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Abstract 

A liquid crystal elastomer (LCE) is a special elastomer containing rod-like liquid crystals, 

which align in a certain direction, called the director. The director of a LCE can rotate under 

stress, resulting in large spontaneous strain and soft elastic behavior. This study unravels how the 

strong stress-director coupling in a monodomain LCE induces unique crack-tip fields and frac-

ture behavior. Through stretching edge-cracked LCEs with various initial directors, we charac-

terize the displacement and director fields theoretically and experimentally. The results reveal 

that the directors undergo significant and inhomogeneous rotation at the crack tips, leading to 

very different stress/strain distributions from traditional elastomers. Particularly, when the initial 

director is tilted to the loading direction, the stress/strain distributions are asymmetrical about the 

crack plane. Notably, we discover a domain wall forms along a certain polar angle at the crack 

tip, with opposite director rotation, and thereby shear strain, on the two sides of the domain wall. 

Moreover, LCEs with a tilted initial director to the loading exhibit much smaller crack openings 

and energy release rates than those of neo-Hookean materials, while LCEs with a parallel direc-

tor exhibit higher values. We attribute these findings to a combined effect of bulk softening at 

the remote region and the formation of domains of opposite director rotation near the crack tip. 

This study provides an understanding of how the stress-director coupling of LCEs triggers their 

unique crack-tip fields, and insights into strategies to enhance the fracture properties of LCEs for 

future applications. 
 

1 Introduction 

Liquid crystal elastomers (LCEs) present a synergistic combination of cross-linked elastomers 

and rod-like liquid crystals (LCs), thereby exhibiting the hyperelasticity characteristics of elasto-

mers and the unique properties associated with LCs. LCEs can be reversibly actuated by various 

external stimuli, such as heating (Naciri et al., 2003; Sawa et al., 2010; Schätzle et al., 1989), 

light irradiation (Finkelmann et al., 2001; Rogóż et al., 2016; Yu et al., 2003), magnetic fields 

(Kaiser et al., 2009; Schuhladen et al., 2014; Winkler et al., 2010), and electrical fields (Courty 
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et al., 2003; Fukunaga et al., 2008; Lehmann et al., 2001). Compared to other types of soft stim-

uli-response materials, LCEs have the advantages of high energy density, fast responses, safe op-

eration and reversible actuation, facilitating broad applications including stimuli-responsive actu-

ators (Lee et al., 2011; White et al., 2008; Yu and Ikeda, 2006) and soft robots (Ahn et al., 2019; 

Rogóż et al., 2016; Wang et al., 2018; White and Broer, 2015; Wu et al., 2023). Nevertheless, to 

achieve durable applications of LCEs, it is important to ensure no failure of LCEs under opera-

tion, thereby a careful consideration must be given to their fracture behavior.  

However, the intricate stress-director coupling behavior in LCEs poses challenges in under-

standing the mechanism of their deformation and fracture. In a nematic LCE, the LC mesogens 

align around a particular orientation, with the average direction called the director, 𝒅 (Stephen 

and Straley, 1974; Ericksen, 1991; Leslie, 1992), which can be identified by their uniaxial optical 

axis. The microscopic rotation of the director in response to external stimuli can lead to large 

macroscopic spontaneous deformation, or stress when the material is constrained. Conversely, 

mechanical stretch can also reorient the director toward the stretching direction (Küupfer and 

Finkelmann, 1994; Kundler and Finkelmann, 1995; Warner and Terentjev, 2007; Higaki et al., 

2013; Mistry et al., 2018; He et al., 2020; Okamoto et al., 2021; Luo et al., 2022). Attributed to 

such a stress-director coupling effect, we expect significant and highly non-uniform director ro-

tation near the crack tip of a LCE, which can dramatically influence its corresponding 

stress/strain distribution and fracture behavior. 

Several studies have already demonstrated the pronounced impact of stress-director coupling 

on the fracture behavior of LCEs, which deviates considerably from that of traditional neo-

Hookean materials. The reorientation of the director near the crack tip exerts remarkable influ-

ences on the fracture energy. Specifically, polydomain LCEs exhibit fracture energy of approxi-

mately 2808 𝐽/𝑚2, monodomain LCEs under stretching parallel to the director display a reduced 

fracture energy of around 1000 𝐽/𝑚2, while monodomain LCEs under perpendicular stretching 

exhibit a slightly lower fracture energy than the parallel case (Fan et al., 2016). The difference in 

the fracture energy among the different samples was attributed to the director rotation in polydo-

main LCEs and monodomain LCEs subjected to perpendicular stretching, although no further 

understanding of the numbers was provided. To investigate the director rotation due to stress 

concentration, a monodomain LCE sheet containing a circular or an elliptical hole subject to re-

mote tension was analyzed by finite element method (FEM) (Jiang et al., 2023, 2021; Peng et al., 

2023). It was found that when the initial director around the hole edge forms a tilted angle with 

the stretching, the stress concentration factor is lower than that in the parallel case, and reaches 

the minimum at the titled angle of 45°. However, studying stress concentration solely is insuffi-

cient to fully comprehend the crack growth resistance in LCEs, and the intricated interplay of 

stress and the director around a sharp crack remains elusive. Moreover, the crack-tip fields of 

LCEs have not been experimentally characterized. 



 

Characterizing the deformation fields around a crack tip under various loading plays an im-

portant role in validating crack-tip fields predicted computationally and analytically in highly de-

formable soft materials (Long et al., 2021; Lu et al., 2021; Qi et al., 2019). It becomes particu-

larly crucial when it is challenging to develop an asymptotic solution for the stress/strain fields 

near a crack tip. Digital image correlation (DIC) has been proven effective in mapping the non-

linear deformation in the vicinity of a crack in highly deformable soft materials (Lin et al., 2014; 

Liu et al., 2019; Zhang et al., 2015). Zehnder et al. (Liu et al., 2019) utilized DIC to measure the 

strain distribution for a hydrogel specimen with an edge crack in the presence of large strain and 

strain gradients. In addition to DIC, the particle tracking method is an alternative method to 

probe inhomogeneous deformation fields. Long et al. (Lu et al., 2021; Qi et al., 2019) success-

fully utilized the particle tracking method to measure the deformation history near a crack in a 

rubber-like material subjected to tensile loading with different angles between the initial crack 

and the tension direction, equivalent to combined loading of tension and shear. Distinct from a 

common soft elastic material (Knowles and Sternberg, 1973; Long and Hui, 2015; Rivlin and 

Thomas, 1953), LCEs can have significant and highly inhomogeneous director rotation at the 

crack tip, which can induce a highly inhomogeneous spontaneous strain field. Characterizing the 

microscopic director field near a crack is essential to understanding the crack-tip and fracture be-

havior of LCEs.  

In this paper, we analyze the fracture behavior of LCEs with a single-edge crack of length 𝑎 

subjected to remote strain 𝜀∞, as shown in Fig. 1(a). Motivated by the pronounced stress-director 

coupling of LCEs, we anticipate that the crack-tip fields and fracture behavior of LCEs are very 

different from those of traditional elastomers. On one hand, the highly inhomogeneous and con-

centrated stress at a crack tip can reorient the directors to different levels, inducing large and in-

homogeneous spontaneous strain; on the other hand, different rotation capability of the directors 

around the crack tip gives rise to different levels of stress softening, influencing the stress distri-

bution and energy release rate, and consequently leading to distinct crack opening shapes from 

traditional elastomers. Moreover, the angle between the initial director and the crack plane, 𝜃0, 

can dramatically vary the crack-tip fields and crack opening. Fig. 1(b) and 1(c) show two exam-

ples of the evolution of the director 𝜃 at different polar angles 𝜙 on the crack surface with re-

spect to the remote strain 𝜀∞ for different initial directors 𝜃0 = 90° and 30°, and Fig. 1(a) illus-

trates the corresponding crack openings. In particular, when the initial director does not align 

with the remote strain, for instance 𝜃0 = 30°, the adjacent directors exhibit opposite rotation 

around the crack tip, forming a domain wall, and the stress/strain field is highly asymmetric 

about the crack plane, as shown in Fig. 1(c). To demonstrate the unique crack-tip behavior, we 

simulate the stress, displacement and director fields in the vicinity of a sharp crack in LCEs with 

different initial directors, and subsequently evaluate their energy release rates. Moreover, experi-

mental data capturing the deformation field by the DIC method and the director field by the 

crossed-polarized optical measurement will be acquired to validate the simulation results. 



 

Through combining numerical modeling and experimental observations, we aim to gain a com-

prehensive understanding of the crack-tip fields and fracture behavior of LCEs. Notably, this 

study represents the first instance of observing the director and deformation fields in the vicinity 

of a crack in LCEs.  

This paper is organized as follows. In Section 2, we introduce the detailed modeling and ex-

perimental methodology. In Section 3, we report the FEM analysis of the stress-director coupling 

around the crack-tip field. We present the experimental measurement of the director and dis-

placement in Section 4. Section 5 shows fracture evaluation. Section 6 concludes the paper. 

 

Fig. 1 Director rotation in edge-cracked LCEs under external tension. (a) Schematic illustration 

of an edge-cracked LCE sample subjected to remote strain 𝜀∞. Different initial directors, as 

shown for 𝜃0 = 90° and 𝜃0 = 30°, lead to different crack openings due to director rotation. The 

director evolution at selected points on the crack surface as a function of the remote strain in the 

LCE with (b) 𝜃0 = 90° and (c) 𝜃0 = 30°. Note that a polar coordinates (𝜌, 𝜙) and Cartesian co-

ordinates in the reference configuration (𝑋1, 𝑋2) and current configuration (𝑥1, 𝑥2) are estab-

lished; 𝜃 is defined as the angle between the director and 𝑋1-axis. 



 

2 FEM and experimental methodology 

2.1 Constitutive model and FEM 

To model the constitutive behavior of a LCE, we consider a material particle labeled by a po-

sition vector 𝐗 in the stress-free reference configuration Ω0 (𝐗 ∈ Ω0) moves to the position 𝐱 at 

time 𝑡 in the current configuration Ω𝑐 (𝐱 ∈ Ω𝑐). The deformation gradient is defined as 𝐹𝑖𝐾 =

𝜕𝑥𝑖(𝐗, 𝑡) 𝜕𝑋𝐾⁄ . A unit vector 𝒅 is used to describe the director orientation in the current configu-

ration. Under the isothermal condition, the free energy density of nematic LCEs in the reference 

configuration is assumed (Warner and Terentjev, 2007; Zhang et al., 2019): 

𝑓𝑟(𝑭, 𝒅, 𝛻𝒅) = 𝑓𝑒𝑙(𝑭, 𝒅) + 𝑓𝑠𝑠(𝑭, 𝒅) + 𝑓𝐹𝑟𝑎𝑛𝑘(𝛻𝒅) + 𝑓𝑐(𝒅). ( 1 ) 

The first term in Eq. ( 1 ), 

𝑓𝑒𝑙(𝑭, 𝒅) = 𝜇(𝑇𝑟(𝒍𝟎𝑭𝒍
−𝟏𝑭𝑻) − 3 − 2𝑙𝑛⁡(𝐽))/2 + 𝐵(𝐽 − 1)2/2,  ( 2 ) 

describes the entropic elasticity of the LCE network, which is also called the neo-classical free 

energy (Bladon et al., 1993), where 𝜇 is the shear modulus, 𝐵 is the bulk modulus and 𝐽 =

det⁡(𝑭). The first part of the energy, 𝜇𝑇𝑟(𝒍𝟎𝑭𝒍
−𝟏𝑭𝑻)/2, is a function of both 𝑭 and 𝒅, incoporat-

ing the coupling effect of the network deformation and the director rotation.⁡𝒍 and 𝒍𝟎 are the step 

length tensors in the current and reference configurations, respectively,⁡𝒍 = (𝑙∥ − 𝑙⊥)𝒅⊗ 𝒅 +

𝑙⊥𝑰 and 𝒍𝟎 = (𝑙∥
0 − 𝑙⊥

0)𝒅𝟎 ⊗𝒅𝟎 + 𝑙⊥
0𝑰, with 𝒅𝟎 the director in the reference configuration. Since 

we consider the isothermal condition, the effective lengths along or perpendicular to the director 

in the current configuration (𝑙∥⁡and⁡𝑙⊥) remain the same as those in the reference configuration 

(𝑙∥
0⁡and⁡𝑙⊥

0), and we can denote the ratio 𝑟 = 𝑙∥/𝑙⊥ = 𝑙∥
0/𝑙⊥

0  as the anisotropy of the backbone. 

The second part, 𝐵(𝐽 − 1)2/2, is the energy associated with volume changes, with 𝐵 the bulk 

modulus. We employ a large ratio of the bulk modulus to shear modulus, 𝐵/𝜇 = 103, to repre-

sent incompressibility. The second term in Eq. ( 1 ), 

𝑓𝑠𝑠(𝑭, 𝒅) = 𝜇𝑇𝑟(𝛼(𝑰 − 𝒅𝟎 ⊗𝒅𝟎)𝑭
𝑻 ∙ 𝒅 ⊗ 𝐝 ∙ 𝐅)/2  ( 3 ) 

describes the inevitable variation of the anisotropy 𝑟 among chains, called the semi-soft elasticity 

(Verwey and Warner, 1997), with 𝛼 a parameter describing the level of such fluctuation. We em-

ploy this term due to the occurrence of an obvious stress threshold before the stress plateau in the 

uniaxial stress-strain relation, as shown in our prior study (Wei et al., 2023). The third term in 

Eq. ( 1 ), 

𝑓𝐹𝑟𝑎𝑛𝑘(𝛻𝒅) = 𝐾𝛻𝒅: 𝛻𝒅/2 ( 4 ) 

is a simplified form of the Frank energy, which describes energy associated with the spatial vari-

ation of the director (Frank, 1958). The incorporation of Frank energy in this study is because of 

the inhomogeneous rotation of the director, which leads to a non-zero spatial director derivative, 



 

𝛻𝒅. The parameters of the Frank energy and network elasticity define a length scale, √𝐾/𝜇, 

which is typically on the order of 10 nm (Warner and Terentjev, 2007). The last term in Eq. ( 1 ), 

 𝑓𝑐(𝒅) = 𝛾𝑑(𝒅 ∙ 𝒅 − 1) ( 5 ) 

enforces the constraint of the unit vector 𝒅, 𝒅 ∙ 𝒅 ≡ 1, where 𝛾𝑑 is a Lagrange multiplier. 

Consider the deformation of a LCE as an equilibrium isothermal process. The thermodynamic 

condition requires the variation of the free energy of the LCE over a small time increment should 

always equal the external power, ∫
Ω0
𝑓𝑟̇𝑑𝑉 = 𝑊̇, where 𝑊̇ = ∫

Ω𝑐
𝒃 ∙ 𝒖̇𝑑𝑣 + ∫

Γ𝑐
𝒕 ∙ 𝒖̇𝑑𝑎 repre-

sents the power done by the body force 𝒃 and surface traction 𝒕 at the velocity 𝒖̇, respectively, in 

the current configuration, with Γ𝑐 the prescribed traction boundary, and ̇ = 𝛿/𝛿𝑡 in 𝑓𝑟̇, 𝒖̇, 𝑊̇ 

etc. represents a small variation over a small time increment. Using the relation 𝑓𝑟̇ =

𝜕𝑓𝑟 𝜕𝑭⁄ : 𝑭̇ + 𝜕𝑓𝑟 𝜕𝒅⁄ : 𝒅̇ + 𝜕𝑓𝑟 𝜕∇𝒅⁄ : (∇𝒅)̇ , we can derive two governing equations related to 𝒖̇ 

and 𝒅̇, 

𝑑𝑖𝑣(𝝈) + 𝒃 = 𝟎, ( 6 ) 

𝐽−1𝜇((𝑙∥
−1 − 𝑙⊥

−1)𝑭𝒍𝟎𝑭
𝑻𝒅 + 𝛼𝑭(𝑰 − 𝒅𝟎 ⊗𝒅𝟎)𝑭

𝑻𝒅) × 𝒅 − 𝐽−1𝐾𝛻𝟐𝒅 × 𝒅 =

𝟎, 
( 7 ) 

where the Cauchy stress 𝝈 is  

𝝈 = 𝐽−1𝜇(𝒍−1𝑭𝒍𝟎𝑭
𝑻 + 𝛼𝒅⊗ (𝑰 − 𝒅𝟎 ⊗𝒅𝟎)𝑭

𝑻𝒅 ∙ 𝑭𝑻 − 𝑰) + 2𝐵(𝐽 − 1)𝑰 −

𝐽−1𝐾(𝛻𝒅)𝑇𝛻𝒅. 
( 8 ) 



 

 

Fig. 2 Theoretical prediction of the uniaxial response of LCEs with different initial directors 𝜃0. 

(a) Schematic of the uniaxial stretch with the director rotation, 𝜃. (b) Stress, (c) director, and (d) 

shear strain as functions of uniaxial stretch for different initial directors. 

 

The constitutive model generally provides a comprehensive description of the properties ex-

hibited by LCEs under uniaxial tension (Fig. 2(a)). It is observed that when the initial director 

aligns with the stretching direction (𝜃0 = 90°), the stress-stretch behavior resembles that of a 

neo-Hookean material (Fig. 2(b)) without director rotation and shear strain (Fig. 2(c) and 2(d)). 

In contrast, when the initial director is tilted away from the stretching direction (𝜃0 =

60°, 45°, 30°), stress softening occurs, accompanied by director reorientation and non-zero shear 

strain. The dependence of the stress, shear strain and director on the stretch predicted from the 

constitutive model agrees well with the experimental measurements at a slow loading rate re-

ported by our previous work (Wei et al., 2023). Therefore, the current model is deemed capable 

of reasonably capturing the crack-tip fields of LCEs under quasistatic loading.  



 

 

Fig. 3 Setup of the FEM model of a LCE specimen with a rounded notch tip with a radius 

𝑅0 𝑎⁄ = 5𝑒 − 4. 

 

We further implemented the coupled director-displacement model into the commercial finite 

element software, ABAQUS, via a user element subroutine, UEL, detailed in Appendix A.2. To 

accommodate nearly incompressible solids and mitigate volumetric locking behavior, we imple-

mented the F-bar method (Chester et al., 2015; de Souza Neto et al., 1996) and utilized 2D plane-

strain 4-node linear quadrilateral elements in this study. We simulate a 2D rectangular LCE sam-

ple of an initial director 𝜃0 with an edge crack, as shown in Fig. 1(a). The top and bottom bound-

aries are controlled by a displacement in the 𝑋2 direction, and fixed in the 𝑋1 direction with a 

zero displacement, 𝑢1 = 0. To prevent element distortion due to the strain concentration around 

the crack tip, a rounded notch is utilized, where the radius of the notch is 𝑅0/𝑎 = 5 × 10−4 and 

the ratio of the crack length to the sample length is 𝑎/𝐿 = 0.2, with 𝐿 = 1⁡𝑚𝑚 (Fig. 3). We ana-

lyze fracture behavior when the crack opens much larger than the notch width so that the results 

are independent of the crack-tip shape (Knowles and Sternberg, 1974; Rice, 1968). To resolve 

the crack-tip fields and to ensure the element size in the vicinity of the crack tip comparable to 

√𝐾/𝜇, we set the size of the elements around the tip about 0.1 times of the notch size 𝑅0, i.e. 

about 5𝑒 − 5 times of the crack length 𝑎, and 1𝑒 − 5 times of the model size 𝐿. Further reducing 

the element size around the crack tip has a limited impact on the results but leads to severe con-

vergent issue. As we consider the plane strain condition, the director is described by the unit di-

rection 𝒅 = (𝑐𝑜𝑠(𝜃), 𝑠𝑖𝑛(𝜃), 0) with 𝜃 the angle between the current director and the 𝑋1-axis. 

The material properties are chosen as 

𝐵

𝜇
= 103, 𝑟 = 5, 𝛼 = 0.1, √

𝐾

𝜇
= 10⁡𝑛𝑚, ( 9 ) 

where the bulk modulus over the shear modulus is set large to represent incompressibility; both 

the material anisotropic parameter 𝑟, determined through a thermomechanical deformation test, 

and the semi-soft elasticity parameter 𝛼 are based on our previous study (Wei et al., 2023); the 



 

value of the Frank energy parameter with respect to shear modulus is estimated based on the pre-

vious report (Warner and Terentjev, 2007).  

To ensure convergence of the simulations, small viscosity of the network and director rotation 

is added to the model. Moreover, the solution control parameters in ABAQUS are adjusted to al-

low an excessive number of increments and iterations to address the convergence issue. In partic-

ular, we set the maximum number of line search iteration to be 10. More details about the viscoe-

lastic model and UEL implementation could be found in Appendix A. 

 

2.2 Experimental methods  

2.2.1 LCEs fabrication 

In this study, the main-chain monodomain LCEs were synthesized via a two-stage thiol-acry-

late Michael addition-photopolymerization (TAMAP) reaction (Saed et al., 2016). The cross-

linker, pentaerythritol tetrakis(3-mercaptopropionate) (PETMP, 95%), and chain extender, 2,2-

(ethylenedioxy) diethanethiol (EDDET, 95%), were obtained from Sigma-Aldrich and used as 

received. The diacrylate mesogen, 1,4-Bis-[4-(3-arcyloyoxypropyloxy) benzoyloxy]-2-

methylbenzene (RM257, 95%), was purchased from Wilshire company. Dipropylamine (DPA, 

98%) and (2-hydroxyethoxy)-2-methylpropiophenone (HHMP, 98%) were selected as the cata-

lyst and photoinitiator, respectively. Toluene (98%) was used as the solvent for RM257. To pre-

pare a sample, firstly, RM257 was fully dissolved in a vial with 60 wt% of toluene at 80⁡℃. 

Then, PETMP, EDDET, HHMP, and DPA solution (DPA:toluene = 1:50) were poured into the 

solution and mixed using a vortex mixer for 60 s to obtain a uniform solution. The molar ratio of 

thiol functional groups between PETMP and EDDET was 15:85, corresponding to a ratio of 15 

mol% PETMP. 3.87 mol% HHMP was a photo initiator used to enable the second-stage photo-

polymerization reaction. 1 mol% DPA with respect to the thiol functional group was used in this 

study. The solution was degassed for about 2 mins to remove all bubbles and then poured into a 

mold. Then the sample was cured at room temperature for 24 hours and put in an oven at 80⁡℃ 

for another 24 hours to remove the toluene from the LCE sample. There would be an excess of 

15 mol% acrylate groups for a second-stage photo-crosslinking reaction. In the second stage, the 

LCE sample was stretched uniaxially to 110% by a mechanical stretcher. The pre-stretched sam-

ple was exposed to UV light for 1 hour to photopolymerize the excess acrylate groups, forming a 

denser network. The thickness was measured at three locations by an electronic caliper, giving 

the average thickness over all specimens to be 0.45 ± 0.05 mm. 

 

2.2.2 Tension tests 

Rectangular strips with a width of 25 mm and length of 75 mm were cut out of a LCE sheet 

with angles 0°, 30°, 45°, and 60° between the director and the longitudinal direction of the strips 

(Fig. 4(a)). The solid rod-like mesogen represents the director in the whole LCE sheet and the 



 

titled red dashed line represents the cut LCE specimen with an initial director 𝜃0, which was 

measured by a protractor and further verified by the optical polariscopy method. In the speci-

mens, 25 mm was left on each of the two ends for clamping and the middle region of 25 mm by 

25 mm was used for fracture testing. We used a sharp blade to cut an edge crack of 5 mm in the 

middle of the height. The tension test was performed in an Instron universal testing machine 

(Model 5944) with a 50 N load cell. The specimens were uniaxially stretched up to 10% strain 

with steps of 0.5% of the gauge length imposed. In each step, the loading rate was 0.01%/s and 

we waited for another 5 mins to ensure the specimen reaches quasi-equilibrium before any meas-

urements were taken. No crack propagation occurred during tension tests and all the specimens 

could be reused for multiple measurements. 

 

Fig. 4 (a) Schematic of a LCE specimen cut from a fabricated monodomain LCE thin film with 

the initial director angle 𝜃0 away from the transverse X1 direction. (b) Image of a LCE specimen 

with initial director 𝜃0 = 45° at 𝜑 = 0° and 𝜀∞ = 0% in an optical polarized measurement. (c) 

Image of the marked part of a LCE specimen in Fig. 4(b) with sprayed patterns for DIC tests. 

 

2.2.3 Crossed-polarized optical measurements 

Director rotation driven by stretching was characterized by crossed-polarized optical measure-

ments. A light source, a polarizer, a specimen stretched by the Instron universal testing machine, 

an analyzer with the polarization perpendicular to the polarizer, and a camera were set up in the 

order (Supplementary Fig. S1). The appearance change of the specimen under uniaxial tension 

was recorded by a Canon ESO 6D DSLR camera along with a Canon 100mm F/2.8L macro lens. 



 

The recorded images per 0.5% strain were used to measure the transmitted light intensity via Im-

ageJ. We measured the transmitted light intensity for different orientations of the crossed-polar-

izers by rotating them every 10° from 0° to 90° to determine the director as a function of stretch. 

The recorded transmitted intensity 𝐼 for different angles between the polarizer and the tension di-

rection φ, can be fitted by the following equation to determine the director, 

𝐼 = 𝐼0𝑆𝑖𝑛
2 (

𝑏𝜋(𝜑−𝜃)

180
) + 𝑑, ( 10 ) 

where 𝐼0, 𝑏, 𝜃, and d are fitting parameters. In particular, the fitted parameter 𝜃 represents the 

current director. Fig. 4(b) shows an example of an LCE specimen during optical polarized meas-

urement at 𝜑 = 0° and 𝜀∞ = 0%. At this moment, the specimen exhibits a uniform and brightest 

appearance. This observation validates the monodomain nature of the LCE specimen with the in-

itial director 𝜃0 = 45°. 

 

2.2.4 DIC measurements 

We use the 2D digital image correlation (DIC) method to measure displacement distributions. 

To generate a high-quality pattern, Koh-I-Noor Rapidraw ink, which dries fast and has a dark 

color, was sprayed using a Gocheer airbrush, which generates small droplets, at 30 psi with a 0.3 

mm nozzle. The changes of speckle patterns under deformation were recorded per 1% strain by 

the same camera as mentioned above. To enhance the optical contrast, a whiteboard was used as 

a background, and a white LED light was shot on the sample. Fig. 4(c) shows an example of a 

sprayed sample with the initial director 𝜃0 = 45° at 𝜀∞ = 0%. The images were then read by an 

open-source 2D DIC Matlab software, Ncorr (Blaber et al., 2015), to calculate the displacement 

field 𝒖 around the crack tip in the marked region. Here, we set the three critical parameters that 

can affect the results as the following: subset radius as 25, subset spacing as 3, and strain radius 

as 20; more details are available in the instruction manual (http://www.ncorr.com/).  

 

3 FEM analysis of the coupled stress-director effect on the crack-tip fields 

We analyze the crack-tip fields of different initial directors 𝜃0 = 30°, 45°, 60°, and 90°. The 

FEM results have revealed highly inhomogeneous director rotation near the crack tip. When the 

initial director is parallel to the loading direction (𝜃0 = 90°; Fig. 1(b)), the director on the crack 

surface at 𝜙 = 45° rotates counter-clockwise and the director at 𝜙 = −45° rotates clockwise, 

where 𝜙 is the polar angle defined in the reference state, while the director remains unchanged at 

𝜙 = 0°. Intriguingly, when the initial director is inclined with respect to the loading direction 

(𝜃0 = 30°; Fig. 1(c)), the directors positioned in close proximity (𝜙 = 39.5° and 44.9°) exhibit 

opposite rotation, i.e. the director at 𝜙 = 44.9° rotates clockwise, but the director at 𝜙 = 39.5° 

first rotates clockwise and then counter-clockwise, following a non-monotonic trend as the ap-

plied strain increases. Such unexpected and inhomogeneous director rotation triggers a question: 

http://www.ncorr.com/


 

how does it influence fracture behavior in LCEs? To answer this question, we will next systemat-

ically investigate the stress, displacement and director fields, and subsequently the energy release 

rate.    

 

3.1 Stress and strain distributions around a crack-tip  

 

Fig. 5 FEM results of the stress and strain distributions around the crack tip at remote strain 

𝜀∞ = 10%. (a, c) Normalized maximum principal stress and (b, d) maximum principal Lagran-

gian strain around the crack tip in (a, b) a LCE with the initial director 𝜃0 = 90° and (c, d) a neo-

Hookean material, respectively. The distribution of (e) normalized maximum principal Cauchy 

stress, and (f) maximum principal Lagrangian strain at different distances 𝜌/𝑎 around the crack 

tip at remote strain 𝜀∞ = 10% for a LCE with 𝜃0 = 90° and a neo-Hookean material. Note that 

on the crack surface, 𝜌/𝑎 = 5𝑒 − 4. 

 

To begin with, we consider a LCE with a parallel initial director to the remote tension direc-

tion (𝜃0 = 90°). We present the distributions of the normalized maximum principal Cauchy 

stress 𝜎𝑝 and the maximum principal Lagrangian strain 𝐸𝑝, where the Lagrangian strain is de-

fined as 𝑬 = (𝑭𝑇𝑭 − 𝑰)/2, in the region near the crack tip of size 0.01𝑎 under 𝜀∞ = 10% (Fig. 

5(a) and 5(b)). We observe significant stress/strain concentration at the crack tip. The stress and 

strain are both symmetrically distributed about the 𝑋1-axis with the contour lines exhibiting an 

elliptical shape, where a considerably smoother stress/strain gradient aligns in 𝑋2 than that in 𝑋1. 

LCEs present very different stress and strain distributions compared to those of neo-Hookean 



 

materials, corresponding to 𝑟 = 1, 𝛼 = 0 and 𝐾 = 0 in Eqs. ( 6 )( 7 ), which show nearly con-

centric circular stress and strain contour lines (Fig. 5(c) and 5(d)). Further looking at the stress 

and strain distributions on the rounded notch surface, we find that while the locations of the max-

imum principal stress and strain are coincident at the polar angle 𝜙 = 0° in neo-Hookean materi-

als, this is not the case in LCEs (Fig. 5(e) and 5(f)). Although the maximum stress occurs at 𝜙 =

0°, consistent with that of neo-Hookean materials, strain peaks at two locations at around 𝜙 =

±50°. Moreover, on the crack surface the maximum principal stress and strain in LCEs are both 

larger than those of neo-Hookean materials, which is consistent with the findings reported by 

Jiang et al. (Jiang et al., 2023) for a monodomain LCE sheet with an elliptical hole. It is worth 

noting that as indicated by the stress contour lines, in the region a little far from the rounded 

notch at 𝜌 𝑎⁄ = 1.5𝑒 − 3 and 2.5𝑒 − 3 (Fig. 5(e) and 5(f)), the location of the maximum princi-

pal stress is not at 𝜙 = 0° but shifts to around 𝜙 = 90° due to smoother reduction of stress con-

centration caused by director rotation that will be discussed later. The location of the maximum 

principal strain also shifts towards 𝜙 = 90°. 

When the initial director is tilted away from the stretching direction (Fig. 6 and Fig. 7), alt-

hough the stress/strain is still highly concentrated at the crack tip, their distributions exhibit nota-

ble distinctions from the case of 𝜃0 = 90°. Around the crack tip, the fields of stress and strain are 

no longer symmetrical about the 𝑋1-axis, instead showing elliptic-like contour lines with a 

smoother gradient nearly along the initial director (Fig. 6). Moreover, the stress and strain values 

are significantly smaller than those of 𝜃0 = 90°, and so is the normalized elastic energy density 

(Supplementary Fig. S2). For a LCE with 𝜃0 = 30°, on the rounded notch surface, the peak max-

imum principal stress log⁡(𝜎𝑝/𝜇) = 1.26 occurs at around 𝜙 = −22°, while the peak maximum 

principal strain log(𝐸𝑝) = 1.34 occurs at around 𝜙 = 5° (Fig. 7(a) and 7(d)). The values are 

much smaller than those of neo-Hookean materials (log⁡(𝜎𝑝/𝜇) = 2.20, and log(𝐸𝑝) = 1.91) and 

LCEs with 𝜃0 = 90° (log⁡(𝜎𝑝/𝜇) = 2.22, and log(𝐸𝑝) = 2.13); see Fig. 5(e) and 5(f). Such 

asymmetrical stress and strain distributions lower  than those of neo-Hookean materials are also 

found in other LCEs with tilted initial director 𝜃0 = 45° (Fig. 6(b, e) and Fig. 7(b, e)) and 60° 

(Fig. 6(c, f) and Fig. 7(c, f)). Similar to the case of 𝜃0 = 90°, at the region a little far from the 

rounded notch at 𝜌 𝑎⁄ = 1.5𝑒 − 3 and 2.5𝑒 − 3, the location of the peak maximum principal 

stress/strain shifts towards the smoothest stress/strain gradient (Fig. 7). 



 

 

Fig. 6 FEM results of the stress and strain distributions around the crack tip at remote strain 

𝜀∞ = 10%. (a, b, c) Normalized maximum principal stress and (d, e, f) maximum principal La-

grangian strain around the crack tip in a LCE with the initial director (a, d) 𝜃0 = 30°, (b, e) 45° 

and (c, f) 60°.  

 

 



 

Fig. 7 FEM results of the stress and strain distributions at different distances 𝜌/𝑎 around the 

crack tip at remote strain 𝜀∞ = 10%. (a, b, c) Normalized maximum principal stress, and (d, e, f) 

maximum principal Lagrangian strain at different distances 𝜌/𝑎 around the crack tip for a LCE 

with (a, d) 𝜃0 = 30°, (b, e) 45° and (c, f) 60°. Note that on the crack surface, 𝜌/𝑎 = 5𝑒 − 4. 

 

3.2 Director distribution around the crack-tip field 

The observed unusual stress and strain distributions can be attributed to the inhomogeneous 

and high director rotation at the crack tip. For the LCE with 𝜃0 = 90° (Fig. 8(a)), the director at 

𝜙 = 0° near the crack tip remains almost unrotated, as the director always aligns with the 

stretching in this region. In contrast, the director rotates clockwise at 𝜙 < 0° and counter-clock-

wise at 𝜙 > 0°. Correspondingly, when we plot the director change, 𝛿𝜃 = 𝜃 − 𝜃0, we observe 

negative 𝛿𝜃 at 𝜙 < 0° and positive 𝛿𝜃 at 𝜙 > 0° (Fig. 8(b)). Further away from 𝜙 = 0°, the di-

rector deviates more from 𝜃 = 90°. Interestingly, non-monotonic director rotation with the ap-

plied strain is found around the crack surface. Fig. 8(b) shows the change of the director at 𝜀∞ =

2% is higher than that at 𝜀∞ = 10%. To be specific, we select two representative points at 𝜙 =

±45° (Fig. 1(b)), where the director gradually deviates from 𝜃0 = 90°, reaches the maximum ro-

tation at 𝜀∞ ≈ 1.4%, and then gradually returns to the initial direction. We also plot the director 

change at different applied strains as shown in Supplementary Fig. S3(a). In general, the maxi-

mum director change, 𝛿𝜃 = 𝜃 − 𝜃0, is around ±20° at 𝜙 = ±90° at 𝜀∞ = 2%, but decreases to 

±8°⁡at 𝜀∞ = 10%. 

Such non-monotonic director rotation can be explained based on the director alignment. Fig. 

8(c) shows that at 𝜀∞ = 10% the director (red curve) in the vicinity of the crack surface aligns 

with the direction of the principal stress (blue crosses) and the tangent direction of the crack sur-

face (green dots), while deviating from the direction of the principal Lagrangian strain (black 

curve) attributed to the spontaneous strain. The principal stress direction always aligns with the 

tangent direction of the crack surface, giving the absence of surface traction around the crack 

surface. When 𝜙 is larger or smaller than 0°, the directions of the principal stress are larger or 

smaller than 90°, respectively, and thereby the directors rotate toward the corresponding direc-

tions. However, the alignment becomes different when the applied strain is small; see Fig. 8(d) 

when 𝜀∞ = 0.1%. The director (red curve) deviates much from the direction of the principal 

strain (black curve), principal stress (blue crosses) and the tangent direction of the crack surface 

(blue dots). At −45° < 𝜙 < 45°, the directions of the principal stress and principal strain are co-

incident as the director undergoes limited rotation, while at 𝜙 < −45° and 𝜙 < 45°, the direc-

tions of the principal stress and principal strain deviate more from each other as the director far 

from the crack tip undergoes more rotation, and the resultant higher spontaneous strain leads to 

the difference. Plotting these directions at different applied strain (Supplementary Fig. S4(a)) al-

lows us to unravel that the non-monotonic director change is contributed by the two stages of di-

rector reorientation. At small 𝜀∞ (< ~2%), the director has not aligned with the direction of the 



 

principal stress or tangent direction of the crack surface yet, and exhibits rapid and significant 

rotation towards the principal stress, so |𝛿𝜃| increases with 𝜀∞; see the dashed curves in Supple-

mentary Fig. S4(a) at 𝜀∞ = 0.1% (red curves) to 2% (blue curves). This substantial director rota-

tion changes the stress and strain concentration around the notch. As 𝜀∞ further increases (>

~2%) after the director aligns with the principal stress direction, the crack is greatly opened and 

blunted, and the director rotates back towards 90°, following the deformation, so |𝛿𝜃| decreases 

with 𝜀∞; see the dashed curves in Supplementary Fig. S4(a) at 𝜀∞ = 2% (blue curves) to 10% 

(black curves).  

 

Fig. 8 FEM results of the director distributions around the crack tip for a LCE with 𝜃0 = 90°. (a) 

Distributions of the director at remote strain 𝜀∞ = 10%. (b) The change of director around the 

crack tip at remote strain 𝜀∞ = 10% and 2%. Relative directions of the director, maximum prin-

cipal stress, maximum principal Lagrangian strain and the tangent direction of the crack opening 

surface with respect to the initial director 𝜃0 = 90° at (c) 𝜀∞ = 10%, and (d) 𝜀∞ = 0.1% on the 

crack surface. 

 



 

 

Fig. 9 FEM results of the director distributions around the crack tip for a LCE with 𝜃0 = 30°, 

45° and 60°. Director fields around the crack tip in LCEs with the initial director (a) 𝜃0 = 30°, 

(d) 𝜃0 = 45°, and (g) 𝜃0 = 60° at 𝜀∞ = 10% in the reference configuration. Changes of director 

on the crack surface in LCEs with the initial director (b) 𝜃0 = 30°, (e) 45°, and (h) 60° at 𝜀∞ =

2% and 10%. Relative directions of the director, maximum principal stress, maximum principal 

Lagrangian strain and the tangent direction of the crack opening surface with respect to the initial 

director 𝜃0 for LCEs with (c) 𝜃0 = 30°, (f) 45°, and (i) 60° on the crack surface at 𝜀∞ = 10%. 

Note that in Fig. 9(c,f,i) the clockwise director rotation at one side of the domain wall is added 

by 180° due to the symmetry of the director.   

 

For the LCEs with 𝜃0 = 30°, 45° and 60°, we observe a domain wall at a specific angle 𝜙 =

𝜙𝑑 > 0°, where the adjacent director rotates to opposite directions — clockwise at 𝜙 > 𝜙𝑑 and 

counter-clockwise at 𝜙 < 𝜙𝑑, as depicted in Fig. 9. As a result, near the domain wall, a sharp 

jump of the director is observed (Fig. 9(b,e,h) and Supplementary Fig. S3(b-d)). The angle 𝜙𝑑 

monotonically increases with 𝜃0; when 𝜃0 = 30°, 45° and 60°, 𝜙𝑑 equals around 42°, 53°, and 



 

81.5°, respectively, at 𝜀∞ = 10% (Fig. 9(a,d,g)). Note that in Fig. 9(c,f,i), the clockwise director 

rotation at one side of the domain wall at 𝜀∞ = 10% is added by 180° due to the symmetry of 

the director. The formation of the domain wall is caused by the nearly perpendicular director to 

the principal stress direction at 𝜙𝑑, and consequently the directors on the two sides of the domain 

wall undergo large rotations toward each other to nearly align with the crack surface. Similar for-

mation of domain walls was reported for monodomain LCEs under uniaxial perpendicular 

stretching, where strip domains, i.e. adjacent domains with directors rotating in opposite direc-

tions, are shown to reduce the overall elastic energy (Verwey et al., 1996). The director around 

the crack tip also undergoes two stages of reorientation as in the case of 𝜃0 = 90° (Fig. 9(b,e,h), 

Fig. 9(c,f,i) and Supplementary Fig. S4(b-d)): at the beginning, the director did not align with the 

principal stress direction or the tangent direction of the crack surface, and the director exhibits 

considerable rotation until it aligns with the principal stress at 𝜀∞ = ~2%; see the dashed curves 

in Supplementary Fig. S4(b-d) from 𝜀∞ = 0.1% (red curves) to 2% (blue curves). As the remote 

strain increases to 𝜀∞ > ~2%, the crack tip surface is significantly blunted and opened to nearly 

90°, and thereby, the director rotates more slowly following the deformation and approaches 

90°; see the dashed curves in Supplementary Fig. S4(b-d) from 𝜀∞ = 2% (blue curves) to 10% 

(black curves). Therefore, for LCEs with tilted initial directors, non-monotonic director rotation 

only occurs at approximately 0 < 𝜙 < 𝜙𝑑. For example, at 𝜙 = 39.5° for the LCE with 𝜃0 =

30°, the director angle increases to around 𝜃 = 127° at 𝜀∞ = 2% , but decreases to around 104° 

at 𝜀∞ = 10% (Fig. 1(c)).  

 

3.3 Elucidating the effect of stress-director coupling  

Understanding the inhomogeneous director field at the crack tip can shed further light to the 

stress and strain distributions. The director rotation for the LCE with 𝜃0 = 90° induces compres-

sive spontaneous strain normal to the crack surface, consequently facilitating the crack opening. 

The director rotation also causes stress softening, resulting in a lower stress/strain gradient to-

wards 𝜙 = ±90°, and thereby, the elliptical-shaped stress/strain contour lines; see Fig. 5(a) and 

5(b). To explicitly compute the spontaneous strain, we define the spontaneous Lagrangian strain 

𝑬𝒔 as the difference between the Lagrangian strain and elastic Lagrangian strain, 𝑬𝑠 = 𝑬 −

𝑬𝑒𝑙𝑎𝑠, where 𝑬𝑒𝑙𝑎𝑠 = (𝑹𝑻𝑩𝑒𝑙𝑎𝑠𝑹 − 𝑰)/2 and 𝑩𝑒𝑙𝑎𝑠: = 𝒍−1𝑭𝒍𝒓𝑭
𝑻 + 𝛼𝒅⊗ (𝑰 − 𝒅𝟎 ⊗𝒅𝟎)𝑭

𝑻𝒅 ∙

𝑭𝑻, and 𝑹 is the rigid rotation matrix in the polar decomposition of the deformation gradient 𝑭 =

𝑹𝑼 (Jiang et al., 2021). The principal spontaneous Lagrangian strain 𝐸𝑠𝑝 for the LCE with 𝜃0 =

90° distributes symmetrically about 𝜙 = 0° (Supplementary Fig. S5(a)), consistent with the di-

rector changes - the more director rotation indicates more spontaneous strain. 

Similarly, for LCEs with tilted directors, the significant director rotation induces large sponta-

neous strain, and causes sharp changes in stress and strain at 𝜙𝑑 (Fig. 6). In particular, when 𝜀∞ 

is small, the directors rotate in the opposite direction on the two sides of the domain wall, so the 

shear strain is opposite, consequently resulting in sharp shape changes on the crack surface; see 



 

the significant difference of the adjacent directors (represented by blue and red solid cylinders) in 

Fig. 10(a). On the other hand, when 𝜀∞ is large (> ~ 2%), the director difference on the two sides 

of the domain wall gets close to 180°, and the director distribution becomes almost continuous 

across the domain wall again because the directors 𝒅 = −𝒅 are symmetric (Fig. 10(b)). There-

fore, we added 180° to the clockwise director rotation when the director angle difference is more 

than 150° in Fig. 9(c,f,i). As a result, when the remote strain is high, the crack opening surface 

becomes smooth again. Similar to the case of 𝜃0 = 90°, the spontaneous strain also causes stress 

softening, resulting in similar elliptical-shaped stress/strain contour lines, but with the axis of the 

smoother gradient aligning around the direction of 𝜙 = 𝜙𝑑 (Fig. 6). Due to the much higher di-

rector rotation and softening effect, the stress/strain concentration for a tilted 𝜃0 is much lower 

than that of 𝜃0 = 90°. 

 

Fig. 10 FEM results of the director distribution around the crack tip showing the formation of a 

domain wall. (a) Distribution of the director near the domain wall for the LCE with 𝜃0 = 30° at 

(a) 𝜀∞ = 1% and (b) 𝜀∞ = 10%, along with schematics showing the directors adjacent to the 

domain wall before (dashed hollow cylinders) and after (solid cylinders) deformation. An obvi-

ous crack surface discontinuity is observed at 𝜀∞ = 1%, accompanied by a large difference in 



 

the director alignment across the domain wall, ∆𝜃, while the discontinuity is reduced with the 

difference almost vanishing at 𝜀∞ = 10%. 

 

 

Fig. 11 FEM simulation results of the angle difference |𝜃 − 𝜃𝐹𝑑0|. 𝜃𝐹𝑑0 is defined as 

(cos(𝜃𝐹𝑑0) , sin(𝜃𝐹𝑑0) , 0) = 𝑭𝒅𝟎 |𝑭𝒅𝟎|⁄ , denoting the portion of the director rotation following 



 

the deformation gradient. The angle difference |𝜃 − 𝜃𝐹𝑑0| for LCEs with (a-f) 𝜃0 = 90° and (g-l) 

𝜃0 = 30° at (a-c, g-i) 𝜀∞ = 2%  and (d-f, j-k) 𝜀∞ = 10%, respectively, shown in different re-

gions. 

 

Such strong stress-director coupling in LCEs results in their director rotation distinct from the 

realignment of fibers in fiber-reinforced elastomer (Gasser et al., 2005). We denote the portion of 

director rotation simply following the deformation gradient, similar to fiber realignment, as 

(cos(𝜃𝐹𝑑0) , sin(𝜃𝐹𝑑0) , 0) = 𝑭𝒅𝟎 |𝑭𝒅𝟎|⁄ , and plot the angle difference |𝜃 − 𝜃𝐹𝑑0| in Fig. 11. 

Although the difference is relatively small in remote regions due to limited deformation, and at 

the crack tip, where exceptionally large deformation prevails, the difference becomes considera-

bly pronounced around and behind the crack tip, see Fig. 11(a,d,g,j) and Fig. 11(b,e,h,k). This 

difference becomes increasingly obvious as the applied strain grows from 2% to 10%. In contrast 

to the condition in the remote and crack tip areas, the large angle difference in these regions is 

attributed to the moderate deformation the material experiences. Consequently, the directors in 

these regions still need to undergo further rotation in order to align with the principal stress di-

rection. The difference between the director rotation and fiber reorientation indicates the distinc-

tively strong stress-director coupling in LCEs. 

 

4 Experimental measurement of director and displacement 

4.1 Director measurement via the crossed-polarized optical measurement 

To validate our simulations, we fabricated LCEs and characterized the director rotation driven 

by slow stretching sufficiently close to equilibrium. The crossed-polarized optical measurement 

was employed to measure the transmitted light intensity, which was used to calculate the direc-

tor; see Section 2.2. More details about the experimental method were elaborated in our previous 

study (Wei et al., 2023). Fig. 12 shows the measured director contour from the experiment in 

comparison with the corresponding FEM simulation results at 𝜀∞ = 10%. In general, the direc-

tor near the crack tip exhibits a significantly larger rotation compared to the remote regions. 

The experimental observations confirm the occurrence of opposite director rotation near the 

crack tip. In the case of a LCE with 𝜃0 = 90° (Fig. 12(a) and 12(b)), near the crack tip, the direc-

tor rotates clockwise at 𝜙 < 0° and counter-clockwise at 𝜙 > 0°; far behind the crack tip, the di-

rector rotates counter-clockwise at 𝜙 < 0° and clockwise at 𝜙 > 0°; in remote regions, the direc-

tor remains close to 90° due to the parallel loading. For the cases of LCEs with 𝜃0 = 30°, 45° 

and 60° (Fig. 12(c-h)), a sharp transition in director is observed near the crack tip at a critical 𝜙 

angle, verifying the existence of a domain wall. When 𝜙 is larger than the critical angle, the di-

rector rotates clockwise, while when 𝜙 is smaller than the critical angle, the director rotates 

counter-clockwise, contrary to the behavior exhibited by LCEs with 𝜃0 = 90°. Comparison be-

tween the optical measurement and simulations reveals a high level of agreement of the director 



 

near the crack tip. The simulations show higher maximum values, which is attributed to the dif-

ferent resolutions of the experimental and simulation tools, i.e. the optical measurement has a 

resolution of ~0.047 mm/pixel, whereas the element size at the crack tip in the simulations is 

around 0.0025 mm. Therefore, our simulations provide results in closer proximity to the tip, nat-

urally yielding higher maximum values. 

 



 

Fig. 12 Comparing the director fields obtained from the crossed-polarized optical measurements 

and FEM at 𝜀∞ = 10%. Director distributions (a, c, e, g) measured by the crossed-polarized op-

tical measurement and (b, d, f, h) calculated by FEM for LCEs with (a, b) 𝜃0 = 90° (c, d) 30°, 

(e, f) 45°, and (g, h) 60°, respectively. 

  

 

Fig. 13 Director distributions ahead of the crack tip for LCEs with 𝜃0 = 90°, 60°, 45°, 30° ob-

tained by (a) optical measurement and (b) FEM under 𝜀∞ = 10%. 

 

We also find non-monotonic director distributions along the distance from the crack tip, 𝜌 𝑎⁄ , 

at 𝜙 = 0° (Fig. 13). The LCE with 𝜃0 = 90° shows little director rotation ahead of the crack tip 

due to the parallel loading. Conversely, in the LCE with 𝜃0 = 60°, the director rotation decreases 

monotonically with the distance 𝜌 𝑎⁄ . However, in the LCEs with 𝜃0 = 30° and 45°, the director 

rotation non-monotonically decreases and then increases with 𝜌 𝑎⁄ . This peculiar observation can 

be attributed to the inhomogeneous principal stress distribution at the crack tip and the remote 

region, which is significantly influenced by the initial director. Close to the crack tip, the director 

aligns tangentially to the crack opening surface resulting in a substantial director reorientation. 

Consequently, the observed decrease in the director rotation with increasing 𝜌 𝑎⁄  is ascribed to 

the reduction of stress concentration, and as a result, the director deviates from the tangent direc-

tion of the crack surface. As one moves farther away from the crack tip, the director rotation in-

creases again primarily because the director undergoes considerable reorientation to align itself 

with the remote stretching direction ~90°. 

 

4.2 Displacement measurement via digital image correlation (DIC) 

The displacement distribution in the edge-cracked LCE samples subjected to external loading 

was measured using DIC. Fig. 14(a) and 14(b) illustrate the normalized displacement 𝑢2/𝐿 along 

𝑋2 with respect to the bottom boundary of the specimen near the crack tip for the LCE with 𝜃0 =



 

90° at 𝜀∞ = 10%. Both experimental and FEM simulation results show a symmetrical defor-

mation about 𝜙 = 0°, which is consistent with the symmetrical rotation of the director, and in 

line with the symmetrical deformation of neo-Hookean materials (Knowles and Sternberg, 

1973). Not surprisingly, near the crack tip, the maximum deformation, 𝑢2/𝐿 ≈ 0.1, occurs be-

hind the crack tip in the LCE with 𝜃0 = 90° due to rigid-body motion on the free surface, while 

at the crack tip, the displacement is 𝑢2/𝐿 = 0.05. However, when the initial director is tilted 

away from the remote strain, 𝑢2/𝐿 is no longer symmetrical (Fig. 14(c-h)). This asymmetric de-

formation pattern has been indicated in the preceding section to be caused by the asymmetric di-

rector rotation, and consequently the asymmetric spontaneous strain, including the shear compo-

nents. As 𝜃0 decreases, the displacement 𝑢2 near the crack becomes smaller due to the bulk di-

rector rotation, but meanwhile the location of the maximum displacement shifts to the top-right 

corner due to severe shear deformation under the confinement of a clamped boundary condition. 

Fig. 15 exhibits the displacement 𝑢1/𝑎 and 𝑢2/𝑎 ahead of the crack tip from DIC and FEM. 

Upon comparing the DIC and FEM results (Fig. 14 and Fig. 15), it is evident that the displace-

ment contours from the simulations closely resemble the experimental findings, thereby validat-

ing the theoretical modeling approach. 

The crack tip opening displacement is dramatically influenced by the rotation of the director 

(Fig. 16). To compare the crack-tip opening displacement, we calculate the difference in move-

ment between the top and the bottom crack surfaces, 𝛿𝑢2 = 𝑢2
𝑡𝑜𝑝

− 𝑢2
𝑏𝑜𝑡 for LCEs with different 

𝜃0. For the LCE with 𝜃0 = 90°, the director rotation mainly occurs near the crack (𝜙 ≠ 0°, 𝜌 →

0). The spontaneous strain induced by director rotation leads to additional compressive strain 

normal to the crack surface, so the crack tends to open more than that of a neo-Hookean material. 

Conversely, for the LCEs with 𝜃0 = 60°, 45° and 30°, the crack opening is notably smaller than 

that exhibited by a neo-Hookean material. There are two reasons for the reduced crack opening 

in LCEs with tilted initial directors. First, the overall director rotation leads to bulk softening. 

Second, the local director rotation at the crack tip, inducing opposite shear strain around the do-

main wall, leads to sharp changes on the crack surface and asymmetrical crack opening pattern; 

see Fig. 10, where a sharp turning occurs, constraining the extent of the opening. Meanwhile, the 

director rotation direction is reversed in comparison to the case of 𝜃0 = 90°, and consequently, 

the associated spontaneous strain constrains the opening. This phenomenon can be proved by ex-

amining the deformed FEM elements near the crack tip (Fig. 17). It becomes evident that the ele-

ments in the case of 𝜃0 = 90° distort greater than that of a neo-Hookean material, indicating that 

the associated spontaneous strain facilitates the deformation, while in the case of 𝜃0 = 30°, the 

elements display reduced distortion at the same small applied strain (𝜀∞ = 2%), suggesting that 

the different directions of director rotation from those of 𝜃0 = 90° impose spontaneous strain 

that limits deformation. As the director near the crack tip rotates mainly following the defor-

mation at 𝜀∞ > 2%, the bulk softening starts to dominate the crack opening, resulting in a 

smaller crack opening for a smaller initial director 𝜃0. The corresponding deformation of the 



 

FEM elements at 𝜀∞ = 4% (Supplementary Fig. S6) also reveals that in the case of 𝜃0 = 30°, 

the elements exhibit significantly less deformation than that of the neo-Hookean material and 

LCE with 𝜃0 = 90° due to the combined contribution of bulk softening and local director rota-

tion. 

 

Fig. 14 Comparing the displacement fields from DIC and FEM. The distribution of the normal-

ized displacement 𝑢2/𝐿 around the crack of the LCEs with (a, b) 𝜃0 = 90°, (c, d) 30°, (e, f) 45° 

and (g, h) 60° at 𝜀∞ = 10% from (a, c, e, g) DIC and (b, d, f, h) FEM.  



 

 

 

Fig. 15 Displacement distributions ahead of the crack tip at 𝜀∞ = 10%. Normalized displace-

ment (a, b) 𝑢1/𝑎 and (c, d) 𝑢2/𝑎 ahead of the crack tip for LCEs with 𝜃0 = 90°, 60°, 45°, 30° 

obtained from (a, c) DIC and (b, d) FEM. The simulation and experiment results show a con-

sistent trend for LCEs with different initial directors. 

 

   

 

Fig. 16 Crack opening displacement. Normalized crack tip opening displacement 𝛿𝑢2/𝐿 from the 

DIC (dashed lines) and FEM (solid lines) for the LCEs with different 𝜃0 at (a) 𝜀∞ = 10% and 



 

(b) 4%. (c) Normalized crack tip opening displacement 𝛿𝑢2/𝐿 measured from DIC for the LCEs 

with 𝜃0 = 30° and 45° at 𝜀∞ = 20%. 

  

 

Fig. 17 Comparing the deformation of the FEM elements around the crack tip for LCEs and neo-

Hookean materials at 𝜀∞ = 2%. (a) Undeformed elements. Crack opening and element defor-

mation at 𝜀∞ = 2% for (b) a neo-Hookean material and a LCE with (c) 𝜃0 = 90° and (d) 𝜃0 =

30°. 

 

It is evident that the crack opening displacement measured for the LCE with 𝜃0 = 30° is 

smaller than that of 𝜃0 = 45° at a high remote strain 𝜀∞ = 20% (Fig. 16(c) and Supplementary 

Fig. S7), but interestingly, it is larger than that of 𝜃0 = 45° at a relatively low remote strain 

𝜀∞ = 10% and 4% (Fig. 16(b)). The simulation results present the same trend as the experiment, 

although in the simulations the crack opening displacement for the LCE with 𝜃0 = 45° surpasses 

that of 𝜃0 = 30° at a smaller strain between 4% and 10%. Drawing upon the findings by Peng et 

al. (Peng et al., 2023) that LCEs with 𝜃0 = 45° exhibits the minimized stress concentration fac-



 

tor, we postulate that at a small strain the magnitude of the crack opening is predominantly influ-

enced by the director near the crack tip, and consequently, the director rotation in the LCE with 

𝜃0 = 45° reduces its crack opening more compared to LCEs with other initial directors. As the 

remote strain increases, the bulk softening plays a more dominant role in affecting the crack 

opening, and therefore, the LCE with 𝜃0 = 30°, which has a stronger bulk softening due to direc-

tor rotation, has a smaller crack opening than that of 𝜃0 = 45°. The competition of the two fac-

tors leads to the positive-to-negative transition of the difference in the crack opening between the 

LCEs with 𝜃0 = 30° and 𝜃0 = 45° as the remote strain increases. 

 

5 Evaluation of fracture behavior 

 

Fig. 18 Stress distribution ahead of crack tips and J-integral. (a) Normalized Cauchy stress distri-

bution ahead of the crack tips for the LCEs of 𝜃0 = 30°, 45°, 60° and 90°, a neo-Hookean mate-

rial, and a linearly elastic material at 𝜀∞ = 10%. (b) Schematics of a contour to evaluate the J 

integral and potential crack trajectory in the reference configuration. (c) Region 𝐴1 enclosed by 

the contour 𝐶 = −𝐶1 + 𝐶2 + 𝐶3 + 𝐶4 and (d) five different integral paths around the crack tip are 

highlighted in the FEM model to calculate the J-integral. (e) Normalized J-integral based on six 

paths of different 𝜌/𝑎, verifying its path-independency for LCEs. (f) Normalized 𝐽𝑖𝑛𝑡 as a func-

tion of the remote strain 𝜀∞ for the LCEs with 𝜃0 = 30°, 45°, 60° and 90°, and a neo-Hookean 

material. (f) shares the same legend as (a). 

 

To evaluate the fracture behavior, we analyze the stress ahead of the crack tip and the energy 

release rate for LCEs with different initial directors. We plot the Cauchy stress 𝜎22 as a function 

of the distance from the crack tip, 𝜌 𝑎⁄ , at 𝜀∞ = 10% in Fig. 18(a), and compare with that of a 



 

neo-Hookean material and a linearly elastic material (Broberg, 1999). In general, LCEs present a 

similar stress distribution to that of a neo-Hookean material. The LCE with 𝜃0 = 90° displays 

slightly lower stress values compared to the neo-Hookean case. We postulate that this discrep-

ancy arises from the stress redistribution caused by the reorientation of the director in the LCE. 

Specifically, the director along 𝜙 = 0° undergoes limited rotation, while more director rotation 

occurs at 𝜙 > 0° and 𝜙 < 0°. Consequently, the material along 𝜙 = 0° behaves stiffer than the 

surrounding regions, leading to stress redistribution, and resulting in lower stress values com-

pared to those of a neo-Hookean material. For LCEs with tilted initial directors, significant direc-

tor rotation occurs, inducing large spontaneous strain, resulting in considerably lower stress val-

ues. It is important to note that when the initial director is tilted relative to the applied strain, the 

maximum stress may not be located at 𝜙 = 0° as described in the previous sections. Therefore, 

the crack propagation may not follow the direction of 𝜙 = 0°. To gain a deeper understanding of 

the fracture behavior, further investigations are required to observe and analyze the crack propa-

gation. 

Under the plane strain condition, we further calculate the energy release rate in a two-dimen-

sional LCE. Consider a 2D deformed LCE body, as shown in Fig. 18(b). We eliminate the dissi-

pation energy while calculating the energy release rate due to extremely small values of viscos-

ity. In the absence of the body force, the energy release rate 𝐺 is defined as the change in the to-

tal potential energy per area of the crack growth:  

𝐺 = −
𝑑𝑈

𝑑𝑎
= −∫

𝐴

𝑑𝑓𝑟

𝑑𝑎
𝑑𝐴 + ∫

Γ
𝑇𝑖

𝑑𝑢𝑖

𝑑𝑎
𝑑𝑆, ( 11 ) 

where 𝑈 is the total potential energy defined as 𝑈 = ∫
𝐴
𝑓𝑟𝑑𝐴 − ∫

Γ
𝑻 ∙ 𝒖𝑑𝑆, with 𝑓𝑟(𝑭, 𝒅, 𝛻𝒅) the 

elastic energy density of a LCE, 𝑻 the prescribed surface traction on the boundary Γ in the refer-

ence configuration, and 𝐴 the total area of the body in the reference configuration. Introduce a 

coordinate system 𝑥𝑖 = 𝑋𝑖 − 𝑎𝛿𝑖1 (i =1, 2), where the origin of 𝒙 locates at the crack tip in the 

current configuration Fig. 18(b). Although for a LCE with a tilted director, the crack trajectory 

may not conform to the horizontal direction, we assume it is smooth, so at the onset of propaga-

tion, the crack direction still aligns with the 𝑥1 − axis (Lu et al., 2021). Based on the chain rule, 

we get 

𝑑

𝑑𝑎
=

𝜕

𝜕𝑎
+
𝜕𝑥1
𝜕𝑎

𝜕

𝜕𝑥1
=

𝜕

𝜕𝑎
−

𝜕

𝜕𝑥1
=

𝜕

𝜕𝑎
−

𝜕

𝜕𝑋1
. ( 12 ) 

Substituting Eq. ( 12 ) into Eq. ( 11 ) we can calculate 𝐺 as 

𝐺 = −∫
𝐴
(
𝜕𝑓𝑟
𝜕𝑭

𝜕𝑭

𝜕𝑎
+
𝜕𝑓𝑟
𝜕𝒅

𝜕𝒅

𝜕𝑎
+

𝜕𝑓𝑟
𝜕𝛻𝒅

𝜕𝛻𝒅

𝜕𝑎
−
𝜕𝑓𝑟
𝜕𝑋1

)𝑑𝐴 + ∫
Γ
𝑇𝑖 (

𝜕𝑢𝑖
𝜕𝑎

−
𝜕𝑢𝑖
𝜕𝑋1

) 𝑑𝑆. ( 13 ) 

Then applying the divergence theorem, we can rewrite Eq. ( 13 ) to 



 

𝐺 = −∫
𝐴
(
𝜕𝑓𝑟
𝜕𝑭

𝜕𝑭

𝜕𝑎
+
𝜕𝑓𝑟
𝜕𝒅

𝜕𝒅

𝜕𝑎
− 𝑑𝑖𝑣𝑋 (

𝜕𝑓𝑟
𝜕𝛻𝒅

𝑭−𝑻)
𝜕𝒅

𝜕𝑎
−
𝜕𝑓𝑟
𝜕𝑋1

)𝑑𝐴

− ∫
Γ
(
𝜕𝑓𝑟
𝜕𝛻𝒅

𝑭−𝑻)𝑵
𝜕𝒅

𝜕𝑎
𝑑𝑆 + ∫

Γ
𝑇𝑖 (

𝜕𝑢𝑖
𝜕𝑎

−
𝜕𝑢𝑖
𝜕𝑋1

) 𝑑𝑆. 

( 14 ) 

As 𝛻𝒅 only exists in the Frank energy, which is considerably small compared to the total elastic 

energy (Jiang et al., 2021; Warner and Terentjev, 2007). To simplify the calculation, we elimi-

nate the term associated with 𝛻𝒅 when evaluating the energy release rate. Using the governing 

equations ( 6 ) and ( 7 ), we can rewrite Eq. ( 14 ) as the following Eq. ( 15 ), which recovers the 

classical form of the J-integral, although now 𝒅 is a new independent variable in the free energy 

density of LCEs 

𝐺 = 𝐽𝑖𝑛𝑡 = ∫
Γ
(𝑓𝑟𝑁1 − 𝑆𝑖𝐽𝑁𝐽

𝜕𝑢𝑖

𝜕𝑋1
)𝑑𝑆, ( 15 ) 

where 𝑵 is the outward normal to the path Γ in the reference configuration and 𝑺 = 𝜕𝑓𝑟/𝜕𝐅 is 

the first Piola–Kirchhoff stress. Eq. ( 15 ) not only holds true for the boundary of the body in the 

path integration, but also remains valid for any arbitrary path from the bottom crack surface to 

the top crack surface (Kanninen et al., 1986; Rice, 1968), so Γ can be denoted as an arbitrary 

path.  

In FEM, it is more convenient to conduct an area integration than a line integration, so we 

convert Eq. ( 15 ) to an area integration (Li et al., 1985). Now consider a closed curve denoted by 

𝐶 = −𝐶1 + 𝐶2 + 𝐶3 + 𝐶4 that bounds an area 𝐴1 with a outward normal vector 𝒎 (Fig. 18(c)). 

Based on the divergent theorem, the line integration of the J-integral, Eq. ( 15 ), over the contour 

𝐶 can be rewritten as    

𝐽𝑖𝑛𝑡 = ∫
𝐴1
(−𝑓𝑟

𝜕𝑞

𝜕𝑋1
+ 𝑆𝑖𝐽

𝜕𝑢𝑖

𝜕𝑋1

𝜕𝑞

𝜕𝑋𝐽
)𝑑𝐴, ( 16 ) 

where 𝑞 is a sufficiently smooth function varying from unity on 𝐶1 to zero on 𝐶2; 𝒎 is the out-

ward unit vector normal to 𝐶. Therefore, 𝒎 = −𝑵 on 𝐶1 and 𝒎 = 𝑵 on 𝐶2. The integrals along 

𝐶3 and 𝐶4 are zero as no surface traction on the crack surface and 𝑚1 = 0. Therefore, Eq ( 16 ) 

and Eq. ( 15 ) are equivalent. Applying the divergence theorem, we get an area integral 𝐽𝑖𝑛𝑡 

𝐽𝑖𝑛𝑡 = ∫
𝐴1
(−𝑓𝑟

𝜕𝑞

𝜕𝑋1
+ 𝑆𝑖𝐽

𝜕𝑢𝑖

𝜕𝑋1

𝜕𝑞

𝜕𝑋𝐽
)𝑑𝐴. ( 17 ) 

The path-independency of the J-integral is presented in Fig. 18(e), where the domain integral 

is computed at 𝜀∞ = 10% for various contours 𝐶1 of different distances 𝜌/𝑎 (Fig. 18d)). We cal-

culate the J-integral for LCEs with different initial directors (Fig. 18(f)). Generally, a smaller 𝜃0 

leads to a lower 𝐽𝑖𝑛𝑡. However, the LCE with 𝜃0 = 30° shows higher 𝐽𝑖𝑛𝑡 than that of 𝜃0 = 45° 

at a small remote strain 𝜀∞ < ~7%; conversely, it shows a lower 𝐽𝑖𝑛𝑡 at a large remote strain 

𝜀∞ > ~7%, similar to the trend of the crack opening displacement. We propose that a combined 



 

effect of bulk softening in the remote region and the director rotation near the crack tip influ-

ences both the J-integral value and crack displacement opening. Specifically, at a small remote 

strain, the energy release rate is dominated by the substantial director rotation occurring around 

the crack tip; conversely, at a high remote strain, the energy release rate is dominated by the 

overall director rotation. Compared to the behavior of neo-Hookean materials, LCEs under paral-

lel loading present slightly higher 𝐽𝑖𝑛𝑡, while LCEs with tilted stretching consistently show sig-

nificantly smaller 𝐽𝑖𝑛𝑡. The deviation of 𝐽𝑖𝑛𝑡 of LCEs from that of neo-Hookean materials is pri-

marily attributed to the inhomogeneous stress redistribution caused by the director rotation to the 

direction of the local principle stress around the crack tip and in the remote region. As previously 

demonstrated (Supplementary Fig. S1), LCEs exhibit softer behavior as the initial director devi-

ates more from the loading direction. As a result, the stress distribution becomes intricate, as 

LCEs exhibit different levels of softening around the crack tip due to varying director reorienta-

tion. This phenomenon gives rise to highly inhomogeneous stress, strain and director in the vi-

cinity of a crack tip, leading to higher (𝜃0 = 90°) or lower (𝜃0 = 30°, 45° and 𝜃0 = 60°) 𝐽𝑖𝑛𝑡 

than that of neo-Hookean materials. 

6 Conclusion  

In this work, we combine simulations and experiments to provide a comprehensive investiga-

tion of the unique crack-tip fields of LCEs with various initial directors induced by their stress-

director coupling behavior. We limit ourselves to obvious crack blunting but without crack prop-

agation in this study. From FEM simulations, we predict inhomogeneous and significant director 

reorientation of LCEs, which leads to unique stress and strain distributions in contrast to those in 

traditional neo-Hookean materials; in experiments, we successfully measure the displacement 

field by the DIC and the inhomogeneous director reorientation by the optical polariscopic 

method, validating the findings in the FEM simulations. Based on the consistent results from the 

FEM and experiments, we reveal the unexpected occurrence of opposite director rotation near 

the crack tip of LCEs, and dramatically different energy release rates and crack opening dis-

placements of LCEs from traditional elastomers. 

Since the unique mechanical responses of a LCE are mainly governed by its director rotation, 

we demonstrate that the initial director can significantly influence its crack-tip fields and fracture 

behavior. For an edge-cracked LCE subjected to stretching parallel to its director, the director 

near the crack tip rotates clockwise at the polar angle 𝜙 < 0° and counter-clockwise at 𝜙 > 0°, 

inducing a spontaneous strain field symmetric about the crack, and resulting in smooth and ellip-

tical-shaped stress/strain contour lines. In contrast, for an edge-cracked LCE with a tilted initial 

director with respect to the loading, the director undergoes rotation throughout the bulk sample, 

while exhibiting more substantial rotation near the crack tip. A domain wall is observed along a 

critical polar angle; the director rotates clockwise in the region with a larger polar angle and 

counter-clockwise in the region with a smaller polar angle. The director rotates significantly in 



 

the vicinity of the domain wall, resulting in elliptical stress/strain contour lines with the smooth-

est gradient direction close to the critical polar angle, and consequently, the stress/strain is no 

longer symmetrical about the crack. As the tilted angle 𝜃0 increases, the critical polar angle of 

the domain wall increases, and the crack opening decreases. Compared to a neo-Hookean mate-

rial, a LCE with a director parallel to stretching, 𝜃0 = 90°, exhibits a higher energy release rate 

and larger crack opening, while a LCE with a tilted director presents a much lower energy re-

lease rate and smaller crack opening primarily caused by bulk softening induced by overall direc-

tor rotation. Interestingly, director rotation around the crack tip can be non-monotonic, because 

at a small strain the director undergoes rapid rotation and tends to align to the local principal 

stress direction; after the director aligns with the principal stress direction, the director rotates 

gradually following the macroscopic deformation as the strain further increases.  

This work provides a valuable understanding on the director, stress and strain distributions in 

the vicinity of a crack tip of LCEs, which offers insights into designing LCEs with enhanced 

fracture properties for long-time applications. The findings and methodology presented in this 

work lay a solid foundation for further investigation of fracture behavior in LCEs, taking into ac-

count their viscoelasticity and crack propagation. Although in this work we load LCEs slowly 

enough to reach quasi-equilibrium states, LCEs are highly viscoelastic (Clarke and Terentjev, 

1999; Hotta and Terentjev, 2001; Warner and Terentjev, 2007), involving multiple relaxation 

time scales of network relaxation and director rotation. It will be intriguing to investigate the 

rate-dependent crack-tip fields and fracture behavior for LCEs with different initial directors. 

Furthermore, based on the stress/strain contour lines obtained from this work, it is conceivable to 

predict that the crack propagation paths in LCEs with different 𝜃0 can be quite different. Specifi-

cally, it is expected that a tilted crack path occurs when the initial director is tilted from the load-

ing direction. All those will be our future work.  
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Appendix  

A.1 Viscoelastic constitutive model 

To simulate the crack-tip fields of LCEs, we implement the constitutive model into a FEM 

code. Though we assume the LCE samples are loaded slowly enough to reach quasi-equilibrium 

so that we do not need to consider their viscoelasticity, a small dissipation is added to the model 

to avoid convergence issues during analyses. Following Zhang et al. (Zhang et al., 2019), we use 



 

a simple Rayleigh dissipation density function to represent the viscosity of the network and the 

director 

𝑅 = 𝑅(𝜺̇, 𝒅̃) =
1

2
𝜂𝑑𝒅̃

2 +
1

2
𝜂0𝑡𝑟(𝜺̇

2), 
        

(A1) 

where 𝜺̇ is the strain rate tensor 𝜺̇ = 𝑭̇𝑭−𝟏, 𝒅̃ is the corotational time derivative 𝒅̃ = 𝒅̇ −𝑾𝒅 

with 𝑾 the spin tensor 𝑾 = (∇𝒖̇ − ∇𝒖̇𝑇)/2, and 𝜂0 and 𝜂𝑑 are the viscosity of the network ex-

tension and director rotation, respectively, which are assumed very small, 𝜂0/𝜇 = 𝜂𝑑/𝜇 =

10−4𝑠. In our simulations, we applied a low loading rate to ensure the quasistatic condition. The 

energy balance can be expressed as  

𝑊̇ − ∫
Ω0
𝑓𝑟̇𝑑𝑉 = ∫

Ω0
(
𝜕𝑅

𝜕𝒅̃
: 𝒅̃ +

𝜕𝑅

𝜕𝜺̇
: 𝜺̇)𝑑𝑉, (A2) 

where 𝑊̇ is the external power and 𝑓𝑟 is the free energy density, as elaborated in the main text. 

Due to the addition of the Rayleigh dissipation, we could re-derive the governing equations 

associated with 𝒖̇ and 𝒅̇ as the following, which are slightly different from Eqs. ( 6 )-( 8 ) 

𝑑𝑖𝑣(𝝈) + 𝒃 = 𝟎, (A3) 

𝜂𝑑𝒅̇ × 𝒅 = 𝜂𝑑𝑾𝒅× 𝒅 − 𝜇 ((𝑙∥
−1 − 𝑙⊥

−1)𝑭𝒍𝟎𝑭
𝑇𝒅 + 𝛼𝑭(𝑰 − 𝒅𝟎 ⊗𝒅𝟎)𝑭

𝑇𝒅) ×

𝒅 + 𝐾𝛻𝟐𝒅 × 𝒅, 

(A4) 

where the Cauchy stress 𝝈 is 

𝝈 = 𝐽−1𝜇(𝒍−1𝑭𝒍𝟎𝑭
𝑻 + 𝛼𝒅⊗ (𝑰 − 𝒅𝟎 ⊗𝒅𝟎)𝑭

𝑻𝒅 ∙ 𝑭𝑻 − 𝑰) + 2𝐵(𝐽 − 1)𝑰 −

𝐽−1𝐾(𝛻𝒅)𝑇𝛻𝒅 + 𝐽−1𝜂0𝜺̇ +
𝐽−1

2
𝜂𝑑(𝒅⊗ (𝒅̇ −𝑾𝒅) − (𝒅̇ −𝑾𝒅)⊗ 𝒅). 

(A5) 

If the viscosity is not considered, Eqs. (A4)(A5) recover Eqs. ( 7 )( 8 ) by eliminating the 

terms involving 𝜂0 and 𝜂𝑑. The first two terms in Eq. (A5) can be rewritten as the following so 

that the first term is independent of the director, which is more convenient for the implementa-

tion of the UEL later 

𝝈 = 𝐽−1𝜇(𝑙⊥
−1𝑭𝒍𝟎𝑭

𝑇 + (𝑙∥
−1 − 𝑙⊥

−1)𝒅⊗ 𝑭𝒍𝟎̂𝑭
𝑇𝒅 − 𝑰) + 2𝐵(𝐽 − 1)𝑰 −

𝐽−1𝐾(𝛻𝒅)𝑇𝛻𝒅 + 𝐽−1𝜂0𝜺̇ +
𝐽−1

2
𝜂𝑑(𝒅⊗ (𝒅̇ −𝑾𝒅) − (𝒅̇ −𝑾𝒅)⊗ 𝒅), 

(A6) 

with 𝒍𝟎̂ = 𝒍𝟎 + 𝛼(𝑰 − 𝒅𝟎 ⊗𝒅𝟎)/(𝑙∥
−1 − 𝑙⊥

−1). Under the plane strain condition, the director de-

generates to 𝒅 = (cos(𝜃) , sin(𝜃) , 0), where 𝜃 is utilized as the variable to represent the angle 

between the director and the 𝑋1 − axis. Thereby, the governing equation Eq. (A4) can be further 

simplified as 

𝜂𝑑𝜃̇ + 𝜂𝑑𝑊12 − 𝜎𝑑21 + 𝜎𝑑12 − 𝐾𝛻2𝜃 = 0, (A7) 



 

with 𝝈𝒅 = 𝜇(𝑙∥
−1 − 𝑙⊥

−1)𝒅⊗ 𝑭𝒍𝟎̂𝑭
𝑇𝒅. The boundary conditions associated with the displacement 

and the director field are 

𝝈 ∙ 𝒏 = 𝒕, (A8) 

𝐽−1𝐾𝜵𝒅 ∙ 𝒏 = 𝟎,  (A9) 

where 𝒕 is the traction in the current configuration on the surface, and 𝒏 represents the unit outer 

vector normal to the deformed surface boundary. In this study, we assume no body force and sur-

face traction. 

 

A.2 Numerical solution procedure 

Based on the FEM, the two coupled Eqs. (A3) (A4) are solved via a Newton procedure by 

gradually vanishing the corresponding residuals on the element level. We use a method similar to 

Chester et al.(Chester et al., 2015) to implement the coupled equations into a user element sub-

routine, UEL, in the commercial finite element software, ABAQUS. The trial solutions for the 

displacement and the director angle are interpolated inside each element by: 

𝒖 = ∑𝒖𝑨𝑁𝐴, (A10) 

𝜃 = ∑𝜃𝐴𝑁𝐴, (A11) 

where A={1,2,3 …} denotes the nodes of a given element, 𝒖𝑨 and 𝜃𝐴 represent the values of the 

displacement and the director angle at node A, and 𝑁𝐴 represents the corresponding shape func-

tion. In the absence of body forces, we employ a standard Galerkin approach with two weight 

functions 𝒘𝟏 = ∑𝒘𝟏
𝑨𝑁𝐴 and 𝑤2 = ∑𝑤2

𝐴𝑁𝐴, where 𝒘𝟏 and 𝑤2 have the same shape function 

as the trial solutions and vanish under the Dirichlet boundary condition. In the absence of body 

forces, we can get two weak forms for Eqs. (A3) (A4) 

∫
Ω𝑐
𝒘𝟏 ∙ 𝑑𝑖𝑣(𝝈)𝑑𝑣 = 0, (A12) 

∫
Ω𝑐
𝑤2(𝜂𝑑𝜃̇ + 𝜂𝑑𝑊12 − 𝜎𝑑21 + 𝜎𝑑12 − 𝐾𝛻2𝜃)𝑑𝑣 = 0⁡. (A13) 

Through the divergence theorem and boundary conditions in Eqs. (A8) (A9), we can get the fol-

lowing element-level equations 

∫
Ω𝑐

𝜕𝑁𝐴

𝜕𝑥
𝝈𝑑𝑣 = ∫

Γ𝑐
𝑁𝐴𝒕𝑑𝑎, 

(A14) 

∫
Ω𝑐
𝑁𝐴(𝜂𝑑𝜃̇ + 𝜂𝑑𝑊12 − 𝜎𝑑21 + 𝜎𝑑12)𝑑𝑣 = −∫

Ω𝑐
𝐾

𝜕𝑁𝐴

𝜕𝑥
𝛻𝜃𝑑𝑣. 

(A15) 

We solve the coupled equations through the Newton’s method by defining two residuals 𝑹𝒖
𝑨 

and 𝑅𝜃
𝐴 for the displacement and the director 



 

𝑹𝒖
𝑨 = −∫

Ω𝑐

𝜕𝑁𝐴

𝜕𝑥
𝝈𝑑𝑣 + ∫

Γ𝑐
𝑁𝐴𝒕𝑑𝑎, 

(A16) 

𝑅𝜃
𝐴 = −∫

Ω𝑐
(𝑁𝐴(𝜂𝑑𝜃̇ + 𝜂𝑑𝑊12 − 𝜎𝑑21 + 𝜎𝑑12) + 𝐾

𝜕𝑁𝐴

𝜕𝑥
𝛻𝜃)𝑑𝑣. 

(A17) 

In addition to the residuals, ABAQUS/Standard requires the matrix AMATRX to be evaluated 

and updated for the iterative Newton solver. AMATRX is defined as an array containing the con-

tribution of this element to the Jacobian (stiffness) or other matrix of the overall system of equa-

tions, which is given by: 

, 

(A18) 

where the Jacobian stiffness 𝐾𝑢𝑖𝑢𝑘
𝐴𝐵 = −𝜕𝑅𝑢𝑖

𝐴 𝜕𝑢𝑘
𝐵⁄ , 𝐾𝑢𝑖𝜃

𝐴𝐵 = −𝜕𝑅𝑢𝑖
𝐴 /𝜕𝜃𝐵, 𝐾𝜃𝜃

𝐴𝐵 = −𝜕𝑅𝜃
𝐴/𝜕𝜃𝐵, 

and 𝐾𝜃𝑢𝑖
𝐴𝐵 = −𝜕𝑅𝜃

𝐴/𝜕𝑢𝑖
𝐵 with B={1,2,3 …} denoting the nodes of the element, and 𝑢1 and 𝑢2 de-

note the displacements in the 𝑋1 and 𝑋2 directions, respectively. In this study, we utilize a 2D 

plane-strain 4-node linear quadrilateral elements, and hence AMATRX is a 12 by 12 matrix.  

Here we rewrite each Jacobian stiffness in the index notation   

⁡𝐾𝑢𝑖𝑢𝑘
𝐴𝐵 =

−𝜕𝑅𝑢𝑖
𝐴

𝜕𝑢𝑘
𝐵 =

𝜕(∫Ω𝑐
𝜕𝑁𝐴

𝜕𝑥𝑗
𝜎𝑖𝑗𝑑𝑣−∫Γ𝑐

𝑁𝐴𝒕𝑑𝑎)

𝜕𝑢𝑘
𝐵 =

∫
Ω𝑐

𝜕𝑁𝐴

𝜕𝑥𝑗
(𝐽−1𝐹𝑙𝑁𝐹𝑗𝑀

𝜕𝐽[𝝈𝑭−𝑇]𝑖𝑀

𝜕𝐹𝑘𝑁
)
𝜕𝑁𝐵

𝜕𝑥𝑙
𝑑𝑣 − ∫

Γ𝑐
𝑁𝐴𝑁𝐵 𝜕𝒕

𝜕𝑢𝑘
𝑑𝑎, 

(A19) 

with [ ]𝑖𝑗 represents the matrix component. We assume there is no surface traction, and thereby 

the last term in Eq. (A19) can be eliminated. Substitute Eq. (A6), and 𝜕𝐽[𝝈𝑭−𝑇]𝑖𝑀/𝜕𝐹𝑘𝑁 can be 

expressed as  

𝜕𝐽(𝝈𝑭−𝑇)𝑖𝑀

𝜕𝐹𝑘𝑁
= 𝐾𝑖𝑀,𝑘𝑁

1 + 𝐾𝑖𝑀,𝑘𝑁
2 + 𝐾𝑖𝑀,𝑘𝑁

3 − 𝐾𝑖𝑀,𝑘𝑁
4 + 𝐾𝑖𝑀,𝑘𝑁

5 + 𝐾𝑖𝑀,𝑘𝑁
6 , (A20) 

where  

𝐾𝑖𝑀,𝑘𝑁
1 = 𝜕𝜂0[𝜺̇𝑭

−𝑇]𝑖𝑀/𝜕𝐹𝑘𝑁, (A21) 

𝐾𝑖𝑀,𝑘𝑁
2 = 𝜕𝜇(𝑙⊥

−1[𝑭𝒍𝟎]𝑖𝑀 − 𝐹−1𝑀𝑖)/𝜕𝐹𝑘𝑁, (A22) 

𝐾𝑖𝑀,𝑘𝑁
3 = 𝜕𝜇(𝑙∥

−1 − 𝑙⊥
−1)[𝑸𝑭−𝑇]𝑖𝑀/𝜕𝐹𝑘𝑁, (A23) 



 

𝐾𝑖𝑀,𝑘𝑁
4 = 𝜕𝐾[(𝛻𝒅)𝑇𝛻𝒅 ∙ 𝑭−𝑇]𝑖𝑀/𝜕𝐹𝑘𝑁, (A24) 

 𝐾𝑖𝑀,𝑘𝑁
5 = 𝜕𝜂𝑑[𝑯𝑭

−𝑇]𝑖𝑀/2𝜕𝐹𝑘𝑁, (A25) 

𝐾𝑖𝑀,𝑘𝑁
6 = 𝜕2𝐵𝐽(𝐽 − 1)𝐹−𝑇𝑀𝑖/𝜕𝐹𝑘𝑁, (A26) 

with tensor 𝜺̇ = (𝑭̇𝑭−1 + 𝑭−𝑇𝑭𝑇̇)/2, 𝑸 = 𝒅⊗𝑭𝒍𝟎̂𝑭
𝑻𝒅, and 𝑯 = 𝒅⊗ (𝒅̇ −𝑾𝒅) − (𝒅̇ −

𝑾𝒅)⊗ 𝒅. Therefore, 𝐾𝑖𝑀,𝑘𝑁
1  to 𝐾𝑖𝑀,𝑘𝑁

6  can be calculated as 

𝐾𝑖𝑀,𝑘𝑁
1 =

𝜂0

2
(
1

∆𝑡
[𝑭−1𝑭−𝑇]𝑁𝑀𝛿𝑘𝑖 − [𝑭̇𝑭−1]𝑖𝑘[𝑭

−1𝑭−𝑇]𝑁𝑀 +
1

∆𝑡
𝐹𝑀𝑘
−1𝐹𝑁𝑖

−1 −

[𝑭−1𝑭̇𝑭−1]𝑀𝑘𝐹𝑁𝑖
−1) − 𝜂0[𝜺̇𝑭

−𝑇]𝑖𝑁𝐹𝑀𝑘
−1, 

(A27) 

𝐾𝑖𝑀,𝑘𝑁
2 = 𝜇𝑙⊥

−1𝛿𝑘𝑖𝑙0𝑁𝑀 + 𝐹𝑁𝑖
−1𝐹𝑀𝑘

−1, (A28) 

𝐾𝑖𝑀,𝑘𝑁
3 = 𝜇(𝑙∥

−1 − 𝑙⊥
−1)(𝐷𝑖𝑁𝐹𝑀𝑘

−1 + 𝑛𝑖[𝑭
−𝟏𝑭𝒍𝟎̂]𝑀𝑁𝑛𝑘 − [𝑸𝑭−𝑻]𝑖𝑁𝐹𝑀𝑘

−1), (A29) 

𝐾𝑖𝑀,𝑘𝑁
4 = −𝐾([(𝛻𝒅)𝑇𝛻𝒅 ∙ 𝑭−𝑇]𝑘𝑀𝐹𝑁𝑖

−1 − [(𝛻𝒅)𝑇𝛻𝒅]𝑘𝑖[𝑭
−𝟏𝑭−𝑇]𝑀𝑁 −

[(𝛻𝒅)𝑇𝛻𝒅 ∙ 𝑭−𝑇]𝑖𝑁𝐹𝑀𝑘
−1), 

(A30) 

 𝐾𝑖𝑀,𝑘𝑁
5 =

𝜂𝑑

2
(−𝑑𝑖

𝜕𝑊𝑎𝑏

𝜕𝐹𝑘𝑁
𝑑𝑏 +

𝜕𝑊𝑖𝑏

𝜕𝐹𝑘𝑁
𝑑𝑏𝑑𝑎)𝐹𝑀𝑎

−1 −
𝜂𝑑

2
[𝑯𝑭−𝑻]𝑖𝑁𝐹𝑀𝑘

−1, 
(A31) 

𝐾𝑖𝑀,𝑘𝑁
6 = 2𝐵𝐽((2𝐽 − 1)𝐹𝑁𝑘

−1𝐹𝑀𝑖
−1 − (𝐽 − 1)𝐹𝑁𝑖

−1𝐹𝑀𝑘
−1), (A32) 

where tensor 𝑫 = 𝒅⊗ 𝒍𝟎̂𝑭
𝑻𝒅, ∆𝑡 represents the time increment at each step, 𝒅̇ = (𝒅𝑛+1 −

𝒅𝑛)/∆𝑡 with variable 𝒅𝑛+1 and 𝒅𝑛 the directors at increment steps 𝑛 + 1 and 𝑛, respectively, 

and 𝛿𝑘𝑖 represents Kronecker delta. 𝜕𝑊𝑎𝑏/𝜕𝐹𝑘𝑛 in Eq. (A31) is 

𝜕𝑊𝑎𝑏

𝜕𝐹𝑘𝑁
=

1

2
(−[𝑭̇𝑭−1]𝑎𝑘𝐹𝑁𝑏

−1 + [𝑭̇𝑭−1]𝑏𝑘𝐹𝑁𝑎
−1) +

1

2∆𝑡
(𝛿𝑎𝑘𝐹𝑁𝑏

−1 − 𝛿𝑏𝑘𝐹𝑁𝑎
−1). (A33) 

To alleviate the convergent issue, following Chester et al. (Chester et al., 2015), we assume 

𝜕(∇𝒅) 𝜕𝑭⁄ = 0 in deriving Eq. (A24), and approximate Eq. (A30) as 

𝐾𝑖𝑀,𝑘𝑁
4 = −𝐾[(𝛻𝒅)𝑇𝛻𝒅 ∙ 𝑭−𝑇]𝑖𝑁𝐹𝑀𝑘

−1). (A34) 

Similarly, the Jacobian stiffness 𝐾𝑢𝑖𝜃
𝐴𝐵  is 

𝐾𝑢𝑖𝜃
𝐴𝐵 = ∫

Ω𝑐

𝜕𝑁𝐴

𝜕𝑥𝑗
(𝐾𝑖𝑗,𝜃

1 − 𝐾𝑖𝑗,𝜃
2 + 𝐾𝑖𝑗,𝜃

3 )𝑁𝐵𝑑𝑣 (A35) 

where  

𝐾𝑖𝑗,𝜃
1 = 𝜕𝜇(𝑙∥

−1 − 𝑙⊥
−1)𝑄𝑖𝑗/𝜕𝜃 (A36) 

𝐾𝑖𝑗,𝜃
2 = 𝜕[𝐾(𝛻𝒅)𝑇𝛻𝒅]𝑖𝑗/𝜕𝜃, (A37) 



 

𝐾𝑖𝑗,𝜃
3 = 𝜕𝜂𝑑𝐻𝑖𝑗/2𝜕𝜃, (A38) 

They can be calculated as: 

𝐾𝑖𝑗,𝜃
1 = 𝜇(𝑙∥

−1 − 𝑙⊥
−1)[

𝜕𝑑𝑖
𝜕𝜃

[𝑭𝒍𝟎̂𝑭
𝑻𝒅]𝑗 + 𝑑𝑖[𝑭𝒍𝟎̂𝑭

𝑻
𝜕𝒅

𝜕𝜃
]𝒋], 

(A39) 

𝐾𝑖𝑗,𝜃
2 = 𝐾[

𝜕(𝛻𝒅)𝑇

𝜕𝜃
∇𝐝 + (𝛻𝒅)𝑇

𝜕∇𝐝

𝜕𝜃
]𝑖𝑗, 

(A40) 

𝐾𝑖𝑗,𝜃
3 =

𝜂𝑑

2
(𝑍𝑖𝑗 − 𝑍𝑗𝑖), 

(A41) 

where tensor 𝒁 =
𝜕𝒅

𝜕𝜃
⊗ (𝒅̇ −𝑾𝒅) + 𝒅⊗ (

𝜕𝒅̇

𝜕𝜃
−𝑾

𝜕𝒅

𝜕𝜃
), and 𝜕𝒅/𝜕𝜃 = (− sin(𝜃) , cos(𝜃) , 0).  

The Jacobian stiffness 𝐾𝜃𝜃
𝐴𝐵 is 

𝐾𝜃𝜃
𝐴𝐵 = ∫

Ω𝑐
(𝑁𝐴𝑁𝐵(𝐾𝜃,𝜃

1 + 𝐾𝜃,𝜃
3 − 𝐾𝜃,𝜃

4 ) +
𝜕𝑁𝐴

𝜕𝑥
𝐾𝜃,𝜃
2 𝜕𝑁𝐵

𝜕𝑥
)𝑑𝑣 

(A42) 

where 𝐾𝜃,𝜃
1 , 𝐾𝜃,𝜃

2 , 𝐾𝜃,𝜃
3  and 𝐾𝜃,𝜃

4  are: 

𝐾𝜃,𝜃
1 =

𝜂𝑑𝜕𝜃̇

𝜕𝜃
=

𝜂𝑑

∆𝑡
, (A43) 

𝐾𝜃,𝜃
2 = 𝐾, (A44) 

𝐾𝜃,𝜃
3 = 𝜇(𝑙∥

−1 − 𝑙⊥
−1)𝑆21, (A45) 

𝐾𝜃,𝜃
4 = 𝜇(𝑙∥

−1 − 𝑙⊥
−1)𝑆12, (A46) 

with tensor 𝑺 =
𝜕𝒅

𝜕𝜃
⊗𝑭𝒍𝟎̂𝑭

𝑻𝒅 + 𝒅⊗𝑭𝒍𝟎̂𝑭
𝑻 𝜕𝒅

𝜕𝜃
. 

The Jacobian stiffness 𝐾𝜃𝑢𝑘
𝐴𝐵  is  

𝐾𝜃𝑢𝑘
𝐴𝐵 = ∫

Ω𝑐
𝑁𝐴(−𝐾𝜃,𝑘𝑁

1 + 𝐾𝜃,𝑘𝑁
2 + 𝐾𝜃,𝑘𝑁

3 )
𝜕𝑁𝐵

𝜕𝑥𝑎
𝐹𝑎𝑁𝑑𝑣, (A47) 

where the components 𝐾𝜃,𝑘𝑁
1 , 𝐾𝜃,𝑘𝑁

2  and 𝐾𝜃,𝑘𝑁
3  are 

𝐾𝜃,𝑘𝑁
1 = 𝜇(𝑙∥

−1 − 𝑙⊥
−1)[𝑑2𝛿1𝑘[𝒍𝟎̂𝑭

𝑻𝒅]𝑁 + 𝑑2[𝑭𝒍𝟎̂]1𝑁𝑑𝑘], 
(A48) 

𝐾𝜃,𝑘𝑁
2 = 𝜇(𝑙∥

−1 − 𝑙⊥
−1)[𝑑1𝛿2𝑘[𝒍𝟎̂𝑭

𝑻𝒅]𝑁 + 𝑑1[𝑭𝒍𝟎̂]2𝑁𝑑𝑘], 
(A49) 

𝐾𝜃,𝑘𝑁
3 =

𝜂𝑑

2
([𝑭̇𝑭−1]2𝑘𝐹𝑁1

−1 − [𝑭̇𝑭−1]1𝑘𝐹𝑁2
−1 +

1

∆𝑡
(𝛿1𝑘𝐹𝑁2

−1 − 𝛿2𝑘𝐹𝑁1
−1)), 

(A50) 

To accommodate nearly incompressible solids and mitigate volumetric locking behavior, we 

implemented the F-bar method (Chester et al., 2015; de Souza Neto et al., 1996; Hughes, 1980). 

Based on the concept of splitting the deformation gradient into a volumetric part and a distor-

tional part, we have 



 

𝑭 = 𝑭𝑑𝑖𝑠𝑭𝑣𝑜𝑙, (A51) 

where 𝑭𝑑𝑖𝑠 = 𝐽−1/3𝑭 and 𝑭𝑣𝑜𝑙 = 𝐽1/3𝑰. The modified deformation gradient F-bar, 𝑭̅, is defined 

as the multiplication of the distortional part of 𝑭 and the cubic root of the determinant of the de-

formation gradient 𝑭𝒄 at the centroid of each element  

𝑭̅ = (
det⁡(𝑭𝒄)

𝐽
)1/3𝑭. (A52) 

It is clear that the distortional/volumetric split of 𝑭̅ is  

𝑭̅ = 𝑭̅𝑑𝑖𝑠𝑭̅𝑣𝑜𝑙, (A53) 

with 𝑭̅𝑑𝑖𝑠 = 𝑭𝑑𝑖𝑠 and 𝑭̅𝑣𝑜𝑙 = (𝑭𝒄)𝑣𝑜𝑙. Thereby, the volumetric part changes to that at the centroid 

of the element, meaning that all the integration points in one element share the same volumetric 

deformation. We replace 𝑭 by 𝑭̅ in the Cauchy stress Eq. (A6) so that the Cauchy stress at each 

Gauss point is computed as 𝝈(𝑭̅). To simplify the implementation and calculation of the UEL, 

we still use 𝑭 in Eq. (A7), but only applied 𝑭̅ to the residual equation related to the displacement, 

Eq. (A16). As a consequence, only the stiffness component 𝐾𝑢𝑖𝑢𝑘
𝐴𝐵  needs to be modified to (Ches-

ter et al., 2015; de Souza Neto et al., 1996) 

𝐾𝑢𝑖𝑢𝑘
𝐴𝐵̅̅ ̅̅ ̅̅ ̅ = 𝐾𝑢𝑖𝑢𝑘

𝐴𝐵 + ∫
𝜕𝑁𝐴

𝜕𝑥𝑗
𝒒((

𝜕𝑁𝐵

𝜕𝑥𝑙
)
𝑐
−

𝜕𝑁𝐵

𝜕𝑥𝑙
) 𝑑𝑣, (A54) 

where (𝜕𝑁𝐵/𝜕𝑥𝑙)𝑐 is the gradient operator at the centroid of an element, and 𝒒 is a fourth-order 

tensor defined by 

𝒒 =
1

2
𝑨: (𝑰 ⊗ 𝑰) −

1

2
(𝝈⊗ 𝑰), (A55) 

with 𝐴𝑖𝑗𝑘𝑙 = 𝐽−1𝐹𝑙𝑁𝐹𝑗𝑀
𝜕𝐽[𝝈𝑭−𝑇]𝑖𝑀

𝜕𝐹𝑘𝑁
 the spatial elasticity tensor. The UEL and input files are avail-

able as separate Supplementary files. 
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