2305.09606v2 [cs.RO] 19 Oct 2023

arxiv

Reward Learning with
Intractable Normalizing Functions

Joshua Hoegerman and Dylan P. Losey

Abstract— Robots can learn to imitate humans by inferring
what the human is optimizing for. One common framework
for this is Bayesian reward learning, where the robot treats
the human’s demonstrations and corrections as observations of
their underlying reward function. Unfortunately, this inference is
doubly-intractable: the robot must reason over all the trajectories
the person could have provided and all the rewards the person
could have in mind. Prior work uses existing robotic tools to
approximate this normalizer. In this paper, we group previous
approaches into three fundamental classes and analyze the
theoretical pros and cons of their approach. We then leverage
recent research from the statistics community to introduce Double
MH reward learning, a Monte Carlo method for asymptotically
learning the human’s reward in continuous spaces. We extend
Double MH to conditionally independent settings (where each
human correction is viewed as completely separate) and con-
ditionally dependent environments (where the human’s current
correction may build on previous inputs). Across simulations and
user studies, our proposed approach infers the human’s reward
parameters more accurately than the alternate approximations
when learning from either demonstrations or corrections. See
videos here:

Index Terms— Intention Recognition, Learning from Demon-
stration, Probabilistic Inference

I. INTRODUCTION

Consider a robot arm learning from demonstrations (see
Figure 1). The human guides the robot through example
trajectories and the robot tries to infer the human’s objective
based on their demonstrations. For instance, here the robot
arm should learn to slide the box across the table.

State-of-the-art research often tackles this reward learning
problem using Bayesian inference [1]-[3]. The trajectories
provided by the human are observations of their latent ob-
jective (i.e., their reward function), and the robot recovers a
distribution over the rewards by applying Bayes’ theorem. Put
intuitively: the robot infers rewards under which the human’s
demonstrations are approximately optimal.

Unfortunately, reward learning in continuous spaces is dou-
bly intractable. The robot must normalize across the space of
trajectories (i.e., what other demonstrations could the human
have provided?), and over the space of rewards (i.e., what else
could the human be optimizing for?). Today’s robots recognize
that they cannot compute these normalizers exactly and so they
make a variety of approximations [4]-[15].

Inaccurate approximations of the normalizing function can
lead to incorrect inference: instead of learning what the human

This work is supported in part by NSF Grant #2222468.
The authors are with the Collaborative Robotics Lab (
Mechanical Engineering, Virginia Tech, Blacksburg, VA 24061.
Corresponding author’s email: jhoegerm@vt .edu

), Dept. of

human objective

push box as
far as possible

push box and
reach the goal

0

push box and i
reach the goal
//* yy o
=
Normalizer Z(6)

If human wants 6
do other demonstrations
make more sense?

Fig. 1. To infer the user’s reward, (i.e., objective) robots must compare
the human’s actual demonstration to other demonstrations the human could
have provided. Computing this normalizer makes Bayesian reward learning
doubly-intractable and ignoring the normalizer entirely can lead to incorrect
robot learning. We propose a Monte Carlo method for a more accurate
approximation.

meant, the robot learns to perform different and potentially
undesirable tasks. Refer back to Figure |: here ignoring the
normalizer can cause the robot to knock the box off the table.

In this paper, we focus on inferring the human’s reward
from demonstrations or corrections. Our insight is that:

We can enable asymptotic reward learning by leveraging
novel Monte Carlo methods from the statistics community.

Our resulting framework applies to problems where the robot
has a predictive model of the environment. Given a sequence
of independent or interconnected human demonstrations, we
enable robots to accurately learn the human’s reward despite
doubly intractable normalizing functions. Returning to Fig-
ure |: our robot learns to push the box correctly using the
same amount of data as the baseline.
Overall, we make the following contributions:

Comparing Approximations. We theoretically and experi-
mentally analyze three existing classes of methods for approx-
imating the normalizer during Bayesian reward learning.

Introducing Double Metropolis-Hastings Sampling. We ap-
ply novel statistics research to develop a Double MH algorithm
for Bayesian reward learning in continuous spaces.

Learning from Demonstrations and Corrections. Across
simulations and user studies, we show that Double MH results
in more accurate reward learning from both conditionally
independent (e.g., separate) demonstrations and conditionally
dependent (e.g., interconnected) corrections.

https://youtu.be/EkmT3o5K5ko
https://collab.me.vt.edu/

II. RELATED WORK

IRL. Our problem is an instance of Inverse Reinforcement
Learning (IRL) where the robot tries to recover the reward
that the human wants the robot to optimize for [16]. Related
work formalizes this as Bayesian inference [1]-[3]. Wherein,
given a prior distribution and the human’s inputs (e.g., state-
action pairs [2] or trajectories [1] provided by the human), the
robot arm infers a posterior over the space of possible rewards.
In order to connect the human’s inputs to rewards, today’s
robots model the human as a noisily rational teacher [3], [17],
[18]. Unfortunately, the human model becomes intractable in
continuous spaces; without this accurate human model, the
robot cannot correctly infer the human’s reward.

As we will demonstrate in Section [II, the key challenge
is the normalizing function of the human model. Within this
normalizing function, the robot integrates over the space of
all possible human inputs (e.g., their actions or trajectories).
This normalizing function makes reward learning doubly in-
tractable: we can use standard Markov chain Monte Carlo
(MCMC) methods to eliminate a part of this problem [2], [4],
[5], but the normalizing function still remains. Existing IRL al-
gorithms have developed different approaches for dealing with
the normalizer. Some works may not explicitly account for
the normalizing function [4]-[6], and there are settings where
ignoring this normalizer is reasonable. Others use sampling to
approximate the normalizer: this includes sampling uniformly
from the trajectory space [7], [8], sampling trajectories close
to the human’s inputs [9], or using importance sampling
to convert between the robot’s trajectory distribution and a
uniform distribution over trajectories [10], [11]. Finally, related
works have also used the maximum trajectory reward in place
of the normalizing function [12]. This substitution can be
justified using Laplace’s approximation [14], [15].

To summarize, prior work on Bayesian IRL uses ignore,
sampling, and maximum approaches to estimate the normal-
izing function and infer the human’s reward. In this paper,
we theoretically and experimentally compare these different
approaches to understand their relative advantages.

Approximate Bayesian Inference. Within the robotics com-
munity, we have developed a variety of techniques for learning
with an intractable normalizing function. But what about work
outside of robotics? Statistics research has recently proposed
several Markov chain Monte Carlo (MCMC) algorithms for
Bayesian inference in the presence of intractable normalizing
functions [19]-[22]. These approaches modify techniques such
as Metropolis-Hastings sampling to obtain computationally
efficient and accurate algorithms for inferring doubly in-
tractable posterior distributions. In this paper, we apply recent
breakthroughs from the statistics community to propose a new
method for Bayesian reward learning.

III. PROBLEM FORMULATION

We consider settings where a robot arm is using Bayesian
inference to learn from human examples. The human teacher
knows what task the robot should perform. More specifically,
the human has in mind a reward function that the robot
should optimize, and the robot is trying to infer this reward
from the human’s data. The human might provide complete

examples of their desired behavior (i.e., demonstrations), or
they could just modify snippets of the robot’s existing motion
(i.e., corrections). We recognize that humans are not perfect
teachers: when showing the robot how to carry a glass of water,
the human may not have enough time or ability to meticulously
orchestrate every joint. The robot views the human as a noisily
rational agent that approximately maximizes their reward.

Task and Reward. This problem is an instance of a Markov
decision process (MDP) where the robot does not know the
reward function. Let the MDP be a tuple M = (S, A, f,r,T)
where s € S is the system state and a € A is the robot’s
action. For example, s could be the arm’s joint position and
the pose of the cup, and a could be the robot’s joint velocity.
At timestep t, the system transitions to a new state according
to the deterministic dynamics s'** = f(s’, a?). The task ends
after a total of 7T timesteps. Let & = (s°,...sT) be the
robot’s trajectory, i.e., the sequence of visited states across
T timesteps, and let = be the set of possible trajectories.

During every timestep, the robot receives a scalar reward

r(s). Remember that the robot does not know the desired
reward function. Without loss of generality, we will write the
reward as 7(s,f), where vector § € R captures the aspects
of the reward function that the robot does not know. For
example, in related works [1], [16] the reward function is often
a linear combination of features such that r(s,0) = 6 - ¢(s).
Here ¢ : S — R is a d-length feature vector that captures
task-relevant aspects of the state (e.g., the distance from the
table, the orientation of the cup), and 6 determines the relative
importance of these features. Across an entire trajectory, the
robot’s cumulative reward is: R(¢,6) dosce(s,0). If
the reward function is a linear combination of features, this
simplifies to: R(&,6) =63 . ¢(s) = 6 - ().
Human Data. The robot is attempting to learn the reward
(and more precisely, the unknown parameters #) from human
examples. Let D = {&;,...&x } be a dataset of K trajectories
provided by the human expert. Our approach is not tied to any
specific way of gathering this dataset. The trajectories could be
collected offline as the human kinesthetically guides the robot
through task demonstrations [6], [9], [10]. Although, we could
also add improved trajectories online as the human corrects
the robot arm [7], [12], [23]. In either case, we aggregate the
human’s trajectories into the dataset D.

For simplicity, we now assume that the human teacher only

provides a single trajectory, i.e., D = £. In Section V we will
extend our analysis to a dataset of K trajectories.
Bayesian Inference. The robot infers the parameters 6 from
the human’s trajectory £. Let P(6 | £) denote the probability
that the human is optimizing for reward parameters ¢ given
the input trajectory . Applying Bayes’ theorem:

PO &) o P(E[0)-P(0) (D

where P(6) is the prior and P(¢ | 0) is the likelihood function.
Intuitively, P(& | 0) expresses how likely it is (from the robot’s
perspective) that the human provides trajectory & given the
human is optimizing for reward parameters 6.

Human Model. The likelihood function P(¢§ | 6) is a
human model: it tries to capture how the human teacher

maps their hidden objective to an example trajectory. Prior
work in behavioral economics [18], cognitive science [17],
and reward learning [3] suggests that humans are noisily
rational agents. These humans are not perfect: instead of
always choosing the best possible trajectory, noisily rational
humans are exponentially more likely to select behaviors with
higher rewards. Under the noisily rational model:

e (8 RED))
PEIO = o (5-Rie,0) o

Where 3 € [0, 00) is a hyperparameter set by the designer. As
B — 0 each trajectory becomes equally likely and the robot
treats the human as a random agent. At the other extreme, as
B — oo the human is only likely to input optimal trajectories
and the robot views the human as perfectly rational.

2

Normalizing Function. The numerator of Equation (2) is
straightforward: we simply substitute ¢ and € into the reward
function and evaluate. But once we find exp (8- R(¢, 6)), how
good (i.e., how likely) is that trajectory? We need a sense of
scale to understand the relative reward for £ as compared to
the alternatives — perhaps there is another trajectory £’ that
achieves a much higher reward. This is where the denominator
of Equation (2) comes in. The denominator is a normalizing
function that integrates over the continuous space of possible
trajectories £’ € Z given reward parameters 6. We refer to the
normalizing function as Z(6):

20)- |

The normalizing function Z(6) serves to calibrate our human
model. Importantly, Z () can be different for different values
of . We will show examples of how Z changes (or does not
change) as a function of # in the following sections.

exp (8- R(¢',0)) d¢’ 3)

Summary. To infer the human’s reward through Bayesian
inference we need to find P(¢ | #) in Equation (1). But to get
P(& | 9) we first must be able to solve Equation (3), and this
normalizing function is intractable when = is a continuous
manifold [10]. This leads to our core problem: how should
robots approximate (or avoid) the normalizing function Z(6)
when learning from human data?

IV. APPROXIMATING THE NORMALIZER

In this section, we analyze three state-of-the-art approaches
for dealing with the normalizing function in Bayesian infer-
ence. In Section we prove that robots can completely
ignore the normalizing function if Z does not depend on 8;
we also identify the necessary conditions for this special case
when the reward is a linear combination of features. Moving
beyond this special case, we next explore two methods for
approximating Z(6). In Section we discuss a sampling
approach and in Section we use the maximum value in
place of the normalizer. We prove that the maximum approach
will match or outperform the sampling approach as 8 — oo
in our noisily rational human model.

Working Example. We first introduce a simplified example to
illustrate the analysis throughout this section. Consider a robot
arm that is learning how to carry a cup. The robot can hold

the cup at any angle between 0 radians (horizontal) and /2
radians (vertical). The human teacher inputs a trajectory £ = s
where they specify a single orientation of the cup. The reward
is: 7(s,0) = —5cos(f) - (s+1) —sin(f) - (m/2 —s). Based on
the human’s input &, the robot is trying to determine whether
(a) & = 0 and the robot should hold the cup horizontally at
angle s = 0, or whether (b) = 7/2 and the robot should hold
the cup vertically at angle 7/2. Let the robot have a uniform
prior over these two possible reward parameters. Applying
Equations (1)-(3), the robot’s belief that 6 = 0 is:
exp (BR(€,0))

P(0]¢) = @)
R (BR(&,0)) + 7795 - exp (BR(,)

In this simple example, numerical integration is possible and
we can exactly find Z(0) and Z (7w /2). Plugging these exact
values into Equation (4) gives us the ideal belief. Put another
way, this is what the robot should learn. We will compare this
ideal result to approaches that approximate the normalizer.

A. Ignoring the Normalizing Function

In some settings, it may be reasonable to ignore the nor-
malizing function altogether. Methods such as [4]-[6] use
MCMC sampling to cancel out the partition function P(§),
but they do not explicitly account for the normalizing function
within P(£ | 6). In our working example for instance, these
approaches may omit the Z terms from Equation (4).

Proposition 1. We can ignore the normalizing function when
Z does not depend on 0.

Proof. Consider a problem setting where Z is a constant, i.e.,
where Z(6;) = Z(6;) for any choice of §; and 6;. When
we substitute Equation (2) back into Equation (1) to infer the
reward, both the numerator and denominator are multiplied by
Z and this normalizing constant cancels out:

exp (8- R(¢'.0)) - P(0) “
Jo exp (8- R(£,0") - P(¢") do’

Looking specifically at the working example in Equation (4),
if Z(0) = Z(w/2) then the Z terms cancel. O

So far our analysis shows that we can ignore Z without
any loss in performance if the normalizer is a constant. But
when is this the case? To answer this question we focus on
a common framework where the reward function is a linear
combination of features, R(&,0) = 6 - ®(£). We find that:
Proposition 2. If R(¢,0) = 0 - ®(¢) and 6 € R is a d-
dimensional unit vector, Z does not depend on 0 if and only
if the feature space ®(Z) is a sphere centered at zero with
radius o > 0, i.e.,, ®(Z) = {v € R : ||v| = o}

Proof. Let 0; and 0; be two arbitrary unit vectors. Consider
Equation (2) with 8 € [0,00). For the integrals Z(6;) and
Z(0;) to be equal, for every { € = there must exist some
¢’ € Z such that: §; - ®(§) = 6; - ©(¢’). This is only satisfied
when ®(Z) is proportional to a unit sphere. O

szg(

In practice, it is challenging to ensure the feature space is
a sphere. Not only do we need the average of each individual
feature to be zero, but the combination of features must always
have the same radius. Consider Figure | where the human

Ignore . Sample (Z,,.,,) Maximum (Z,,,,)

100 30
25 2

5 - 520 5
g 60 - = = 20
23] 23] 23]
o o o
240 2 2
) D10 o)
[=a) 2] R 10
20

o3 /4 72 0 2 5 10 40 Y05 1 5 10 4

Human Demonstration [§] Number of Samples [N] Human Rationality [S]

Fig. 2. Approximating the normalizer in our working example. Belief Error
is the difference between evaluating Equation (4) with the exact Z(#) and
Equation (4) with approximations for Z(6). The lower error indicates the
robot learned the correct belief. (Left) The human provides demonstrations
& of carrying the cup at different angles. If we ignore the normalizer, as
B — oo the robot always learns to carry the cup vertically, even when the
human wants the opposite. (Middle) Here we left 5 = 1.0. As the number
of samples for Z,,cqn increases, the belief error converges to zero. (Right)
As 8 — oo the error with the maximum approach converges to zero.

is teaching the robot arm: along the human’s trajectory they
might minimize the robot’s height and orientation, resulting
in a feature vector ®(£) where each element is close to
zero. Alternatively, the human might move the robot far from
the table while changing the orientation, leading to a ®(¢)
where each element is close to one. The magnitude of these
two feature vectors is different — and thus we cannot apply
Proposition 2 and ignore the normalizer.

In Propositions 1 and 2 we have identified a special case
where the robot does not need to evaluate Z. However, for
common settings where Z is a function of 6, ignoring the
normalizing function results in errors in the robot’s learning.
See our working example in Figure 2 where we plot the error
between Equation (4) with and without Z(9).

B. Approximating the Normalizer with Sampling

Instead of ignoring the normalizing function, next we will
estimate Z(6). One approach is to approximate the inte-
gral in Equation (3) through sampling [7]-[11], [13]. Let
{&1,...,&n} be N trajectories sampled uniformly at random
from the trajectory space =. We use these samples to approx-
imate the mean value of exp (8- R(&,6)) as shown below:

N
Znean(8) = 37 exp (8- R(€:,0)) (6)
=1

Applying the law of the unconscious statistician, this estimate
noisily converges to the actual mean as the number of &
samples increases. It may seem unintuitive at first that we are
estimating the mean and not Z(6). However, Z(0) is equal to
this mean multiplied by a volumetric constant that does not
depend on 8; because the constant cancels out during Bayesian
inference, we only need the mean.

We test this sampling approach on our working example in
Figure 2. Compared to a robot that ignores the normalizing
function, attempting to estimate Z(6) leads to more accurate
learning. But we do recognize that the sampling approach
comes with an assumption: specifically, we now assume that
the robot knows the space of possible trajectories =.

C. Approximating the Normalizer as the Maximum

Other state-of-the-art algorithms use a maximum value in
place of the normalizing function [12], [14], [15]. These ap-
proaches find the maximum of the numerator in Equation (2),
and then treat this maximum as the denominator:

Zmaz (6) = 1pax exp (8- R(&,0)) (7

Intuitively, scaling by Z,,,, makes sense because it ensures
that the resulting P(6 | &) is always less than or equal to
one. Recall that for the sampling approach Z,,.,, converges
as the number of ¢ samples increases. Interestingly, we find
an analogous convergence for the maximum approach:

Proposition 3. The error between Bayesian inference with
Zmaz and an ideal robot that uses Z converges to zero as
the human becomes increasingly optimal, i.e., as — .

Proof. For any given 0, let there be a single trajectory £* that
maximizes the human’s reward such that R(&*,60) > R(&,0)
for all £ € =\ £*. Use numerical integration to estimate Z:

Z(0) = C(Zmaa;(G) + Z exp (8- R(&, 49))) (8)

where C' is a volumetric constant that cancels out in Bayesian
inference, and {&,...,&nx} are N non-optimal trajectories
sampled uniformly at random from =\ £*. Taking the limit as
B — o0, and remembering that R(£*,0) > R(&,0), we have
that Z,,,,(0) dominates the remaining terms. Accordingly,
as § — oo Equation (8) converges to C + Z,,4.(0), and the
difference between a robot that learns using Z(6) and a robot
that learns using Z,,,, converges to zero. O

We apply Proposition 3 to our working example in Figure
As expected, using Z,,,4, as the normalizing function becomes
increasingly accurate as 5 — oco. But now that we have two
different methods for approximating the normalizer, we are left
with a decision: when should designers use Z,,.q, and when
should designers use Z,,,,,? The answer to this question varies
as the problem setting and reward function change. However,
we do find a general trend:

Proposition 4. As 3 — oo in the human model, robots learn
an equal or more accurate estimate of P(0 | £) using Bayesian
inference with Z,q. instead of Zmean-

Proof. From Proposition 3 we already know that Z,,,, con-
verges to ideal performance as § — oco. It only remains to
evaluate the performance of Z,,...,. Recall from Equation (6)
that Z,,cqn, samples N trajectories from space =. Because
N is a finite number, there will be cases when the robot
does not sample the optimal trajectory &*. Compare the
numerical integration in Equation (8) to the sampled mean in
Equation (0). If the robot does not sample £* in Equation (0),
then as S — oo Equation (0) is not necessarily proportional
to Equation (8), where Z is dominated by the exponentiated
reward of £*. Because Z,,.qn 1S not necessarily proportional
to Z, a robot that learns using Z,,cq, may not match the
performance of an ideal robot that learns with Z.]

We demonstrate Proposition 4 in Figure 3. For lower values
of 5 we find that approximating the normalizer with sampling

Maximum (Z,,,,)

@ sample (Z,,,,)

50 16

N
57

8}
=]
'S
S

12

J
51}
@
=}

8

—
o

Belief Error [%)]
=
]
o
Qa1
5

o
=)

Belief Error [%]
=
I
(&1
Belief Error [%]

4

0

0 /4 a2 "0 /4 w2 ° 05 1 5 10
Human Demonstration [§] Human Demonstration [§{] Human Rationality [/]

Fig. 3. Comparing sampling and maximum approaches in our working
example. Remember that 8 from Equation (2) captures how close-to-optimal
the human is. (Left) Error when S = 0.5. (Middle) Error when 8 = 5.
(Right) For lower values of 3 we find that the sampling approach is more
accurate. However, as — oo the maximum approach leads to less error.
For sampling we perform 100 separate runs where Z,peqn samples N = 10
trajectories each run; the shaded region and bars show standard error.

outperforms the maximum approach. By contrast, for higher
values of [using the maximum as the normalizing function
results in more accurate learning. The exact trade-off point
is problem-specific, but this general trend holds across our
theoretical analysis and experimental results.
V. SCALING UP WITH
METROPOLIS-HASTINGS SAMPLING

In Section [V, we analyzed the normalizing function when
the human only provides a single trajectory, i.e., when D = &.
In this section, we scale up to general cases where the robot
is learning from a dataset D of K trajectories. As we scale
up, we recognize that the space of rewards © is continuous. In
our working example we assumed that the human wanted the
robot to hold the cup either horizontally or vertically; but, more
generally, the human may want the robot to hold the cup at
any angle. To enable Bayesian inference in continuous reward
spaces, we turn to Metropolis-Hastings (MH) sampling [24].
We first formulate conditionally independent and dependent
reward learning from multiple trajectories (Section) and
then combine approaches for approximating the normalizer
with MH sampling (Section). In Section we introduce
the Double MH algorithm for Bayesian reward learning.

A. Learning from Multiple Trajectories

Let D = {&1,...,&x} be a dataset of K trajectories input
by the human teacher. The probability that the human has in
mind reward 6 given dataset D is:

P(8| D) x P(D| 6)- P(6) ©)

Similar to Equation (1), here P(0) is the prior over the space
of rewards and P(D | 6) is the likelihood the human inputs
D given their reward is parameterized by 6.

Conditionally Independent. If the human selects each tra-
jectory separately then the human’s inputs are conditionally
independent. For instance, consider a human that repeatedly
demonstrates a task to the robot: each demonstration depends
on their reward 6, but the human does not reason over &;
when selecting &; [1], [3], [6]. When the trajectories are
conditionally independent Equation (9) reduces to:

K

P8 D)o P(O) - [] P(&16)

i=1

(10)

Plugging in our human model from Equation (2), we reach:
exp (B8-S0, R(E9)) - P(O)
zZ(0)%

where R(£,0) = > . r(s,0) is the total reward along input
¢ and Z(#) is the normalizing function from Equation (3).

P | D) x

(1)

Conditionally Dependent. Alternatively, if the human pro-
vides multiple interconnected trajectories the human’s inputs
are conditionally dependent. For example, imagine a human
that iteratively improves the robot’s motion by making small
corrections: the human’s input §; will depend on the human’s
reward but also on the distance between £; and the previous
trajectory &; [12]. In this case, we cannot simplify Equa-
tion (9). Instead, we define an augmented human model:

B exp (5 -R(D, 9))
PD]6) = Jp exp (8- R(D',0)) dD’

where R is the total reward over dataset D. Going back to our
example of a human that makes small improvements, R could
be [12]: R(D, 0) = Y1, R(&:,0) — ||& — &_1]|%. Looking at
the denominator of Equation (12), for conditionally dependent
trajectories we need to normalize over the entire dataset D
rather than the individual inputs &:

Z(0) = /D exp (8- R(D',0)) dD’

Here D is the space of possible datasets D. To find P(6 | D)
and perform Bayesian inference we plug Equation (12) with
normalizing function Z(#) back into Equation (9).

(12)

13)

B. Metropolis-Hastings Sampling

Regardless of whether the human’s inputs are conditionally
independent or conditionally dependent, we want to use dataset
D to infer the reward parameters 6. This leads us back to
the posterior distribution P(6 | D). To evaluate P(6 | D)
in Equation (9) we have to deal with another normalizer;
specifically, the denominator P(D) = [o P(D | 6) - P(6)d6.
When O is a discrete space (e.g., in our working example
where the human wants the cup either horizontal or vertical)
we can compute this denominator and find the probability of
each # € ©. But when O is continuous, Bayesian inference
becomes doubly intractable and we cannot typically find
closed-form expressions for P(# | D). Instead, the robot
learner uses the MH algorithm to sample values of 6 from
the non-normalized posterior, i.e., § ~ P(- | D).

MH Algorithm. We combine MH sampling with methods
for approximating the normalizer in Algorithm |. At each
iteration, we propose a new reward parameter ¢’. The robot
then compares the probability of 6’ with the probability of 6,
and accepts 6’ with probability min{1, P(6' | D)/P(6 | D)}.
Similar to our analysis in Section [V, any terms that do not
depend on 6 cancel out when we divide the posteriors. Each
different approach for approximating the normalizer uses a
different method for selecting Z or Z.

o Ignore: Set Z(0) =1

o Sampling: Approximate Z(#) using Equation (6)

o Maximum: Approximate Z () using Equation (7)

Algorithm 1 Bayesian Reward Learning
with Normalizer Approximation

1: 0 + sample from P(6)

2: for each iteration do

3: 0" < sample from © near 6

4: Conditionally Independent:
exp (8-SK, R(€:,01))-2(0)%-P(0)
exp (8-SK | R(€:.0))-2(6')5-P(9)
6: Conditionally Dependent:
exp (8-R(D,6"))-2(6)-P(6')
exp (8-R(D.0))-2(6")-P(6)
8: if P(0' | D)/P(0|D) > a~U[0,1] then 6 + ¢’
9: Return 6

P(0'|D)

> P(0]D)

P(6'|D)

T P(0]D)

Algorithm 2 Bayesian Reward Learning with Double MH
1: § < sample from P(6)
2: for each iteration do
3: 0’ < sample from © near
4: & ~T(D,0) > inner sampler in Algorithm
exp 8-, (R(€:,0)~R(£.6"))-P(8))
exp 8-S, (R(€:,0)—R(€'.0))-P(0)
6: if P(0' | D)/P(0|D) > a~U[0,1] then 6 + ¢’
7: Return 6

P(0'|D)
P(0]D)

wn

These same equations extend to Z, but now the robot samples
from the space of datasets D instead of trajectories =.

C. Reward Learning with Double MH Sampling

In addition to the ignore, sample, and maximum methods
from Section [V, we can now introduce one final approach
for approximating the normalizer. Standard MH approaches
divide P(0' | D) by P(# | D) so that any terms that do not
depend on 6 are cancelled out. Here we take this concept one
step further through double MH sampling [19]. At a high level,
the double MH algorithm introduces an auxiliary variable such
that, when we divide the posteriors, Z(6) - Z(8') appears in
both the numerator and denominator, enabling us for the first
time to cancel out the normalizing function. This shifts our
problem: instead of approximating Z(f), we need a method
for generating the auxiliary variable.

Double MH Algorithm. We outline Double MH sampling
for Bayesian reward learning in Algorithms 2 (outer sampler)
and 3 (inner sampler). For clarity we focus on conditionally
independent trajectories; it is straightforward to modify this
pseudocode for the conditionally dependent case. At each
iteration, the outer sampler proposes a new #’. The inner
sampler then inputs this #’ and generates a trajectory &’ from
the distribution P(§ | 0'). The new trajectory — which is
sampled, and does not come from human demonstrations —
is the auxiliary variable. We leverage this auxiliary variable
to cancel out the normalizing functions and avoid computing
Z(0). Specifically, the robot accepts ' with probability:

ofs ") (1T P(& | 0)P(E | 9)) |

; (14)
PO) - (I, P& | 0)P(e | 07))

Algorithm 3 Inner Sampler for Double MH
1: Input dataset D and reward parameter
2: & < sample trajectory from D
3: for each iteration do

4: &' + sample from = near ¢

5

6

if f (REO-RED) 5 o L14[0,1] then ¢ + ¢
: Return &

Substituting in our human model and normalizing function:

PO)Z(0)K Z(9)% - f =% (R84 R(E0)
ny 1,
P(0)Z(0)K Z(0)K - f =% (RE&.0+R(e.01)

Hence, the normalizing functions cancel out and we are left
with the acceptance rule in Algorithm 2. We note that this
Double MH approach also extends to learning rewards from
state-action pairs (instead of trajectories) if we replace R(¢,0)
with the @-function (i.e., the cost-to-go).

Parameters. In our approach there are three main parameters
for the designer to tune: a) the number of iterations in
Algorithm 2, b) the number of iterations in Algorithm 3, and ¢)
the rationality constant (. Increasing the number of outer and
inner samples increases the expected accuracy of the learned
6 [19], [22], but also leads to longer run-times . For example,
when tested on our working example from Section [V, Double
MH took 20% longer to complete the same number of MCMC
iterations as sampling or maximization baselines.

VI. SIMULATIONS

Here we compare approaches for approximating the normal-
izer and performing Bayesian reward learning in controlled
environments. We simulate noisily rational humans who pro-
vide multiple, conditionally independent demonstrations. The
space of rewards O is continuous, and we attempt to infer the
simulated human’s 6 € © based on their demonstrations.

Independent Variables. We vary the robot’s learning method
across the algorithms introduced in Section V. This includes
naive robots that Ignore the normalizer, robots that approxi-
mate the normalizer using Sampling or Maximum, and our
proposed Double MH approach. We also vary the simulated
human’s rationality S at two levels: noisy humans (5 = 5)
and consistent humans (8 = 25). These values of 3 were
identified through a preliminary round of simulations: below
B = 5 humans acted almost completely randomly, and above
£ = 25 the humans converged to always select the optimal &.

Dependent Variable. Each human samples their true reward 6
uniformly at random. We report the Error between the actual
6 and 0, the mean of the robot’s estimate: Error = ||6 — 0|].

Environments. We performed simulations across three dy-
namic physics-based environments where each environment
had two features (see 4, 5, and 6). In Push the human’s reward
traded off between the distance the robot pushed the box and
the length the robot travelled. In Close, the human’s reward

I'we provide our code, environments, and additional results in
This includes an example of learning from state-action pairs.

https://github.com/VT-Collab/Reward-Learning-with-Intractable-Normalizers
https://github.com/VT-Collab/Reward-Learning-with-Intractable-Normalizers

Maximum Double MH

0.7 *

Ignore . Sample

*7

0.6

05

0.4

Error

0.3

02

0.1

0

B=5 B=25

Fig. 4. Results from the Push simulation. (Left) The reward depends on the
distance the box is moved and the distance the end-effector travels. (Right)
Error in the learned 6 across 100 simulated humans. Error bars show standard
error, and an * denotes statistical significance (p < .05).

0.7
0.6
0.5

04

Error

03

0.2

B=5

B=25

Fig. 5. Results from the Close simulation. (Left) The reward depends on the
angle of the door and the robot’s height from the table.

traded off between pushing the door closed (i.e., the angle of
the door) and keeping the robot’s end-effector close to the table
(i.e., the robot’s height). Finally, in Pour, the robot needed
to pour coffee at a specific position, and the features were
the distance travelled and holding the cup upright. In each
environment, the robot had an accurate predictive model of
the world and could simulate the outcomes of each trajectory.

Procedure. Each simulated human chose a 6 vector uniformly
at random. The human then generated K = 3 demonstrations
of their desired motion so that D = {&;,£2,&3}. These
demonstrations were sampled from our noisily rational model
in Equation (2) and were conditionally independent (i.e., &2
did not depend on &;). The robot then observed D and used
its Bayesian reward learning approach to get a mean estimate
of . For each environment, we repeated this procedure across
100 simulated humans and reported the average results.

Results. Our results for Push, Close, and Pour are shown in
Figures 4, 5, and 6. To analyze these results we first performed
separate repeated measures ANOVAs on each environment and
found that the normalizer approximation had a statistically
significant effect. Post-hoc ¢-tests revealed that Ignore learned
the least accurate estimate (i.e., had the most error) across
the board. At the other end of the spectrum, Double MH
resulted in the most accurate estimate for each environment
and rationality 3. Consider Figure 4 with § = 5 for instance:
here t-tests show that Double MH has significantly lower error
than Ignore (¢(99) = 7.8, p < .001), Sample (¢£(99) = 3.0,
p < .05), and Maximum (¢£(99) = 3.7, p < .001). Overall, our
simulation results in these three physics-based tasks suggest
that (a) ignoring the normalizer altogether leads to inaccurate
inference, and (b) using Double MH sampling to approximate
the normalizer outperforms existing approximation methods.

0.7

0.6

0.4

Error

03

0.2

0.1

Fig. 6. Results from the Pour simulation. (Left) The reward depends on the
orientation of the cup and the length of the robot’s trajectory in joint space.

VII. USER STUDY

We compared our proposed approach to existing approxi-
mations when learning rewards from actual users. In each task,
the robot started with an initial trajectory and users physically
corrected the robot arm to better align its motion with their
objective. To standardize these results, we first displayed the
desired trajectory that the human should teach to the robot (i.e.,
we specified the user’s reward parameters). The participant’s
corrections were then used to infer an estimate of 6, and we
compared what the robot learned to the objective that the
human was trying to teach the robot.

Independent Variables. For this study, we varied the robot’s
learning along two factors: approximation type and conditional
dependence. The robot used the Ignore, Sample, Maximum,
and Double MH algorithms. We emphasize that Ignore [4]-
[6], Sample [7]-[9], and Maximum [12], [14] come from
prior work. We also compared Conditionally Independent and
Conditionally Dependent versions of these algorithms. Recall
from Section that — when the robot treats the human’s
inputs as conditionally dependent — it recognizes that the
human’s current correction could build upon their prior cor-
rections. Given that the human’s corrections are sequential and
interconnected, we anticipated that conditionally dependent
learning would result in more accurate inference. To sample
conditionally dependent corrections D’ in Equation (13), we
gave the robot an initial trajectory and then applied uniformly
distributed perturbations to the waypoints along that trajectory.

Dependent Measures. We recorded each participant’s cor-
rections and applied Bayesian reward learning to infer their
objective 6. As in Section VI, we compared the Error between
the 6 given to users and the robot’s learned estimate 9: Error
= ||6 — 6||. We also computed the Regret between the ideal
trajectory £ (i.e., the trajectory we showed to participants
which optimizes for #) and the learned trajectory é (i.e., the
optimal trajectory under the robot’s estimate 0).

Regret = R(&,0) = R($,0), €= argmax R(¢,0) (15)

Lower Regret means the robot has learned the correct behavior.

Experimental Setup. Users taught the robot three tasks (see
Figure 7). One of these tasks (Push) was consistent with the
Simulations in Section VI, and we introduced two new tasks
to test the generality of our approach. In Press the robot traded
off between pressing a button, reaching a goal, and avoiding
an obstacle. In Reach, the robot tries to offer coffee to the user
and then moves away after the coffee is delivered. Here Press

Ignore . Sample Maximum

e |) _ -‘.jﬁ,.\)
;n%‘llh- .’%’:.h
v W :J‘h
R (e
o.

Fig. 7. Results from our user study in Section

Double MH | *

| - 0.8 -

0.8 | |

0.6 |

Error

0.4

0.2

Independent Dependent Dependent

. (Left) The Press, Reach, and Push tasks. In each task, the robot moved along an initial trajectory, and

users physically corrected the robot to teach it their desired behavior. (Right) Error and Regret averaged across the 10 users and three tasks. Lower Regret
indicates that the robot’s learned trajectory was better aligned with the desired behavior. Error bars show standard error, and an * denotes p < .001.

had four features and Push and Reach each had three features.
For each task, the human provided three separate sets of
corrections for three different values of §. Users first watched
the robot demonstrate the ideal motion (i.e., the trajectory that
optimized) then gave a sequence of corrections to convey
that 6 to the robot.

Participants. A total of 10 participants from the Virginia Tech
community took part in this study (2 female, ages 27 £ 6.4
years). Eight of the ten users had interacted with robots before,
and the other two users had no prior experience in robotics.
Users provided written consent under IRB#20-755.

Results. Our results averaged across these 10 users and three
tasks are summarized in Figure

We first analyzed the effects of treating the human’s correc-
tions as conditionally independent or dependent. A repeated
measures ANOVA revealed that conditionally dependent learn-
ing led to lower Error across the board: F(1,29) = 10.1,
p < .001. This result matched our intuition: it appeared that
users often tried to fix something in their current correction
based on what went wrong in the previous correction.

We next focused on the type of normalizer. Looking specif-
ically at conditionally dependent learning, post-hoc analysis
showed that Double MH resulted in lower Error and Regret as
compared to each state-of-the-art alternative (p < .001). This
suggests that — not only does Double MH lead to a more
accurate estimate of the human’s reward — but that estimate
also results in robot trajectories that better match the human’s
desired behavior. See videos of our user study and the learned
behaviors here:

VIII. CONCLUSION

Our work is a step towards robot learners that infer the
human’s objective from demonstrations and corrections. In this
paper, we explored the doubly-intractable nature of Bayesian
reward learning, where the robot must reason over all pos-
sible trajectories and rewards. We grouped existing robotic
approximations into three classes and theoretically derived
their relative strengths and weaknesses. We then introduced
a new Monte Carlo approximation method from the statistics
community. Overall, our simulations and user studies suggest
that this Double MH approach more accurately infers the
human’s objective, and is versatile enough to learn from
independent demonstrations or interconnected corrections.

REFERENCES

[1] H. J. Jeon, S. Milli, and A. Dragan, “Reward-rational (implicit) choice:
A unifying formalism for reward learning,” NeurIPS, 2020.

[2] D. Ramachandran and E. Amir, “Bayesian inverse reinforcement learn-
ing,” in IJCAI, vol. 7, 2007, pp. 2586-2591.

[3] B. D. Ziebart, A. L. Maas, J. A. Bagnell, and A. K. Dey, “Maximum
entropy inverse reinforcement learning,” in AAAI, 2008.

[4] Y. Cui and S. Niekum, “Active reward learning from critiques,” in /EEE
International Conference on Robotics and Automation, 2018.

[5] D. S. Brown, Y. Cui, and S. Niekum, “Risk-aware active inverse
reinforcement learning,” in Conference on Robot Learning, 2018.

[6] E. Biyik, D. P. Losey, M. Palan, N. C. Landolfi, G. Shevchuk, and
D. Sadigh, “Learning reward functions from diverse sources of human
feedback: Optimally integrating demonstrations and preferences,” The
International Journal of Robotics Research, vol. 41, pp. 45-67, 2022.

[71 A. Bobu, A. Bajcsy, J. F. Fisac, S. Deglurkar, and A. D. Dragan,
“Quantifying hypothesis space misspecification in learning from human—
robot demonstrations and physical corrections,” IEEE Transactions on
Robotics, vol. 36, no. 3, pp. 835-854, 2020.

[8] A. Jonnavittula and D. P. Losey, “I know what you meant: Learning
human objectives by (under) estimating their choice set,” in [EEE
International Conference on Robotics and Automation, 2021.

[9] M. Kalakrishnan, P. Pastor, L. Righetti, and S. Schaal, “Learning
objective functions for manipulation,” in /IEEE International Conference
on Robotics and Automation, 2013, pp. 1331-1336.

[10] C. Finn, S. Levine, and P. Abbeel, “Guided cost learning: Deep inverse
optimal control via policy optimization,” in /ICML, 2016.

[11] A. Boularias, J. Kober, and J. Peters, “Relative entropy inverse rein-
forcement learning,” in AISTATS, 2011, pp. 182-189.

[12] M. Li, A. Canberk, D. P. Losey, and D. Sadigh, “Learning human ob-
jectives from sequences of physical corrections,” in IEEE International
Conference on Robotics and Automation, 2021, pp. 2877-2883.

[13] D. Hadfield-Menell, S. Milli, P. Abbeel, S. J. Russell, and A. Dragan,
“Inverse reward design,” NeurlPS, 2017.

[14] S. Levine and V. Koltun, “Continuous inverse optimal control with
locally optimal examples,” in ICML, 2012, pp. 475-482.

[15] A. D. Dragan and S. S. Srinivasa, “A policy-blending formalism for
shared control,” The International Journal of Robotics Research, vol. 32,
no. 7, pp. 790-805, 2013.

[16] T. Osa, J. Pajarinen, G. Neumann, J. A. Bagnell, P. Abbeel, and J. Peters,
“An algorithmic perspective on imitation learning,” Foundations and
Trends in Robotics, vol. 7, no. 1-2, pp. 1-179, 2018.

[17] C. L. Baker, R. Saxe, and J. B. Tenenbaum, “Action understanding as
inverse planning,” Cognition, vol. 113, no. 3, pp. 329-349, 2009.

[18] R. D. Luce, Individual Choice Behavior: A Theoretical Analysis.
Courier Corporation, 2012.

[19] F.Liang, “A double Metropolis—Hastings sampler for spatial models with
intractable normalizing constants,” Journal of Statistical Computation
and Simulation, vol. 80, no. 9, pp. 1007-1022, 2010.

[20] A.-M. Lyne, M. Girolami, Y. Atchadé, H. Strathmann, and D. Simpson,
“On Russian roulette estimates for Bayesian inference with doubly-
intractable likelihoods,” Statistical Science, vol. 30, pp. 443—467, 2015.

[21] P. Alquier, N. Friel, R. Everitt, and A. Boland, “Noisy Monte Carlo:
Convergence of Markov chains with approximate transition kernels,”
Statistics and Computing, vol. 26, no. 1-2, pp. 29-47, 2016.

[22] J. Park and M. Haran, “Bayesian inference in the presence of intractable
normalizing functions,” Journal of the American Statistical Association,
vol. 113, no. 523, pp. 1372-1390, 2018.

[23] D. P. Losey, A. Bajcsy, M. K. O’Malley, and A. D. Dragan, “Physical
interaction as communication: Learning robot objectives online from
human corrections,” IJRR, vol. 41, no. 1, pp. 20-44, 2022.

[24] S. J. Russell and P. Norvig, Artificial Intelligence: A Modern Approach.
Pearson Education, Inc., 2022.

https://youtu.be/EkmT3o5K5ko

	I Introduction
	II Related Work
	III Problem Formulation
	IV Approximating the Normalizer
	IV-A Ignoring the Normalizing Function
	IV-B Approximating the Normalizer with Sampling
	IV-C Approximating the Normalizer as the Maximum

	V Scaling up with Metropolis-Hastings Sampling
	V-A Learning from Multiple Trajectories
	V-B Metropolis-Hastings Sampling
	V-C Reward Learning with Double MH Sampling

	VI Simulations
	VII User Study
	VIII Conclusion
	References

