
x. This partition is determined by

j = argmin
k

kx� µkk
2 , k = 1, . . . ,K. (5)

Using partition j, we then calculate the branch power flow
and bus voltage magnitude by solving

y = w̃T
j x̃. (6)

This can be repeated if separate models are trained for each
output variable y.

B. Limitation of the Data-driven Three-phase Piecewise PF

Linearization Approach with One Topology

For the data-driven three-phase piecewise PF linearization
approach in [14], the training data consists of the power
injections x (the feature) and the voltage magnitudes and
branch power flows y (the label). During training, the power
injection x is used to cluster the training data into different
clusters. When the model is used, the power injection is
compared with the obtained cluster centers µ to determine
which cluster it belongs to in the PF calculation process.

However, this proposed approach is only valid when the
training data is obtained from one system topology. If there
is more than one topology, one set of power injections x
may correspond to different voltage magnitudes and branch
power flows y. In other words, for different topologies, the
linear relationship between x and y is different, and mixing
training data from different topologies may thus cause large
inaccuracies. To calculate the PF accurately, we thus need to
be able to differentiate between and derive different linearized
PF relationships for each topology.

The method in [14] is unable to achieve this because it
only relies on the power injection x to assign samples to the
right clusters both during the training process and during the
PF calculation. Since the power injections do not contain any
information about the topology, we may include training data
from different topologies into one cluster or identify the wrong
cluster during computation. Therefore, the algorithm in [14]
cannot obtain the different linear relationships for different
topologies.

III. EXTENSION TO A TOPOLOGY-ADAPTIVE PIECEWISE
LINEAR POWER FLOW MODEL

In the following, we seek to address the above concerns
and develop a topology-adaptive version of the data-driven
algorithm from [14].

A. Determining Topology-Identifying Variables

Our goal is to be able to (i) cluster the training data
from different topologies into different clusters and (ii) to
be able to identify the correct cluster (corresponding to the
correct topology) when we use the model to solve PF. As
observed above, simply using power injections to cluster the
data is not sufficient as it does not contain any topology-
identifying information. To address this, we propose to add
additional topology-identifying variables xadd to the input data
to help cluster the training data according to the topology. The
topology-identifying variable xadd should be a quantity that
will be (ideally significantly) different for different topologies,
even if the power injections are the same. Here, we define
xadd as the voltage magnitude at a small subset of nodes,
though it could also be possible to use the PF of a subset
of branches. When choosing which variables to include in
xadd, it is important to consider the location of devices
with real-time measurement and communication ability. It is
also important to ensure that the chosen variables are able
to provide the necessary information to distinguish between
multiple different topologies. The choice of the xadd can be
determined by cross-validation.

B. Topology-Aware Power Flow Model

In the topology-aware PF linearization approach, the result-
ing piecewise linearized PF model we want to obtain is the
same as the one in [14], which is given by (1)-(3). However,
the cluster center that we use to cluster the data during training
and identify the correct cluster while we solve the PF is
different, as we explain below.

To adapt to different topologies, we use both the power
injection x and the identification variable xadd together as

x̂ = [x,� · xadd]
to cluster the training data. Here, � is the a pre-defined
parameter that decides the weight of the identification variable.
We include this weight as we found that choosing � > 1 helps
to increase the topology identification accuracy in some sce-
narios. The value of � can be determined by cross-validation.
With this change to the clustering variable, the updated error
function becomes

Ê=
NX

n=1

min
w̃k,µ̂k

⇣
w̃T

k x̃n�yn
⌘2
+�kx̂n�µ̂kk

2+↵kw̃kk2
�

(7)

Here, µ̂k =
h
µT

k µT
add,k

iT
is the new cluster center definition

of the topology-aware approach, which contains entries corre-
sponding both to the power injection x and the identification
variable xadd. Note that this change only affects the second
term of the error function, while the other terms and variables
have a similar meaning as in (4). It should be noted that
although equation (7) looks similar to equation (4), since we
introduce the variable x̂, the two error functions are different
and equation (7) can adapt to the system topology changes.

1) Training the topology-adaptive model: The iteration to
decrease the error function (7) is improved in a similar manner
as before:



Step 0) Initialization: We obtain the initial cluster set S0 by
clustering the training data (x̂,y) to K clusters with K-means
clustering algorithm. We initialize the linear coefficients to 0.
Step 1) Calculating the coefficients w̃k and the cluster center

µ̂k: Assume that the linear coefficients and cluster centers after
the cth iteration is given by ⇥c = {(w̃c

1, µ̂
c
1) , . . . , (w̃

c
K , µ̂c

K)}
and that the training data is clustered into sets Sc

k, k =
1, . . . ,K. The new cluster centers µ̂c+1

k are computed as

µ̂c+1
k = argmin

µ̂k

KX

k=1

Êc
k (w̃

c
k, µ̂k)

= argmin
µ̂k

X

x̂n2Sc
k

kx̂n � µ̂kk
2 =

1

|Sc
k|

X

x̂n2Sc
k

x̂n.

(8)

The new linear coefficients w̃c+1
k are computed as

w̃c+1
k = argmin

w̃k

KX

k=1

KX

k=1

Êc
k (w̃

c
k, µ̂k)

= argmin
w̃k

2

4
X

x̂n2Sc
k

�
w̃T

k x̃n � yn
�2
+ ↵ kw̃kk2

3

5

=
⇣
X̃

T
X̃ + ↵I

⌘�1
X̃

T
Y ,

(9)

where X̃ = [x̃1 . . . x̃M ] and Y = [y1 . . . yM ] with m =
1, ...,M representing the samples in the set Sc

k. The matrix I
is the identity matrix, and the value of parameter ↵ is chosen
by cross-validation.
Step 2) Clustering the training data: After obtaining the
parameter ⇥c+1, keep ⇥c+1 fixed and cluster the training data
into new sets Sc+1

k as

Sc+1
k =

⇢
x̂n|k=argmin

j

h�
x̃T
n w̃

c+1
j �yn

�2
+�

��x̂n�µ̂c+1
j

��2
i�

Here, the first term seeks to add training data to clusters where
their corresponding PF calculation error would be small, while
the second term minimizes the distance to the cluster center.
Step 3) Check convergence: If the clusters Sc+1

k = Sc
k for all

k = 1, ...,K (i.e., there is no change in clustering during the
iteration), stop. Otherwise, move back to step 1.

After the iteration stops, we obtain the final piecewise linear
model y=w̃T

k x̃ with the linear coefficient w̃k and the cluster
center µ̂k for each cluster k. Importantly, the cluster center
µ̂k is related to the power injection x and the identification
variable xadd to help cluster the data considering different
topologies. A summary of the proposed training approach is
found in Table I.

2) Using the topology-adaptive power flow model: In the
PF calculation process, we use the power injection x and the
identification variable xadd together and compare them with
the cluster center µ̂k to determine which cluster the given
data belongs to. The cluster j for a given data x̂ is the nearest
cluster, which can be found by

j = argmin
k

kx̂� µ̂kk
2 , k = 1, . . . ,K. (10)

Then the branch power flow and bus voltage magnitude y for
the given power injection is calculated with the linear function
in cluster j with equation (6).

TABLE I
SUMMARY OF THE TRAINING ALGORITHM

Input: {(x̂1, y1) , . . . , (x̂N , yN )}

Output: {(w̃1, µ̂1) , . . . , (w̃K , µ̂K)}

Begin

Step 0: Initialize c=0,
�
w̃0

1 , µ̂
0
1

�
, . . . ,

�
w̃0

K , µ̂0
K

�
and S0

1 , . . . , S
0
K .

Step 1: Find µc+1
k , w̃c+1

k , k = 1, . . . ,K as follows,

µ̂c+1
k =

1��Sc
k

��
X

x̂n2Sc
k

x̂n,

w̃c+1
k =

⇣
X̃

T
X̃ + ↵I

⌘�1
X̃

T
Y .

Step 2: Find Sc+1
k , k = 1 . . .K as follows,

Sc+1
k =

⇢
xn|k=argminj

⇣
x̃T
n w̃c+1

j �yn
⌘2
+�

���x̂n�µ̂c+1
j

���
2
��

Step 3: Termination Criteria:

if Sc+1
k = Sc

k, 8k, then

stop.
Else

c = c+ 1,
go to Step 1.

end

end

IV. NUMERICAL TEST
We present numerical tests to demonstrate that the proposed

method to obtain a topology-aware PF model can accurately
identify the correct topology and provides accurate PF calcu-
lation results without explicit knowledge of the topology.

A. Simulation Setup

The proposed approach is tested on a modified unbalanced
IEEE 123-bus distribution system. The information of branch
parameters and load profiles is available online [15]. We
simulate 5 different topologies by opening and closing some
branches, of which the information is provided in [16].

To create PF training data, we first generate a diverse set of
power injections by multiplying the given load consumption
with a random factor obtained from a mixed Gaussian distri-
bution. The range of the mean values for this distribution is
[�15, 10] and the standard deviation is 0.5. Next, we solve
the PF using the back-forward sweep (BFS) algorithm, and
combine the power injection and the power solutions to create
the input data {x̂, y} as the training dataset. The testing dataset
is generated in the same way. For each topology, we generate
25000 training data and 5000 testing data points. We shuffle
the training data together to simulate the scenario in which
we do not know the topology information of each data in the
training process. The total number of the training data and the
testing data is 125000 and 25000, respectively.

For the topology-aware linearization approach, choice of the
xadd and the value of parameters K, �, ↵ and � are determined
by cross-validation. Here we use the square of the voltage
magnitude of node 60, 61, 67, 76, 84, 86, 93, 95, 97, 101, 115
and 116 as the identification variable xadd. The cluster number
K=50, � = 1e7, ↵ = 1e�7 and � = 15. All simulations were
implemented using MATLAB on a personal laptop with an
Apple M1 Pro processor and 32 GB of RAM.



B. Topology Identification in the Training Process

We first test if the proposed approach can cluster the
training data into groups that correspond to different topolo-
gies in the training process. It is important to note that in
the training process, we assume that we do not know the
topology information of the training data. However, since we
have generated the training data with 5 system topologies
ourselves, we know which topology to each training data
belongs. We can use this information to test the effectiveness
of the topology identification of the proposed approach. The
topology information is also a necessary input to the BFS
algorithm to calculate the PF. In the training process, we
use K = 50. We do not assign a given number of clusters
to each topology, but let the training process determine how
the samples is split. This would allow the training process to
assign more clusters to topologies that have a larger variation
in the voltage magnitudes, thus allowing for a better fit.

We first investigate the topology distributions for each
cluster, i.e. how many samples from each topology is included
in each cluster, for the case where we train the piecewise linear
PF model for the voltage magnitudes in phase a. Table II
shows the resulting topology distributions of the first 5 clusters
of the proposed topology-aware approach. Table III shows the
same results for the original approach in [14], which only
considers the PF injections when clustering the data.

TABLE II
TOPOLOGY DISTRIBUTION OF THE FIRST 10 CLUSTERS OF THE

PROPOSED APPROACH

Topology 1 2 3 4 5

Cluster 1 0 1774 0 0 0
Cluster 2 0 0 0 0 3043
Cluster 3 0 6250 0 0 0
Cluster 4 0 0 0 0 2889
Cluster 5 0 0 0 2223 0

...
...

...
...

...
...

TABLE III
TOPOLOGY DISTRIBUTION OF THE FIRST 10 CLUSTERS OF THE

APPROACH IN [14]

Topology 1 2 3 4 5

Cluster 1 756 725 733 811 797
Cluster 2 428 447 436 447 426
Cluster 3 512 500 512 491 495
Cluster 4 449 491 439 445 441
Cluster 5 473 529 448 487 483

...
...

...
...

...
...

The data in Table II demonstrates that the proposed
topology-aware approach separates the training data into
clusters that only contain samples from one topology. This
illustrates that the proposed approach can cluster the training
data into groups corresponding to different topologies, which
will allow us to use the clustered data to fit an accurate linear
approximation for the topology and power injection range
corresponding to that cluster. In contrast, Table III shows that
when we apply the approach in [14], each cluster contains
the training data from different topologies which may cause
large errors when approximating the PF function. Although

we only show results for the 5 first clusters here due to
space constraints, the results remain similar for the remaining
clusters. This illustrates that the proposed approach can cluster
the training data considering different topologies while the
approach in [14] cannot. The topology distribution of all 50
clusters is provided in [16].

C. Accuracy of the PF Calculation

We next test the PF calculation accuracy of the proposed
approach. The obtained piecewise linearized PF model is used
to calculate the PF on the testing dataset. Since we use the
square of the voltage magnitude of node 60, 61, 67, 76, 84,
86, 93, 95, 97, 101, 115 and 116 as the identification variable
xadd in the training process, we assume we know the voltage
magnitude of these nodes in real time and use them together
with the power injection to determine the cluster to which a
testing data belongs, as shown in equation (10).

1) Ability to identify the correct topology: We test if the
proposed approach can pick up the right topology as follows:
First, during the training process, we identify which topology
each cluster corresponds to (note that we are able to establish
a clear cluster-topology correspondence because the proposed
approach only includes samples for one topology in each
cluster). Then, in the testing process, we check which cluster
each testing data sample is assigned to. Finally, we compare
the identified topology and the true topology of each testing
data sample and assess whether the two topologies match. We
find that the proposed approach identifies the right topology
in all cases, i.e., it has an accuracy of 100 percent.

2) Accuracy of the PF calculation: Next, the PF calculation
result is compared with the result of the BFS approach to
assess the accuracy of the calculations. We obtain the mean,
median and maximum PF calculation errors for both voltage
magnitudes and branch power flows. The errors of voltage
magnitude V are measured as the mean absolute error. The
errors of branch power flow PF , QF are shown in both as
an absolute percentage error with the unit of 100% and as
the mean absolute error. Since we find that any variable with
a zero value is correctly predicted to be zero, we omit these
zero values from the accuracy comparison. The mean, median
and maximum errors of the proposed approach are compared
with the approach in [14], which are shown in Table IV.

From this data, we observe that the mean and maximum
errors of the proposed approach are very small. For voltage
magnitudes, the maximum errors are less than < 0.0044 p.u.,
which is highly accurate. For the active and reactive power
flow, the average percentage errors are also very small, while
the maximum percentage errors reach values above 10% for
reactive power flow. The higher percentage error observed in
reactive power compared to active power might because the
reactive power flow is less linear than the active power flow.
When looking at the absolute error values, we can however
see that these high percentage values likely arise on lines with
small power flows, as the largest absolute error is 1.02 MVAr
and the median is less than 10�3 for both active and reactive
power. For comparison, the maximum active and reactive



TABLE IV
POWER FLOW CALCULATION ERROR

Proposed approach Approach in [14]

Phase Mean Median Max Mean Median Max

a 1.06e-4 2.76e-5 5.84e-3 1.62e-2 6.27e-3 2.05e-1
V (p.u.) b 1.02e-4 2.63e-5 4.31e-3 1.26e-2 5.11e-3 1.61e-1

c 1.04e-4 2.71e-5 4.72e-3 1.41e-2 5.73e-3 1.78e-1

a 6.69e-3 3.56e-3 1.28e+0 3.63e+1 4.75e-1 1.56e+4
PF (%) b 6.15e-3 3.68e-3 6.94e+0 5.75e+1 4.14e+0 1.37e+4

c 8.26e-3 4.23e-3 1.69e+0 3.24e+1 2.88e-1 3.47e+4

a 1.23e-2 6.67e-3 4.08e+0 4.00e+1 1.37e+0 1.69e+4
QF (%) b 1.23e-2 7.00e-3 1.40e+1 6.51e+1 7.36e+0 1.55e+4

c 1.41e-2 7.75e-3 8.29e+0 3.67e+1 8.63e-1 4.09e+4

a 2.70e-3 2.18e-4 3.92e-1 2.36e+0 2.84e-1 6.30e+1
PF (MW ) b 2.59e-3 2.44e-4 1.67e-1 2.06e+0 4.24e-1 4.66e+1

c 2.55e-3 2.65e-4 2.12e-1 2.16e+0 2.49e-1 6.14e+1

a 1.54e-3 1.90e-4 1.02e+0 1.29e+0 1.76e-1 2.94e+1
QF (MVAr) b 1.45e-3 2.35e-4 3.50e-1 1.12e+0 2.87e-1 2.09e+1

c 1.43e-3 2.09e-4 4.35e-1 1.18e+0 1.61e-1 2.80e+1

power flows are 103.50 MW and 53.27 MVAr, respectively,
with median values of 3.55 MW and 1.87 MVAr.

Comparing the proposed approach to the approach in [14],
we observe that the error of our proposed method is at least
two orders of magnitude lower than the method in [14]. This
highlights the need for a topology-adaptive approach that is
able to inherently defines a specific piecewise linearized PF
model for a specific system topology during training and
identifies the right topology in the PF calculation process,
as the proposed method does. The approach in [14] cannot
achieve this, and thus fails to calculate the PF accurately.

V. CONCLUSION

This paper proposes a topology-adaptive piecewise PF lin-
earization approach for three-phase PF calculations in a distri-
bution feeder. The key advantage of the proposed approach is
its ability to seamlessly adapt to topology changes by integrat-
ing additional topology-identifying variables into the model.
During the training process, the topology-identifying variable
is leveraged during the data clustering process, enabling the
algorithm to inherently identify clusters of data points that be-
long to the same topology without receiving information about
the true topology status. For each cluster, we use a regression-
based method to derive a linear PF formulation, giving rise to
a piecewise linear PF representation. During the online PF
calculation process, real-time access to measurements of the
topology-identifying variable allows us to identify the correct
cluster and obtain accurate PF results.

When tested on an IEEE 123-bus distribution feeder with
the training data obtained from 5 topologies, we observe that
the proposed approach can cluster the training data into groups
corresponding to different topologies in the training process.
In the PF calculation process, the proposed approach can pick
up the right topology for a given state. The PF calculation
result illustrates that the proposed approach can calculate the
power flow more accurately, which indicates its promising
implementation value under system topology changes.

Important benefits of the proposed approach include that it
is model-free when sufficient measurement data is available.
Furthermore, it does not need the information that to which
topology the training data belongs, thus enabling the model to
also adapt to unexpected or unintended changes in topology.
In future work, we want to investigate more carefully how to
choose the locations and number of topology-identifying vari-
ables, assess the impact of measurement noise, data outliers
and missing data, investigate other types of topology changes
such as changes in the phase connections and understand
how much data would be needed in real-time to adapt to a
previously unseen topology.
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