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Abstract: Liquid crystal elastomers (LCEs) exhibit significant viscoelasticity. Although the rate-

dependent stress-strain relation of LCEs has already been widely observed, the effect of the intri-

cate interplay of director rotation and network extension on the viscoelastic behavior of main-

chain LCEs remains inadequately understood. In this study, we report real-time measurements of 

the stress, director rotation, and all strain components in main-chain nematic LCEs subjected to 

uniaxial tension both parallel and tilted to the initial directors at different loading rates and relax-

ation tests. We find that both network extension and director rotation play roles in viscoelasticity, 

and the characteristic relaxation time of the network extension is much larger than that of the di-

rector rotation. Interestingly, the gradual change of the director in a long-time relaxation indi-

cates the director reorientation delay is not solely due to the viscous rotation of liquid crystals but 

also arises from its coupling with the highly viscous network. Additionally, significant rate-de-

pendent shear strain occurs in LCEs under uniaxial tension, showing non-monotonic changes 

when the angle between the stretching and the initial director is large enough. Finally, a viscoe-

lastic constitutive model, only considering the viscosity of the network by introducing multipli-

cative decomposition of the deformation gradient, is utilized to manifest the relation between 

rate-dependent macroscopic deformation and microscopic director rotation in LCEs. 

 

1 Introduction 

Liquid Crystal Elastomers (LCEs) are special polymers combining crosslinked elastomers 

with rod-like liquid crystal (LC) mesogens.1 Nematic LC mesogens tend to align in a specific 

orientation, with the average direction called the director, 𝒅,2–4 which can be identified by their 

uniaxial optical axis. LCEs have unique mechanical behavior attributed to the strong coupling 

effect between their macroscopic stress and microscopic director order. When LC mesogens are 

heated above a transition temperature 𝑇𝑛𝑖, they undergo a phase transition from the aligned ne-

matic phase to randomly oriented isotropic phase, inducing macroscopic contraction of LCEs.1 



 

Moreover, external stimuli, such as light irradiation,5–7 magnetic fields,8–10 and electrical fields11–

14 can trigger the phase transition or reorient the director of LCEs, which can lead to spontaneous 

strain approaching 400%15,16 or stress if constrained. On the other hand, mechanical deformation 

not parallel to the director can reorient the director to the stretching direction,1,17–22 inducing a 

stress plateau in the stress-strain relation.1,23 The unique mechanical behaviors endow LCEs with 

many potential applications, including soft robots,5,24–26 thermomechanical actuators,27,28 artifi-

cial muscles,15,29 and so on. 

Significantly rate-dependent stress-strain relations and extremely slow shape recovery during 

relaxation have been reported in LCEs.17,18,30–42 A large number of previous studies about side-

chain LCEs show mesogen rotation and network extension have different characteristic 

times.12,32,34,36 Fukunaga et al.12 studied the deformation of side-chain LCEs under an electro-op-

tical effect and found the director rotates about 1 order of magnitude faster than the mechanical 

deformation. Clarke et al.32 studied stress relaxation during the polydomain-monodomain transi-

tion with stress fitting by a power law in a short time and a logarithmic scale in a long time, 

which they explained by a proposed theoretical model considering a cooperative mechanical bar-

rier for each domain rotation. Hotta and Terentjev34 systematically investigated the rate-depend-

ent and relaxation responses of side-chain LCEs, and also reported two distinct relaxation re-

gions for long-time stress relaxation. Although fitting both regions by power laws, they found the 

short-time region shows a power exponent of 0.67, representing the stress relaxation is facilitated 

by the director rotation due to the polydomain-to-monodomain transformation, while the long-

time region shows a power exponent of 0.15, where the director relaxation is almost finished and 

the LCEs behave like isotropic rubber. Schonstein et al.43 reported a broad distribution of direc-

tor relaxation times but with a small mean relaxation time on the order of 0.01s via light scatter-

ing. Previous studies showed that shape recovery of LCEs takes a very long time and requires a 

very slow loading rate of around 10−4 𝑠−1 to reach quasi-equilibrium mainly due to the slow re-

laxation of the network.17,34,37,42 These findings suggest that the director rotates slightly faster 

than the network deforms. Researchers have also shown that the crosslinker forming conditions, 

director fields, LC phases, chemical components, and many other parameters could profoundly 

influence the viscoelasticity of LCEs.33,36–41 However, the viscoelasticity of main-chain LCEs 

was not studied intensively until very recently. The comprehensive understanding of viscoelas-

ticity in main-chain LCEs remains challenging due to the complicated synergy of the network 

extension and mesogen rotation to give rise to high viscosity. Azoug et al.31 and Martin Linares 

et al.35 studied the main-chain polydomain LCEs under uniaxial tension, reporting rate-depend-

ent anisotropic stress responses. Moreover, Luo et al.20 evaluated the director alignment of main-

chain monodomain LCEs by optical measurements, finding the director almost reaches equilib-

rium rotation at the loading rate of 450%/min. However, it is not clear what the relaxation time 

scales of the network extension and director rotation are for main-chain LCEs, and how they in-

fluence the macroscopic stress-strain behavior and microscopic director rotation.  



 

To better understand how viscoelastic LC reorientation affects the mechanical responses of 

LCEs, we need to capture the real-time director rotation at different loading rates. Wide-angle X-

ray scattering17,44–46 (WAXS) and polarized Fourier transform infrared spectroscopy22,23,47,48 

(FTIR) have been used to measure the mesogen reorientation. However, WAXS can only obtain 

diffraction patterns at quasi-static loading, while FTIR has a strict requirement of specific func-

tional groups on the chain backbone, giving an angular-dependent absorbance spectrum. Both of 

them have the restriction that they cannot measure universal main-chain LCEs orientation dy-

namically. Conversely, polarized optical microscopy is an alternative method to capture mesogen 

reorientation under fast loading.19,20,46,49 Recently, Luo et al.20 used crossed-polarized optical 

measurements to evaluate the director rotation in monodomain LCEs at different loading rates. 

Mistry et al.19 used polarized optical microscopy to measure the director distribution in LCEs 

subjected to step stretching almost perpendicular to the initial director. Here, we will use 

crossed-polarized optical measurement to characterize the director rotation of LCEs under 

oblique stretching at different rates. The optical data will be recorded at different angles of the 

crossed polarizer and analyzer with respect to the stretching direction at different strains to probe 

the director. More details can be found in section 2. 

Some viscoelastic models are developed to better understand the viscoelasticity mechanism 

of LCEs. Zhang et al.50 and Zhou and Bhattacharya51 proposed a viscoelastic model considering 

both viscous network and director via applying a simple Rayleigh dissipation energy. It shows 

the semi-soft elasticity effect, rate-dependent stress, and director rotation. However, as the stress 

is the summation of the elastic and viscoelastic contributions, which is equivalent to a simple 

Kelvin-Voigt model, it cannot accurately capture the stress response under high loading rates due 

to an impractical instantaneous non-zero stress, and neither can it capture relaxation tests due to 

an unrealistic constant stress. Later, Wang et al.52 proposed a nonlinear viscoelastic model by 

multiplicative decomposition of the deformation gradient to elastic and viscous parts. The pre-

dicted stress-strain behavior of LCEs under loading perpendicular to the initial director agrees 

well with the experimental results.31 Here, following the work of Wang et al.52, we establish a 

viscoelastic LCE model by considering more realistic viscosity of the network and low viscosity 

of the director based on our experimental measurements. Furthermore, the semi-soft elasticity is 

introduced in the elastic free energy. 

This work aims to bridge the existing knowledge gap in understanding the effect of the intri-

cate interplay of director rotation and network extension on the viscoelastic behavior of LCEs. In 

particular, we systematically characterize the real-time director-stress-stretch relations for main-

chain monodomain LCEs with different initial directors under different loading rates, showing 

not only rate-dependent stress-stretch behavior, but also rate-dependent director-stretch relation. 

Since director rotation also induces shear strain, we apply digital image correlation (DIC) to 

quantitatively measure the fields of all the rate-dependent strain components relative to the 

mesogen rotation. Moreover, we conduct relaxation tests, and record the time evolution of the 



 

stress and director under fixed stretch. By comparing the the results from the rate-dependent di-

rector-stress-stretch measurements and relaxation tests, we further distinguish the relaxation 

times of the network and director. To better understand how the two viscoelastic dissipation pro-

cesses govern the microscopic director rotation and macroscopic deformation, we develop a vis-

coelastic model via the multiplicative decomposition-based method, which implements more re-

alistic viscosity and elastic energy compared to existing literature. This paper is organized as fol-

lows. In Section 2, we introduce the experimental methodology. In Section 3, we report the ex-

perimental results, including rate-dependent stress-strain and director-strain relations, and stress 

and director relaxation results. The theoretical model and the predicted viscoelastic behavior 

compared with the experimental results are presented in Section 4. Section 5 concludes the pa-

per. 

 

2 Experimental methods 

2.1 Sample preparation 

In this study, the main-chain monodomain LCEs are synthesized via a two-stage thiol-acry-

late Michael addition-photopolymerization (TAMAP) reaction53. The crosslinker, pentaerythritol 

tetrakis(3-mercaptopropionate) (PETMP, 95%), and chain extender, 2,2-(ethylenedioxy) diethan-

ethiol (EDDET, 95%), were obtained from Sigma-Aldrich and used as received. The diacrylate 

mesogen, 1,4-Bis-[4-(3-arcyloyoxypropyloxy) benzoyloxy]-2-methylbenzene (RM257, 95%), 

was purchased from Wilshire company. Dipropylamine (DPA, 98%) and (2-hydroxyethoxy)-2-

methylpropiophenone (HHMP, 98%) were selected as the catalyst and photoinitiator to enable 

the second-stage photopolymerization reaction, respectively. Toluene (98%) was used as the sol-

vent for RM257. To prepare a sample, firstly, RM257 was fully dissolved in a vial with 60 wt% 

of toluene at 80 ℃. Then, PETMP, EDDET, HHMP, and DPA solution (DPA:toluene = 1:50) 

were poured into the solution and mixed using a vortex mixer for 60 s to obtain a uniform solu-

tion. The molar ratio of thiol functional groups between PETMP and EDDET was 15:85, corre-

sponding to a ratio of 15 mol% PETMP. The molar ratio of DPA with respect to the thiol func-

tional group was 1 mol%, while the molar ratio of HHMP was 1 mol%. The solution was de-

gassed for about 2 mins to remove all bubbles and then poured into a mold. Then the samples 

were cured at room temperature for 24 hours and put into an oven at 80 ℃ for another 24 hours 

to remove the toluene from the LCE sample. At this stage, thiol-acrylate formed a loose network 

and the sample showed an opaque appearance at room temperature. There would be an excess of 

15 mol% acrylate groups for a second-stage photo-crosslinking reaction. In the second stage, the 

LCE sample was stretched uniaxially to 90% strain by a mechanical stretcher. The pre-stretch 

forced mesogens to reorientate to the tension direction, and the sample became transparent, indi-

cating a monodomain LCE. The pre-stretched sample was exposed to UV light for 1 hour to pho-

topolymerize the excessive acrylate groups, forming a denser network. After releasing the sam-

ples from the stretcher, a thin film of monodomain LCE sheet remains. 



 

Rectangular strips with a width of 3 mm and length of 35 mm were cut out of the LCE sheet 

with angles 𝜃0 = 0°, 30°, 45°, and 60° between the director and the longitudinal direction, shown 

in Fig. 1. The angles between the longitudinal direction and the director were measured by a pro-

tractor and further verified by the optical polariscopy method, which will be discussed in Section 

2.3. The samples are designated as monodomain nematic elastomers-𝜃0 (MNE-𝜃0), i.e. MNE-0, 

MNE-30, MNE-45 and MNE-60. 

 

Fig. 1 Schematics of specimens with different initial directors. (a) The specimen (red dashed line) was cut 

from a LCE thin film with the angle between the director and the longitudinal direction defined as 𝜃0. (b) 

Specimens with different initial directors are defined as MNE-0, MNE-30, MNE-45, and MNE-60, corre-

sponding to 𝜃0 = 0°,  30°,  45° and 60°, respectively. The specimens were 3 mm in width and 35 mm in 

length. 

2.2 Uniaxial stretch 

Uniaxial tension measurement was performed in the longitudinal direction of a LCE speci-

men at different loading rates using an Instron universal testing machine (Model 5944) with a 50 

N load cell to record the LCE rate-dependent stress-strain relationship. A specimen was mounted 

in a pair of tensile grips, leaving a gauge length of 15 mm. The ratio of the length to width (= 5) 

is high enough to ensure that the majority of the specimen undergoes uniaxial tension, with neg-

ligible edge effects. The thickness was measured at three locations by an electronic caliper, giv-

ing the average thickness over all specimens to be 0.11 ± 0.01 mm. The specimens MNE-0, 

MNE-30, MNE-45, and MNE-60 were uniaxially stretched up to 40%, 100%, 150%, and 200% 

strain, respectively, with loading rates of 10%/s, 1%/s, and 0.1%/s, and unloaded at the same 

rates until stress reached zero. The maximum stretches were set as high as possible, but below 

the fracture points of specimens with different directors to ensure completion of the tests. Alt-

hough the specimens show complete recovery at room temperature after unloading, to accelerate 

the recovery process, after each loading and unloading, a specimen was put on a hotplate at 30 ℃ 



 

for 5 mins and then at room temperature for another 10 mins to release any residual stress. The 

next test would be run once the specimen was fully recovered. From these tests, we were able to 

plot the nominal stress as a function of stretch. Here the stretch is defined as 𝜆 = 𝐿/𝐿0, where 𝐿0 

is the unstretched gauge length (15 mm) and L is the extended length. 

2.3 Crossed-polarized optical measurement  

Director rotation driven by stretching at different loading rates was dynamically characterized by 

the crossed-polarized optical measurement. A light source, a polarizer, a specimen stretched by 

the Instron universal testing machine, an analyzer with the polarization perpendicular to the po-

larizer, and a camera were set up in the order as shown in Fig. 2a. The appearance change of the 

specimen under uniaxial tension was recorded by a Canon EOS 6D DSLR camera per 1% strain 

simultaneously with the measured stress-strain relation. The recorded images were used to meas-

ure the transmitted light intensity by ImageJ. Because the dramatic change of specimen thickness 

under large stretching can alter the measurement of brightness, we recorded the transmitted light 

intensity for different orientations of the crossed-polarizers by rotating them every 10° to deter-

mine the director as a function of stretch. Since the director 𝐝 is symmetric (𝐝 = −𝐝) and the ini-

tial director is known, the light intensity is cycled every 90°. Therefore, we can calculate director 

rotation by only measuring the transmitted light at different angles between the polarizer and the 

tension direction, φ, from 0° to 90°. The measured transmitted intensity I for different φ (Fig. 

2a), can be fitted by the following equation to determine the director, 

𝐼 = 𝐼0𝑆𝑖𝑛2 (
𝑏𝜋(𝜑−𝜃)

180
) + 𝑑, ( 1 ) 

where 𝐼0, 𝑏, 𝜃, and d are fitting parameters. In particular, the parameter 𝜃 represents the current 

director. Fig. 2b shows one example of the measured transmitted intensity as a function of angle 

𝜑 and the fitting curve based on eqn ( 1 ) at zero strain. The curve fits the experimental data well. 

The φ value at the lowest intensity corresponds to the polarizer parallel or perpendicular to the 

director, and the φ value at the highest intensity corresponds to the polarizer 45° away from the 

director. As a result, the fitted parameter 𝜃 = 0. Fig. 2c shows the appearance of an MNE-0 

specimen with different 𝜑 angles. When 𝜑 = 0° or 90°, the specimen looks darkest, while when 

𝜑 = 45°, the specimen looks brightest. We similarly measured the director for different LCE 

specimens as a function of stretch under different loading rates of 0.1%/s, 1%/s, and 10%/s. 



 

  

Fig. 2 (a) Schematics of the setup of the crossed-polarized optical measurement for directors. (b) The 

transmitted intensity I was measured as a function of the angle between the polarizer and the tension di-

rection, 𝜑, and fitted by eqn ( 1 ) to determine the director 𝜃. (c) The appearance of an MNE-0 specimen 

showing different brightness was captured by a camera with different angles 𝜑 = 0°, 45°, and 90°. 

2.4 Digital image correlation (DIC)  

Attributed to director reorientation, LCEs can experience shear strain even under uniaxial ex-

ternal tension. Here we use the 2D digital image correlation (DIC) method to measure all the 

strain components in the middle region of specimens at different loading rates. To generate a 

high-quality pattern, Koh-I-Noor Rapidraw ink, which dries fast and has a dark color, was 

sprayed using a Gocheer airbrush, which generates small droplets, at 30 psi with a 0.3 mm noz-

zle. The changes of the speckle patterns under deformation were recorded as videos by a Canon 

EOS 6D DSLR camera along with a Canon 100mm F/2.8L macro lens. The videos were set at 30 

frames per second (fps). To enhance the optical contrast, a whiteboard was used as a background, 

and a white LED light was shot on the sample. Fig. 3a presents an example of an MNE-45 speci-

men with speckle patterns in the undeformed (left) and stretched (right) states. 

After testing, videos were converted to images by the open-source software FFmpeg, with an 

imaging rate of 2 fps, 0.5 fps, and 0.2 fps for loading rates of 10%/s, 1%/s, and 0.1%/s, respec-

tively. The images were then read by an open-source 2D DIC Matlab software, Ncorr,54 to calcu-

late the deformation gradient 𝑭. We selected the middle part of a specimen as the region of inter-

est (ROI) and set the image of the undeformed sample as the reference image. Here, we set the 

three critical parameters which can affect the results as the following: subset radius as 25, subset 



 

spacing as 3, and strain radius as 20. More details are available in the instruction manual 

(http://www.ncorr.com/). Fig. 3b shows the distributions of the components of the deformation 

gradient calculated by Ncorr for the MNE-45 specimen at 100% external strain in the x2 direction 

at the loading rate of 1%/s. The deformation gradient 𝑭 under uniaxial tension could be written 

as: 

𝑭 = [

𝜆11 𝜆12 0
𝜆21 𝜆22 0
0 0 𝜆33

], ( 2 ) 

where 𝜆22 is the normal component in the stretch direction, 𝜆21 is the shear deformation, 𝜆11 and 

𝜆33 are the stretches in width and thickness. 𝜆12 is almost zero during the test, so we could set it 

as zero. From Fig. 3b, we could see that all the components exhibit uniform distributions in the 

middle part of the specimen. Therefore, we can calculate the median value of the selected region 

to represent the strain of the specimen and plot 𝜆11, 𝜆21 and 𝜆22 versus external stretch. When 

the initial director is tilted with the elongation direction, an obvious shear deformation was ex-

pected and observed (Fig. 3b, 3c). 

 

Fig. 3 (a) Representative images of speckle patterns generated by spraying ink with an airbrush on an 

MNE-45 specimen in the undeformed (𝜆22 = 1) and deformed (𝜆22 = 2) states. (b) Distributions of the 

components of the deformation gradient, 𝜆11, 𝜆12, 𝜆21 and 𝜆22, using the DIC method in the MNE-45 

specimen under an external tensile stretch 𝜆22 = 2 at the loading rate of 1%/s. (c) the schematic of defor-

mation of the MNE-45 specimen under uniaxial tension based on the DIC results. 

2.5 Relaxation tests 

To characterize the reduction of stress and evolution of directors of LCEs during relaxation, 

specimens were subjected to uniaxial stretch performed in the same apparatus as described in Sec 

2.2 and 2.3. Specimens MNE-0, MNE-30, MNE-45, and MNE-60 were stretched to a fixed 

strain, 𝜀0 = 30%, 50%, 70%, and 100%, respectively, at a very high loading rate of 267%/s. The 

specimens were then held for 3600 seconds, and the stress and director rotation were recorded as 

functions of time by an Instron universal testing machine and the crossed-polarized optical meas-

http://www.ncorr.com/


 

urement, respectively. The applied strains are different for different specimens to observe signifi-

cant director rotation and ensure that specimens would not break during the tests. As the loading 

rate is very fast, the stress oscillates at the very beginning. We counted the time 𝑡0 as the end of 

loading when the oscillation dies out. 𝑡0 is 0.40 s, 0.47 s, 0.56 s, and 0.74 s for specimens MNE-

0, MNE-30, MNE-45, and MNE-60, respectively. The stress relaxation curves were fitted with a 

power law: 

𝜎(𝑡) = 𝑚1 + 𝑚2(𝑡 − 𝑡0)
−𝛽, ( 3 ) 

where t is the total experiment time, 𝑚1, 𝑚2 and 𝛽 are fitting parameters. Based on the previous 

study,36 𝛽 is about 0.4 for a main-chain smectic LCE. We used the nonlinear least-squares solver 

(lsqcurvefit) in Matlab to fit the experimental results and set 𝛽 = 0.4 as the initial value. 

 

3 Experimental results 

3.1 Rate-dependent director-stress-strain relationship 

The uniaxial loading-unloading nominal stress-strain curves for LCE specimens with differ-

ent initial directors under different loading rates, 10%/s, 1%/s, and 0.1%/s, are shown in Fig. 4. 

The corresponding director-strain relations during loading are shown in Fig. 5. In general, the 

prepared samples show birefringence, indicating they are monodomain, and the measured initial 

director is close to the design. For MNE-0, the director does not rotate with strain independent of 

the loading rates (Fig. 5a). Consequently, the stress-strain loading curves are similar to that of 

classical neo-Hookean materials. When the initial director is oblique to the elongation direction, 

as in MNE-30, MNE-45, and MNE-60, the director gradually rotates as the strain increases, and 

eventually approaches the elongation direction when the strain is high enough (Fig. 5b, c, and d). 

As a result, the director rotation produces high spontaneous strain and stress plateau in the stress-

stretch relation, where the stress increases a little while the strain increases a lot (Fig. 4b, c and 

d). For a LCE with a higher initial director angle 𝜃0, the nominal stress is lower at a given level 

of strain, and the specimen can survive a higher stretch due to the spontaneous strain.  

All the specimens exhibit rate-dependent stress and director responses. Since the area be-

tween a loading and an unloading stress-strain curve represents dissipation energy, our results 

show that the specimens do not reach equilibrium even at 0.1%/s (Fig. 4). A higher loading rate 

leads to higher nominal stress and higher dissipation. For MNE-0, where no director rotation oc-

curs, the stress-strain curve is highly rate-dependent and hysteretic, suggesting a highly viscous 

network extension. For LCEs with initial directors oblique to stretching (MNE-30, MNE-45, 

MNE-60), directors show rate-dependent rotation from the initial angles to the elongation direc-

tion (𝜃 = 0). At a higher loading rate, the directors rotate less at a given strain, showing delayed 

behavior due to a shorter response time. 

 



 

 

Fig. 4 Loading and unloading nominal stress (𝑆22) as a function of the applied external stretch (𝜆22) for 

specimens (a) MNE-0, (b) MNE-30, (c) MNE-45, and (d) MNE-60 under uniaxial tension at loading and 

unloading rates of 10%/s, 1%/s, and 0.1%/s.  

From Fig. 4 and Fig. 5, it is obvious that there is a strong relationship between director rota-

tion and stress responses. From MNE-45 and MNE-60, we could observe the stress-strain curves 

show three regimes: 1) when the stretch 𝜆22 is small, the stress is neo-Hookean-like; 2) as the 

sample is stretched more, the director rotates more, and a stress plateau occurs; 3) when the di-

rector approaches the elongation direction, the stress-strain curve becomes stiffened again. The 

stress plateau is caused by the spontaneous deformation due to director rotation elaborated by 

previous studies.1,17,19 As we have shown the rate-dependent director in Fig. 5, it is expected to 

observe a rate-dependent stress plateau. When a fast loading at 10%/s is applied, the director ro-

tation is delayed, so the sample’s deformation is mainly accommodated by network extension. 

When a slow loading at 0.1%/s is applied, the director rotates more, so the stress plateau is wider 

and occurs at a lower strain level. In Sec. 3.3, we will further distinguish the contributions of the 

director and the network viscosity by stress relaxation tests.   



 

 

Fig. 5 Director reorientation as a function of the applied external stretch 𝜆22 at loading rates 10%/s, 1%/s, 

and 0.1%/s for (a) MNE-0, (b) MNE-30, (c) MNE-45, and (d) MNE-60, respectively.  

3.2 DIC measurement 

The rate-dependent strain fields of LCEs were measured by DIC. The median value of the 

strain components 𝜆11, 𝜆21 and 𝜆22 were calculated by Ncorr. Fig. 6 shows 𝜆11, 𝜆22, and 𝜆21 of 

MNE-30, MNE-45, and MNE-60 measured from DIC at loading rates of 10%/s, 1%/s, and 

0.1%/s. Fig. 6b, e, and h plot the axial stretch 𝜆22 measured by DIC versus 𝜆22 prescribed by the 

Instron. Their values are very close (grey dashed curve) for all different loading rates and initial 

directors, verifying the accuracy of the DIC method. 

The transverse stretch 𝜆11 measured for MNE-30, MNE-45, and MNE-60 is rate-dependent 

(Fig. 6a, d, and g). When the loading rate is higher, as mentioned in Sec. 3.1, the director rotates 

less, leading to lower spontaneous deformation. As a result, LCEs behave more like traditional 

incompressible elastomers. The stress state is closer to the uniaxial state, which satisfies 𝜆11 =

𝜆33 = 1 √𝜆22⁄  (grey soild lines in Fig. 6a, d, and g). We could see that the measured 𝜆11 under 

fast loadings (blue curves) is closer to that of the uniaxial (plaine stress) condition. When the 

loading rate is low, the spontaneous strain caused by director rotation dominates the deformation. 

As the director rotation mainly occurs in the 𝑥1 − 𝑥2 plane of the specimens,17 the deformation is 

close to a plane strain condition (𝜆11 = 1 𝜆22⁄ , 𝜆33 = 1, grey dashed lines in Fig. 6a, d, and g). 

Our results indeed show that the measured 𝜆11 under slow loadings (black curves) is closer to 



 

that of the plane strain case. Moreover, since a lower initial director angle 𝜃0 corresponds to less 

director rotation, 𝜆11 of MNE-30 is closest to that of the uniaxial condition among the three cases 

under the same loading condition, while MNE-60 is closest to that of the plane strain condition. 

 

Fig. 6 Components of the deformation gradient, 𝜆11, 𝜆22, and 𝜆21, measured by the DIC method as func-

tions of the applied external stretch 𝜆22 at different loading rates of 10%/s, 1%/s, and 0.1%/s for speci-

mens (a)(d)(g) MNE-30, (b)(e)(h) MNE-45, and (c)(f)(i) MNE-60, respectively.   

Fig. 6c, f, and i show the measured shear deformation 𝜆21 as a function of the external stretch 

𝜆22. Different from traditional elastomers, LCEs exhibit considerable shear strain under uniaxial 

tension due to the director rotation. As the director is rate-dependent, it is not surprising to see 

the rate-dependent shear strain. For MNE-30 and MNE-45, the absolute value of 𝜆21 monoton-

ically increases with 𝜆22, exhibiting large shear strain (~-1.4 for MNE-30 and ~-1.6 for MNE-45) 

when the director rotates almost parallel to the stretching direction (𝜆22 = 2 for MNE-30 and 

𝜆22 = 2.5 for MNE-45) at the loading rate of 0.1%/s. For MNE-60, it is interesting to observe 

that 𝜆21 non-monotonically changes with 𝜆22, i.e. at a small stretch, the shear strain first rises to 

be positive and then decreases with the stretch to a negative value. When the director rotates al-

most parallel to the stretching direction (𝜆22 = 3 at the loading rate of 0.1%/s), the shear strain is 



 

around -1.26. Such non-monotonic shearing has been predicted by theoretical modeling be-

fore.50,55 When the external stretch 𝜆22 is high, faster loading rates lead to lower shear strain for 

all different directors due to a delay in director rotation. 

3.3 Relaxation test 

The stress relaxation of viscoelastic LCEs has been documented for many years.32,34,36 Com-

pared to traditional elastomers, LCEs show more complex relaxation behavior due to the relaxa-

tion of both the director and the network, and their coupling effort. Here by applying a nearly in-

stantaneous stretch, we characterize both the stress relaxation and director reorientation over 

time to distinguish the different characteristic time scales of the network extension and director 

rotation. 

Fig. 7 shows the stress relaxation of MNE-0, where the director hardly rotates. The specimen 

was stretched to 30% strain nearly instantaneously in a short time period 𝑡0 and held for 3600 s. 

The stress was measured as a function of the total experimental time 𝑡. The relaxation of stress 

shows two distinct relaxation regimes and can be fitted by two different power laws as shown in 

eqn ( 3). At the early stage (𝑡 < 1.5𝑠), the power law with an exponent around 0.14 fits the ex-

perimental data well, while at the long term (𝑡 > 1.5𝑠), relaxation follows a power law with an 

exponent around 0.40. The long-term exponent is similar to the one previously reported for 

main-chain smectic polydomain LCEs.36 At a short time, the stress does not match the long-time 

fitting curve, which may be caused by slight director rotation since mesogens may not align per-

fectly with the stretching direction.  

 

Fig. 7 Stress relaxation of MNE-0. (a) Stress 𝑆22 as a function of the relaxation time 𝑡 − 𝑡0, where 𝑡 rep-

resents the total experimental time, and 𝑡0 represents the short loading period. Two power laws are uti-

lized to fit the experimental data: a power law with an exponent 0.14 for the experimental data before 𝑡 

=1.5s, and a second power law with an exponent 0.40 for the experimental data after 𝑡 =1.5s. (b) Zoom-in 

relation of 𝑆22 and 𝑡 − 𝑡0 within the first 3 seconds.  

Fig. 8 shows the relaxation of stress (Fig. 8a-c) and directors (Fig. 8d-i) for MNE-30, MNE-

45, and MNE-60. The specimens were stretched to different fixed strains, 50%, 70%, and 100%, 



 

respectively, to ensure significant director rotation but no fracture during a test. Then the speci-

mens were held for 3600 s, and the stress and directors were recorded over time. Stress relaxa-

tion could be divided into two parts. Compared to MNE-0, the stress relaxation in LCEs with a 

titled director with respect to the stretching is more complicated at the early stage (𝑡 < 1.5 𝑠), as 

stress relaxation is a synergy of the director reorientation, the backbone orientation, and the poly-

mer chain sliding. As Fig. 8g-i show, the director has already rotated a lot by the time the loading 

is completed (𝑡 = 𝑡0). At the stage 𝑡0 < 𝑡 < 1.5𝑠, MNE-30, MNE-45 and MNE-60, particularly 

MNE-60, show a the sharp drop in stress (Fig. 8a-c), caused by the spontaneous strain due to di-

rector rotation. When  𝑡 > 1.5𝑠, the director rotates smoothly, and the stress relaxation can be 

fitted by a power law well with a power exponent around 0.4 for all the samples, which behaves 

similarly to MNE-0. This suggests that after 𝑡 > 1.5𝑠, stress relaxation is dominated by the net-

work viscosity. The further relaxation of the director after  𝑡 > 1.5𝑠 may be due to the further ex-

tension of the network. As mesogens locate on the backbone, the network slow extension can 

drag the mesogens to further realign to the stretching direction. Furthermore, it is coincident that 

the director relaxation could be fitted well with the same power law formula 𝜃 = 𝑚1 +

20(𝑡 − 𝑡0)
−𝛽 of stress relaxation (eqn ( 3 )), but with a much smaller power exponent around 

0.04 (Fig. 8d-f).  

To probe the characteristic times of the network relaxation and director rotation, we compare 

the director and stress values from the uniaxial tension tests at different rates and the relaxation 

tests. We choose some representative cases in Table 1 and Table 2. 

In Table 1, we listed the directors measured for MNE-30 at 50% uniaxial strain, for MNE-45 

at 70% strain, and for MNE-60 at 100% strain at the loading rates of 10%/s (1st column), 1%/s 

(3rd column), and 0.1%/s (5th column). In 2nd, 4th, and 6th columns, we compared them with the 

directors measured from the relaxation tests for MNE-30, MNE-45, and MNE-60 at the relaxa-

tion time equal to the time needed to load the specimens to the corresponding strain in the uniax-

ial tests. If the directors from the uniaxial tension tests equal or approach those from the relaxa-

tion, this means the director rotation reaches equilibrium at that loading rate. We find that the di-

rectors measured from the uniaxial tension tests at 1%/s are close to those from the relaxation 

tests, and the directors measured from the uniaxial tension tests at 0.1%/s are almost the same as 

those from the relaxation tests (Table 1). To be more specific, taking MNE-30 as an example, the 

director is about 19.1° under 50% strain at the rate of 10%/s, while the director reaches around 

16.8° when relaxing for 5 s in the relaxation test; the director is about 16.3° under 50% strain at 

the rate of 1%/s, while the director reaches around 15.3° when relaxing for 50 s in the relaxation 

test; the director is about 14.1° under 50% strain at the rate of 0.1%/s, while the director reaches 

around 13.9° when relaxing for 500 s. Allowing ±1° natural error, the results suggest mesogen 

reorientation approaches equilibrium at 1%/s and has already reached equilibrium at 0.1%/s.   



 

 

Fig. 8 Stress and director relaxation as functions of time for MNE-30, MNE-45, and MNE-60. Power 

laws with exponents 0.40, 0.38 and 0.32 fit well the stress relaxation results after 𝑡 = 1.5𝑠 for (a) MNE-

30, (b) MNE-45, and (c) MNE-60, respectively. The director relaxation with power laws of exponents 

0.04, 0.04 and 0.05 fit well the director relaxation results after 𝑡 = 1.5𝑠 for (d) MNE-30, (e) MNE-45, 

and (f) MNE-60. The director relaxation within 1.5s for (g) MNE-30, (h) MNE-45, and (i) MNE-60. For 

the relaxation tests, MNE-0, MNE-45, and MNE-60 were stretched to 30%, 70%, and 100% strain, re-

spectively, and held for 3600s. 

Table 1 The director measured from the uniaxial tension tests and relaxation tests (unit: degree) 

 

Table 2 The stress measured from the uniaxial tension tests and relaxation tests (unit: MPa) 

Uniaxial tests at 

10%/s under 50%, 

70% and 100%

Relaxation 

tests at 5s, 7s 

and 10s

Uniaxial tests at 

1%/s under 50%, 

70% and 100%

Relaxation tests 

at 50s, 70s and 

100s

Uniaxial tests at 

0.1%/s under 50%, 

70% and 100%

Relaxation tests 

at 500s, 700s 

and 1000s

MNE-30 19.1 16.8 16.3 15.3 14.1 13.9

MNE-45 26.4 23.8 24.2 22 19.1 20.9

MNE-60 24.2 21.1 20.7 19.0 17.4 17.3



 

 

In Table 2, we listed the stress measured for MNE-0 at 30% uniaxial strain, for MNE-30 at 

50% strain, for MNE-45 at 70% strain, and for MNE-60 at 100% strain at the loading rates of 

10%/s (1st column), 1%/s (3rd column), and 0.1%/s (5th column). Similarly, in the 2nd, 4th, and 6th 

columns, we compared them with the stress measured from the relaxation tests at the correspond-

ing relaxation time. As a result, the stress values measured from the uniaxial tension tests are 

much higher than those in the corresponding relaxation tests for all specimens at all rates, which 

means the material is far away from the equilibrium state. Taking MNE-30 as an example, the 

stress is about 1.63 MPa under 30% strain at the rate of 10%/s, 0.77 MPa at the rate of 1%/s, and 

0.45 MPa at the rate of 0.1%/s, while the stress is around 1.07, 0.57 MPa and 0.38 when the 

specimens are relaxed for 3 s, 30 s and 300 s, respectively, in the relaxation tests. As we have 

discussed that the director almost reaches equilibrium at 0.1%/s, we could conclude that the vis-

cosity at slow loading is due to the reorganization of the viscoelastic network. And the director 

relaxes at least two orders of magnitude faster than the network. 

In general, based on the relaxation of the director and stress, we can see that the relaxation 

time of the network is much larger than that of directors, and the long-time stress relaxation (𝑡 >

1.5 𝑠) is mainly attributed to the reorganization of the viscoelastic network. However, since the 

mesogens are on the main chains of the polymer network, the relaxation is the synergy of the di-

rector and network. On one hand, the fast-responsive director rotation causes fast macroscopic 

deformation, leading to a sharp stress drop at the early stage of stress relaxation. On the other 

hand, the slowly relaxed network extension further facilitates the director alignment at a long re-

laxation time.  

 

4 Theoretical model 

LCEs show unique stress behavior distinct from traditional elastomers mainly due to mesogen 

alignment and director rotation. Recently, some viscoelastic models have been developed to de-

scribe the rate-dependent stress and director of LCEs subjected to external stretching.50,52 Here, 

following the work of Wang et al,52 we will establish a viscoelastic model for LCEs based on 

multiplicative decomposition, which is widely used for modeling viscoelastic elastomers.52,56 The 

viscoelastic constitutive model assumes the elastic energy as the sum of the neo-classical free en-

ergy and the semi-soft energy,1,57–59 but only considers the viscosity of the network. After fitting 

to our experimental results, the model will be used to manifest the relation between rate-dependent 

macroscopic deformation and microscopic director rotation.  

Uniaxial tests at 

10%/s under 30%, 

50%, 70% and 100%

Relaxation 

tests at 3s, 5s, 

7s and 10s

Uniaxial tests at 

1%/s under 30%, 

50%, 70% and 100%

Relaxation tests 

at 30s, 50s, 70s 

and 100s

Uniaxial tests at 

0.1%/s under 30%, 

50%, 70% and 100%

Relaxation tests 

at 300s, 500s, 

700s and 1000s

MNE-0 4.11 2.20 2.41 1.44 1.66 1.10

MNE-30 1.63 1.07 0.77 0.57 0.45 0.38

MNE-45 1.29 0.66 0.65 0.40 0.36 0.28

MNE-60 1.13 0.58 0.57 0.35 0.30 0.24



 

 

Fig. 9 Rheological model for the viscoelasticity of LCEs  

4.1 A general continuum viscoelastic model for LCEs 

Consider a material particle in a body in the reference configuration labeled by its position 

vector 𝐗. It moves to position 𝐱 at time 𝑡 in the current configuration. The deformation gradient 

is defined as 𝐹𝑖𝐾 = 𝜕𝑥𝑖(𝐗, 𝑡) 𝜕𝑋𝐾⁄ . The rheological model is composed in parallel of an equilib-

rium spring, representing the elasticity after viscoelastic relaxation, and a Maxwell unit with a 

non-equilibrium spring and a dashpot connected in series, describing non-equilibrium behavior 

(Fig. 9). In the Maxwell unit, we assume the total deformation gradient 𝑭 can be decomposed 

into an elastic part 𝑭𝑒 and a viscoelastic part 𝑭𝒗, 𝑭 = 𝑭𝑒𝑭𝒗. Based on the experiments in sec-

tions 2 and 3, we know that the viscosity of the director rotation is much smaller than that of the 

network, so we could assume the viscosity is mainly from the network. Thus, the dashpot in the 

rheological model in Fig. 9 represents the viscous behavior of the network. Here we assume the 

free energy density in the reference state 𝑓𝑟 is a function of the deformation gradient 𝑭, the elas-

tic part 𝑭𝑒, and director 𝒅, 𝑓𝑟 = 𝑓𝑟(𝑭, 𝑭𝑒 , 𝒅). According to the free energy imbalance for the iso-

thermal condition, we can write the nonequilibrium thermodynamics requirement as 

∫−𝑓𝑟̇𝑑𝑉 + ∫𝑩𝒖̇ 𝑑𝑉 + ∫ 𝑻𝒖̇ 𝑑𝐴 + ∫ 𝛾
𝑑
𝒅 ∙ 𝒅̇ 𝑑𝑉 ≥ 0, ( 4 ) 

where ̇  in 𝑓𝑟̇, 𝒖̇ and 𝒅̇ represents a small variation over a small time increment, ̇ = 𝛿/𝛿𝑡, the 

volume element 𝑑𝑉 and area element 𝑑𝐴 are both defined in the reference configuration; the 

body force and traction do work at the rate ∫𝑩𝒖̇ 𝑑𝑉 + ∫𝑻𝒖̇ 𝑑𝐴; 𝛾𝑑 is a Lagrange multiplier to 

enforce the unit vector constraint of 𝒅, 𝒅 ∙ 𝒅 ≡ 1. Using the relation 𝑓𝑟̇ =
𝜕𝑓𝑟

𝜕𝑭
: 𝑭̇ +

𝜕𝑓𝑟

𝜕𝑭𝑒
: 𝑭𝑒̇ +

𝜕𝑓𝑟

𝝏𝒅
∙

𝒅̇, we could further expand the inequality ( 4) in the following manner 

∫(𝑩 + 𝑑𝑖𝑣𝑋(𝑺))𝒖̇𝑑𝑉 + ∫(−𝑺 ∙ 𝑵 + 𝑻)𝒖̇𝑑𝐴 + ∫(𝛾𝑑𝒅 −
𝜕𝑓𝑟

𝜕𝒅
)𝒅̇𝑑𝑉 +

∫
𝜕𝑓𝑟

𝜕𝑭𝑒
: 𝑭𝑒𝑳

𝒗𝑑𝑉 ≥ 0, 

( 5 ) 

where 𝑳𝒗
= 𝑭𝒗̇𝑭𝒗

−𝟏, 𝑵 is the unit vector normal to any given surface at the reference state, 𝐒 =
𝜕𝑓𝑟

𝜕𝑭
+

𝜕𝑓𝑟

𝜕𝑭𝑒
𝑭𝑣

−𝑇 is the first Piola-Kirchhoff stress. The inequality should always be satisfied, requir-

ing each of the above terms to be positive or equal to zero due to the independency of 𝒖̇, 𝒅̇ and 

𝑭𝒆̇ (and therefore  𝑭𝒗
̇ ). 

Then we can get the force balance equation and traction relation from the first two terms: 



 

𝑩 + 𝑑𝑖𝑣𝑋(𝑺) = 𝟎, ( 6 ) 

−𝑺 ∙ 𝑵 + 𝑻 = 𝟎. ( 7 ) 

The third term in eqn ( 5 ) indicates that 
𝜕𝑓𝑟

𝜕𝒅
 should be in the same direction as 𝒅, requiring that   

𝒅 ×
𝜕𝑓𝑟

𝜕𝒅
= 𝟎,                ( 8 ) 

which is a governing equation for the director field, equivalent to the balance of rotational mo-

mentum derived in previous work.60 To satisfy the non-negative requirement of the last term in 

eqn ( 5), we propose a simple evolution equation for 𝑳𝒗 

𝑳𝒗 =
1

𝜂0
𝑭𝑒

𝑇
𝜕𝑓𝑟
𝜕𝑭𝑒

. ( 9 ) 

Solving the above force balance equation together with the boundary condition eqn ( 6)-(7), the 

constitutive equation for the director eqn ( 8), and the evolution equation for 𝑳𝒗 eqn ( 9), we can 

determine the viscoelastic stress-director-strain behavior of LCEs under arbitrary inhomogeneous 

deformation.  

Next, we assume the free energy of LCEs includes the synergetic work of the director rota-

tion and network extension. We employed the free energy as the summation of the equilibrium 

and nonequilibrium parts based on the neo-classical theory including the semi-soft elastic-

ity1,61,62, 𝑓𝑟 = 𝑓𝑟
𝑒𝑞

+ 𝑓𝑟
𝑛𝑒𝑞

, with 

𝑓𝑟
𝑒𝑞

=
𝜇𝑒𝑞

2
𝑡𝑟(𝑭𝑒𝑞𝑭𝑒𝑞𝑇 + 𝑎(𝑰 − 𝒅𝟎 ⊗ 𝒅𝟎)𝑭

𝑻 ∙ 𝒅 ⊗ 𝐝 ∙ 𝐅) − 𝑝(𝐽 − 1), 
( 10 ) 

𝑓𝑟
𝑛𝑒𝑞

=
𝜇𝑛𝑒𝑞

2
𝑡𝑟(𝑭𝑛𝑒𝑞𝑭𝑛𝑒𝑞𝑇 + 𝑎(𝑰 − 𝒅𝟎 ⊗ 𝒅𝟎)𝑭𝑒

𝑻 ∙ 𝒅 ⊗ 𝐝 ∙ 𝑭𝑒) − 𝜇𝑛𝑒𝑞ln(𝐽𝑒), ( 11 ) 

where 𝜇𝑒𝑞 and 𝜇𝑛𝑒𝑞 are the shear modulus of the equilibrium and non-equilibrium; 𝑝 is the La-

grange multiplier to incorporate the incompressibility  𝐽 = det(𝐹) = 1;  𝐽𝑒 = det (𝑭𝑒); 𝑭𝑒𝑞 ≔

𝒍−1/2𝑭𝒍𝟎
1/2

; 𝑭𝑛𝑒𝑞 ≔ 𝒍−1/2𝑭𝑒𝒍𝟎
1/2

; 𝑎 represents the semi-soft parameter, the value of which is 

kept the same for the equilibrium and non-equilibrium free energy; d and 𝒅𝟎 represent the direc-

tor in the current and reference states, respectively. 𝒍 and 𝒍𝟎 are the corresponding dimensionless 

shape (metric) tensor, 𝒍 =
1

𝑙∥
((𝑙∥ − 𝑙⊥)𝒅 ⊗ 𝒅 + 𝑙⊥𝑰) and 𝒍𝟎 =

1

𝑙∥
0 ((𝑙∥

0 − 𝑙⊥
0)𝒅𝟎 ⊗ 𝒅𝟎 + 𝑙⊥

0𝑰). The 

effective lengths along or perpendicular to the director (𝑙∥ 𝑎𝑛𝑑 𝑙⊥) are assumed to remain con-

stant during deformation, and we can denote their ratio as 

𝑟 ≔
𝑙∥
𝑙⊥

=
𝑙∥
0

𝑙⊥
0 . ( 12 ) 



 

In the absence of non-equilibrium and with parameters 𝑟 = 1 and 𝑎 = 0,  eqn ( 10 ) recovers 

the conventional neo-Hookean elastic energy. When 𝑟 ≠ 1, the backbone shows anisotropy ow-

ing to the presence of LCs by the free energy 
𝜇𝑒𝑞

2
𝑡𝑟(𝑭𝑒𝑞𝑭𝑒𝑞𝑇) =

𝜇𝑒𝑞

2
𝑡𝑟(𝒍−𝟏𝑭𝒍𝟎𝑭

𝑻). The energy 

term could also be interpreted as the classical neo-Hookean elastic energy incorporating a defor-

mation gradient 𝑭𝑒𝑞
= 𝒍−1/2𝑭𝒍𝟎

1/2
 from the isotropic phase of the reference configuration to the 

isotropic phase of the current configuration.55 The energy term 
𝜇𝑒𝑞

2
𝑡𝑟(𝑎(𝑰 − 𝒅𝟎 ⊗ 𝒅𝟎)𝑭

𝑻 ∙ 𝒅 ⊗

𝐝 ∙ 𝐅) represents the semi-soft elasticity, describing fluctuation of chains with various anisotropy 

𝑟. When 𝑎 = 0, it implies the director can rotate with negligible stress; when 𝑎 > 0, a stress 

threshold is required to initiate the rotation of the director. We can also rewrite the term as 

𝜇𝑒𝑞

2
𝑎‖𝑭𝑻𝒅 − (𝑭𝑻𝒅 ∙ 𝒅𝟎)𝒅𝟎‖

2, indicating that the energy vanishes when 𝑭𝑻𝒅 is parallel to 𝒅𝟎.  

Consider the homogeneous deformation of a thin LCE sample with a tilted director subjected 

to uniaxial stress in the x2 direction, and we assume the director only rotates in the x1-x2 plane, i.e 

𝒅 = (cos 𝜃 , sin 𝜃 , 0)𝑇.We can rewrite the first Piola-Kirchhoff stress, evolution equation for 𝑳𝒗 

eqn ( 9), and the constitutive equation for the director eqn ( 8) as 

                    𝑺 = 𝜇𝑒𝑞 ((𝒍−𝟏𝑭𝒍𝟎) + 𝑎𝒅 ⊗ (𝑰 − 𝒅𝟎 ⊗ 𝒅𝟎)𝑭
𝑻𝐝) +

𝜇𝑛𝑒𝑞 ((𝒍−𝟏𝑭𝑒𝒍𝟎𝑭𝒆
𝑻𝑭−𝑻) + 𝑎𝒅 ⊗ (𝑰 − 𝒅𝟎 ⊗ 𝒅𝟎)𝑭𝑒

𝑻𝐝𝑭𝒆
𝑻𝑭−𝑻) − 𝐽𝑝𝑭−𝑻 − 𝜇𝑛𝑒𝑞𝑭−𝑻, 

( 13 ) 

𝑭𝒗̇ =
𝜇𝑛𝑒𝑞

𝜂0
(𝑭𝑒

𝑇𝒍−𝟏𝑭𝑒𝒍𝟎 + 𝑎𝑭𝑒
𝑇𝒅 ⊗ (𝑰 − 𝒅𝟎 ⊗ 𝒅𝟎)𝑭𝑒

𝑇𝐝 − 𝑰)𝑭𝒗, 
( 14 ) 

𝒔𝑒𝑞𝑑 × 𝒅 + 𝒔𝑛𝑒𝑞𝑑 × 𝒅 = 𝟎. ( 15 ) 

where 𝒔𝑒𝑞𝑑 ≔ 𝜇𝑒𝑞((𝑙∥
−1 − 𝑙⊥

−1)𝑭𝒍𝟎𝑭
𝑻𝒅 + 𝑎𝑭(𝑰 − 𝒅𝟎 ⊗ 𝒅𝟎)𝑭

𝑻𝒅) and 𝒔𝑛𝑒𝑞𝑑 ≔

𝜇𝑛𝑒𝑞((𝑙∥
−1 − 𝑙⊥

−1)𝑭𝑒𝒍𝟎𝑭𝑒
𝑻𝒅 + 𝑎𝑭𝑒(𝑰 − 𝒅𝟎 ⊗ 𝒅𝟎)𝑭𝑒

𝑻𝒅). Since the deformation is homogene-

ous, the force balance equation eqn ( 6) is satisfied automatically. As discussed in Section 2.4, 

the deformation gradient under uniaxial tension could be written as 

𝑭 =

[
 
 
 
𝜆11 0 0
𝜆21 𝜆22 0

0 0
1

𝜆11𝜆22]
 
 
 
, ( 16 ) 

where the shear strain 𝜆21 exists due to director rotation; 𝜆22 is the stretching direction. Also, we 

can assume the viscous part of the deformation gradient 𝑭𝒗 as 

𝑭𝒗  = [

𝐹𝑣11 𝐹𝑣12 0
𝐹𝑣21 𝐹𝑣22 0
0 0 𝐹𝑣33

]. ( 17 ) 



 

The elastic deformation gradient can be expressed as 𝑭𝒆 = 𝑭𝑭𝒗
−𝟏. Inserting the expressions of 

𝑭, 𝑭𝑣 (𝑭𝒆) and 𝒅 into eqn ( 13 ) to ( 15 ), and using the condition 𝑺 = 𝑑𝑖𝑎𝑔(0, 𝑆22, 0) for uniax-

ial tension, we numerically solve 𝑆22, 𝜃 and all the components of 𝑭 and 𝑭𝑣 (𝑭𝒆) as functions of 

time with Matlab, where the Lagrange multiplier 𝑝 is determined using 𝑆33 = 0.   

4.2 Analysis of uniaxial tension 

Here we study the director 𝜃, shear strain 𝜆21 and engineering stress 𝑆22 as functions of the 

normal stretch 𝜆22 at different loading rates 𝜆22
̇ . The viscoelastic model proposed in Section 4.1 

has five material parameters. As the viscoelastic relaxation is significant, we estimate 𝜇𝑛𝑒𝑞/𝜇𝑒𝑞 =

9 based on the stress relaxation test on MNE-0. The network viscosity 𝜂0 (𝜇𝑒𝑞 + 𝜇𝑛𝑒𝑞)⁄ = 1𝑠 

and the semi-soft parameter 𝑎 = 0.08 are selected to fit the director reorientation and stress re-

sponse from the uniaxial tension tests. The parameter 𝑟 = 5.5 is calculated based on the follow-

ing thermomechanical deformation test. We recorded the length of a monodomain LCE sample 

in the nematic configuration at room temperature as 𝑙𝑛𝑒𝑚. Then we heated the specimen upto 

130℃, which is above the phase transition temperature 𝑇𝑛𝑖, using a hotplate, and recorded the 

length in the isotropic configuration as 𝑙𝑖𝑠𝑜. The macroscopic length change in response to the 

temperature change is purely due to the phase transition of LCs, correlating to the magnitude of 

the anisotropic backbone,1,17 and relates to 𝑟 via: 

𝑟 = (
𝑙𝑛𝑒𝑚

𝑙𝑖𝑠𝑜
)3. ( 18 ) 

We measured  𝑙𝑛𝑒𝑚 and 𝑙𝑖𝑠𝑜 several times and took an average value to obtain 𝑟 = 5.5. 

Analytical solutions of the uniaxial engineering stress 𝑆22 (Fig. 10.a-c), the director angle 𝜃 

(Fig. 10.d-f), and shear strain 𝜆21 (Fig. 10.g-i) at different loading rates 𝜆22
̇ = 0.1%/s, 1%/s and 

10%/s for different initial directors are plotted as functions of the normal stretch 𝜆22. Obvious 

rate-dependent stress, director rotation, and shear deformation are observed. At a low loading 

rate, the director rotates more, providing more spontaneous strain, and the stress caused by the 

viscosity of the network (the dashpot in Fig. 9) is smaller. As a result, the stress is lower at a 

lower loading rate. Generally, the stress-strain behavior predicted by the model exhibits a con-

sistent agreement with the experimental observations.   

For all applied rates, the director approaches the stretching direction (𝜃 = 0°) as the normal 

stretch 𝜆22 increases (Fig. 10.d-f). However, it is evident that the director rotation is slower at 

higher loading rates, exhibiting a noticeable delay. Although we only consider the network vis-

cosity in the model, we still observe time-dependent director rotation due to the strong influence 

of the network on the director in main-chain LCEs. When a uniaxial stress oblique to the initial 

director is applied, the director tends to rotate instantaneously, but the slow extension of the net-

work can impede the director rotation. As a result, at a high loading rate, the network deforms 

less under a given normal stretch, constricting the director rotation, and causing a pronounced 



 

delay in director rotation. Conversely, at a low rate, as the network deforms more, the director 

also rotates more. 

Fig. 10.g-i show the shear strain 𝜆21 as a function of the normal stretch 𝜆22 at different load-

ing rates. The occurrence of shear strain is a consequence of director rotation. In general, it is ob-

served that an increase in 𝜆22 leads to greater rotation of the director, and an increase in the mag-

nitude of 𝜆21 in MNE-30 and MNE-45. Particularly in the case of loading rates at 1%/s and 

0.1%/s, the modeling results exhibit a high level of agreement with the experimental findings. 

However, the shear strain at 10%/s presents inconsistencies with the experimental observation, as 

it shows a lower value at a lower normal stretch compared to the 1%/s loading rate, which can be 

attributed to the omission of the viscosity of director rotation in the model. Experimental evi-

dence has indicated that the director does not reach the equilibrium at 10%/s loading rate, and 

both the viscosity of the director rotation and network extension contribute to the delayed direc-

tion rotation.  

 

Fig. 10 Analytical results of the (a)-(c) engineering stress 𝑆22, (d)-(f) director angle 𝜃, and (g)-(i) shear 

strain 𝜆21 as functions of the normal stretch 𝜆22 at different loading rates of 10%/s, 1%/s, and 0.1%/s for 

MNE-30, MNE-45, and MNE-60, respectively. 



 

Moreover, we observe non-monotonic shear strain 𝜆21 with respect to the normal stretch 𝜆22 

in MNE-60. The shear strain initially grows to a positive value and then drops to a negative value 

with the increased normal stretch. Warner and Terentjev et al.1,63,64 have discussed non-mono-

tonic shear strain when the initial director is perpendicular to the stretching direction (𝜃 = 0°). 

Without the viscous effect, the director and shear strain can be expressed as  

𝜃 = sin−1 √
𝑟

𝑟−1
(1 −

𝜆𝑠𝑠
2

𝜆22
2), 

( 19 ) 

𝜆21 = √
(𝜆22

2−𝜆𝑠𝑠
2)(𝑟𝜆𝑠𝑠

2−𝜆22
2)

𝑟𝜆22
2𝜆𝑠𝑠

3 , 
( 20 ) 

where 𝜆𝑠𝑠 = (
𝑟−1

𝑟−1−𝑎𝑟
)

1

3 related to semi-soft elasticity. When 𝑎=0, 𝜆𝑠𝑠 = 1, and the above equa-

tions reflect the case of soft elasticity.  

Fig. 11a and b illustrate the behavior of the director and shear strain based on eqn ( 19 ) and ( 

20 ) for 𝑎=0.1. The director and shear strain start with 𝜃 = 90° and 𝜆21 = 0 when 𝜆22 = 1. As the 

director angle decreases, the shear strain non-monotonically increases and then decreases. Then 

the director and shear strain end with 𝜃 = 0° and 𝜆21 = 0 when 𝜆22 = √𝑟𝜆𝑠𝑠 = 2.42. After the 

director becomes parallel to the stretching direction, the network further extends with an elastic 

energy cost without director rotation, behaving the same as traditional neo-Hookean materials. 

 

Fig. 11 (a) Schematic of the deformation of a LCEs sample with the stretching perpendicular to the initial 

director (𝜃0 = 90°). (b) Shear strain as a function of the director rotation starts from 𝜃0 = 90° and ends at 



 

𝜃 = 0° calculated from the soft-elasticity theory. (c) Schematic of the deformation of MNE-60 under uni-

axial stress, exhibiting changes of the shear strain 𝜆21 from a positive value to a negative value. (d) Shear 

strain of MNE-60 as a function of the director rotation at loading rates of 0.1%/s, 1%/s, and 10%/s up to a 

strain of 200% from the experiment.   

The experimental measurement of shear strain for MNE-60 is presented in Fig. 11d as a func-

tion of the director. The macroscopic deformation under stretching is depicted in Fig. 11c, illus-

trating the transition of shear strain from a positive value to a negative value induced by the di-

rector rotation. Based on the perpendicular loading discussed earlier, considering the shear strain 

at the initial director 𝜃0 = 60° as zero in Fig. 11b, the shear strain exhibits non-monotonic be-

havior as the stretch increases and as the director 𝜃 changes from 60° to 0°. Consequently, the 

non-monotonic shear strain is expected when the initial director deviates much from the stretch-

ing direction.  

 

5 Conclusion  

To summarize, this paper presents controlled experiments to manifest the relation among me-

chanical stress, director, and stretch for LCEs with different initial directors at different loading 

rates. Examined by dynamically uniaxial tension and relaxation tests, we find that the viscoelas-

ticity of LCEs is a synergy of rate-dependent network deformation and mesogen rotation, giving 

rise to the unique mechanical responses of LCEs, which is further verified by a general contin-

uum viscoelastic model.  

We successfully measure the rate-dependent stress and director rotation in dynamic tension 

and relaxation tests. In the uniaxial tension tests, the loading rates range from 0.1%/s to 10%/s 

and the initial director ranges from 0° to 60° oblique to the stretching direction. We observe rea-

lignment of oblique directors to the stretching direction, and reorientation delay when the loading 

rate is high. A larger director rotation produces a higher spontaneous strain, which leads to a 

higher stretchability and a more obvious stress plateau. By comparing the stress and director val-

ues in uniaxial tension and relaxation tests, we find the viscosity of director rotation is much 

smaller than that of the network extension. For all specimens, stress does not reach equilibrium 

even at the slow loading rate of 0.1%/s, while the director almost reaches equilibrium at around 

1%/s. Moreover, the stress relaxation in a short time reflects the complicated synergy of quick 

director rotation and network extension, while in a long time, the stress relaxation can be fitted 

by a power law which is similar to traditional rubbers, suggesting that the relaxation is domi-

nated by the network extension. Although the viscosity of director rotation is considerably small, 

in a long-term relaxation, the director continues to rotate as the viscous network extension fur-

ther realigns the director, and the director relaxation could also be fitted by a power law.  



 

We quantitatively measure the rate-dependent strain components via DIC for LCEs with dif-

ferent initial directors. Our DIC results under uniaxial tension tests reveal homogenous defor-

mation in the middle parts of the LCE samples. At a lower rate, the macroscopic deformation is 

primarily originated from spontaneous deformation arising from director rotation, exhibiting the 

stress-strain relation closer to the plane strain case; conversely, at a higher rate, the macroscopic 

deformation is more attributed to network extension, leading the stress-strain relation closer to 

the plane stress case. DIC measurements present notable rate-dependent shear strain, where 

faster loading leads to smaller shear strain, and vice versa. Non-monotonic shear strain is ob-

served when the angle between the initial director and the stretching is large.  

We further use a general continuum viscoelastic model to explain the rate-dependent stress, 

director, and strain. The model incorporates the effect of the viscous network deformation via ap-

plying multiplicative decomposition of the deformation gradient to elastic and viscous parts. No 

director viscosity is considered in this analysis. The analytical solution elucidates the strong cou-

pling between the macroscopic deformation and microscopic director rotation – on one hand, the 

director rotation provides additional spontaneous deformation, reducing the network extension 

and corresponding stress levels; on the other hand, the observation of the director reorientation 

delay indicates that the rate-dependent network deformation influences the rate-dependent direc-

tor rotation. Furthermore, the analytical results indicate the possibility of non-monotonic shear 

strain when the angle between the initial director and the stretching direction is large enough.  

This work provides a comprehensive investigation into and mechanistic understanding of the 

rate-dependent behavior of LCEs. The utilization of crossed-polarized optical measurement and 

DIC allows us to dynamically probe the director and deformation fields for LCEs of different di-

rectors under different loading conditions. We conduct experiments to characterize the distinct 

relaxation time scales of the director rotation and network extension and explain the rate-depend-

ent results using a general viscoelastic continuum model, which enhances our understanding of 

the director-stress coupling effect. However, it is important to note that a much lower loading 

rate needs to be applied in order to reach the full equilibrium stress-strain behavior of LCEs.17 

Moreover, the efficacy of the model diminishes at high loading rates, where the viscosity of both 

the director and network needs to be accurately accounted for.50,52  
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