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Monopole Josephson effects in a Dirac spin liquid
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Dirac spin liquids (DSLs) are gapless featureless states, yet interesting by virtue of the effective field theory
describing them—(2+ 1)-dimensional quantum electrodynamics (QED3). Further, a DSL is known to be a
“parent state” of various seemingly unrelated ordered states, such as antiferromagnets and valence bond solids in
the sense that one can obtain ordered states by condensing magnetic monopoles of the emergent gauge field. Can
operators in the effective field theory, such as the emergent electric field, be externally induced and measured? In
this work, we exploit the parent state picture to argue that the answer is yes. We propose a range of “monopole
Josephson effects” that arise when two ordered states are separated by a region of the parent DSL. In particular,
we show that one can induce an ACmonopole Josephson effect, which manifests itself as an AC emergent electric
field in the spin liquid, accompanied by a measurable spin current. Further, we show that this AC emergent
electric field can be measured as a sharp tunable peak in Raman scattering. This work provides a theoretical
proof of principle that emergent gauge fields in spin liquids can be externally induced, manipulated, and probed
using more conventional states, which offers a generic platform for studying the exotic spin phases.
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I. INTRODUCTION

Consider a spin-1/2 system in its ground state. Flipping
a single spin creates a spin-1 excitation. If the ground state
is conventional, such an excitation would disperse creating
a superposition of spin-wave modes with spin 1. However,
there is strong theoretical reason [1,2] to expect exotic systems
where, in addition to creating spin-1 modes, the spin-flip can
fractionalize into two spin-1/2 excitations, which can then
move away from each other. One interesting class of such
systems in 2+ 1D are Dirac spin liquids (DSLs). The effective
field theory describing DSLs is usually written in terms of
Dirac fermions strongly coupled to an emergent U (1) gauge
field. This strongly coupled theory is believed to flow at low
energies to a conformally invariant fixed point QED3 [3–5].

To detect such an exotic state in a given physical system,
say a material with spins, we would need to probe the low
energy degrees of freedom of the effective field theory de-
scribing the state in question. For example, the low energy
excitations of gapped spin liquids in 2+ 1D are anyonic quasi-
particles. There have been proposals in the past for accessing
emergent degrees of freedom in such gapped spin liquids with
the assistance of more conventional ordered phases, which is
helpful because one typically has better control over ordered
phases. Examples of these include Refs. [6–8] for Z2 spin
liquids, and Ref. [9] for Kitaev spin liquids.
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For a strongly coupled field theory in 2+ 1D, such as
QED3 on the other hand, the low energy degrees of freedom
are not well-defined quasiparticles, but instead the primary
operators of the conformal field theory (CFT). Previous works
have proposed ways to measure correlation functions of such
operators in the ground state of a DSL [3,10,11]. However
there appears to be a lack of proposals to directly control
such operators externally and measure them. In this paper,
we explore this direction and propose a way to induce and
measure an emergent electric field in a DSL. Our proposal
relies crucially on coupling to monopole operators.

Monopole operators insert an integer multiple of 2π flux of
the emergent U (1) gauge field. Polyakov showed [12] that in
2+ 1 D, monopoles are always relevant in the renormalization
group (RG) sense and proliferate in a pureU (1) gauge theory,
leading to confinement of test charges. Such a theory would
not describe a spin liquid phase. However, including gapless
fermions in the theory increases the scaling dimension of
the monopoles, and in the limit of large number of fermion
flavors Nf , monopoles can become irrelevant [4,13]. Indeed,
using a symmetry analysis followed by a large Nf analy-
sis, Ref. [14] found that on the triangular lattice, monopoles
are either disallowed by symmetry or irrelevant, suggesting
that a DSL could be a stable phase. Such a phase has an
emergent U (1)top symmetry corresponding to the conserva-
tion of total emergent flux (the subscript “top” is used to
differentiate U (1)top from U (1) gauge redundancy). In fact,
monopoles are charged under an enlarged emergent internal
symmetry GIR = SO(6) ×U (1)top/Z2 (see Sec. II for a re-
view). Because spatial symmetries have a nontrivial action
in GIR, the monopoles transform under the microscopic sym-
metries like order parameters for magnetic orders including
the 120◦ antiferromagnet and the

√
12 × √

12 valence bond

2643-1564/2023/5(1)/013169(19) 013169-1 Published by the American Physical Society

https://orcid.org/0000-0003-4305-8600
http://crossmark.crossref.org/dialog/?doi=10.1103/PhysRevResearch.5.013169&domain=pdf&date_stamp=2023-03-13
https://doi.org/10.1103/PhysRevResearch.5.013169
https://creativecommons.org/licenses/by/4.0/


NAMBIAR, BULMASH, AND GALITSKI PHYSICAL REVIEW RESEARCH 5, 013169 (2023)

FIG. 1. Monopole Josephson effect, general idea: We consider a
junction of two ordered phases (OL and OR) separated by a DSL. OL

and OR are viewed as monopole condensates such that their expec-
tation values are related by a generalized phase (unitary matrix) ei�

(possibly time-dependent). This leads to a monopole current across
the junction, which is equivalent to an electric field in the emergent
U (1) gauge field in the perpendicular direction inside the DSL.

solid. Therefore, if the 2π monopoles somehow do proliferate
(say as a result of spontaneous symmetry breaking, or due to
a symmetry-breaking perturbation), then the system exits the
DSL phase. The resulting phase is an ordered phase deter-
mined by which combination of monopoles proliferates. In
this sense, it was suggested that the DSL is a parent state
for several seemingly unrelated magnetic and VBS orders
[15,16].

Can this parent state picture guide us towards finding
experimental probes for the low energy theory (QED3) that
describes the DSL? Can ordered states in proximity to a
spin liquid have an interesting effect on the spin liquid, and
vice-versa? In this paper, we argue that the answer to both
these questions is yes, by proposing a Josephson junction-like
setup shown in Fig. 1 with two ordered phases separated by a
middle region in the DSL phase. The main idea is that since
the ordered states can be viewed as monopole condensates,
monopoles can tunnel between the ordered states through the
DSL.

We show that in certain circumstances, applying a Zeeman
field gradient across the junction has the same effect as a volt-
age difference across a regular Josephson junction (between
superconductors) and thus gives rise to an AC monopole cur-
rent flowing across the DSL. In 2 + 1 dimensions, a monopole
current is equivalent to an electric field but in the perpendic-
ular direction. Therefore, this “monopole Josephson effect”
provides a way to externally induce an emergent electric field
through the DSL. We suggest a way to measure the AC
emergent electric field optically as a peak in Raman scattering
intensity by identifying microscopic operators corresponding
to the emergent electric field. In addition to this signature
within the DSL region, we show that when the ordered phases
are 120◦ antiferromagnets, the same monopole Josephson
effect leads to a spin current across the junction. This spin
current can in principle be measured on both the ordered side
and the DSL using techniques proposed in Refs. [17,18]. We
also discuss three other conceptually related effects which all
fall under the umbrella of the monopole Josephson effect.

The rest of the paper is organized as follows. In Sec. II,
we provide a brief review of DSLs, emphasizing the relevant
features of monopole operators and the parent state picture. In
Sec. III, we show that an emergent electric field in the DSL

can be induced via the monopole Josephson effect. In Sec. IV,
we propose a way to detect this emergent electric field using
Raman scattering. In Sec. V, we discuss other phenomena
related to the monopole Josephson effect. Finally, we offer
some general conclusions and discussion in Sec. VI.

II. REVIEW OF DIRAC SPIN LIQUIDS

DSLs are described by an effective field theory with Nf =
4 flavors of gapless Dirac fermions at zero equilibrium den-
sity strongly coupled to a compact U (1) gauge field. The
fermions carry spin-1/2 under the microscopic SO(3) spin
rotation symmetry. One way to get to this theory is the parton
construction, which we will briefly review below.

Before proceeding, we explain some notation. We use �V
for 2-component vectors in real-space, �V for 3-component
vectors in internal spin or valley space, and V for vectors
in other internal spaces such as SO(6) (see Appendix B 4 for
other remarks on notation).

Consider a spin system whose microscopic Hilbert space
consists of spin-1/2 at each lattice site. We assume that the
Hamiltonian realizes a DSL ground state and respects some
set of symmetries GUV which include lattice symmetries,
time-reversal, and spin-rotation symmetry. We will work on
the triangular lattice for concreteness, but the results are gen-
eral except where otherwise noted. The objective of the parton
construction is to come up with a mean-field theory even in

the case when the spin operators 〈�̂Si〉 = 0 (likewise for other
local spin operators) for all sites i. In this approach, the Hilbert
space at each site i is doubled by writing spin operators in
terms of fictitious spin-1/2 fermionic “spinon” operators f̂i,α:

�̂Si = 1

2

∑
α,β∈{↑,↓}

f̂ †iα �σαβ f̂iβ. (1)

Here �σ is a vector of Pauli matrices. This description has a
U (1) gauge redundancy

f̂iα → eiλi f̂iα, (2)

in the sense that the physical spin operators are invariant
under such a transformation. The spin Hilbert space is re-
covered by imposing the constraint that there is exactly one
fermion at each site. One now rewrites the spin Lagrangian
in terms of these fermions. A quadratic term in spins be-
comes a quartic term in fermions, which is then decoupled so
that the fermion hopping coefficients 〈∑α=↑,↓ f̂ †iα f̂ jα〉 acquire
mean-field expectation value χi j . For a DSL on the triangu-
lar lattice, the mean-field configuration for {χi j} consists of
alternating π -flux and 0-flux on upward and downward tri-
angles, respectively. Diagonalizing this quadratic mean-field
Hamiltonian gives a spectrum with two Dirac cones (valleys).
To zeroth order, the single-occupancy-per-site constraint is
relaxed to demanding single-occupancy on average, i.e., that
the fermions are at half filling. This forces the chemical po-
tential to lie exactly at the Dirac points. So, to zeroth order,
the low-energy theory has 4 flavors of Dirac fermions—2
valleys for each spin. U (1) gauge fluctuations χi j → χi jeiai j

are now reintroduced. The single particle per site constraint
is reintroduced only weakly as a Gauss’s law by assuming a
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finite coupling constant g:∑
α=↑,↓

f̂ †iα f̂iα − 1 = 1

g2
∑
j

êi j, (3)

where ei j is the emergent electric field, i.e., the electric flux of
ai j . This leads us to a field theory Lagrangian density, which
schematically is

L =
Nf =4∑
i=1

ψ̄iγ
μ(∂μ − iaμ)ψi + 1

8πg2
(εμνλ∂μaν )

2, (4)

where each ψi is a two-component spinor and a0 has been
introduced as a Lagrange multiplier enforcing Eq. (3). The
theory of the DSL is then described by the low-energy fixed
point, called QED3, of Eq. (4). By itself, Eq. (4) is not useful
to understand the fixed point because the coupling constant
g2 has dimensions of [Length−1]. So, at low energies g2

flows to ∞ making gauge fluctuations uncontrolled. However,
progress can be made by treating 1/Nf as a small parameter.
Then, because of screening of gauge fluctuations by the many
gapless fermions, g2 approaches a fixed point value which
scales as �/Nf where � is an inverse length scale of order
of the lattice spacing [4]. Most of the current understanding
of the QED3 fixed point comes from this limit—thinking of
the spinons ψi essentially as almost free fermions with gauge
fluctuations controlled by the large Nf expansion. At the same
time, one should keep in mind that the most important low
energy operators to study are primary operators of the CFT
with the lowest scaling dimensions.

The essential features of the nontrivial fixed point theory
QED3 are:

(1) Monopole operators: Among the primary operators in
QED3 are magnetic monopoles �̂

†
i . These operators insert 2π

flux of the emergent gauge field a, that is,

[b̂(x), �̂†
i (x

′)] = 2πδ(x − x′)�̂†
i (x

′), (5)

where b̂(x) = (∂1â2 − ∂2â1)(x). In a path integral, the inser-
tion of these operators corresponds to instanton events whose
role is to restore the compactness of the gauge field in the low
energy theory.

(2) Enlarged emergent symmetry group [14,16]: While the
microscopic Hamiltonian has the symmetries listed above,
the DSL theory (QED3) has an enlarged internal symme-
try GIR = SO(6)×U (1)top

Z2
. The U (1)top symmetry corresponds to

the conservation of total emergent magnetic flux through the
plane: b̂tot ≡ 1

2π

∫
d2xb̂(x). Clearly monopole operators are

charged underU (1)top. The total flux is conserved because the
monopole operators (i.e., flux creation/annihilation operators)
have zero expectation value in the wave function described
by DSL theory. The SO(6) symmetry corresponds to the in-
ternal rotation between the spin and valley indices, and the
monopole operators transform as a vector under SO(6).

More concretely, inserting 2π flux leads to one Landau
zero-mode per fermion flavor, and to maintain half filling,
two of four zero-modes need to be filled. The resulting six
choices lead to six independent monopole creation operators
�̂

†
i (i ∈ {1, . . . 6}) which together transform as a vector under

SO(6). A complementary way to understand this is to observe
that the fermionic partons enjoy an SU (4) symmetry near the

Dirac points. Upon carefully keeping track of redundant fac-
tors of Z2,1 one arrives at GIR above. While the microscopic
SO(3) ⊂ GUV spin-rotation symmetry is directly SO(3)spin ⊂
GIR, elements of the space group generally embed nontrivially
into SO(3)valley ×U (1)top ⊂ GIR (in addition to the spatial
transformation).

(3) Parent state of competing orders [14–16]: If a
monopole operator condenses, i.e., acquires a nonzero expec-
tation value, then the spinons confine, and the low-energy
excitations are unfractionalized spin-1 modes. The resultant
phase is simply a conventional magnetically ordered phase.
Many seemingly unrelated ordered phases can appear depend-
ing on which monopole operator condenses and what the
microscopic symmetries are. For example, on the triangular
lattice, a 120◦ coplanar order can be obtained by condens-
ing spin triplet monopoles, and valence bond solids with a
unit-cell area of 12 times the elementary unit cell can be
obtained by condensing spin singlet monopoles. The DSL
thus serves as a “parent state” for many ordered states, in
the sense that one mechanism (monopole condensation) in the
DSL is responsible for driving transitions to many different
ordered states.

Such a transition could happen for multiple reasons. A
monopole operator may be relevant in the renormalization
group (RG) sense and symmetry allowed; in this case, the
DSL represents a critical point separating ordered phases. On
the other hand, if there are no relevant monopole operators
that are symmetry allowed, then the DSL is a stable phase of
matter—a gapless spin liquid. However, if there is explicit or
spontaneous breaking of a symmetry which was previously
forbidding some monopole operator from condensing, then
this would also lead to a transition to an ordered state.

A. Monopole condensation and unbroken symmetries

The goal of this section is to highlight one fact that will
play a crucial role in our work—in a 120◦ AFM, applying
spin rotation about a certain axis on the condensed monopoles
is equivalent to applying a U (1)top phase rotation.2 To do so,
we will review a particular mechanism for driving monopole
condensation. We first summarize the key facts:

(1) Under this mechanism, a phase transition occurs when
a certain linear combination of 2π monopole operators that is
an eigenvector of a specific SO(6) generator condenses.

(2) From the GIR transformation properties of the con-
densed monopole operator, one can determine which ordered
phase arises.

(3) The GIR symmetry is not fully broken in the ordered
state.

In Appendix A, we review previous works on the stabil-
ity of DSLs, which suggest that a DSL could be a stable
phase on the triangular lattice. In this case, 2π monopole

1The Z2 subgroup of SU (4) generated by fermion parity is actually
a U (1) gauge transformation rather than a symmetry, reducing the
SU (4) symmetry to SO(6) ∼= SU (4)/Z2. The element −1 ∈ SO(6)
is identical to a π rotation inU (1)top.
2The reader can skip to Sec. III, and return to this section when

required.
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operators are symmetry-disallowed in the Langrangian. How-
ever, they are still the operators with the lowest scaling
dimensions in the low-energy theory. The following mech-
anism was proposed [16,19,20] for destroying the DSL by
proliferating 2π monopoles. First, due to interactions, a
fermion bilinear, or mass term, spontaneously acquires a
nonzero expectation value. Although other possibilities can
occur, we will generally assume that a single bilinear

〈ψ̄σ ατβψ〉 �= 0, (6)

where σα and τβ are Pauli matrices acting in the spin and
valley spaces, respectively (here α, β ∈ {0, 1, 2, 3} but α and
β are not both 0). This fermion bilinear serves as a mass
term that splits the degeneracy of the fermionic Landau zero
modes associated with adding a 2π magnetic flux, lowering
the energy (and hence scaling dimension) of one specific lin-
ear combination of monopole operators. In particular, given a
choice of generator σατβ of SU (4), we can find a correspond-
ing generator T [σατβ] of SO(6). This linear combination
of monopoles then becomes the most relevant operator and
condenses, i.e., acquires a nonzero expectation value. The
resulting state is an ordered state in which the fermions are
confined [12] and the condensed monopole operator serves as
an order parameter.

The linear combination of monopoles which condenses
corresponds to the eigenvector of T [σατβ] with the largest
eigenvalue. As an example, suppose that the bilinear ψ̄σ 3ψ

has a nonzero expectation value. One can check that three
monopole operators, which we shall call �̂1,2,3, transform
as SO(3)spin singlets, and the other three transform as an

SO(3)spin triplet �̂�. In this basis, the SO(6) generator corre-
sponding to σ 3 is

T [σ 3] =

⎛
⎜⎜⎝
03×3 . . .

... 0 −i 0
i 0 0
0 0 0

⎞
⎟⎟⎠. (7)

The eigenvector of T [σ 3] with maximal eigenvalue (equal to
1) is

〈�̂〉 = (〈�̂1〉 〈�̂2〉 〈�̂3〉 〈�̂4〉 〈�̂5〉 〈�̂6〉)T

= |�|(0 0 0 1 i 0)T . (8)

The interpretation of this fact is that the fermion mass term
makes the energy of the monopole (�̂†

4 + i�̂†
5)|GS〉 negative,

where |GS〉 is the ground state of the DSL in the absence of the
fermion mass term (whose energy we set to 0). Accordingly,
the DSL ground state becomes unstable and a transition occurs
to a state with 〈�̂†

4 + i�̂†
5〉 �= 0.

Although the fermion mass terms pick up nonzero ex-
pectation values, the fact that the monopole operators have
a lower scaling dimension means that we should treat the
condensed monopole operator as the order parameter. Dif-
ferent approaches can be used to determine a microscopic
order parameter corresponding to each monopole operator.
References [14,16] used a symmetry analysis combined with
a Wanner center study of mean-field free fermion bands. In
Appendix B 2, we combine symmetry analysis with opera-
tor algebra constraints to independently motivate the same

results. The key results are as follows. First suppose that a

spin-triplet monopole operator condenses. If 〈 �̂�〉 (the vector
notation refers to a vector under SO(3)spin) is given by the
eigenvector with positive eigenvalue of �dspin · �Tspin[σ ] for a
unit 3-vector in spin-space, �dspin, then the ordered state is a
120◦ coplanar AFM order in the plane (in spin-space) normal
to �dspin. Similarly, various

√
12 × √

12 VBS phases can be
obtained if the condensed spin-singlet monopole is an eigen-
vector of �dvalley · �Tvalley[τ ] for some unit 3-vector �dvalley in
valley-space. In this VBS phase, the area of the unit cell is
12 times the area of the unit cell of a triangular lattice.3

Having identified the monopole order parameters, we now
notice that the GIR symmetry is not completely broken. Sup-
pose that the condensed monopole is an eigenvector [in the
sense of Eq. (8)] of a generator Q̂ of SO(6). We focus for later
use on the case where Q̂ ∈ SO(3)spin. Then

〈eiθQ̂ �̂ e−iθQ̂〉 = e−iθQ〈�̂〉 = e−iθ 〈�̂〉. (9)

Note also that under aU (1)top phase rotation,

〈e−iθ b̂tot �̂ eiθ b̂tot 〉 = eiθ 〈�̂〉. (10)

Hence, 〈�̂〉 is invariant under e−iθ b̂toteiθQ̂. Such a transfor-
mation generates a SO(2) diagonal subgroup of SO(2)spin ×
U (1)top that is an unbroken symmetry. This “redundancy”
between spin rotations andU (1)top phase rotation in the 120◦
AFM state will play a crucial role in the AC Josephson setup
proposed in Sec. III.

For completeness, we mention the concrete connection
between the 120◦ AFM order parameter and ��:

�̂� =
∑

�n
e−i �Q.�n(�̂S�n + · · ·), (11)

where �Q = 2π
3 (�b1 − �b2). Here �b1 ≡

√
3
2 x̂ − 1

2 ŷ and �b2 ≡ ŷ are
reciprocal lattice vectors satisfying �ai · �b2 = δi j , where �a1 ≡
x̂, �a2 ≡ 1

2 x̂ +
√
3
2 ŷ are the basis vectors for the triangular lat-

tice. In Eq. (11), the “. . .” refers to operators supported on
three or more sites.

From Eq. (11), we can see that the ordering pattern

〈�̂S�n〉 = [cos( �Q.�n), − sin( �Q.�n), 0], (12)

corresponds to 〈 �̂�〉 = |�|(1 i 0)T , which was the exam-
ple we considered in Eq. (8).

III. MONOPOLE JOSEPHSON EFFECTS

In the previous sections we reviewed how various ordered
states can be obtained from a DSL by condensing combi-
nations of six monopole operators related to each other by
the enlarged [SO(6) ×U (1)top]/Z2 symmetry. Now we will
argue how this can have physical consequences in the form of
“monopole Josephson effects,” by which we mean a flow of

3One could also consider condensation channels that are eigenvec-
tors of the mixed generators T [σ iτ j]. These “unconventional orders”
were considered in Supplemental Note 5 of Ref. [16]. We will not
consider these in this paper.
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monopole current between two symmetry-broken regions of a
system. Consider the setup shown in Fig. 1 where a lattice is
split into three regions—two ordered phases (OL and OR) sep-
arated by a DSL region in the middle. Instead of considering
three different materials kept next to each other, we assume
that within the same sample, perturbations localized to regions
L and R drive those regions to ordered phases. This allows us
to view the ordered states OL and OR as being obtained via
monopole condensation from the DSL. Monopoles can now
tunnel from OL to OR through the middle DSL resulting in a
monopole current.

We note that the net monopole current (i.e., current of
U (1)top charge) is just the emergent electric field rotated by
90◦. This is because Faraday’s law takes the form of a conser-
vation law in 2+ 1 D:

∂t
b̂

2π
+ ∂i

εi j ê j
2π

= 0. (13)

So, Q̂[U (1)top](x) = b̂(x)
2π and Ĵ i[U (1)top](x) = εi j ê j (x)

2π . There-
fore, this monopole Josephson setup provides a way to induce
an emergent electric field inside the DSL (see Fig. 1). We
will show in Sec. IV that if this induced emergent electric
field is time-dependent, it can be optically detected via Raman
scattering.

For a given configuration of OL and OR, our goal is to
make predictions for the resulting monopole currents. Since
the monopoles are charged underGIR = SO(6) ×U (1)top/Z2,
there are 16 different conserved currents in principle, cor-

responding to each generator of GIR. These are �̂J[U (1)top]
(analogous to electric Josephson current across superconduc-
tors), and 15 currents for each generator of SO(6), of which
3 are spin currents. Deep inside the DSL, since GIR is a sym-
metry, all 16 currents are conserved at low energies. However,
outside the DSL and at the boundaries, generically only the
3 spin currents will be conserved (assuming that SO(3)spin is
respected throughout the system). So we will make statements
about two kinds of quantities—(1) spin currents that can be
measured in either the ordered phases or the DSL, for example
using techniques proposed in Refs. [17,18], and (2) currents
corresponding to the emergent symmetries of the DSL, which
can be probed only within the DSL. The most interesting
result of this work is a time-dependent (AC) U (1)top current
in the DSL arising due to either a gradient in Zeeman field or
due to a gradient in staggered spin chirality applied across the
junction.

In this work, we focus on qualitatively determining, for a
given configuration of OL and OR and external fields, which
monopole currents are nonzero and their dependence on the
external fields. In principle, one might also want to calculate

the way that the magnitude of the currents |〈 �̂JJosephson(�x)〉|
scale with the width of the DSL region and thickness of the
boundaries. Qualitatively, we expect the currents to decay as
a power law in the width w of the DSL region since the DSL
is a critical phase. Since the scaling dimension of a conserved
current is d in a d + 1-dimensional CFT, we expect

|〈 �̂JJosephson(�x)〉| ∝ |〈�̂L〉||〈�̂R〉|
w2−�b,L−�b,R

≡ E, (14)

DIRAC SPIN
LIQUID

ORDERED
PHASE

ORDERED
PHASE

ORDERED
PHASE

~
(a) (b)

ORDERED
PHASE

FIG. 2. Schematic of the (a) effective monopole tunneling
Hamiltonian Eq. (15) and (b) our proxy Hamiltonian Eq. (18) used
to capture qualitative features of the Josephson currents obtained by
schematically “integrating out” the DSL.

where �b,L and �b,R are the boundary scaling dimensions
of the monopole operators on the left and right boundaries,
respectively. [Here, we have also defined the right-hand side
(RHS) of Eq. (14) as E for later convenience.] If the details of
the interface provide an additional length scale, then this could
modify the above scaling. Calculating �b,L, �b,R and any
additional interface effects is a complicated boundary CFT
problem beyond the scope of this work, so we will not address
this issue in any more quantitative detail.

A. Effective Hamiltonian

Our first task is to write a low energy Hamiltonian coupling
the two ordered regions L and R to the DSL. In the DSL,
monopole operators are the most relevant in the RG sense, and
hence coupling terms involving monopole tunneling should
be the most important at low energy (we expect this from
the large Nf scaling dimensions of monopole operators when
one sets Nf = 4; see Table I). This motivates the following
coupling Hamiltonian [see Fig. 2(a)]:

Hc = −
6∑

i, j=1

(
�i j,L

∫
dy �̂

†
iL(xL, y)�̂ jD(xL, y)

+�i j,R

∫
dy �̂

†
iD(xR, y)�̂ jR(xR, y)

)
+ H.c., (15)

where the left (right) interface is at x = xL (x = xR) and y runs
parallel to the boundary (in both terms above). A remark on
notation—to emphasize a monopole-tunneling interpretation,
we have used the same symbol �̂i for both the monopole
operator in the DSL side (�̂iD) and on the ordered sides
�̂i,L/R. But we note that in general, they would have different
scaling dimensions. For example, as one crosses the interface,
the system goes through a phase transition and the monopole
scaling dimension at the transition is known to be smaller at
the phase transition than deep in the DSL (from a large Nf

calculation [19,21]).
Since we assumed that the coupling matrix �i j,L/R pre-

serves spin rotation symmetry,

�i j,L/R ≡ �Sδi j, for 4 � i, j � 6. (16)

Now, since the boundary breaks spatial symmetries, but pre-
serves spin-rotation symmetries, we are also allowed to add
single monopole terms for the spin-singlet monopoles, but not
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spin triplet monopoles:

Ĥsource =
3∑

i=1

∫
dy[Vi,L�̂i(xL, y) +Vi,R�̂i(xR, y)] + H.c.

(17)

We argue in Appendix C that Ĥsource does not contribute sig-
nificantly to the currents we are interested in. Then the full
Hamiltonian without Ĥsource, i.e., Ĥ = ĤDSL + ĤOL + ĤOR +
Ĥc has a global spin rotation SO(3) symmetry, and formally,
also a global U (1)top symmetry. We will now use the fol-
lowing strategy—we first write a schematic Hamiltonian for
monopole tunneling between OL and OR, where the DSL
region is assumed to have been “integrated out” (we ignore
any potential retardation effects coming from integrating out
gapless modes in the DSL):

Ĥeff = ĤOL + ĤOR − �eff
S

6∑
i=4

(�̂†
iL�̂iR + H.c.)

−
3∑

i, j=1

(
�eff
i j �̂

†
iL�̂ jR + H.c.

)
, (18)

where we have neglected the spatial dependence of �̂iL [see
Fig. 2(b)]. The parameter

�eff
S ∼ EL, (19)

where the factor of L, the system length along y, comes from
the integration along the y direction and E was estimated in
Eq. (14). We compute the conserved spin current andU (1)top
current flowing from OL to OR using the above Hamilto-
nian, and assume that by current conservation (justified in
Appendix C), the same current also flows through the spin
liquid.

B. Brief review of the generalized Josephson effects

Equation (18) is of the form which is usually used to derive
generalized Josephson currents between ordered phases which
break symmetries belonging to a continuous groupG [22–24].
Here, we provide a brief review of this formalism which com-
putes the DC and AC Josephson currents of a given symmetry
generator, following Ref. [22]. Let Q̂r for r ∈ {1, . . .M} be
quantum operators corresponding to the M generators of G.
For our problem, Q̂r are the 15 SO(6) charges Q̂tot[σατβ]
(where α and β are not both 0) and the emergent flux b̂tot .
Now suppose the system is divided into left and right parts L
and R [Fig. (2)]. We assume that each Q̂r can be written as
a sum of local operators (see Appendix B for a discussion).
This allows us to define Q̂r

L/R as the restriction of Q̂r to the

respective region L/R. Let �̂i be N operators charged under
G, i.e., they transform under the group action. The group
action is

[Q̂r, �̂i] =
N∑
j=1

−T r
i j�̂ j, (20)

where T r is an N × N Hermitian matrix of c numbers and
is a representation of Q̂r on CN . When r above corresponds

to U (1)top, T [U (1)top] = 16×6. For explicit formulas for T r

when G = SO(6), see Eq. (B13).
The set of operators �̂i will serve as the order parameter.

They will acquire expectation value when the symmetry is
broken. Assuming that �̂i is a sum of local operators, Eq. (20)
holds approximately even when the operators are restricted
to small regions. Suppose the expectation value 〈�̂iR〉 on the
right differs from that on the left 〈�̂iL〉. We now compute the
current for each generator Q̂r from left to right.

To do this, let us write an effective Hamiltonian. It is
identical to Eq. (18), except that the following Hamiltonian
assumes that the coupling respects the full symmetry G:

Ĥ = ĤL + ĤR − �

N∑
i=1

(�̂†
iL�̂iR + �̂

†
iR�̂iL ), (21)

where � is an effective coupling constant depending on the
details of the intermediate region between L and R. The cur-
rent of generator r from left to right Î rL→R can be calculated
from the Heisenberg equation of motion

Î rL→R ≡ −dQ̂r
L

dt
= i

[
Q̂r

L, Ĥ
]
. (22)

Qr
L commutes with HL because it is conserved, and with HR

because HR has support only on side R. The only nonzero
contribution comes from the coupling term,

Î rL→R = −i�
∑
i, j

�̂
†
iLT

r
i j�̂ jR + H.c. (23)

The expectation value of the RHS above has a disconnected
component and a connected component. Since the two sides
of the system are symmetry breaking, 〈�̂ jL/R〉 is macroscopic.
So, to lowest order, we will ignore the connected piece. Thus,〈

Î rL→R

〉 ≈ −i�
∑
i, j

〈�̂†
iL〉T r

i j〈�̂ jR〉 + H.c. (24)

This is the DC Josephson effect. The same formula can also
be used for the AC Josephson effect as follows. A term is
added to the Hamiltonian that couples to the difference in
a conserved charge across the two sides: Ĥμ = μ

2 (Q̂
s
R − Q̂s

L )
(for example, the electric potential difference between the
two superconductors). As we will see below, this results in
an oscillatory time dependence for 〈�̂i(L/R)〉, and therefore
according to Eq. (24), the current Î rL→R also acquires an os-
cillatory time dependence,

d�̂iR

dt
= −i

μ

2

[
�̂iR, Q̂

s
R

] = +i
μ

2

∑
j

(T s)i j�̂ jR, (25)

d�̂iL

dt
= +i

μ

2

[
�̂iL, Q̂

s
L

] = −i
μ

2

∑
j

(T s)i j�̂ jL. (26)

The solution is (suppressing the indices of �̂L/R and T r)

�̂R(t ) = ei
μ

2 tT
s
�̂R(0) and �̂L(t ) = e−i μ

2 tT
s
�̂(0). (27)

Substituting in Eq. (24), we get〈
Î rL→R(t )

〉 ≈ −i�〈�̂†
L(0)〉ei

μ

2 tT
s
T rei

μ

2 tT
s〈�̂R(0)〉 + H.c. (28)

If T r commutes with T s, then from Eq. (28), the current
oscillates at frequency μ—the familiar AC Josephson effect.

013169-6



MONOPOLE JOSEPHSON EFFECTS IN A DIRAC SPIN … PHYSICAL REVIEW RESEARCH 5, 013169 (2023)

FIG. 3. DC Josephson effect: a (120◦ AFM—DSL—120◦ AFM)
arrangement induces a DC electric field inside the DSL. The spins
of the 120◦ AFM on the left obey Eq. (12), while those on the right
are rotated with respect to Eq. (12) by angle ϕ. This results in a spin
current, whose carriers inside the DSL are monopoles. The resulting
monopole current is equivalent to an emergent electric field.

C. Monopole Josephson currents in a DSL

We will now use the above framework to qualitatively
determine the Josephson currents in the setup shown in Fig. 1.
The symmetry generators Q̂r are the total magnetic flux b̂tot
and the 15 generators of SO(6), namely, Q̂tot[σατβ] (where α

and β are not both 0. Note that for β = 0 and α ∈ {1, 2, 3},
Q̂tot[σα] is just the total conserved spin Ŝα

tot). The operators
charged under Q̂r are the six monopoles �̂i which transform
as an SO(6) vector. In Sec. II A, we saw that the monopoles
serve as order parameters for 120◦ AFMs and

√
12 × √

12 va-
lence bond solids. Now consider the scenario shown in Fig. 1.
Deep inside the DSL, we assume that Gspace of the triangular
lattice is obeyed. Therefore, 〈�̂〉 = 0 here. At the same time,
deep inside OL and OR, monopoles are condensed and acquire
macroscopic expectation value 〈�̂L〉 and 〈�̂R〉, respectively.
These ordered phases act as a source of monopoles which can
tunnel through the DSL. We show below how one can get DC
and AC Josephson effects for the setup where both OL and OR

are in the 120◦ AFM phase.

1. OL = 120◦ AFM, OR = 120◦ AFM with angle mismatch:
DC Josephson effect

Assume both ordered phases are in a 120◦ AFM state,
in which the spin triplet monopoles have acquired nonzero
expectation value. Suppose the plane of ordering in spin-space
is the same for OL and OR, which we take to be the xy plane.
Now consider the situation where the ordering pattern on OR

is misaligned with respect to OL by an angle ϕ (see Fig. 3). By
this, we mean that if the spins in OL form the ordering pattern
given in Eq. (12), all the spins in OR are rotated by angle ϕ

about the z − axis with respect to the configuration dictated
by Eq. (12). (Here, we have assumed that the lattice does not
contain any defects.) For this situation, the expectation values
of the spin triplet monopoles on either side take the form

〈 �̂�L〉 = |�L|(1 i 0)T , 〈 �̂�R〉 = eiϕ|�R|(1 i 0)T .

(29)

Now, we can apply the formula for Josephson current Eq. (24).
Due to the redundancy between Ŝz spin rotation and U (1)top
phase rotation that we observed in Eqs. (9) and (10), we get
both aU (1)top current and a spin current that are equal to each

other:

〈Î[U (1)top]〉 = 〈Î[σ 3]〉 = 2�eff
S |�L||�R| sin(ϕ). (30)

Physically, the reason the two currents are the same is that
the carriers of conserved spin and the carriers for conserved
U (1)top charge are the same—the spin triplet monopoles. The

total current 〈Î r〉 is related to the current density |〈 �̂Jr〉| as

|〈 �̂Jr〉| = 〈Î r〉/L where L is the length of the boundary. These
currents are perpendicular to both the OL-DSL and OR-DSL
boundaries. Therefore, the emergent electric field is parallel
to the boundaries. Since �eff

S ∼ EL, we have

〈ê〉 and 〈Ĵ[σ 3]〉 ∼ E sin(ϕ), (31)

where E has been estimated in Eq. (14). As we remarked pre-
viously, Eq. (31) should not be taken quantitatively, hence the
∼ symbol. The important takeaway is the sin ϕ dependence
on the angle mismatch and the observation that the Josephson
currents are those of theU (1)top and Ŝz generators, and are in
fact equal to each other.

2. OL = 120◦ AFM, OR = 120◦ AFM: AC Josephson effect

We again consider a junction with two 120◦ AFMs sepa-
rated by a DSL. For this configuration, the expectation values
of spin triplet monopole operators on either side of the junc-
tion are

〈 �̂�L〉 = |�L|(1 i 0)T and 〈 �̂�R〉 = |�R|(1 i 0)T .

(32)

We now propose two scenarios that lead to an AC Josephson
effect. The first scenario is analogous to the AC Josephson
effect in superconductors obtained by applying a potential
difference, a term that couples to the difference in number
of particles on the right and left. Analogously, here we can
apply the following term to the Hamiltonian that couples to the
difference in emergent magnetic flux across the two sides (the
conservedU (1)top charge). On a triangular lattice, we show in
Appendix B 1 that such a term takes the form of the sum of
staggered spin chiralities

Ĥμ =
∑

�n
μ(x)

((�̂S�n × �̂S�n+�a1
) · �̂S�n+�a1− �a2 − (�̂S�n × �̂S�n+�a1

) · �̂S�n+�a2
)

≡
∑

�n
μ(x)(χ̂�,�n − χ̂�,�n), (33)

where μ(x) has a gradient from L to R such that μR − μL ≡
μ. Now, we will use the formula in Eq. (28) to determine
the Josephson currents. In this formula, a perturbation in
generator Q̂s is applied and the current in generator Q̂r is
calculated. For the perturbation considered in Eq. (33), s cor-
responds to U (1)top. Using Eq. (32) in Eq. (28), and noting
that T s = T [b̂tot] = 1 we see that the channels r in which
we get nonzero currents are U (1)top and Ŝztot (i.e., emergent
electric field and spin current). Like before, the two are equal:

〈Î[U (1)top](t )〉 = 〈Î[σ 3](t )〉 = 2�eff
S |�L||�R| sin(μt ). (34)

Here, we have made use of the observation in Eqs. (9) and

(10) that 〈 �̂�L〉 and 〈 �̂�R〉 are both eigenvectors of T [σ 3] with
eigenvalue 1. The above equation says that a difference in spin
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FIG. 4. The proposed setup (120◦ AFM—DSL—120◦ AFM) to
induce and probe the AC Josephson effect. An out of plane (w.r.t.
magnetic ordering) Zeeman field gradient of magnitude h is applied
across the junction, causing the spins on the left to precess at a
different rate than the spins on the right. This precession results in
a spin current, whose carriers inside the DSL are monopoles. The
resulting emergent electric field within the DSL can be probed via
Raman scattering.

chirality terms applied across the two ordered phases leads to
a time-dependent spin current and an equal emergent electric
field. This is a nontrivial prediction of the theory.

However, applying an external term Eq. (33) is not simple
experimentally (although there has been a proposal to get a
spin chirality term in the effective Floquet Hamiltonian of
a spin system driven with a laser [25]). Therefore, we now
propose a simpler way to get the same time dependent electric
field and spin current as before, but this time exploiting our
observation in Eqs. (9) and (10).

In this second scenario, we apply a Zeeman field gradient
across the junction instead of Ĥμ above, as shown in Fig. 4,

Ĥh =
∑

�n
h(x)

(
Ŝz�n
)
, (35)

where h(x) has a gradient from L to R such that hR − hL ≡
h. The only difference now as far as the formula Eq. (28)
is concerned, is that T s = T [σ 3] instead of 1. But since

T [σ 3]〈 �̂�L(R)〉 = 〈 �̂�L(R)〉, this difference does not change the
currents. We therefore again obtain an AC spin current and an
equal AC emergent electric field inside the DSL given by

〈Î[U (1)top](t )〉 = 〈Î[σ 3](t )〉 = 2�eff
S |�L||�R| sin(ht ). (36)

We can understand this physically as follows. The presence
of the Zeeman field gradient leads to a precession of the
macroscopic 120◦ order parameter with a different rate on the
two sides of the junction, resulting in a spin current. Similar
phenomena have been studied theoretically in several works
previously, for conventional magnetically ordered systems
[26–31], and 3He and spinor BECs [32–34].

What is different for our setup is that the proximity to
the DSL, and the assumption that the 120◦ AFMs are close
to a phase transition to a DSL imply that the carriers of the
spin current in the DSLs are monopole operators. Therefore,
any time-dependent spin current should be accompanied by

a time-dependent monopole current, or an emergent electric
field in the DSL.

Describing and probing this electric field is what we will
now focus on. What does an emergent electric field mean in
the language of microscopic spins? Using the transformation
of electric field under microscopic symmetries (see first row
of Table III in Appendix B), we can write the following ex-
pression for the zero momentum electric field (i.e., integrated
over space), keeping only nearest-neighbor terms:

(êx )tot ≡
∫

d2xêx

= v
∑

�n

(�̂S�n · �̂S�n+�a2 − �̂S�n · �̂S�n+�a2−�a1
) + · · · , (37)

(êy)tot ≡
∫

d2xêy = v
∑

�n

1√
3

(
2�̂S�n · �̂S�n+�a1 − �̂S�n · �̂S�n+�a2

− �̂S�n · �̂S�n+�a2−�a1
) + · · · , (38)

where v is a constant of the order of the Dirac velocity, which
in turn is of the order of Ja where J is the exchange coupling
strength and a is the lattice spacing. As a consequence of the
AC Josephson effect discussed above, we expect

(〈êx(t )〉, 〈êy(t )〉) = E sin(ht ) (cos θ, sin θ ), (39)

where θ is the angle made by the electric field with x axis (the
direction of the electric field is tangential to the DSL-AFM
boundaries). E is given by the right-hand side of Eq. (14),
calculating which is beyond the scope of this work. The key
point is that since the DSL is described by a CFT, E decays
only as a power law in the width of the DSL.

We see that the operators êx and êy have a nontrivial spa-
tial structure. To detect this “electric field” consistently, we
would need a probe that is sensitive to rotational form-factors.
Optical probes are well-suited for this purpose because of the
control one gets from the direction of polarization of light
[35,36]. We now propose a way to measure the emergent AC
electric field inside the DSL using Raman scattering.

IV. RAMAN SCATTERING PROBE OF EMERGENT
ELECTRIC FIELD

Suppose the DSL region is irradiated with a laser of fre-
quency ωi. A Raman signal corresponds to inelastic scattering
of light, i.e., the outgoing photon’s frequency ω f is different
from ωi. We will now argue that the presence of an emergent
electric field in the DSL of frequency h, and in particular
the one produced in the setup considered in Sec. III C 2 (see
Fig. 4), will lead to peaks at Raman frequency shifts ω� ≡
ω f − ωi = ±h.

It was shown in Refs. [37,38] that the Raman scattering
rate R for a spin system (not necessarily a spin liquid) is given
by the following correlation function calculated in an energy
eigenstate of the spin system |i〉:

R =
∫ ∞

−∞
dteiω�t 〈i|M̂†

�q (0)M̂�q(t )|i〉, (40)

where �q = �q f − �qi is the momentum transferred to the photon.
(For simplicity, we will ignore this small momentum transfer
from now on.) The operator M̂ acts on the Hilbert space of
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the spin system, and depends on the underlying lattice for the
spin system as well as the polarizations and momenta of the
incident and scattered light. The operator M̂ was calculated
for some relevant cases in Refs. [10,37], and we will present
the leading-order results later in Eq. (42).

However, if the expectation value of some operator (in our
case, the emergent electric field) 〈ψ |�̂e(t )|ψ〉 in a state |ψ〉
were to depend sinusoidally on time, then |ψ〉 is clearly not
an energy eigenstate but rather a nonequilibrium state. In such
a state, we show in Appendix D that Eq. (40) gets modified
and the Raman scattering rate now measures the following
time-averaged correlation function of the same operator M̂:

R = lim
T→∞

1

T

∫ T
2

− T
2

dt0

∫ T
2

− T
2

dt〈ψ |M̂†(t0)M̂(t + t0)|ψ〉eiω�t .

(41)

We will use the following (Fleury-Loudon [39]) form for M̂,

M̂ =
∑
�n,�n′

2t2�n,�n′ ẽ2

U − ωi
{�ε∗

f · (�n′ − �n)}{�εi · (�n′ − �n)}
(
1

4
− �̂S�n · �̂S�n′

)
,

(42)

which requires a bit of explanation. Here �εi and �ε f are the
polarizations of the incoming and outgoing photons, respec-
tively. Equation (42) assumes that the spins arise from a single
band Hubbard model at half filling in the largeU limit, of the
following form:

Ĥel = −
⎛
⎝∑

�r,�r′,σ

t�r,�r′ ĉ†�rσ ĉ�r′σ e
ie �̂A( �r+�r′

2 )·(�r−�r′ ) + H.c.

⎞
⎠

+U
∑

�r
n̂�r,↑n̂�r,↓. (43)

Here �̂A(�r) is the electromagnetic field and has the following
expansion in photon creation and annihilation operators

�̂A(�r) =
∑

�k

1√
2εVω�k

(�ε�kâ�k + �ε∗
−�kâ

†
−�k )e

i�k.�r, (44)

where �ε�k is the polarization of mode �k, and ε and V are the
dielectric constant and laser mode volume, respectively. We
have defined the coupling constant ẽ2 ≡ e2a2

√
Ni

2εV
√

ωiω f
where e is

the electron charge and Ni is the initial number of photons in
the mode of frequency ωi. The driving is assumed to be near
resonance, but at the same time satisfying trr′ � |U − ωi| �
U . Under this assumption, one can calculate the scattering rate
perturbatively in both t/(ωi −U ) and ẽ, the light-matter cou-
pling constant; one obtains Eq. (42) at order ẽ2t2/(ωi −U ).

It is convenient to decompose the tensor (ε j
f )

∗εki into two
one-dimensional (A1g,A2g) and one two-dimensional (Eg) ir-
reducible representations of the triangular lattice point group

A1 ≡ (
εxf
)∗

εxi + (
ε
y
f

)∗
ε
y
i ,

A2 ≡ (
εxf
)∗

ε
y
i − (

ε
y
f

)∗
εxi ,(

E1

E2

)
≡
(−(

εxf
)∗

εxi + (
ε
y
f

)∗
ε
y
i(

εxf
)∗

ε
y
i + (

ε
y
f

)∗
εxi

)
. (45)

On the triangular lattice, using this basis reduces Eq. (42) to

M̂ = 4t2ẽ2

U − ωi

(
A1ÔA1 + E2ÔE2 − E1ÔE1

)
, where

ÔA1 =
∑

�n

(�̂S�n · �̂S�n+�a1 + �̂S�n · �̂S�n+�a2 + �̂S�n · �̂S�n+�a2−�a1
)
,

ÔE2 =
√
3

4

∑
�n

(�̂S�n · �̂S�n+�a2 − �̂S�n · �̂S�n+�a2−�a1
)
,

ÔE1 = 1

4

∑
�n

(
2�̂S�n · �̂S�n+�a1 − �̂S�n · �̂S�n+�a2 − �̂S�n · �̂S�n+�a2−�a1

)
. (46)

Up to order t2 ẽ2

U−ωi
, there is no term in the A2g channel. For the

particular case of a Dirac spin liquid, we can use Eq. (37) to
relate the emergent electric fields to microscopic quantities.
Up to corrections involving longer range terms, we see that
ÔE2 and ÔE1 are indeed proportional to the emergent electric
fields (êx )tot and (êy)tot, respectively (because the symmetry
transformation of the emergent electric fields on the triangular
lattice is identical to that of the E2g channel.) On the other
hand, ÔA1 is proportional to the Hamiltonian of the system.
This lets us write the above expression as

M̂ = 4t2ẽ2

U − ωi

[
1

J
A1Ĥ +

√
3A
4v

(E2êx − E1êy) + · · ·
]
, (47)

where A is the area of the DSL region. We can now relate
the Raman scattering rate in a DSL to correlation functions of
the electric field and the Hamiltonian by inserting the above
expression into Eq. (41).

Before we proceed, we highlight two main differences
from previous theoretical literature, arising due to the pres-
ence of the AC Josephson effect in the setup in Sec. III C 2,
on Raman scattering. First, the Raman scattering rate is usu-
ally derived when the spin system is in an equilibrium state,
where one-point functions 〈Ô(t )〉 for interesting operators
Ô typically equal zero, in which case a correlation function
〈Ô1(t1)Ô2(t2)〉 would be given entirely by its connected com-
ponent. However, in our case, the DSL is in a nonequilibrium
steady state where 〈�̂e(t )〉 ∝ sin(ht ) [see Eq. (39)]. Hence, the
correlation function also has a disconnected component. In
what follows, we will assume that the contribution to the au-
tocorrelation function coming from the monopole Josephson
effect is dominated by the disconnected piece

〈êi(t1)ê j (t2)〉 ≈ 〈êi(t1)〉〈ê j (t2)〉. (48)

Since

lim
T→∞

1

T

∫ T/2

−T/2
dt0 sin(ht0) sin(h(t + t0)) = 1

2
cos(ht ) and

lim
T→∞

1

T

∫ T/2

−T/2
dt0 sin(h(t + t0)) = 0, (49)
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we find that the autocorrelation functions are sharply peaked
in frequency as follows:

lim
T→∞

1

T

∫ T
2

− T
2

dt0〈êx(t0)êx(t0 + t )〉 ≈ E2 cos2 θ

2
cos(ht ),

lim
T→∞

1

T

∫ T
2

− T
2

dt0〈êx(t0)êy(t0 + t )〉 ≈ E2 sin2 θ

2
cos(ht ),

lim
T→∞

1

T

∫ T
2

− T
2

dt0〈êx(t0)êy(t0 + t )〉 ≈ E2 sin(2θ )

4
cos(ht ),

lim
T→∞

1

T

∫ T
2

− T
2

dt0〈êx(t0)Ĥ (t0 + t )〉 ≈ 0. (50)

This brings us to the second difference—an equilibrium cor-
relation function in a symmetry preserving state is diagonal
in the A1, A2, E2, E1 basis. But due the monopole Josephson
effect, the steady state no longer has rotational symmetry,
leading to mixing within the Eg channel [see Eq. (50)]. Now,
we are ready to write down the final result for the Raman
scattering rate

R = K|E1 sin θ − E2 cos θ |2{δ(ω� − h) + δ(ω� + h)},
(51)

where K ≡ 3π
2 E2(A

v
t2 ẽ2

U−ωi
)2 is a constant. By tuning the polar-

izations of the incoming and detected photons, one can tune
the values of A1,A2,E1,E2. By measuring the scattering rate
R for each such choice, one can separately measure the corre-
lation function in each channel, and thus verify the prediction
in Eq. (51).

We have shown that for a junction with two 120◦ AFMs
separated by a DSL, if we apply a Zeeman field gradient h
across the junction, the AC emergent electric field resulting
from the monopole Josephson effect produces sharp peaks at
Raman frequency shifts ±h in the Eg channels. The strength
of the peak decays as a power law in the width of the junction.
The above setup provides a way to induce and directly probe
the emergent electric field in a Dirac spin liquid.

V. OTHER MONOPOLE JOSEPHSON EFFECTS

In this section, we present other effects which fall under
the general umbrella of monopole Josephson effects.

A. Josephson energy—Long-range phase rigidity

For the DC Josephson current, we assumed that the two
120◦ orders had an angle misalignment. This misalignment
could have arisen due to an external pinning potential, with
a strength smaller than the coupling �S

eff, so that our as-
sumption that the spin SO(3) is conserved continues to hold.
Here, on the other hand, we suppose that there is no external

pinning and we let the relative angle between �̂�L and �̂�R

to fluctuate. In other words, if 〈 ��L〉 = |�L|(1 i 0) and
〈 ��R〉 = eiϕ |�R|(1 i 0), we let ϕ be a dynamical degree
of freedom.

As a first approximation, one can calculate the energy of
such a configuration from the Hamiltonian Eq. (15) from
just the disconnected piece of the two-monopole correlation

function

E [ϕ] ≈ −EL(〈 �̂�†
L〉 · 〈 �̂�R〉 + H.c.)

∼ −2EL|�L||�R| cos(ϕ). (52)

This Josephson energy implies that there is a restoring force
that tries to align the angles of two 120◦ AFM puddles sep-
arated by a DSL. This restoring force is proportional to E ,
which we expect to decay only as a power law in the width
of the DSL [see Eq. (14)] since the DSL is a critical phase.
Therefore, puddles of ordered phases separated by regions
of DSL will display a tendency for their order parameters to
align, a behavior we call long-range phase rigidity.

B. Mixed current: OL = 120◦ AFM, OR =VBS

Consider a junction with a DSL region separating two com-
pletely different orders: OL = 120◦ AFM and OR = √

12 ×√
12 VBS. Using the parent state picture, we view OL as the

condensate of spin triplet monopoles andOR as the condensate
of spin singlet monopoles, as follows:

〈(�1 �2 �3 �4 �5 �6)〉TL
= |�L|(0 0 0 1 i 0)T ,

〈(�1 �2 �3 �4 �5 �6)〉TR
= |�R|(1 i 0 0 0 0)T . (53)

We now argue that in this configuration, the DSL will have
currents of the mixed spin-valley generators of SO(6). As a
toy model, we start with the coupling Hamiltonian in Eq. (21).
This assumes an SO(6) symmetric term for monopole tunnel-
ing. In this case, one can directly use Eq. (24) to calculate
the Josephson currents. We then see that the currents with
nonzero expectation value are those for the the mixed SO(6)

generators: �̂J[σ iτ j]. For the example we picked in Eq. (53),
�̂J14 ≡ �̂J[σ 1τ 1] and �̂J25 ≡ �̂J[σ 2τ 2] are nonzero and equal, and
the remaining independent currents are 0.

The presence of these mixed currents can be identified
by their symmetry breaking patterns in the bulk of the DSL
region. In Appendix B, we summarize the symmetry proper-
ties of all such currents (Table III) on the triangular lattice.
We observe that when a general combination of the mixed
currents (last three rows of Table III) has a nonzero expec-
tation value, time-reversal symmetry is broken and discrete
translation symmetry is reduced to translations by two lattice
spacings along both �a1 and �a2, i.e., a four-site unit cell forms
in the DSL region.

We point out, however, that the microscopic model does
not have an SO(6) symmetry. Therefore, our assumption
above of an SO(6)-symmetric coupling at the interface is
not strictly justified. Nevertheless, we can qualitatively argue
that the physical consequence of having mixed currents in
the DSL—unit-cell expansion and time-reversal symmetry
breaking (within the DSL bulk) continues to hold. Consider
the effective Hamiltonian Eq. (18) with a coupling that breaks
SO(6) to SO(3)spin. Then we have

〈− ˙̂QL[σ
i]〉 = 〈 ˙̂QR[σ

i]〉 = 0 and

〈− ˙̂QL[τ
i]〉 = 〈 ˙̂QR[τ

i]〉 = 0, while

〈− ˙̂QL[σ
iτ j]〉 �= 〈 ˙̂QR[σ

iτ j]〉, but both are nonzero. (54)
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FIG. 5. (a) In a SQUID geometry (SC-metal-SC-metal), thread-
ing a flux φ through the center results in a tangential electric current
I (black arrow). (b) Similarly, a DSL with a flux φ in U (1)top going
through results in an emergent electric field 〈�̂e〉 radially outwards
(blue arrows). (c) A DSL in the presence of a lattice dislocation.
The red circles mark the two lattice sites making up the dislocation.
(d) Mean field considered for numerics in the presence of two dislo-
cations with opposite Burger’s vectors (red and blue). Gray triangle
indicates π flux.

The above equation says that, not surprisingly, the charge
of mixed generators lost from side L is not equal to that
gained by side R. This leakage however, is localized to the
boundaries, because deep inside the DSL, the mixed currents
are still conserved. Generically then, the expectation value
of some combination of mixed currents in the DSL should
still be nonzero. This is true in the limit of SO(6)-symmetric
coupling, and as we go away from this point, there is no reason
for the mixed currents to immediately drop to zero.

C. Response to U (1)top flux insertion—Lattice dislocation

For the familiar DC Josephson effect, a phase difference
between the right (R) and left (L) superconductors is main-
tained by threading a magnetic flux, like the SQUID geometry
shown in Fig. 5(a), because the gauge invariant phase differ-
ence between points R1 and L1 is θR1 − θL1 + e

∫ R1
L1

�A · d�r.
This results in a current between the two superconductors in
the tangential direction.

In Fig. 5(b), we consider a related configuration involving
the DSL. Here φ is the flux inserted inU (1)top. For simplicity,
we have assumed that the full system is in the DSL phase.
An analogous situation for metals is persistent currents in the
ground state [40] in the presence of magnetic flux, as required
by the Byers-Yang theorem [41]:

I[φ] = − 1

T

∂F [φ]

∂φ
, (55)

where I is the equilibrium current, T is the temperature, and F
is the free energy. Similar to an electron current in a SQUID,

this results in a tangentialU (1)top current, i.e., a radial electric
field. But how do we insert a flux in U (1)top? Lattice trans-
lations are known to have a nontrivial U (1)top action when
embedded into the low-energy symmetry group GIR [14,16].
Therefore, a symmetry defect of lattice translation, that is, a
lattice dislocation [see Fig. 5(c)], serves as aU (1)top flux.4

Following the above argument, we expect that a lattice
dislocation creates a radial electric field, which by Gauss’s
Law results in a spinon charge (U (1) gauge charge and not
a U (1)top charge) near the dislocation. As a first step, in the
parton picture, we can verify this prediction at the mean field
level. We consider the mean-field ansatz shown in Fig. 5(d) on
a lattice with two dislocations with opposite Burger’s vectors
(�a2 and −�a2, respectively) separated by d lattice spacings. The
triangles shaded grey have π flux going through them. This
ansatz preserves time-reversal but breaks charge-conjugation
symmetry. We then numerically diagonalize the correspond-
ing free fermion Hamiltonian on an L × L torus. The lowest
L2/2 levels are filled by both spin ↑ and ↓ fermions in the
ground state. Then we compute the charge in a region D
enclosing the dislocation

〈q̂dislo〉 = 2
∑
�r∈D

⎡
⎣L2/2∑

i=1

(∣∣ψ i
�r
∣∣2 − 1

2

)⎤⎦, (56)

where ψ i
�r is the single fermion wave function of the ith eigen-

state (sorted in increasing order of energy) evaluated at �r. For
L = 100, d = 50 and D being a circle of radius 20, we get
qdislo = 0.297.

We are unable to determine whether a nonzero spinon
charge survives once we include gauge fluctuations. Quali-
tatively, we expect that the charge gets renormalized due to
screening, but may not drop to 0. If the localized spinon
charge is indeed nonzero, then what it would mean in terms
of microscopic spins is an open question. In Eq. (B8) of Ap-
pendix B, we have written a nontrivial microscopic operator
that is consistent with both the symmetry properties of the
field theory spinon charge operator and Gauss’s law. How
this expression gets modified for a lattice with dislocations,
and whether any resulting spinon charge can be computed
numerically in candidate DSL wave functions [42,43] is an
interesting direction to pursue.

VI. DISCUSSION

This work uses the viewpoint that certain magnetically
ordered states can be obtained upon condensing monopole
operators which enter the low energy description of a Dirac
spin liquid. We have argued that by using a Josephson junction
geometry with two ordered states separated by a DSL, one
can induce an emergent electric field (both DC and AC) in
the DSL. Further, we have shown that such an AC emergent
electric field can be measured optically as a sharp field-tunable
peak in Raman scattering. Also, the induced electric field is

4In addition to being a U (1)top symmetry flux, it is also an SO(6)
symmetry flux, but this fact does not play a role in the rest of our
discussion.
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accompanied by a measurable spin current across the junc-
tion that is proportional to the emergent electric field. This
serves as an independent check that can be used to validate
our first prediction. We have also highlighted other phenom-
ena conceptually related to the monopole Josephson effect,
namely long-range phase rigidity between puddles of ordered
phases separated by Dirac spin liquids, “mixed currents”
across AFM-DSL-VBS junctions and spinon charge bound to
lattice dislocations.

In general, an AFM–X–AFM junction, for some unknown
phase X and generic details of the interface, will (at least in
the short-junction limit) allow monopole tunneling analogous
to that of the AFM–DSL–AFM junction. The observation of,
for example, a spin current in a DC junction setup is therefore
insufficient to claim that the unknown phase X is a DSL.
However, two of the effects we propose to measure, namely
the field-tunable Raman peak and the power-law dependence
of the spin current as a function of junction size, require
a conserved monopole current in region X [or equivalently
require that the low-energy degrees of freedom of region X
include an emergent U (1) electric field]. This requirement is
satisfied when X is a DSL, but not in ordered phases such as
valence bond solids where a spin singlet monopole creation
operator acquires nonzero expectation value, and hence the
monopole current (electric field) is not a conserved quantity.
Therefore, measuring our proposed field-tunable sharp Raman
peak in the region X in conjunction with a spin current across
the interface, such that both the strength of the Raman peak
and the spin current scale as a power law in the width of region
X, will be strong evidence that X is a DSL.

We note that our predictions are backed up by writing a
phenomenological monopole tunneling Hamiltonian that as-
sumes that a DSL couples to a nearby ordered state chiefly
through monopole tunneling terms, since monopoles are the
most relevant operators in the DSL. We do not however at-
tempt a full boundary conformal field theory calculation. This
is because the current understanding of QED3 as a CFT (even
without boundaries) is still in its nascent stages, although there
have been promising recent numerical developments [44–46].
We also note that due to the Josephson effect, the quantum
state of the DSL region differs from the ground state of QED3.
For example, when there is an AC electric field through the
DSL, the DSL is in a nonequilibrium state. When there is a
mixed spin-valley current, lattice translation symmetry gets
broken. In such cases, whether the framework of DSL theory
is still a valid description or not would depend on the strength
of coupling between the different regions, size of the DSL
region, and temperature. Determining this would again require
a detailed boundary CFT calculation, and is beyond the scope
of this work.

Our work presents an in-principle method to externally
induce and measure emergent gauge field strengths in strongly
coupled spin liquids in 2+ 1 dimensions. In general, one
has more control over the degrees of freedom in an ordered
state. So looking forward, attempting to probe operators in
other spin liquids using more conventional ordered states is a
promising direction. We note that Ref. [47] theoretically con-
sidered tunneling of spinons between ferromagnets through a
quantum spin ice in 3+ 1D, and is closely related to this idea.

A second interesting direction is in the context of recent
developments in Rydberg atom arrays that take us one step
closer to realizing a spin liquid in a laboratory [48]. In these
experiments, one can access projections of the microscopic
wave function in a preferred basis. It will therefore be interest-
ing to come up with signatures of long wavelength operators
and nonequilibrium steady state features such as currents,
but in the many-body wave function, such that they can be
accessed in these experiments.

Note added: Just before the submission of this work,
we became aware of another recent work [49] considering
monopole tunneling in Dirac spin liquids.
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APPENDIX A: REVIEW OF STABILITY OF DSL

If the DSL were to be a stable CFT, then it should contain
no relevant (scaling dimension � > 3) symmetry allowed
operators. In Table I, we summarize the scaling dimensions
� of some of the important operators derived by refer-
ences [3,13,50,51] in the large Nf limit. Ref. [14] determined
the symmetry properties of monopole operators for various
lattices:

(1) Bipartite lattices: There is a symmetry allowed 2π
monopole which is relevant according to the large Nf analysis
summarized in Table I. Hence, a DSL cannot be a stable phase
on bipartite lattices.

(2) Kagome lattice: There is a symmetry allowed 4π
monopole, which is likely relevant (� ≈ 2.5) according to the
large Nf calculation.

(3) Triangular lattice: �̂2π and �̂4π break translation sym-
metry and hence are symmetry-forbidden. (We will provide a
more microscopic motivation for this fact in Appendix B 2.)
A 6π monopole operator is symmetry allowed, but is irrele-
vant (� = 4.322) according to the large Nf calculation. This
suggests that a DSL could indeed be a stable phase on the
triangular lattice.

So, in this work, whenever we refer to microscopic op-
erators, we will assume a triangular lattice for concreteness.
However, our general idea applies to any lattice which can
realize a DSL as a stable phase.

APPENDIX B: MICROSCOPIC EXPRESSIONS FOR FIELD
THEORY OPERATORS

In this section, we construct microscopic operators cor-
responding to operators in the effective field theory. For a
given field theory operator Ôtot ≡ ∫

d2xÔ(x), we construct
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TABLE I. Scaling dimensions �Nf of some important primary operators in QED3, calculated in the large Nf limit, compiled from
Refs. [3,13,50,51]. An operator with � > 3 is relevant in the RG sense.

Operator �Nf �Nf =4

Monopoles
�̂2π 0.2651Nf − 0.0381 + O(1/Nf ) 1.022
�̂4π 0.6731Nf − 0.1934 + O(1/Nf ) 2.499
�̂6π 1.1864Nf − 0.4211 + O(1/Nf ) 4.325
Fermion bilinears
ψ̄σ ατ βψ , (α, β are not both 0) 2 − 64

3π2Nf
+ O( 1

N2
f
) 1.46

ψ̄ψ 2 + 128
3π2Nf

+ O( 1
N2
f
) 3.08

Conserved charges and currents

b̂, êi, Q̂[σατβ ], �̂J[σατβ ] 2 2

the microscopic operator

Ôtot =
∑

�n
ei �Q.�nÔ�n, (B1)

where we have allowed for Ôtot to have momentum �Q at the
lattice scale. We use the following procedure [15,16,52]:

(1) Find how Ôtot transforms under the microscopic sym-
metries. For operators that can be written in terms of fermionic
partons, this can be done using information obtained by
expanding around Dirac points [53]. We tabulate the transfor-
mation properties of the conserved charges of GIR in Table II,
and conserved currents in Table III.

(2) Construct operators order by order in size (maximum
of weight, i.e., number of spins in the support of a local
term, and diameter, i.e., extent of a local term) transforming
identically as Ôtot.

We do this for the emergent electric and magnetic fields
and spinon charge density in Appendix B 1. For monopole
operators, this procedure is harder, and requires information
at the lattice scale. Reference [14] did this using a Wannier
center calculation. In Appendix B 2, we will motivate their
result using an independent approach involving the algebra of
operators.

TABLE II. Symmetry properties of conserved charges of GIR.
SO(3) is spin-rotation (S and T stand for singlet and triplet under
spin-rotation, respectively). T is time-reversal. T1 and T2 are lattice
translations about �a1 and �a2, respectively. C6 is rotation by 2π/6
about a vertex. Rx is reflection about �a1.

Charge SO(3) T T1 T2 C6 Rx

b̂tot S −1 1 1 −1 1

Q̂[σ i] T −1 1 1 1 1

Q̂[τ 1] S −1 −1 −1 Q̂[τ 2] Q̂[τ 3]

Q̂[τ 2] S −1 1 −1 −Q̂[τ 3] −Q̂[τ 2]

Q̂[τ 3] S −1 −1 1 −Q̂[τ 1] Q̂[τ 1]

Q̂[σ iτ 1] T 1 −1 −1 −Q̂[σ iτ 2] −Q̂[σ iτ 3]

Q̂[σ iτ 2] T 1 1 −1 Q[σ iτ 3] Q̂[σ iτ 2]

Q̂[σ iτ 3] T 1 −1 1 Q̂[σ iτ 1] −Q̂[σ iτ 1]

1. Emergent electric and magnetic field

The generator of U (1)top is the total emergent mag-
netic flux b̂tot ≡ 1

2π

∫
d2xb̂(x). Because b̂tot is odd under

time-reversal (see Table II), and singlet under spin rota-
tion, the lowest weight term is a three-spin spin chirality:

χ̂�,�n ≡ (�̂S�n × �̂S�n+(1,−1)) · �̂S�n+(1,0) and χ̂�,�n ≡ (�̂S�n × �̂S�n+(1,0)) ·
�̂S�n+(0,1). Here, we have used the notation (n1, n2) ≡ n1�a1 +
n2�a2. If we only keep (1) elementary triangles ( ) and (2)

triangles whose two edges are nearest-neighbor ( ), then
the only term consistent with symmetries is

b̂tot =
∑

�n
(χ̂�,�n − χ̂�,�n) + · · · (B2)

Since the total emergent magnetic flux is theU (1)top charge
density, it follows from Faraday’s law that the emergent elec-
tric field �̂e is theU (1)top conserved current rotated by 90◦.

If we consider all operators for �̂e made of terms with two
spins (both nearest-neighbor and next-nearest-neighbor), then
(in the notation: �̂e ≡ ê1�a1 + ê2�a2)

êi = α1(êi )
(1) + α2(êi )

(2) + · · · for i = 1, 2, (B3)

TABLE III. Symmetry properties of conserved currents of
U (1)top and SO(6). Notation: “V ” means “transforms as a vector,”
“−V ” means transforms as a vector except for a factor of −1. “V

as �̂J[σ iτ j]” means the current’s spatial indices are transformed as a
vector while the SO(6) indices are rotated to σ iτ j , possibly with an
overall sign.

Current SO(3) T T1 T2 C6 Rx

εi j

2π ê
j S 1 1 1 −V −V

�̂J[σ i] T 1 1 1 V V

�̂J[τ 1] S 1 −1 −1 V as �̂J[τ 2] V as �̂J[τ 3]

�̂J[τ 2] S 1 1 −1 V as − �̂J[τ 3] V as − �̂J[τ 2]

�̂J[τ 3] S 1 −1 1 V as − �̂J[τ 1] V as �̂J[τ 1]

�̂J[σ iτ 1] T −1 −1 −1 V as − �̂J[σ iτ 2] V as − �̂J[σ iτ 3]

�̂J[σ iτ 2] T −1 1 −1 V as �̂J[σ iτ 3] V as �̂J[σ iτ 2]

�̂J[σ iτ 3] T −1 1 −1 V as �̂J[σ iτ 1] V as − �̂J[σ iτ 1]
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where

(B4)

(B5)

with the notation

(B6)

Note that ê1 and ê2 are not orthogonal. êx and êy are related to
ê1 and ê2 as êx = ê1 and êy = 1√

3
(−ê1 + 2ê2).

From the above expression for electric field, one can
compute the local divergence of the electric field, which is
proportional to the spinon charge by Gauss’s law:

q̂ = 1

g2
div�̂e. (B7)

We see that only �̂e(2) contributes to q̂, and not �̂e(1). Therefore,
�̂e(1) is the transverse electric field and �̂e(2) is the longitudinal
electric field. q̂ at site i is given by

(B8)
By construction, we see that the sum of spinon charge en-
closed in a region D is an operator with support localized to
the boundary of D. This is consistent with Gauss’s law. It also
satisfies 〈q̂i〉 = 0 by symmetry.

2. Monopole operators from commutation relations

The symmetry properties of monopole operators were cal-
culated in Refs. [14,16] and reported in Table 2 of Ref. [14].
The SO(6) contribution was calculated using Step 1 (begin-
ning of Appendix B). TheU (1)top contribution was calculated
using a Wannier center calculation of the free fermion bands
for the mean field ansatz. Here, we attempt an alternative
approach to calculate theU (1)top contribution. While our cal-
culation involves an uncontrolled approximation, it provides
an independent motivation for the result in Ref. [16].

The principle behind our approach is that the algebra ofGIR

has to be obeyed down to the microscopic level because we
are dealing with operators of the form Ôtot here, which have

the longest possible wavelength (allowed by their symmetry
properties):[
Q̂ab

tot, Q̂
cd
tot

] = i
(
δbcQ̂

da
tot − δacQ̂

db
tot + δad Q̂

cb
tot − δbd Q̂

ca
tot

)
, (B9)[

b̂tot, Q̂
ab
tot

] = 0. (B10)

Here {Q̂ab} (antisymmetric in a, b with a, b running from 1 to
4) are the 15 generators of SO(6) and b̂tot is the generator of
U (1)top (see Appendix B 4 for the notation).

Next, 2π monopole operators that are charged under GIR

have to obey the algebra

[b̂tot, (�̂
†
j )tot] = (�̂†

j )tot, (B11)

[
Q̂bc

tot, (�̂
†
j )tot

] =
6∑

i=1

(�̂†
i )tot (T

bc)i j, (B12)

where, T bc, a matrix of c numbers, is the generator of Q̂bc
tot

acting on C6, and the matrix elements are given by

(T bc)i j = −i(δc jδib − δb jδic). (B13)

This suggests a general procedure:
(1) Suppose Ôtot = ∑

�n e
i �Q.�nÔ�n. If we now expand Ô�n in

operators of increasing “size” s,

Ô�n =
∞∑
s=1

Cs(Ô�n)s. (B14)

Here, each (Ô�n)s is chosen to respect the symmetry properties
obtained just from the low energy theory.

(2) Demand Eqs. (B9)–(B10), (B11)–(B12) order by order
in size s, and obtain constraints onCs.

Here we will only perform this calculation at the lowest
order in size by enforcing Eq. (B11) up to a proportionality
constant

[b̂tot, �̂�†
tot] = K �̂�†

tot, (B15)

where K is a positive constant. Let us assume that the
monopole inserting 2π flux is “simpler,” i.e., has a lower lead-
ing operator size than the one inserting 4π or 6π flux. Then
we ask what the “simplest” spin triplet monopole operator is.
We start with operators with size 1,

�̂�†
tot =

∑
�n

ei �Q·�n �̂S�n + · · · . (B16)

From compatibility of translation symmetry with rotation
symmetry, �Q is either (0,0) or ±(2π/3,−2π/3) [16]. Using
identity Eq. (B30), we evaluate the commutator in Eq. (B15)
using the lowest order expression for b̂(1)tot in Eq. (B2). Each

single-spin term in �̂�†
top fails to commute with exactly 6 trian-

gles in b̂(1)tot . After evaluating each of these commutators, we
get [

b̂(1)tot , ��†
tot

] = −i
∑

�n
ei �Q·�n �̂S�n

{
(e−iQ1 − e−iQ2 )

(�̂S�n6 · �̂S�n1
)

+ (ei(Q1−Q2 ) − eiQ2 )
(�̂S�n1 · �̂S�n2

)
+ (ei(Q1−Q2 ) − eiQ1 )

(�̂S�n2 · �̂S�n3
)
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+ (eiQ2 − eiQ1 )
(�̂S�n3 · �̂S�n4

)
+ (eiQ2 − ei(Q2−Q1 ) )

(�̂S�n4 · �̂S�n5
)

× (e−iQ1 − ei(Q2−Q1 ) )
(�̂S�n5 · �̂S�n6

)} + · · · ,

(B17)

where �n1 ≡ �n + (0,−1), �n2 ≡ �n + (1,−1), �n3 ≡ �n + (1, 0),
�n4 ≡ �n + (0, 1), �n5 ≡ �n + (−1, 1), and �n6 ≡ �n + (0,−1).
From this, it is clear that (Q1,Q2) = (0, 0) will give 0 as
the commutator. Therefore, if the monopole operator is to
have single spin terms as its leading order term, then �Q =
±(2π/3,−2π/3). For K in Eq. (B15) to be positive, we
choose �Q = (2π/3,−2π/3). Here, we have made use of the
fact that the DSL is a ground-state of an antiferromagnetic

Heisenberg-like Hamiltonian where 〈�̂Si · �̂S j〉 < 0 for nearest
neighbors i and j. So, (Q1,Q2) = (2π/3,−2π/3). With this
choice, Eq. (B17) becomes

(B18)
where we use the notation

(B19)

To our guess for �̂�†
top, we now add the RHS obtained above,

�̂�†
tot = β1 �̂�†(1) + β2 �̂�†(2) + · · · , (B20)

where

�̂�†(1) =
∑

�n
ei �Q·�n �̂S�n, and �̂�†(2) =

∑
�n

ei �Q·�n �̂S�n�̂�n. (B21)

We can use the commutator Eqs. (B30)–(B33) to get[
b̂(1)tot , �̂�†(1)

] = −
√
3 �̂�†(2) and[

b̂(1)tot , �̂�†(2)
] = −

√
3
(
3
4
�̂�†(1) − �̂�†(2) + · · ·

)
. (B22)

Using the above equation, truncating at terms supported on at
most elementary triangles, we get

�̂�†
tot =

∑
�n

ei �Q.�n
(

�̂S�n − 4

3
�̂S�n�̂�n + · · ·

)
, (B23)

where �Q = (2π/3,−2π/3).

a. Spin singlet monopoles

Having determined the momentum of the spin-triplet 2π -
monopoles, the momenta of spin-singlet monopoles can be
fixed by the low energy theory since the embedding of the
space-group symmetries into SO(3)valley can be computed
purely from low energy information. Doing so results in Table
2 of Ref. [16]. Here, we will write microscopic expressions for
them.

The spin singlet monopoles are time-reversal even. Here,
we will only keep the lowest weight terms that are dot prod-
ucts of neighboring spins:

�̂
†
i = v1�̂

†(1)
i + v2�̂

†(2)
i for i ∈ {1, 2, 3}, where (B24)

(B25)

(B26)

where we use the notation

(B27)

We can now use the identity Eq. (B34) to get

[
b̂(1)tot , �̂

†(1)
i

] = 1

2
�̂

†(2)
i + · · · ,

[
b̂(1)tot , �̂

†(2)
i

] = �̂
†(1)
i −

√
3

2
�̂

†(2)
i + · · · ,

⇒ [
b̂(1)tot , v1�̂

†(1)
i + v2�̂

†(2)
i

] = v2�̂
†(1)
i +

(
1

2
v1 −

√
3

2
v2

)

× �̂
†(2)
i + · · · . (B28)

If we demand proportionality already to this order, then we
obtain K = v2/v1 = 0.396. In contrast, K for the spin triplet
monopole in Eq. (B23) is

√
3, although in theory they should

be the same. The discrepancy is the result of our uncontrolled
approximation to drop higher size terms, since the commuta-
tor of two high size operators can give a lower size operator
[for example, Eq. (B31)]. Nevertheless, using this approach
we have been able to motivate why theU (1)top contribution to
monopole momentum is (2π/3,−2π/3).

It could be a fruitful direction to assume that the coeffi-
cients Cs do decay with operator size s and self-consistently
solve forCs using the general approach described above. Since
the generators Q̂ab are generators for emergent global internal
symmetries, naïvely, one would expect that Q̂ab is a sum of
approximately local terms, and Cs decays exponentially with
size s. It will be interesting to verify that this is indeed the
case, and if so, to determine what sets the decay length when
the IR theory is conformally invariant. If this approach suc-
ceeds, then it would help one to study DSLs without resorting

013169-15



NAMBIAR, BULMASH, AND GALITSKI PHYSICAL REVIEW RESEARCH 5, 013169 (2023)

to parton construction and serve as a technique complemen-
tary to the one explored in Ref. [54].

3. List of useful commutation relations

Here, we list some useful commutation relations of various
spin operators with the spin chirality, i.e., commutators of the
form

[Ô({�Si}), (�̂S1 × �̂S2) · �̂S3], (B29)

where Ô[{�Si}] is a local operator made of spins.
Ô: Spin triplet made of single spin:

[�̂S1, (�̂S1 × �̂S2) · �̂S3] = i[(�̂S1 · �̂S2)�̂S3 − (�̂S1 · �̂S3)�̂S2]. (B30)

Ô: Spin triplet made of three spins:

[(�̂S1 · �̂S2)�̂S3, (�̂S1 × �̂S2) · �̂S3]

= − i

8
(�̂S1 − �̂S2) + i

4
[(�̂S2 · �̂S3)�̂S1 − (�̂S1 · �̂S3)�̂S2], (B31)

[(�̂S1 · �̂S2)�̂S3, (�̂S1 × �̂S2) · �̂S4] = − i

2
(�̂S1 · �̂S4 − �̂S2 · �̂S4)�̂S3,

(B32)

[(�̂S1 · �̂S2)�̂S3, (�̂S1 × �̂S3) · �̂S4]

= i

2
[(�̂S2 · �̂S4)�̂S1 + (�̂S3 · �̂S4)�̂S2 − (�̂S2 · �̂S3)�̂S4 − (�̂S1 · �̂S4)�̂S2].

(B33)

Ô: Spin singlet made of two spins:

[�̂S1 · �̂S2, (�̂S1 × �̂S2) · �̂S3] = − i

2
(�̂S1 · �̂S3 − �̂S2 · �̂S3). (B34)

4. Remarks on notation

We write the generator corresponding to the charge and
current in square brackets, e.g., Q̂[σ iτ j] and Q̂[U (1)top].

Correspondence between the notations Q̂ab and Q̂tot[σ iτ j]:

Q̂tot[σ
1] = Q̂56, Q̂tot[σ

2] = Q̂64, Q̂tot[σ
3] = Q̂45,

(B35)

Q̂tot[τ
1] = Q̂23, Q̂tot[τ

2] = Q31, Q[τ 3]tot = Q̂12, (B36)

Q̂tot[σ
iτ j] = Q̂3+i, j for 1 � i, j � 3. (B37)

APPENDIX C: IGNORING SOURCE TERMS FOR SPIN
SINGLET MONOPOLES

In this section, we argue why source terms for spin singlet
monopoles potentially arising due to spatial symmetry break-
ing near the boundaries [see Eq. (17)], do not significantly
affect theU (1)top Josephson current between two 120◦ AFMs.
For simplicity, let us work with the effective Hamiltonian in
terms of the ordered phases alone, with the DSL integrated
out, as we did in Eq. (18). The source term, localized to the
boundaries modifies Eq. (18) as follows:

Ĥnew = Ĥeff +
3∑

i=1

∑
P=L,R

(
V eff
i,P �̂

†
i,P + H.c.

)
. (C1)

Note that V eff
i,P is a coupling arising under RG flow in the

effective field theory due to the boundaries breaking spatial

symmetries. Hence, it is small when compared to �eff
S 〈 �̂�L/R〉,

which in contrast is macroscopic in the 120◦ AFM. The source
term leads to the following extraneous contribution to the
U (1)top current:

−
(
db̂tot,L
dt

)
extra

= i

[
b̂tot,L,

3∑
i=1

(
V eff
i,L �̂

†
iL + H.c.

)]

= i
3∑

i=1

(
V eff
i,L �̂

†
iL − H.c.

)
. (C2)

Now, we take expectation value of the above expression. The
result is proportional to the expectation value of a spin singlet
monopole at the boundary of a 120◦ AFM phase. The only
reason this expectation value is nonzero is because of V eff

i,L .

Hence, 〈�̂iL〉 is first order in V eff
i,L . Therefore, 〈−( db̂tot,Ldt )extra〉 is

second order in V eff
i,L , which we neglect due to the assumption

that V eff
i,L is small.

APPENDIX D: FORMULA FOR RAMAN SCATTERING
OFF A NONEQUILIBRIUM STATE

In this Appendix, we will derive Eq. (41) for the Raman
scattering rate when the spin system is not in an energy
eigenstate, but in a nonequilibrium steady state. While we will
have Raman scattering in mind for the sake of concreteness,
our derivation applies for any scattering process. We have two
systems—light and matter. Light is used to probe matter (the
DSL in our case). The full time-independent Hamiltonian is

Ĥ = Ĥ0 + V̂ , (D1)

where Ĥ0 is the Hamiltonian for the matter and light fields
separately and V̂ is the light matter coupling. Suppose that at
time t = 0, the system is in state |ψ〉 ⊗ |ni; 0〉, i.e., the matter
part of the state is |ψ〉 ≡ ∑

l ψl |l〉 (where |l〉 is an energy
eigenstate of the matter Hamiltonian) and the light part has
ni photons in a mode of frequency ωi and 0 photons in mode
ω f . In the final state, at time T , the light part is in the state
|ni − 1; 1〉, while the matter part is in an unknown state | f 〉.
The scattering rate is given by

R = 1

T

∑
f

|(〈 f | ⊗ 〈ni − 1; 1|)Û (T )(|ψ〉 ⊗ |ni; 0〉)|2

= 1

T

∑
f

∣∣∣∣∣
∑
l

ψl (〈 f | ⊗ 〈ni − 1; 1|)Û (T )(|l〉 ⊗ |ni; 0〉)
∣∣∣∣∣
2

,

(D2)

where Û (T ) ≡ e−i(Ĥ0+V̂ )T is the time-evolution operator. For
ease of notation, we now define

|L〉 ≡ |l〉 ⊗ |ni; 0〉 and H0|L〉 = EL|L〉,
where EL ≡ El + niωi, (D3)

|F 〉 ≡ | f 〉 ⊗ |ni − 1; 1〉 and H0|F 〉 = EF |F 〉,
where EF ≡ Ef + (ni − 1)ωi + ω f . (D4)
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So, Eq. (D2) becomes

R = 1

T

∑
f

∣∣∣∣∣
∑
l

ψl〈F |Û (T )|L〉
∣∣∣∣∣
2

. (D5)

For T > 0,

Û (T ) = iĜR(T ) = i
∫ ∞

−∞

dω

2π
ĜR(ω)e−iωT , (D6)

where ĜR(ω) is the retarded Green’s function for the full sys-
tem (light + matter). Using the standard T-matrix formalism,
we can write

ĜR(ω) = Ĝ0
R(ω) + Ĝ0

R(ω)T̂R(ω)Ĝ0
R(ω), (D7)

where Ĝ0
R(ω) = 1

ω+−Ĥ0
(here, ω+ ≡ ω + i0+) and T̂R(ω) =

V̂ + V̂ Ĝ0
R(ω)V̂ + V̂ Ĝ0

RV̂ Ĝ0
RV̂ + · · · .

Clearly, Ĝ0
R cannot induce a transition that changes the

number of photons; only the second term involving T̂R can
do so. Thus, we get the following scattering amplitude:

〈F |Û (T )|L〉 = i
∫ ∞

−∞

dω

2π
e−iωT 〈F |T̂R(ω)|L〉

(ω+ − EF )(ω+ − EL )
. (D8)

The ω integral should be closed in the lower half plane for
convergence. This integral will pick up poles at EF − i0+
and EL − i0+. The poles of T̂R(ω) will not play a role under
the assumption T � 1/(EF − EM ), which is the regime of
interest since we wish to consider the large T limit. Here, EM

is the total energy (light + matter) of any level M such that
〈F |V̂ |M〉 �= 0. In such a large T limit, one can expand out
T̂R(ω) and see that our assumption is justified. So, we get

〈F |Û (T )|L〉 = −2ie−i(EF+EL )T/2 sin((EF − EL )T/2)

EF − EL

×〈F |T̂R(ω = EF )|L〉 (D9)

≈ −2π ie−iEF T δ(Ef + ω f − El − ωi )

×〈F |T̂R(ω = EF )|L〉. (D10)

Now, 〈F |T̂R(ω = EF )|L〉 is the same operator that appears in
the equilibrium calculation in Refs. [10,37]. As shown there,

up to a constant of proportionality

〈F |T̂R(ω = EF )|L〉 = 〈 f |M̂|l〉, (D11)

i.e., the above matrix element for the full system is propor-
tional to a matrix element of the matter part alone. M̂ has been
calculated in Refs. [10,37] and depends on the initial and final
polarizations of light, momentum transferred by light and the
lattice of the matter system. We have presented the leading
order expression for M̂ in Eq. (42). Substituting Eq. (D10)
into Eq. (D2), we get

R ≈ 1

T

∑
f

∑
l,l ′

ψ∗
l ′ψl (4π )2δ(Ef + ω f − El − ωi )

× δ(Ef + ω f − El ′ − ωi )〈l ′|M̂†| f 〉〈 f |M̂|l〉

= 1

T

∑
f

∑
l,l ′

ψ∗
l ′ψl (4π )2δ(Ef + ω f − El − ωi )

× δ(El ′ − El )〈l ′|M̂†| f 〉〈 f |M̂|l〉 (D12)

= lim
T→∞

1

T

∑
f

∫ T
2

− T
2

dt0e
i(El′ −El )t0

∫ ∞

−∞
dtei(Ef +ω f −El−ωi )t

×
∑
l,l ′

ψ∗
l ′ψl〈l ′|M̂†| f 〉〈 f |M̂|l〉, (D13)

where in the last equation, we used the Fourier representation
of the δ function. Now, we can associate the phases in the
above equation with the phases coming from time evolution
to simplify it as follows:

R = lim
T→∞

1

T

∑
f

∑
l,l ′

∫ T/2

−T/2
dt0

∫ ∞

−∞
dtei(ω f −ωi )t

× ψ∗
l ′ψl〈l ′|M̂†eiĤ0t0 | f 〉〈 f |eiĤ0tMe−iĤ0 (t+t0 )|l〉

= lim
T→∞

1

T

∫ T/2

−T/2
dt0

∫ ∞

−∞
dtei(ω f −ωi )t

× 〈ψ |M̂†(t0)M̂(t + t0)|ψ〉, (D14)

where M̂(t ) = eiĤ0t M̂e−iĤ0t . This completes the derivation of
Eq. (41).
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