
Simplifying Momentum-based Positive-definite Submanifold Optimization
with Applications to Deep Learning

Wu Lin 1 Valentin Duruisseaux 2 Melvin Leok 2 Frank Nielsen 3 Mohammad Emtiyaz Khan 4 Mark Schmidt 1 5

Abstract
Riemannian submanifold optimization with mo-
mentum is computationally challenging because,
to ensure that the iterates remain on the submani-
fold, we often need to solve difficult differential
equations. Here, we simplify such difficulties for
a class of sparse or structured symmetric positive-
definite matrices with the affine-invariant metric.
We do so by proposing a generalized version of
the Riemannian normal coordinates that dynami-
cally orthonormalizes the metric and locally con-
verts the problem into an unconstrained problem
in the Euclidean space. We use our approach to
simplify existing approaches for structured covari-
ances and develop matrix-inverse-free 2nd-order
optimizers for deep learning with low precision
by using only matrix multiplications.

1. Introduction
Estimation of symmetric positive definite (SPD) matrices is
important in machine learning (ML) and related fields. For
example, many optimization methods require it to estimate
preconditioning matrices. Approximate inference methods
also estimate SPD matrices to obtain Gaussian posterior
approximations. Other applications include dictionary learn-
ing (Cherian & Sra, 2016), trace regression (Slawski et al.,
2015) for kernel matrices, metric learning (Guillaumin et al.,
2009), log-det maximization (Wang et al., 2010), Gaussian
mixtures (Hosseini & Sra, 2015), and Gaussian graphical
models (Makam et al., 2021).

Because the set of SPD matrices forms a Riemannian man-
ifold, one can use Riemannian gradient methods for SPD
estimation, but this can be computationally infeasible in
high-dimensions. This is because the methods often require
full-rank matrix decomposition (see Table 1). Computations

1University of British Columbia, Vancouver, Canada
2University of California San Diego, San Diego, USA 3Sony Com-
puter Science Laboratories Inc., Tokyo, Japan 4RIKEN Center for
Advanced Intelligence Project, Tokyo, Japan 5CIFAR AI Chair,
Alberta Machine Intelligence Institute, Alberta, Canada.
Correspondence to: Wu Lin <yorker.lin@gmail.com >.

Proceedings of the 40 th
International Conference on Machine

Learning, Honolulu, Hawaii, USA. PMLR 202, 2023. Copyright
2023 by the author(s).

can be reduced by using sparse matrices induced by a sub-
manifold. However, this complicates manifold operations
needed for such submanifold optimization. For example,
the Riemannian gradient computation often involves metric
inversion (see Table 1). Other operations needed for Rie-
mannian momentum, such as the Riemannian exponential
map and the parallel transport map, also require solving an
intractable ordinary differential equation (ODE).

Another idea to develop practical Riemannian methods is to
use moving coordinates where a local coordinate is gener-
ated, used, and discarded at each iteration. Such approaches
can efficiently handle manifold constraints (see for exam-
ple the proposed structured natural-gradient descent (NGD)
method by Lin et al. (2021a)). However, it is nontrivial to
include metric-aware momentum using moving coordinates
in a computationally efficient way. In this paper, we aim to
simplify the addition of momentum to such methods and de-
velop efficient momentum-based updates on submanifolds.

We propose special local coordinates for a class of SPD sub-
manifolds (Eq. (16)) with the affine-invariant metric. Our
approach avoids the use of global coordinates as well as
the computation of Riemannian exponential and transport
maps. Instead, we exploit Lie-algebra structures in the local
coordinates to obtain efficient structure-preserving updates
on submanifolds induced by Lie subgroups. Under our local
coordinates, all constraints disappear and the metric at eval-
uation points becomes the standard Euclidean metric. This
metric-preserving trivialization on a submanifold enables
an efficient metric-inverse-free Riemannian momentum up-
date by essentially performing, in the local coordinates, a
momentum-based Euclidean gradient descent (GD) update.

We extend the structured NGD approach in several ways:
(i) we establish its connection to Riemannian methods
(Sec. 3.1); (ii) we demystify the construction of coordinates
(Sec. 3.2); (iii) we introduce new coordinates for efficient
momentum computation (Sec. 3.1); and (iv) we expand
its scope to structured SPD matrices where Gaussian and
Bayesian assumptions are not needed (Sec. 3.3). By exploit-
ing the submanifold structure of preconditioners, we use our
method to develop new inverse-free structured optimizers
for deep learning (DL) in low precision settings (Sec. 4).

1

Simplifying Momentum-based Positive-definite Submanifold Optimization with Applications to DL

2. Manifold Optimization and its Challenges
Consider a complete manifold M with a Riemannian met-
ric F represented by a single global coordinate ⌧ . Under
this coordinate system, Riemannian gradient descent (Absil
et al., 2009; Bonnabel, 2013) (RGD) is defined as

RGD : ⌧ RExp(⌧ ,��F�1(⌧)g(⌧)), (1)

where v(⌧) := F�1(⌧)g(⌧) is a Riemannian gradient
known as a type (1, 0)-tensor, g(⌧) is a Euclidean gradient
known as a type (0, 1)-tensor, F(⌧) is the metric known as
a type (0, 2)-tensor, � is a stepsize, and RExp(⌧ ,v) is the
Riemannian exponential map defined by solving a nonlinear
(geodesic) ODE (see Appx. C.3). The nonlinearity of the
ODE makes it difficult to obtain a closed-form expression
for the solution.

To incorporate momentum in RGD, a Riemannian paral-
lel transport map T̂⌧ (cur)!⌧ (new)(⌫(cur)) is introduced in many
works to move the Riemannian vector (known as a type
(1, 0)-tensor) ⌫(cur) computed at point ⌧ (cur) to point ⌧ (new)

on the manifold. For example, Alimisis et al. (2020) pro-
pose the following update using the Riemannian transport
map (see Appx. C.4) and Riemannian momentum ⌫(cur) with
momentum weight ↵:

Momentum : ⌫(cur) ↵z(cur) + �F�1(⌧ (cur))g(⌧ (cur)),

RGD : ⌧ (new) RExp(⌧ (cur)
,�⌫(cur)),

Transport : z(new) T̂⌧ (cur)!⌧ (new)(⌫(cur)). (2)

Unlike existing works, we suggest using Euclidean momen-
tum and a Euclidean parallel transport map (see Appx. C.5)
T⌧ (cur)!⌧ (new)(m(cur)) to move the momentum (known as a
type (0, 1)-tensor). The use of this Euclidean map is es-
sential for efficient approximations of the transport, as will
be discussed in Sec. 3.1. Through this Euclidean map, we
obtain an equivalent update of Eq. (2) (shown in Appx. C.6)
via Euclidean momentum m(cur):

Momentum : m(cur) ↵w(cur) + �g(⌧ (cur)),

RGD : ⌧ (new) RExp(⌧ (cur)
,�F�1(⌧ (cur))m(cur)),

Transport : w(new) T⌧ (cur)!⌧ (new)(m(cur)). (3)

Given a Euclidean gradient g evaluated at ⌧ (cur)
,

the Riemannian transport map and the Eu-
clidean transport map are related as follows,

T̂⌧ (cur)!⌧ (new)(F�1(⌧ (cur))g) = F�1(⌧ (new))T⌧ (cur)!⌧ (new)(g). (4)
We can use this relationship to show the equivalence of
Eq. 2 and Eq. 3.

Both the transport maps are defined by solving transport
ODEs (defined in Appx. C.4-C.5). However, solving any
of the ODEs can be computationally intensive since it is a
linear system of differential equations and the solution often
involves matrix decomposition.

2.1. Challenges on SPD Manifold and Submanifolds
Consider the k-by-k SPD manifold M = {⌧ 2 Rk⇥k|⌧ �
0}. The affine-invariant metric F for the SPD manifold
(see Theorem 2.10 of Minh & Murino (2017)) is defined
as twice the Fisher-Rao metric (see Appx. C.1) for the k-
dimensional Gaussian distribution N (0, ⌧) with zero mean
and covariance ⌧ , which is the 2nd derivative of a matrix,

F(⌧) = �2EN (0,⌧)

⇥
r2

⌧
logN (0, ⌧)

⇤
. (5)

The Fisher-Rao metric known as the Fisher information ma-
trix is a well-known and useful metric for many applications
in ML. Moreover, the affine-invariant metric is more suit-
able and useful for SPD matrices compared to the standard
Euclidean metric defined in either the global coordinate ⌧
(Pennec et al., 2006) or a (global) Cholesky unconstrained
reparametrization (Hosseini & Sra, 2015). Thus, we use and
preserve the affine-invariant metric. Unlike existing works
in manifold optimization, we preserve the metric in local
coordinates instead of global coordinates. Thus, we have
to obey the metric transform rule needed for a coordinate
change whenever we generate a local coordinate.

In the SPD manifold case, the Riemannian maps have a
closed-form expression (see Table 1). However, the updates
in Eq. (1)-(3) require computing matrix inversion/decom-
position in the Riemannian maps, so such methods have
O(k3) complexity and are impractical when k is large. To
our best knowledge, very few Riemannian methods are de-
veloped and tested in high-dimensional (i.e., k > 106),
low floating-point precision, and stochastic cases. We will
propose an alternative approach to construct practical Rie-
mannian methods for SPD submanifolds when these three
cases are considered jointly.

For many SPD submanifolds1 with the same (induced) met-
ric, it is nontrivial to implement updates in Eq. (1)- (3) since
these needed Riemannian maps often do not admit a simple
closed-form expression. For example, consider the follow-
ing SPD submanifold, which can be used (Calvo & Oller,
1990) to represent a (k�1)-dimensional Gaussian with mean
µ and full covariance ⌃ := V � µµT ,

M =
n
⌧ =


V µ
µT 1

�
2 Rk⇥k | ⌧ � 0

o
.

The Riemannian exponential map for this submanifold does
not have a simple and closed-form expression (Calvo &
Oller, 1991), not to mention other submanifolds induced
by structured covariance ⌃. The exponential map also is
unknown on the following rank-one SPD submanifold,

M =
n
⌧ =


a
2

abT

ab bbT +Diag(c2)

�
2 Rk⇥k | ⌧ � 0

o
.

The existing Riemannian maps defined on the full SPD
manifold such as the exponential map and the transport

1The ambient space of a SPD submanifold is a SPD manifold.
One trivial submanifold is the set of diagonal SPD matrices.

2

Simplifying Momentum-based Positive-definite Submanifold Optimization with Applications to DL

maps cannot be used on SPD submanifolds since these maps
are neither computationally efficient in high dimensional
cases nor preserve the submanifold structures. In particular,
these maps do not guarantee that their output stays on a
given SPD submanifold.

To stay on a submanifold, a retraction map using global co-
ordinate ⌧ is proposed as an approximation of the exponen-
tial map for the submanifold. Likewise, a vector transport
map is proposed to approximate the Riemannian parallel
transport map. However, both retraction and vector trans-
port maps vary from one submanifold to another. It can
be difficult to design such maps for a new submanifold. A
generic approach to designing such maps is to approximate
the ODEs. However, it is computationally challenging to
even evaluate the ODEs at a point when the global coordi-
nate ⌧ is used, since this requires computing the Christoffel
symbols �a

cb
(⌧) (see Appx. C.2) arising in the ODEs. These

symbols are defined by partial derivatives of the metric F(⌧)

in Eq. (5), so their computation involves complicated 3rd
order derivatives of a matrix and makes it hard to preserve a
given submanifold structure.

Other global-coordinate approaches such as the Frank-Wolfe
algorithm recast a submanifold as a closed-set constraint
on an (higher-dimensional) ambient manifold and solve a
constrained subproblem induced by the constraint. The
closed-set condition is often needed since the solution of
the subproblem should be attainable. However, such a con-
straint varies from one submanifold to another. It can be non-
trivial to construct such a closed-set constraint for a given
submanifold. Furthermore, it can be both mathematically
and computationally challenging to obtain a closed-form
expression to solve the constrained subproblem when the
ambient manifold is high-dimensional. This is exactly the
case for a SPD submanifold where its (SPD) ambient mani-
fold is often high-dimensional. Thus, it is essential to have
the closed-form solution to the subproblem so that the Frank-
Wolfe algorithm on a Riemannian submanifold is compu-
tationally efficient without introducing a computationally
expensive inner-loop procedure to solve the subproblem.
Unfortunately, many existing Frank-Wolfe methods on sub-
manifolds do not fully address this issue.

The Riemannian gradient computation on a SPD subman-
ifold remains computationally challenging. The existing
Riemannian gradient computation on a full SPD manifold is
neither computationally efficient nor straightforwardly ap-
plicable for a SPD submanifold since a Riemannian gradient
on the manifold is not necessarily a Riemannian gradient
on the submanifold. Thus, it is unclear how to efficiently
compute a Riemannian gradient F�1(⌧)g(⌧) on a SPD sub-
manifold without explicitly inverting the metric, which can
be another computationally intensive operation.

2.2. Natural-gradient Descent and its Challenges
A practical approach is natural-gradient descent (NGD),
which approximates the Riemannian exponential map by
ignoring the Christoffel symbols. A NGD update is a linear
approximation of the update of Eq. (1) given by

NGD : ⌧ ⌧ � �F�1(⌧)g(⌧). (6)
This approximation is also known as the Euclidean retrac-
tion map (Jeuris et al., 2012). Unfortunately, NGD in the
global coordinate ⌧ does not guarantee that the update stays
on a manifold even in the full SPD case. Moreover, comput-
ing Riemannian gradients remains challenging due to the
metric inverse. Structured NGD (Lin et al., 2021a) addresses
the SPD constraint of Gaussians for Bayesian posterior ap-
proximations by performing NGD on local coordinates. Lo-
cal coordinates could enable efficient Riemannian gradient
computation by simplifying the metric inverse computa-
tion. However, it is nontrivial to incorporate momentum in
structured NGD due to the metric and the use of moving
coordinates. We address this issue and develop practical Rie-
mannian momentum methods by using generalized normal
coordinates. Using our normal coordinates, we will explain
and generalize structured NGD from a manifold optimiza-
tion perceptive. We further expand the scope of structured
NGD to SPD submanifolds by going beyond the Bayesian
settings. Our local-coordinate approach gives a computa-
tionally efficient paradigm for a class of SPD submanifolds
where it can be nontrivial to design an efficient retraction
map or solve a closed-form constrained subproblem using a
global coordinate while keeping the Riemannian gradient
computation efficient and inverse-free.

2.3. Standard Normal Coordinates (SNCs)
Defn 1: A metric F is orthonormal at ⌘0 = 0 if F(⌘0) = I,
where I is the identity matrix.
Normal coordinates can simplify calculations in differential
geometry and general relativity. However, these coordinates
are seldom studied in the optimization literature. Given
a reference point ⌧ (cur), the standard (Riemannian) normal
coordinate (SNC) ⌘ at ⌧ (cur) is defined as below, where ⌧ (cur)

and F�1/2(⌧ (cur)) are treated as constants in coordinate ⌘:

⌧ = ⌧ (cur)(⌘) := RExp(⌧ (cur)
,F�1/2(⌧ (cur))⌘). (7)

F�1/2(⌧ (cur)) in Eq. (7) is essential since it orthonormalizes
the metric at ⌘0 (i.e., F(⌘0)=I) and will simplify the Rie-
mannian gradient computation in Eq. (8) and (12).

Lezcano (2019; 2020) consider (non-normal) local coor-
dinates defined by the Riemannian exponential such as
⌧ =RExp(⌧ (cur)

,�). However, the metric is not orthonormal
in their coordinates (i.e., F(�0)⌘F(⌧ (cur)) 6=I at �0=0). They
use an ad-hoc metric I instead of F(�0) at �0. Thus, their
approach does not preserve the predefined metric F. Impor-
tantly, the Riemannian exponential is incompatible with the
ad-hoc metric as the exponential is defined by metric F. An-

3

Simplifying Momentum-based Positive-definite Submanifold Optimization with Applications to DL

Operations on SPD in global ⌧ Manifold Submanifolds
Riemann. gradient v at ⌧0 ⌧0g⌧0 F

�1(⌧0)g

Riemann. exponential RExp(⌧0,v) ⌧1/2
0 Expm(⌧�1/2

0 v⌧�1/2
0)⌧1/2

0 Unknown
Riemann. transport T̂⌧0!⌧1 (v) EvE

T ; E := (⌧1⌧
�1
0)1/2 Unknown

Euclidean transport T⌧0!⌧1 (g) HgH
T ; H := ⌧�1

1 E⌧0 Unknown

Table 1. Manifold operations compatible with affine-invariant metric F,
where Expm(N) =

P1
k=0

1
k!N

k is the matrix exponential function,
and g is a (symmetric) Euclidean gradient at ⌧ 0. On submanifolds,
⌧ denotes learnable vectorized parameters and g is also vectorized.

SNC GNC
⌧ ⌧ (cur) (⌘) �⌧ (cur) (⌘)
⌧ (cur) ⌧ (cur) (⌘0) �⌧ (cur) (⌘0)
F(⌘0) I I

�a
bc(⌘0) 0 can be nonzero

Table 2. Properties of Riemannian normal coordinates
⌘ defined at ⌧ (cur), where the original ⌘0 = 0 repre-
sents ⌧ (cur), is defined by the Riemannian exponential
map, and � is a diffeomorphic and isometric map.

(a) Normal coordinate ⌘ at ⌧ (cur) (b) Normal coordinate ⇠ at ⌧ (new)

Figure 1. A (orthonormal) SNC/GNC is generated at each iteration.

other issue is that the ad-hoc metric in their approach does
not even obey the metric (tensor) transform rule needed for
the change of local coordinates at each iteration. In Sec. 3,
we will address these issues via metric-aware orthonormal-
izations and propose metric-preserving trivializations even
when the Riemannian exponential is unknown on submani-
folds.

A SNC has nice computational properties, summarized in
Table 2. In coordinate ⌘, the origin ⌘0 := 0 represents the
point ⌧ (cur) = ⌧ (cur)(⌘0) as illustrated in Fig. 1.

RGD in Eq. (1) can be reexpressed as (Euclidean) gradient
descent (GD) in local coordinate ⌘ since the metric F(⌘0)
at ⌘0 becomes the standard Euclidean metric I:

NGD/GD : ⌘1 ⌘0 � �F�1(⌘0)g(⌘0) = 0� �I�1g(⌘0),

⌧ (new) ⌧ (cur)(⌘1), (8)

where g(⌘0) = F�1/2(⌧ (cur))g(⌧ (cur)) is a Euclidean gradi-
ent evaluated at ⌘0. Since the metric F(⌘0) is orthonormal,
the GD update is also a NGD update in coordinate ⌘. The
orthonormalization of the metric makes it easy to add mo-
mentum into RGD while preserving the metric.

In the SPD case, Eq. (7) can be simplified as F�1/2(⌧)⌘ =
⌧ 1/2⌘⌧ 1/2, where ⌘ is a symmetric matrix. Recall that
under global parameterization ⌧ , F(⌧ (cur)) 6= I for any
⌧ (cur) 6= I. However, by Eq. (5), the metric F(⌘) is
orthonormal, at local parameterization ⌘0 associated to
⌧ (cur) = ⌧ (cur)(⌘0) as shown below.

F(⌘0) = �2EN (0,⌧))

⇥
r2

⌘
logN (0, ⌧)

⇤��
⌘=⌘0

= I, (9)

where ⌧ = ⌧ (cur)(⌘). By Table 1, ⌧ (cur)(⌘) in SNC ⌘ has
a closed-form, where Expm(·) is the matrix exponential,

 ⌧ (cur)(⌘) =
�
⌧ (cur)�1/2Expm(⌘)

�
⌧ (cur)�1/2

. (10)

Eq. (10) is only obtainable for SPD manifolds if we use
SNC ⌘, and in particular, the metric must be orthonormal at
⌘0.

In the case of SPD submanifolds, it is hard to use a SNC as
it relies on the intractable Riemannian exponential map, as
seen in Eq. (7). Recall that the Riemannian exponential map

is defined by solving a non-linear ODE and it varies from
one submanifold to another submanifold. However, we will
make use of the matrix exponential2 in Eq. (10) to generalize
normal coordinates and to reduce the computation cost of
Riemannian gradients on SPD submanifolds.

3. Generalized Normal Coordinates (GNCs)
We propose new (metric-aware orthonormal) coordinates to
simplify the momentum computation on a (sub)manifold
with a predefined metric. Inspired by SNCs, we identify
their properties that enable efficient Riemannian optimiza-
tion, and generalize normal coordinates by defining new
coordinates satisfying these properties on the (sub)manifold.
Defn 2: A local coordinate is a generalized (Riemannian)
normal coordinate (GNC) at point ⌧ (cur) denoted by ⌧ =
�⌧ (cur)(⌘) if �⌧ (cur)(⌘) satisfies all the following assumptions.
Assumption 1: The origin ⌘0 = 0 represents point ⌧ (cur) =
�⌧ (cur)(⌘0) in coordinate ⌘.

Assumption 2: The metric F(⌘0) is orthonormal at ⌘0.

Assumption 3: The map �⌧ (cur)(⌘) is bijective. �⌧ (cur) and

��1
⌧ (cur) are smooth (i.e. �⌧ (cur)(⌘) is diffeomorphic).

Assumption 4: The parameter space of ⌘ is a vector space.

Assumption 1 enables simplification using the chain rule
of high-order derivative calculations (i.e., the metric and
Christoffel symbols in Appx. E, F) by evaluating at zero,
which is useful when computing Christoffel symbols. As-
sumption 2 enables metric preservation in GD updates by
dynamically orthonormalizing the metric. By Assump-
tion 3, (sub)manifold constraints disappear in these coordi-
nates, and Assumption 4 ensures that scalar products and
vector additions are well-defined, so that GD updates are
valid. For example, SNCs satisfy Assumptions 1-2 (see
Table 2) and Assumption 3 due to the Riemannian expo-
nential. On a complete manifold, SNCs satisfy Assumption
4 (Absil et al., 2009). These assumptions make it easy
to design new coordinates without the Riemannian expo-
nential. Assumptions 1-4 together imply that �⌧ (cur)(⌘) is
a metric-preserving/isometric map from the tangent space
at ⌧ (cur) with Riemannian metric F(⌧ (cur)) to a (local) coor-
dinate space of ⌘ identified as a tangent space at ⌘0 with
the Euclidean metric F(⌘0)=I such as a matrix subspace

2It is a Lie-group exponential map. Importantly, this map
remains the same on matrix subgroups. In contrast, the Riemannian
exponential map varies from one submanifold to another.

4

Simplifying Momentum-based Positive-definite Submanifold Optimization with Applications to DL

in Sec. 3.3. This map is a metric-preserving trivialization
as (sub)manifold constraints are trivialized and the metric
is preserved and orthonormal in the coordinate space of ⌘.
Thus, GD becomes NGD in the space. Our approach differs
from existing trivialization suggested by Lezcano (2019;
2020), as GD does not become NGD in their coordinates.
Related local-coordinate approaches (Lezcano, 2019; 2020;
Lin et al., 2021a;b) do not orthonormalize the metric so
adding Riemannian momentum can be inefficient.

We will propose GNCs to work with NGD/GD by satis-
fying Assumptions 1-4 while reducing the computational
cost by ignoring Christoffel symbols (see Table 2). A GD
update in a GNC is an approximation of the RGD update
in Eq. (8). This GD update can be understood as a NGD
update with special local reparametrizations. As will be
shown in Sec. 3.3.1, the GD resembles structured NGD in
Gaussian cases, both of which ignore the symbols,

NGD/GD :⌘1 ⌘0 � �F�1(⌘0)g(⌘0) = 0� �I�1g(⌘0),

⌧ (new) �⌧ (cur)(⌘1). (11)

In the full SPD case, Lin et al. (2021a) establish a connection
between the update in ⌘ and a retraction map in ⌧ .
3.1. Adding Momentum using GNCs
Since the metric is orthonormal at ⌘0, we propose simply
adding (Euclidean) momentum in the GD update in our
normal coordinates. At each iteration, given the current
point ⌧ (cur) in the global coordinate, we generate a GNC ⌘ at
⌧ (cur) and perform the update in coordinate ⌘, where we first
assume momentum w(⌘0) is given at the current iteration.

our update with momentum in GNC ⌘

Momentum :m(⌘0) ↵w(⌘0) + �g(⌘0),

NGD/GD :⌘1 ⌘0 � F�1(⌘0)m
(⌘0) = 0� I�1m(⌘0),

⌧ (new) �⌧ (cur)(⌘1), (12)

where ↵ is the momentum weight and � is the stepsize.

We now discuss how to include momentum in moving (local)
coordinates ⌘ and ⇠, where ⌘ and ⇠ are GNCs defined at
⌧ (cur) and ⌧ (new), respectively. Note that ⌧ (new) is represented
by ⌘1 in current coordinate ⌘ and by ⇠0 in new coordinate
⇠. To compute momentum w(⇠0) in coordinate ⇠ at the next
iteration, we perform the following two steps.

Step 1: (In Coordinate ⌘) We transport momentum m(⌘0)

at point ⌧ (cur) via the Euclidean transport map to point ⌧ (new),
which is similar to the transport step in Eq. (3).

Since performing NGD/GD alone ignores Christoffel sym-
bols, we suggest ignoring the symbols in the approximation
of the Euclidean transport map T⌘0!⌘1(m

(⌘0)) using coor-
dinate ⌘. This gives the following update:

momentum transport in GNC ⌘
Approximated Transport : w(⌘1) m(⌘0). (13)

The approximation keeps the dominant term of the map and
ignores negligible terms. In a global coordinate, this ap-
proximation is known as the Euclidean vector transport map
(Jeuris et al., 2012) and the vector-transport-free map (Go-
daz et al., 2021). A similar approximation is also suggested
in Riemannian sampling (Girolami & Calderhead, 2011)
to avoid solving an implicit leapfrog update. Using GNCs,
we can make a better approximation by adding the second
dominant term (see Appx. F) defined by the Christoffel sym-
bols. For example, in SPD cases, the second dominant term
(see Eq. (56) in Appx. F) can be explicitly computed and
is negligible compared to the first term. The computation
can be similarly carried out on submanifolds. Moreover, if
GNC ⌘ is a symmetric matrix as will be shown in Eq. (15),
the second dominant term vanishes even if the symbols are
non-vanishing. On the other hand, it is nontrivial to compute
the second term in a global coordinate ⌧ on submanifolds.

Step 2: (At Point ⌧ (new)) We coordinate-transform momen-
tum w(⌘1) from coordinate ⌘ to coordinate ⇠ and return the
transformation as w(⇠0), where ⌘1 and ⇠0 represent ⌧ (new).

By construction of GNCs (shown in Fig. 1), coordinates ⌘
and ⇠ represent the global coordinate ⌧ as ⌧ = �⌧ (cur)(⌘) =
�⌧ (new)(⇠), where ⇠ is the GNC associated to ⌧ (new) at the
next iteration. We transform Euclidean momentum w(⌘1)

as a Euclidean (gradient) vector from coordinate ⌘ to coor-
dinate ⇠ via the (Euclidean) chain rule,

momentum coordinate-transform for new GNC ⇠
⇣
w(⇠0)

⌘T
=
⇣
w(⌘1)

⌘T
J(⇠0); J(⇠) :=

@⌘

@⇠
, (14)

where ⇠0 = 0, ⌘ = ��1
⌧ (cur) � �⌧ (new)(⇠), and J(⇠) is the

Jacobian. Thanks to GNCs, the vector-Jacobian product in
Eq. (14) can be simplified by evaluating at ⇠0 = 0.

We can see that our update using local coordinates in
Eq. (12)-(14) is a practical approximation of update (3)
using a global coordinate. The Euclidean transport map
is required for the use of the (Euclidean) chain rule and
simplification of the vector-Jacobian product in Eq. (14).
Our update shares the same spirit of Cartan’s method of
moving frames (Ivey & Landsberg, 2003) by using only Eu-
clidean/exterior derivatives. The Christoffel symbols could
be computed via a Lie bracket 3 due to Cartan’s structure
equations and the Maurer-Cartan form (Piuze et al., 2015).

3.2. Designing GNCs for SPD Manifolds
We describe how to design GNCs on SPD manifolds. This
procedure explains the construction of existing coordinates
in Lin et al. (2021a); Godaz et al. (2021).

To mimic the SNC in Eq. (10), consider the matrix factor-
ization ⌧ (cur) = A(cur)�A(cur)�T , where A(cur) is invertible

3There is a Lie group structure for the coordinate-
transformation in the frame bundle of a general (sub)manifold.

5

Simplifying Momentum-based Positive-definite Submanifold Optimization with Applications to DL

(not a Cholesky). This asymmetric factorization contains a
matrix Lie group structure in A(cur) for submanifolds while
the symmetric one (i.e.,

�
⌧ (cur)

�1/2) in Eq. (10) does not.
For example, the product of two distinct symmetric ma-
trices is often not symmetric. Thus, the set of symmetric
matrices does not have the matrix Lie group structure. The
Christoffel symbols are non-vanishing due to the asymme-
try. Nevertheless, this factorization allows us to obtain a
coordinate by approximating the map ⌧ (cur) in the SNC as

�⌧ (cur) (⌘) :=A(cur)
Expm(⌘)

⇣
A(cur)

⌘T

=A(cur)
Expm(

1
2⌘)ExpmT (

1
2⌘)

⇣
A(cur)

⌘T
=AAT

, (15)

where A := A(cur)Expm(12⌘) and ⌘ is a symmetric matrix.
Factorization ⌧ = AAT can be non-unique in A. We only
require coordinate ⌘ to be unique instead of A. To satisfy
uniqueness in ⌘ required in Assumption 3, we can restrict ⌘
to be in a subspace of Rk⇥k such as the symmetric matrix
space. Coordinate ⌘ is a GNC at ⌧ (cur) (shown in Appx. H.1).
Using other factorizations, we obtain more GNCs:

• �⌧ (cur)(⌘) = B�TB�1, with B := B(cur)Expm(� 1
2⌘)

• �⌧ (cur)(⌘) = CTC, with C := Expm(12⌘)C
(cur)

where ⌘ is a symmetric matrix in both cases.

The GNC considered in Eq. (15) is similar to local co-
ordinates in structured NGD, where A is referred to as
an auxiliary coordinate. The authors of structured NGD
(Lin et al., 2021a) introduce a similar local coordinate as
A :=A(cur)Expm(⌘) in Gaussian cases without providing
the construction and mentioning other local coordinates.
The metric is not orthonormal in their coordinates. Our
procedure sheds light on the construction and the role of
local coordinates in structured NGD. For example, our
construction explains why A=A(cur)Expm(⌘) instead of
A=Expm(⌘)A(cur) is used in structured NGD for the fac-
torization ⌧ =AAT . Using A=Expm(⌘)A(cur) in structured
NGD makes it difficult to compute natural-gradients since
the metric is not orthonormal. In contrast, our coordinates
explicitly orthonormalize the metric, which makes it easy to
compute (natural) gradients and include momentum.

Using the GNC in Eq. (15), our update in Eq. (12)-(14) can
be simplified as shown in Appx. H.3. By using our GNCs,
we can obtain inverse-free updates. When the matrix expo-
nential Expm is approximated, our updates even become
matrix-decomposition-free updates, which is useful in low
numerical settings.

Godaz et al. (2021) consider a special case for full SPD
manifolds with symmetric ⌘ and a unique factor A. How-
ever, their method is non-constructive and limited to SPD
manifolds. Our construction generalizes their method by
allowing ⌘ to be an asymmetric matrix, using a non-unique
factor A, and extending their method to SPD submanifolds.

3.3. Designing GNCs for SPD Submanifolds
Although SNCs are unknown on SPD submanifolds, GNCs
allow us to work on a class of SPD submanifolds by noting
that A is in the general linear group GLk⇥k known as a ma-

trix Lie group. Matrix structures are preserved under matrix
multiplication and the matrix exponential. The coordinate
space of ⌘ is a subspace of the tangent space of Expm(⌘)
at Expm(⌘0) = I known as the Lie algebra. Recall that
the Lie algebra of GLk⇥k is a square matrix space Rk⇥k.
Thus, Assumption 4 is satisfied. One example of a struc-
tured group is to consider a (unique) Cholesky factor A. In
this case, A is in a lower-triangular subgroup of GLk⇥k.
This group structure induces a SPD manifold. Thus, we can
obtain a new GNC for the SPD manifold by restricting ⌘
to be a lower-triangular matrix with proper scaling factors,
where the lower-triangular matrix space of ⌘ is a subspace
of the Lie algebra Rk⇥k.

The above observations and the example let us consider the
following class of SPD submanifolds4:

M =
n
⌧ =AAT �0 | A2 Connected Subgroup of GLk⇥k

o
. (16)

Each of the submanifolds is induced by a (fixed-form) Lie
subgroup. The Lie subgroup is constructed by a GNC space
of the submanifold as a subspace of the Lie algebra of the
general linear group. We will construct diffeomorphic maps
using the matrix (Lie-group) exponential to approximate the
Riemannian exponential map on these submanifolds. Each
of the diffeomorphic maps induces a GNC.

We propose GNCs for these submanifolds so that our update
preserves the Lie subgroup structure in A by performing up-
dates in the GNCs as a subspace of the Lie algebra. Thanks
to the GNCs, we can use A to represent each of the sub-
manifolds ⌧ . Note that we can directly update and maintain
A instead of ⌧ . Thus, a GNC for each of the submani-
folds is readily available as ⌧ = �⌧ (cur)(⌘) = AAT in our
local-coordinate approach. On the other hand, existing Rie-
mannian methods directly update a global coordinate ⌧ and
thus, a costly matrix decomposition such as ⌧ = AAT may
be required to satisfy the submanifold constraint.

We give two examples of SPD submanifolds, where we
construct GNCs. GNCs can be constructed for other sub-
manifolds considered in Lin et al. (2021a). For example,
we will use a Heisenberg SPD submanifold suggested by
Lin et al. (2021a) in our experiments. In Sec. 3.3.1, we
present our update without the Bayesian and Gaussian as-
sumptions. Our update recovers structured NGD as a special
case by making a Gaussian assumption. In Sec. 3.3.2, we
demonstrate the scalability of our approach.

4Another Lie group structure is induced by a SPD submanifold.

6

Simplifying Momentum-based Positive-definite Submanifold Optimization with Applications to DL

3.3.1. GAUSSIAN FAMILY AS A SPD SUBMANIFOLD

We will first consider a SPD submanifold in a non-Bayesian
and non-Gaussian setting. We then show how our update
relates to structured NGD in Gaussian cases where Gaussian
gradient identities are available. Thus, the structured NGD
update on a Gaussian family is a special case of our update
on a higher-dimensional SPD submanifold.

Consider the SPD submanifold, where k = d+ 1,

M =

⇢
⌧ =


V µ
µT 1

�
2 Rk⇥k | ⌧ � 0

�
.

Note that ⌧�1 =


⌃�1 �⌃�1µ

�µT⌃�1 1 + µT⌃�1µ

�
, for ⌧ 2M and ⌃ :=

V � µµT . Thus, ⌃ � 0 since ⌧�1 � 0. Then, letting
⌃ = LLT , M can be reexpressed as

M =
n
⌧ = AAT | A :=


L µ
0 1

�
,L 2 GLd⇥d

o
.

Observe that A is in a subgroup of GLk⇥k. We construct a
GNC �⌧ (cur)(⌘) = AAT similar to the one in Eq. (15), where

A = A(cur)Expm

✓ 1
2⌘L

1p
2
⌘µ

0 0

�◆
, (17)

and ⌘ = {⌘L,⌘µ}, ⌘L 2 Rd⇥d is a symmetric matrix so that
Assumption 3 is satisfied. The scalars highlighted in red are
to satisfy Assumption 2 so that the metric is orthonormal.

There is another GNC �⌧ (cur)(⌘) = AAT where

A =A(cur)

Expm(12⌘L)

1p
2
⌘µ

0 1

�

=


L(cur)Expm(12⌘L) µ(cur) + 1p

2
L(cur)⌘µ

0 1

�
. (18)

We can obtain Eq. (18) from Eq. (17) (shown in Appx. G.1).

Using the GNC in either Eq. (17) or Eq. (18), the Euclidean
gradient needed in Eq. (12) is given by

g(⌘0) = {LTg1L,
p
2LT (g1µ+ g2)},

where L = L(cur), µ = µ(cur), g(⌧ (cur)) =


g1 g2

gT
2 0

�
is a (sym-

metric) Euclidean gradient w.r.t. ⌧ 2 M. The vector-
Jacobian product in Eq. (14) is easy to compute by using
coordinate Eq. (18). Note that the computation of this prod-
uct does depend on the choice of GNCs.

Our update can be used for SPD estimation such as met-
ric learning, trace regression, and dictionary learning from
a deterministic matrix manifold optimization perspective.
Neither Bayesian nor Gaussian assumptions are required.

In Gaussian cases, Calvo & Oller (1990) show that a d-
dimensional Gaussian N (z|µ,⌃) with mean µ and co-
variance ⌃ can be reexpressed as an augmented (d+1)-
dimensional Gaussian N (x|0, ⌧) with zero mean and
covariance ⌧ , where xT = [zT , 1] and ⌧ is on this
SPD submanifold. Hosseini & Sra (2015) consider

this reparametrization for maximum likelihood estimation
(MLE) of Gaussian mixture models, but their method is only
guaranteed to converge to this particular submanifold at the
optimum as they use the Riemannian maps for the corre-
sponding full SPD manifold. On the contrary, our update
not only stays on this SPD submanifold at each iteration but
is also applicable to other SPD submanifolds. Our approach
expands the scope of structured NGD originally proposed
as a Bayesian estimator to a maximum likelihood estimator
for Gaussian mixtures with structured covariances ⌃ where
existing methods such as Hosseini & Sra (2015) and the
expectation-maximization algorithm cannot be applied.

To show that structured NGD is a special case of our update,
consider a dense covariance ⌃ for simplicity. We can extend
the following results for structured covariance cases. In a
dense case, the NGD update (Lin et al., 2021a) for Gaussian
N (µ,⌃) with the Fisher-Rao metric is

µ µ� �⌃gµ, L LExpm(��LTg⌃L), (19)

where ⌃ = LLT and � is the stepsize for structured NGD.

As shown in Appx. G.2, we can reexpress g1 and g2

using Gaussian gradients gµ and g⌃ as g1 = g⌃ and
g2 = 1

2 (gµ � 2g⌃ µ). Thus, we reexpress g(⌘0) as

g(⌘0) = {LTg⌃L,
1p
2
LTgµ}. (20)

Since the affine-invariant metric is twice the Fisher-Rao
metric (see Eq. (5)) , we set stepsize � = 2� and momentum
weight ↵ = 0. Our update (without momentum) in Eq. (12)
recovers structured NGD in Eq. (19) by using the Gaussian
gradients in Eq. (20) and coordinate (18).

Using the GNC in (18), our update essentially performs
NGD in the expectation parameter space {µ,⌃+ µµT } (in-
duced by ⌧) of a Gaussian by considering the Gaussian
as an exponential family. Likewise, using another GNC
such as ⌧ = B�TB�1, our update performs NGD in the natu-
ral parameter space {�⌃�1µ,⌃�1} (induced by ⌧�1), which
is the (Bregman) dual space of the expectation parameter
space (Khan & Lin, 2017). When A and B�T have the same
(sparse) group structure even for a Gaussian with structured
covariance ⌃, our updates using each of the GNCs agree to
first-order O(�) w.r.t. stepsize � in the global coordinate ⌧ .

3.3.2. RANK-ONE SPD SUBMANIFOLD

Now, we give an example of sparse SPD matrices to illus-
trate the usage of our update in high-dimensional problems.

Consider the following SPD submanifold, where k = d+ 1.

M=
n
⌧ =


a
2

abT

ab bbT +Diag(c2)

�
2Rk⇥k | ⌧ � 0

o
.

To construct GNCs, we reexpress M as

M =
n
⌧ = AAT | A :=


a 0
b Diag(c)

�
, a > 0, c > 0

o
,

7

Simplifying Momentum-based Positive-definite Submanifold Optimization with Applications to DL

Our Inverse-free, Multiplication-only Update
1: Each T iter., update mK , mC , K, C

Obtain µAA ⌦ µGG to approximater2
µ`(µ)

mK ↵1mK + �1
2d (Tr(HC)HK + c

2
K

T
K� dIp)

mC ↵1mC + �1
2p (Tr(HK)HC + 

2
C

T
C� pId)

K KExpm(�mK) ⇡ K(Ip �mK)
C CExpm(�mC) ⇡ C(Id �mC)

2: Mµ ↵2Mµ +CC
T vec�1(rµ`(µ))KK

T + �vec�1(µ)

3: µ µ� �2vec(Mµ)

KFAC Optimizer
1: Each T iter., update �

KK
T
��1,

�
CC

T
��1, KK

T, CC
T

Obtain µAA ⌦ µGG to approximater2
µ`(µ)�

KK
T
��1 ✓

�
KK

T
��1

+ (1� ✓)µAA�
CC

T
��1 ✓

�
CC

T
��1

+ (1� ✓)µGG

KK
T (

�
KK

T
��1

+ �Ip)
�1

CC
T (

�
CC

T
��1

+ �Id)
�1

2: Mµ ↵2Mµ +CC
Tvec�1(rµ`(µ))KK

T + �vec�1(µ)

3: µ µ� �2vec(Mµ)

Figure 2. In our update, we denote HK := K
TµAAK , HC := C

TµGGC , 
2 := �Tr(KT

K) , and c
2 := �Tr(CT

C), where
vec�1(µ) 2 Rd⇥p, C 2 Rd⇥d, K 2 Rp⇥p. Note that we merge factors 1

2
p
d

and 1
2
p
p in Eq. (25) into the updates in mK and mC , re-

spectively (see Eq. (87) in Appx. I for a justification). We use the linear truncation of the matrix exponential function. Our update does
not require explicit matrix inverses. We can also pre-compute CC

T and KK
T when T > 1. In KFAC, a damping term �I is introduced

to handle the singularity of
�
KK

T
��1 and

�
CC

T
��1. We introduce a similar damping term in 

2 and c
2 (see Appx. I for a derivation) to

improve numerical stability. Our update and KFAC include momentum weight ↵2 for layer-wise NN weights µ and (L2) weight decay �.
In our update, we also introduce momentum weight ↵1 in the SPD preconditioner. Our update is more numerically robust than KFAC.
Thus, our update can often use a larger stepsize �2 and a smaller damping weight � than KFAC.

where Diag(c) is in the diagonal subgroup of GLd⇥d. Ob-
serve that A is in a subgroup of GLk⇥k. Thus, we can
construct the following GNC,

⌧ = AAT ; A = A(cur)Expm(D� ⌘),

where ⌘=

⌘a 0
⌘b Diag(⌘c)

�
2Rk⇥k, � is elementwise product,

and the constant matrix D= 1
2


1 0p
21 Id

�
(with 1 denoting a

vector of ones) enforces Assumption 2.

The Euclidean gradient g(⌘0) in Eq. (12) can be efficiently
computed via sparse Euclidean gradients w.r.t. A. It can
also be computed via dense Euclidean gradients w.r.t. ⌧ as

g(⌘0) =


a(ag1 + 2gT

2 b) + bT f 0p
2c� (ag2 + f) Diag(c2 � diag(G3))

�
,

where f = G3b and g(⌧ (cur)) =


g1 gT

2

g2 G3

�
is a (symmetric)

Euclidean gradient w.r.t. ⌧ . We assume that we can directly
compute f and diag(G3) without computing G3. The com-
putation of Eq. (14) can be found in Appx. D.

On this submanifold, it is easy to scale up our update (12) to
high-dimensional cases, by truncating the matrix exponen-
tial function as Expm(N) ⇡ I+N+ 1

2N
2. This truncation

preserves the structure and non-singularity of A.

4. Generalization for Deep Learning
It is useful to design preconditioned GD such as Newton’s
method by exploiting the submanifold structure of the pre-
conditioner. We will use that structure to design inverse-free
structured matrix optimizers for low-precision floating-point
training schemes in DL.

To solve a minimization problem min
µ2Rk `(µ), a Newton’s

step with � = 1 is
S (1� �)S+ �r2

µ
`(µ), µ µ� �S�1gµ

In stochastic settings, it is useful to consider an averaged

update by setting 0 < � < 1. However, the updated S can
be non-SPD.

Lin et al. (2021b) propose a Newton-like update derived
from structured NGD. Instead of directly updating S, the
authors consider a SPD preconditioner S := BBT and
update B as follows.

µ µ� �S�1gµ, B BExpm
��
2
B�1gS�1B�T

�
, (21)

where gS�1 := 1
2 (r

2
µ
`(µ) � S), and gµ := rµ`(µ). Lin

et al. (2021b) show that the update in B can be re-expressed
in terms of S as S (1��)S+�r2

µ
`(µ)+O(�2). More

importantly, the updated S is guaranteed to be SPD.

Similar to Newton’s update, Eq. (21) is linearly (Lie group)
invariant in µ. When S is a SPD submanifold, this update
has a structural (Lie subgroup) invariance5. However, this
update requires a matrix inverse which can be slow and
numerically unstable in large-scale training due to the use
of low-precision floating-point training schemes.

Eq. (21) can be obtained by considering the inverse of the
preconditioner ⌧ = S�1 = B�TB�1 as a SPD manifold. The
update of B can be obtained by using the GNC in Sec. 3.2
as ⌧ = B�TB�1 where B = B(cur)Expm(� 1

2⌘). The minus
sign (see Eq. (74) in Appx. H.3) is canceled out by another
minus sign in the GD update of Eq. (12).

We can obtain a matrix-inverse-free update (see Appx. H.3):
µ µ� �AATgµ, (22)

by changing the GNC to S�1 = ⌧ = AAT where A =
A(cur)Expm(12⌘). Moreover, the update of A is also matrix-
inverse-free (see Sec. 3.2 and Eq. (73) in Appx. H.3).

As shown in Sec. 3.3.1, we can obtain the update in (22)
by considering {µ,⌃} as a submanifold, where ⌃ = S�1.

5This is a Lie-group structural invariance in µ induced by a
structured SPD preconditioner (Lin et al., 2021b).

8

Simplifying Momentum-based Positive-definite Submanifold Optimization with Applications to DL

Importantly, this implies that our Newton-like (2nd-order)
update in the space of µ can be viewed as a gradient descent
(1st-order) update in our (local) GNC spaces for the SPD
submanifold.

To approximate the Hessian r2
µ
`(µ) in DL as required in

gS�1 , we consider the KFAC approximation (Martens &
Grosse, 2015). For simplicity, consider the loss function
`(µ) defined by one hidden layer of a neural network (NN),
where k = pd, vec�1(µ) 2 Rd⇥p is a learnable weight ma-
trix, vec(·) is the vectorization function. In KFAC (summa-
rized in Fig. 2), the Hessian at each layer of a NN with many
layers is approximated by a Kronecker-product structure be-
tween two dense symmetric positive semi-definite matrices
as r2

µ
`(µ) ⇡ µAA ⌦ µGG, where matrices µAA 2 Rp⇥p

and µGG 2 Rd⇥d are computed as suggested by the authors
and ⌦ denotes the Kronecker product.

We consider a Kronecker-product structured submanifold
with k = pd to exploit the structure of the approximation:

M =
n
⌧ = U⌦W 2 Rpd⇥pd | ⌧ � 0

o
,

where matrices U 2 Rp⇥p and W 2 Rd⇥d are both SPD.
We can reexpress this submanifold as

M=
n
⌧ =AAT | A :=K⌦C

o
, (23)

where U = KKT , W = CCT , K 2 Rp⇥p, C 2 Rd⇥d. K
and C are (sub)groups of GLp⇥p and GLd⇥d, respectively.

By exploiting the Kronecker structure in A = K⌦C, we
can reexpress the update of µ in Eq. (22) as:

µ µ� �vec
⇣
CCT vec�1(gµ)KKT

⌘
. (24)

Now, we describe how to update A = K ⌦ C by using
the structure of the SPD submanifold ⌧ = AAT . Unfortu-
nately, the affine-invariant metric defined in Eq. (5) is singu-
lar. Note that the metric used in a standard product manifold
is different from the metric for a Kronecker-product subman-
ifold. To enable the usage of this submanifold, we consider
a block-diagonal approximation to update blocks K and
C. Given each block, we construct a normal coordinate to
orthonormalize the metric with respect to the block while
keeping the other block frozen. Such an approximation
of the affine-invariant metric leads to a block-diagonal ap-
proximated metric. For blocks K and C, we consider the
following blockwise GNCs ⌘K and ⌘C , respectively:

A=

✓
K(cur)Expm

✓
⌘K

2
p
d

◆◆
⌦C(cur)

,

A=K(cur)⌦
✓
C(cur)Expm

✓
⌘C

2
p
p

◆◆
, (25)

where both ⌘K 2 Rp⇥p and ⌘C 2 Rd⇥d are symmetric ma-
trices and A(cur) = K(cur)⌦C(cur). The scalars highlighted in
red are needed to orthonormalize the block-diagonal metric.

Using these blockwise GNCs, our update is summarized
in Fig. 2 (see Appx. I for a derivation), where similar to

KFAC, we use individual stepsizes to update µ and A, and
further introduce momentum weight ↵2 for µ, weight decay
�, and damping weight �. In practice, we truncate the matrix
exponential function: the quadratic truncation Expm(N) ⇡
I+N+ 1

2N
2 ensures the non-singularity of K and C. In

our DL experiments, we observed that the linear truncation
Expm(N) ⇡ I+N also works well.

We can also develop sparse Kronecker updates while origi-
nal KFAC does not admit a sparse update. For example, our
approach allows us to include sparse structures by consider-
ing K and C with sparse group structures in Eq. (23).

Our approach allows us to go beyond the KFAC approxima-
tion by exploiting other structures in the Hessian approxima-
tion ofr2

µ
`(µ), and to develop inverse-free update schemes

by using SPD submanifolds to approximate the structures.

5. Numerical Results
5.1. Results on Synthetic Examples
To validate our proposed updates, we consider several opti-
mization problems. In the first three examples, we consider
manifold optimization on SPD matrices Sk⇥k

++ , where the
Riemannian maps admit a closed-form expression (shown
in Table 1). We evaluate our method on the metric nearness
problem considered in Lin et al. (2021a), a log-det optimiza-
tion problem considered in Han et al. (2021a), and a MLE
problem of a Gaussian mixture model (GMM) considered in
Hosseini & Sra (2015). We consider structured NGD (Lin
et al., 2021a), RGD, and existing Riemannian momentum
methods such as the ones presented by Ahn & Sra (2020),
Alimisis et al. (2020; 2021) as baselines (see Appx. J for our
implementation of these methods). All methods are trained
using the same stepsize and momentum weight. Our updates
and structured NGD can use a larger stepsize than the other
methods. The exact Riemannian maps are not numerically
stable in high-dimensional settings. From Fig. 3a-3c, we
can see that our method performs as well as the Rieman-
nian methods with the exact Riemannian maps in the global
coordinate. In the last example, we minimize a 1000-dim
Rosenbrock function. We consider the inverse of the precon-
ditioner ⌧ = S�1 in Eq. (21) as a SPD submanifold. We
include momentum in ⌧ and µ. We compare our update
with structured NGD, where both methods use the Heisen-
berg structure suggested by Lin et al. (2021a) to construct a
submanifold. Both methods make use of Hessian informa-
tion without computing the full Hessian. We consider other
baselines: BFGS and Adam. We tune the stepsize for all
methods. From Fig. 3d, we can see that adding momentum
in the preconditioner could be useful for optimization.

5.2. Results in Deep Learning
To demonstrate our method as a practical Riemannian
method in high-dimensional cases, we consider image clas-
sification tasks with NN architectures ranging from classical

9

Simplifying Momentum-based Positive-definite Submanifold Optimization with Applications to DL

	 �				 �				
				 �				
					

�&�$�&�#"%

	
*�

	
*

	
*�

	
*�

	
	

	
�

	
�

	

�
�

%
&
��

#
%
%

��&$������$"�%%��
)
		���!�

� �!�%�%��&�� ���	�	

� �!�%�%��&�� ���	�

�'$��(�&��!#!�"&'!�

��"��&�� ���	�

���

��"����$���	�	

(a)

 �

 �

 �

 �

�$�"�$�! #

�

(�

�

(�

�

(

�

(�

�

�

�

�

�

�

��
��

(
��
�

�
�

�!����$���
'�
�����

�����#�#��$���	��
�

�����#�#��$���	��
��

�%"��&�$���!�� $%��

�� ��$���	��
��

���

�� ����"���
�

(b)

	 �		
			
�		 �			 ��		 �			 ��		

�%�#�%�"!$

	*

	*�

	*�

	*

		

	

	�

��
��
%�'
��
�"
$$

������)�	��� �
��� �$�$��%������	�	
��� �$�$��%������	�

�&#��(�%�� " �!%& �
��!��%������	�

�"$$��!�����#���	
�������
��!����#���	�	
��!��%������	�
��$&��

(c)

� 	���
��� ���� ����
���

�$�"�$�! #

	�
&

	�
&
�

	�
&	

	�
&	�

	�
&

	�
�

	�

	�
	�

�
!
#
#

�!#� �"!����	��������

����

�� ��$����
�
	�

�%"

����

(d)
Figure 3. The performance of our updates for optimization problems. Fig. 3a-3b show the performance on SPD manifold optimization
problems. Our update using approximations of the Riemannian maps achieves a similar performance as existing Riemannian methods
using the exact Riemannian maps. Fig. 3c shows the performance on a MLE problem on a Gaussian mixture. The method denoted by
“sub" performs updates on a SPD submanifold (see sec. 3.3.1) while the other methods perform updates on a SPD manifold. Note that the
loss in Fig. 3c is computed by augmented (d+1)-dim Gaussian components suggested by Hosseini & Sra (2015). If we perform updates
on the SPD manifold Sk⇥k

++ with k=d+ 1 instead of the submanifold, we cannot obtain the original (non-augmented) d-dim Gaussian
components during the iterations since the updates are not guaranteed to stay on the submanifold. Thus, we cannot use the standard
MLE loss defined by the d-dim Gaussians. In Fig. 3a-3c, we use the same stepsize and momentum weight for all methods. Note that our
method and Lin et al. (2021a) can use a larger stepsize than the other methods using the exact Riemannian maps. Our method and Lin
et al. (2021a) use the quadratic truncation while the other methods use the exact maps. We observe that our method with truncation is
more numerically robust than the other methods using the exact maps. Fig. 3d shows the performance using a structured preconditioner to
optimize a 1000-dim function, where our update and structured NGD use Hessian information without computing the full Hessian.

� 	����
���� ����� �����
����
���! �#

	�

�

�

�

�

��
#$
��
""!

"��
�$
�

�! &��(�"	���	������������! �����

����
#��
����'
!%"
��!
����

�
��� 	���� 	
���
����
������!

�

��

�

��

�

��
!"

��
 �

 ��
�"

�

 ����"%�
��������
�������������
����
!��
����$
�#
����
����

� ���� 	���� 	����
����
������

	���

	
��

���

��

���

��

����

�
��

����

��
 !
��
���

���
�!
�

��$��!��	������
�������������
����
 ��
����#
�"�
����
����

� 	����
���� ����� �����
����
���! �$

	�

	�

�

�

�

�

��
$%
��
##!

#��
�%
�

#�"'����	�������	������! �����
����
$��
����(
!&#
��!
����

Figure 4. The error curves for optimization in deep NN models on the “ImageNet-100" dataset. Our updates achieve lower test error rates
than the other baseline methods for NN optimization. We report the number of learnable NN weights, k, in a round bracket shown in the
title of each plot. For each NN optimization problem, our approach uses a structured and sparse k-by-k SPD preconditioning matrix
induced by a SPD submanifold. As shown in Table 1, it is computationally infeasible to use many Riemannian momentum methods since
they are designed for (dense) SPD preconditioning matrices and have O(k3) time complexity.

Dataset Method VGG-16 PyramidNet-65 ConvMixer256-12 RegNetX-1.6GF

CIFAR-100

SGD 26.45 25.65 27.35 21.62
Adam 30.14 28.95 31.20 28.46

AdamW 31.50 28.61 30.5 26.94
Lion 31.83 28.14 29.10 25.53

KFAC 27.68 25.93 26.14 23.11
Ours 26.06 25.39 25.79 21.89

TinyImageNet-200

SGD 40.18 41.94 40.03 34.38
Adam 44.17 45.00 43.05 43.72

AdamW 45.10 42.72 46.46 40.26
Lion 45.53 41.04 43.83 38.31

KFAC 41.59 41.23 42.43 36.64
Ours 40.01 40.82 39.09 34.85

Table 3. More results about the performance (test error rate) of the methods considered in error curves on the other datasets (shown in
Fig. 5 in Appx. A). The results are obtained by averaging over the last 10 iterations.

to modern models: VGG (Simonyan & Zisserman, 2014)
with the batch normalization, PyramidNet (Han et al., 2017),
RegNetX (Radosavovic et al., 2020), RegNetZ (Dollár et al.,
2021), RepVGG (Ding et al., 2021), ReXNetr (Han et al.,
2021b), and ConvMixer (Trockman & Kolter, 2022). We use

the KFAC approximation for convolution layers (Grosse &
Martens, 2016). Table 6 in Appx. A summarizes the number
of learnable parameters. We consider three complex datasets

10

Simplifying Momentum-based Positive-definite Submanifold Optimization with Applications to DL

Dataset Method ConvMixer180-16 RegNetZ-500MF ReXNetr-100 RepVGG-B1G4

ImagetNet-100

SGD 20.37 20.80 17.07 16.15
Adam 22.79 24.48 19.58 17.95

AdamW 23.38 19.65 17.43 18.23
Lion 22.25 18.66 17.43 18.30

KFAC 20.70 20.07 20.24 16.97
Ours 18.84 18.30 16.73 15.81

Table 4. Results about the performance (test error rate) of the methods in Fig. 4. The results are obtained by averaging over the last 10
iterations.

“CIFAR-100”, “TinyImageNet-200”6, and “ImageNet-100”7.
The hyper-parameter configuration of our update and KFAC
can be found in Table 5 in Appx. A. We also consider other
baselines such as SGD with momentum, Adam, AdamW,
and Lion (Chen et al., 2023). A L2 weight decay is included
in all methods. We set the weight decay to be 0.1 for Lion,
0.001 for SGD and Adam, and 0.01 for AdamW, KFAC, and
our method. For AdamW and Lion, we use the weight decay
suggested by Chen et al. (2023). We choose the best weight
decay over the set {0.1, 0.01, 0.001, 0.0001} for SGD and
Adam. For KFAC and our method, we use the same weight
decay as the one used in AdamW. We train all models from
scratch for 120 epochs with mini-batch size 128. For all
methods, we tune the initial stepsize and then divide the step-
size by 10 every 40 epochs, as suggested by Wilson et al.
(2017). Note that our method can take a larger stepsize and
a smaller damping weight than KFAC for all the NN models.
Our method has similar running times as KFAC, as shown in
Fig. 4 in the main text, and Fig. 6 in Appx. A. We report the
test error rate (i.e., error rate = 100� accuracy percentage)
for all methods in Tables 3 and 4. From Fig. 4, we can see
that our method performs better than KFAC and achieves
competitive performances among other baselines. More
results on other datasets can be found in Fig. 5 in Appx. A.

6. Conclusion
We propose GNCs to simplify existing Riemannian momen-
tum methods via metric-preserving trivializations, which
results in practical momentum-based NGD updates with
metric-inverse-free Riemannian/natural gradient computa-
tion. We exploit Lie-algebra structures in GNCs of SPD
manifolds and use the structures to construct SPD submani-
folds so that our updates on each of the submanifolds pre-
serve a Lie-subgroup structure. We show that a NGD up-
date on a Gaussian family is a special case of our update
on a higher-dimensional SPD submanifold. Our approach
further expands the scope of structured NGD to SPD sub-
manifolds arising in applications of ML and enables the
usage of structured NGD beyond Bayesian and Gaussian
settings from a manifold optimization perspective. We fur-
ther develop matrix-inverse-free structured optimizers for
deep learning by exploiting the submanifold structure of
SPD preconditioners. An interesting application is to design

6github.com/tjmoon0104/pytorch-tiny-imagenet
7kaggle.com/datasets/ambityga/imagenet100

customized optimizers for a given neural network architec-
ture by investigating a range of submanifolds. Overall, our
work provides a new way to design practical manifold opti-
mization methods while taking care of numerical stability
in high-dimensional, low-numerical precision, and noisy
settings.

Acknowledgements
This research was partially supported by the Canada CIFAR
AI Chair Program, the NSERC grant RGPIN-2022-03669,
the NSF under grants CCF-2112665, DMS-1345013, DMS-
1813635, and the AFOSR under grant FA9550-18-1-0288.

References
Absil, P.-A., Mahony, R., and Sepulchre, R. Optimization

algorithms on matrix manifolds. Princeton University
Press, 2009.

Ahn, K. and Sra, S. From Nesterov’s estimate sequence
to Riemannian acceleration. In Conference on Learning

Theory, pp. 84–118. PMLR, 2020.

Alimisis, F., Orvieto, A., Bécigneul, G., and Lucchi, A. A
continuous-time perspective for modeling acceleration in
Riemannian optimization. In International Conference

on Artificial Intelligence and Statistics, pp. 1297–1307.
PMLR, 2020.

Alimisis, F., Orvieto, A., Becigneul, G., and Lucchi, A. Mo-
mentum improves optimization on riemannian manifolds.
In International Conference on Artificial Intelligence and

Statistics, pp. 1351–1359. PMLR, 2021.

Bonnabel, S. Stochastic gradient descent on Riemannian
manifolds. IEEE Transactions on Automatic Control, 58
(9):2217–2229, 2013.

Calvo, M. and Oller, J. M. A distance between multivari-
ate normal distributions based in an embedding into the
Siegel group. Journal of multivariate analysis, 35(2):
223–242, 1990.

Calvo, M. and Oller, J. M. An explicit solution of informa-
tion geodesic equations for the multivariate normal model.
Statistics & Risk Modeling, 9(1-2):119–138, 1991.

11

github.com/tjmoon0104/pytorch-tiny-imagenet
kaggle.com/datasets/ambityga/imagenet100

Simplifying Momentum-based Positive-definite Submanifold Optimization with Applications to DL

Chen, X., Liang, C., Huang, D., Real, E., Wang, K., Liu,
Y., Pham, H., Dong, X., Luong, T., Hsieh, C.-J., et al.
Symbolic discovery of optimization algorithms. arXiv

preprint arXiv:2302.06675, 2023.

Cherian, A. and Sra, S. Riemannian dictionary learning
and sparse coding for positive definite matrices. IEEE

transactions on neural networks and learning systems, 28
(12):2859–2871, 2016.

Ding, X., Zhang, X., Ma, N., Han, J., Ding, G., and Sun,
J. Repvgg: Making vgg-style convnets great again. In
Proceedings of the IEEE/CVF conference on computer

vision and pattern recognition, pp. 13733–13742, 2021.

Dollár, P., Singh, M., and Girshick, R. Fast and accurate
model scaling. In Proceedings of the IEEE/CVF Confer-

ence on Computer Vision and Pattern Recognition, pp.
924–932, 2021.

Girolami, M. and Calderhead, B. Riemann manifold
langevin and hamiltonian monte carlo methods. Jour-

nal of the Royal Statistical Society: Series B (Statistical

Methodology), 73(2):123–214, 2011.

Godaz, R., Ghojogh, B., Hosseini, R., Monsefi, R., Karray,
F., and Crowley, M. Vector transport free riemannian
lbfgs for optimization on symmetric positive definite ma-
trix manifolds. In Asian Conference on Machine Learn-

ing, pp. 1–16. PMLR, 2021.

Grosse, R. and Martens, J. A kronecker-factored approxi-
mate fisher matrix for convolution layers. In International

Conference on Machine Learning, pp. 573–582. PMLR,
2016.

Guillaumin, M., Verbeek, J., and Schmid, C. Is that you?
metric learning approaches for face identification. In
2009 IEEE 12th international conference on computer

vision, pp. 498–505. IEEE, 2009.

Han, A., Mishra, B., Jawanpuria, P. K., and Gao, J. On
riemannian optimization over positive definite matrices
with the bures-wasserstein geometry. Advances in Neural

Information Processing Systems, 34:8940–8953, 2021a.

Han, D., Kim, J., and Kim, J. Deep pyramidal residual
networks. In Proceedings of the IEEE conference on

computer vision and pattern recognition, pp. 5927–5935,
2017.

Han, D., Yun, S., Heo, B., and Yoo, Y. Rethinking channel
dimensions for efficient model design. In Proceedings

of the IEEE/CVF conference on Computer Vision and

Pattern Recognition, pp. 732–741, 2021b.

Hosseini, R. and Sra, S. Matrix manifold optimization for
Gaussian mixtures. In Advances in Neural Information

Processing Systems, pp. 910–918, 2015.

Ivey, T. A. and Landsberg, J. M. Cartan for beginners:

differential geometry via moving frames and exterior dif-

ferential systems, volume 61. American Mathematical
Society Providence, RI, 2003.

Jeuris, B., Vandebril, R., and Vandereycken, B. A survey and
comparison of contemporary algorithms for computing
the matrix geometric mean. Electronic Transactions on

Numerical Analysis, 39(ARTICLE):379–402, 2012.

Khan, M. and Lin, W. Conjugate-computation varia-
tional inference: Converting variational inference in non-
conjugate models to inferences in conjugate models. In
Artificial Intelligence and Statistics, pp. 878–887, 2017.

Lezcano, C.-M. Trivializations for gradient-based optimiza-
tion on manifolds. Advances in Neural Information Pro-

cessing Systems, 32:9157–9168, 2019.

Lezcano, C.-M. Adaptive and momentum methods
on manifolds through trivializations. arXiv preprint

arXiv:2010.04617, 2020.

Lin, W., Nielsen, F., Emtiyaz, K. M., and Schmidt, M.
Tractable structured natural-gradient descent using lo-
cal parameterizations. In International Conference on

Machine Learning, pp. 6680–6691. PMLR, 2021a.

Lin, W., Nielsen, F., Khan, M. E., and Schmidt, M. Struc-
tured second-order methods via natural gradient descent.
arXiv preprint arXiv:2107.10884, 2021b.

Makam, V., Reichenbach, P., and Seigal, A. Symmetries
in directed gaussian graphical models. arXiv preprint

arXiv:2108.10058, 2021.

Martens, J. and Grosse, R. Optimizing neural networks with
Kronecker-factored approximate curvature. In Interna-

tional Conference on Machine Learning, pp. 2408–2417,
2015.

Minh, H. Q. and Murino, V. Covariances in computer vision
and machine learning. Synthesis Lectures on Computer

Vision, 7(4):1–170, 2017.

Pennec, X., Fillard, P., and Ayache, N. A Riemannian
framework for tensor computing. International Journal

of computer vision, 66(1):41–66, 2006.

Piuze, E., Sporring, J., and Siddiqi, K. Maurer-cartan forms
for fields on surfaces: application to heart fiber geome-
try. IEEE transactions on pattern analysis and machine

intelligence, 37(12):2492–2504, 2015.

Radosavovic, I., Kosaraju, R. P., Girshick, R., He, K., and
Dollár, P. Designing network design spaces. In Proceed-

ings of the IEEE/CVF conference on computer vision and

pattern recognition, pp. 10428–10436, 2020.

12

Simplifying Momentum-based Positive-definite Submanifold Optimization with Applications to DL

Simonyan, K. and Zisserman, A. Very deep convolu-
tional networks for large-scale image recognition. arXiv

preprint arXiv:1409.1556, 2014.

Slawski, M., Li, P., and Hein, M. Regularization-free estima-
tion in trace regression with symmetric positive semidefi-
nite matrices. Advances in Neural Information Processing

Systems, 28, 2015.

Trockman, A. and Kolter, J. Z. Patches are all you need?
arXiv preprint arXiv:2201.09792, 2022.

Wang, C., Sun, D., and Toh, K.-C. Solving log-determinant
optimization problems by a newton-cg primal proximal
point algorithm. SIAM Journal on Optimization, 20(6):
2994–3013, 2010.

Wilson, A. C., Roelofs, R., Stern, M., Srebro, N., and Recht,
B. The marginal value of adaptive gradient methods
in machine learning. Advances in neural information

processing systems, 30, 2017.

13

Simplifying Momentum-based Positive-definite Submanifold Optimization with Applications to DL

Appendices
Outline of the Appendix:

• Appendix A contains more numerical results.

• Appendix B summarizes the normal coordinates used in this work.

• The rest of the appendix contains proofs of the claims and derivations for examples considered in the main text.

A. Additional Results

�
� �� �� �� 	�� 	
�
�#"��%

�

��

��

�

��

��
%&
��
$$"
$��
�&
�

����$	���(��	���!��	���� ����"!��� �
����
%��
���)
"'$
��"!
���

�
� �� �� �� 	�� 	
�
�! ��#

�

��

��

�

��

��
#$
��
""

"��
�$
�

����"	���!'"������$�
����������� ������
����
#��
����&
 %"
�� �
����

�
� �� �� �� 	�� 	
�
�! ��#

�

��

��

�

��

��
#$
��
""

"��
�$
�

����"	���� �&��(�"	
����������� ������
����
#��
����'
 %"
�� �
����

�
� �� �� �� 	�� 	
�
�! ��#

�

��

��

�

��

��
#$
��
""

"��
�$
�

����"	���"����$'�	��������������� ������
����
#��
����&
 %"
�� �
����

�
� ��
� �� 	�� 	
�
�! ��#

��

��

��

��

�

�

��
#$
��
""

"��
�$
�

$��(�������$�&��	
�����	��������� ������
����
#��
����'
 %"
�� �
����

�
� ��
� �� 	�� 	
�
� ���"

��

��

��

��

�

�

��
"#
��
!!�

!��
�#
�

#��&�������#� &!������#
�������������������
����
"��
����%
�$!
����
����

�
� ��
� �� 	�� 	
�
�! ��#

��

��

��

��

�

�

��

��
#$
��
""

"��
�$
�

$��)�������$�� �&��(�"	
����������� ������
����
#��
����'
 %"
�� �
����

�
� �� �� �� 	�� 	
�
�"!��$

�

��

�

�

��

�

��

��
$%
��
##!

#��
�%
�

%�)����� �%�#�� �%(�	���������������! �����
����
$��
����'
!&#
��!
����

Figure 5. Performance of NN optimizers on more datasets. SGD performs best in the classical model and fairly in the modern models.
Our updates achieve competitive test error rates compared to baselines and perform better than KFAC in many cases.

� ���� ���� ���� 	���
���
�������

�

��

�

	�

	

�

��

��
��
��
���

��

��
�

��������� �������
����
���

� ���� ���� ���� 	���
���
�������

�

��

�

	�

	

�

��

��
��
��
���

��

��
�

��������������������

����
���

� �	�� 	��� �	�� ����� ��	�� �	��� ��	��
�������

��

�	

	�

		

�

	

��
��
��
���

��

��
�

���!��������������� ����
����
���

� �	�� 	��� �	�� ����� ��	�� �	��� ��	��
�������

��

�	

	�

		

�

	

��
��
��
���

��

��
�

���"���������!���
���
����
� �

Figure 6. Additional results of our method and KFAC using a new random seed. We use these two methods to train NN models in 120
epochs. We report the performance of the methods in terms of running time.

14

Simplifying Momentum-based Positive-definite Submanifold Optimization with Applications to DL

Hyperparameter Meaning Our Method in Fig. 2 KFAC in Fig. 2

�2 Standard stepsize Tuned Tuned

↵2 Standard momentum weight 0.9 0.9

� (L2) weight decay 0.01 0.01

� Damping weight 0.005; 0.0005 0.005; 0.0005

T Update frequency 10; 15; 25; 60 10; 15; 25; 60

✓ Moving average in KFAC NA 0.95

�1 Stepsize to update our preconditioner 0.01 NA

↵1 Momentum weight to update our preconditioner 0.5 NA

Table 5. Hyperparameter configuration in our update and KFAC. We first choose the damping weight � based on the performance of KFAC
and use the same value in our update. For both methods, we set � = 0.0005, 0.005 in RepVGG-B1G4, and other models, respectively. To
reduce the iteration cost of both methods, we only update the preconditioner at every T iterations. For RepVGG-B1G4, we update the
preconditioner at every T = 60 iterations. For RegNetZ-500MF and ConvMixer180-16, we update the preconditioner at every T = 25
iterations. For ReXNetr-100, we update the preconditioner at every T = 15 iterations. For the rest models, we update the preconditioner
at every T = 10 iterations. The value of the hyperparameter ✓ is chosen as suggested at https://github.com/alecwangcq/
KFAC-Pytorch. We consider the first 500 iterations as a warm-up period to update our preconditioner by using a smaller stepsize �1:
we set �1 = 0.0002 for the first 100 iterations, increase it to �1 = 0.002 for the next 400 iterations, and finally fix it to �1 = 0.01 for the
remaining iterations.

Dataset VGG-16-BN PyramidNet-65 ConvMixer256-12 RegNetX-1.6GF

CIFAR-100 14,774,436 707,428 911,204 8,368,436

TinyImageNet-200 14,825,736 733,128 936,904 8,459,736

Dataset RegNetZ-500MF RepVGG-B1G4 ConvMixer180-16 ReXNetr-100

ImageNet-100 6,200,242 38,121,956 721,900 3,730,404

Table 6. Number of Learnable Parameters in the NN Models Considered

Dataset Input Dimension Number of Classes Number of Training Points Number of Test Points

CIFAR-100 32⇥ 32 100 50,000 10,000

TinyImageNet-200 64⇥ 64 200 100,000 10,000

ImageNet-100 224⇥ 224 100 130,000 5,000

Table 7. Statistics of the Datasets

15

https://github.com/alecwangcq/KFAC-Pytorch
https://github.com/alecwangcq/KFAC-Pytorch

Simplifying Momentum-based Positive-definite Submanifold Optimization with Applications to DL

B. Summary of Generalized Normal Coordinates

SPD (sub)manifold M Name Our normal coordinate
{⌧ 2 Rk⇥k

��⌧ 2 Sk⇥k

++ } Full manifold See Eq. (15)
with affine-invariant metric F
n
⌧ =


V µ
µT 1

�
2 Rk⇥k

���⌧ 2 Sk⇥k

++

o
Submanifold induced See Eq. (17),(18)

with affine-invariant metric F by Siegel embeddingn
⌧ = U⌦W 2 Rpd⇥pd

���U 2 Sp⇥p

++ ,W 2 Sd⇥d

++

o
Kronecker-product submanifold See Eq. (25)

with an approximated affine-invariant metric F

Table 8. Summary of our normal coordinates, where S++ denotes the set of SPD matrices

C. Background
In this section, we will assume ⌧ is a (learnable) vector to simplify notations. For a SPD matrix M 2 Sk⇥k

++ , we could
consider ⌧ = vech(M), where vech(M) returns a k(k+1)

2 -dimensional array obtained by vectorizing only the lower
triangular part of M, which is known as the half-vectorization function.

C.1. Fisher-Rao Metric

Under parametrization ⌧ , the Fisher-Rao Metric is defined as

F(⌧ (cur)) := �Eq(z|⌧)[r2
⌧
log q(z|⌧)]

��
⌧=⌧ (cur) , (26)

where q(z|⌧) is a probabilistic distribution parameterized by ⌧ , such as a Gaussian distribution with zero mean and
covariance ⌧ .

C.2. Christoffel Symbols

Given a Riemannian metric F, the Christoffel symbols of the first kind are defined as

�d,ab(⌧ 1) :=
1
2 [@aFbd(⌧) + @bFad(⌧)� @dFab(⌧)]

���
⌧=⌧1

, (27)

where Fbd(⌧) denotes the (b, d) entry of the metric F⌧ and @b denotes the partial derivative w.r.t. the b-th entry of ⌧ .

The Christoffel symbols of the second kind are defined as

�c

ab
(⌧) :=

X

d

F
cd(⌧)�d,ab(⌧), (28)

where F
cd(⌧) denotes the (c,d) entry of the inverse F�1 of the metric. Observe that the Christoffel symbols of the second

kind involve computing all partial derivatives of the metric F and the inverse of the metric.

C.3. Riemannian Exponential Map

The Riemannian exponential map is defined via a geodesic, which generalizes the notion of a straight line to a manifold.
The geodesic r(t) satisfies the following second-order nonlinear system of ODEs with initial values r(0) = x and ṙ(0) = ⌫,
where x denotes a point on the manifold and ⌫ is a Riemannian gradient,

geodesic ODE: r̈
c(t) +

X

a,b

�c

ab
(r(t))ṙa(t)ṙb(t) = 0, (29)

where r
c(t) denotes the c-th entry of r(t).

The Riemannian exponential map is defined as

RExp(x,⌫) := r(1), (30)

where x denotes an initial point and ⌫ is an initial Riemannian gradient so that r(0) = x and ṙ(0) = ⌫.

16

Simplifying Momentum-based Positive-definite Submanifold Optimization with Applications to DL

C.4. Riemannian (Parallel) Transport Map

In a curved space, the transport map along a given curve generalizes the notion of parallel transport. In Riemannian
optimization, we consider the transport map along a geodesic curve. Given a geodesic curve r(t), a smooth Riemannian
gradient field denote by v(t) that satisfies the following first-order linear system of ODEs with initial value v(0) = ⌫,

transport ODE: v̇
c(t) +

X

a,b

�c

ab
(r(t))va(t)ṙb(t) = 0. (31)

The transport map T̂⌧ (cur)!⌧ (new)(⌫) transports the Riemannian gradient ⌫ at ⌧ (cur) to ⌧ (new) as follows,

T̂⌧ (cur)!⌧ (new)(⌫) := v(1), (32)
where r(0) = ⌧ (cur), r(1) = ⌧ (new), and v(0) = ⌫. It can be computationally challenging to solve this linear ODE due to the
presence of the Christoffel symbols.

C.5. Euclidean (Parallel) Transport Map

Given a geodesic curve r(t), a smooth Euclidean gradient field denote by !(t) on manifold M that satisfies the following
first-order linear system of ODEs with initial value !(0) = m,

transport ODE: !̇c(t)�
X

a,b

�a

cb
(r(t))!a(t)ṙ

b(t) = 0. (33)

The transport map T⌧ (cur)!⌧ (new)(g) transports the Euclidean gradient g at ⌧ (cur) to ⌧ (new) as shown below,

T⌧ (cur)!⌧ (new)(g) := !(1), (34)
where r(0) = ⌧ (cur), r(1) = ⌧ (new), and !(0) = g.

C.6. Update 3 is Equivalent to Alimisis et al. (2020)

Note that m and z are initialized by zero. Due to Eq. (4), updates (2) and (3) are equivalent since m(cur) = F(⌧ (cur))⌫(cur)

and w(new) = F(⌧ (new))z(new), where m(cur) and w(new) are defined in Eq. (3) while ⌫(cur) and z(new) are defined in Eq. (2)

D. Simplification of the vector-Jacobian Product
The vector-Jacobian product in (14) could, in general, be computed by automatic differentiation. We give two cases for
SPD (sub)manifolds where the product can be explicitly simplified. For notation simplicity, we denote m = m(⌘0) and
w = w(⌘1). Thus w = m when we use the approximation in Eq. (13).

D.1. Symmetric Cases

Suppose that ⌘ is symmetric, in which case m is also symmetric due to update (12). We further denote A0 = A(cur) and
A1 = A(new), where A1 = A0Expm(� 1

2m
(⌘0)) = A0Expm(� 1

2m).

Recall that ⌧ = A0Expm(⌘)AT

0 = A1Expm(⇠)AT

1 . Thus, we have

Expm(⌘) = Expm(� 1
2m)Expm(⇠)ExpmT (� 1

2m) = Expm(� 1
2m)Expm(⇠)Expm(� 1

2m). (35)

By the Baker–Campbell–Hausdorff formula, we have

Expm�1(Expm(N)Expm(M)) = N+M+
X

i

wi(M
aiNMbi �MciNMdi) +O(N2), (36)

Expm�1(Expm(M)Expm(N)) = N+M+
X

i

wi(M
aiNMbi �MciNMdi) +O(N2), (37)

where ai, bi, ci, di are non-negative integers satisfying ai + bi = ci + di > 0, and wi is a coefficient.

Since we evaluate the Jacobian at ⇠0 = 0, we can get rid of the higher-order term O(⇠2), which leads to the following
simplification,

⌘ = Expm�1(Expm(� 1
2m)Expm(⇠)Expm(� 1

2m)) = ⇠ �m+
X

i

wi(m
ai⇠mbi �mci⇠mdi) +O(⇠2). (38)

17

Simplifying Momentum-based Positive-definite Submanifold Optimization with Applications to DL

Recall that m = w is symmetric. The vector-Jacobian product can be simplified as

wTJ(⇠0) = mT
⇥@⌘
@⇠

��
⇠=⇠0

⇤

= r⇠Tr(m
T⌘)

��
⇠=⇠0

= r⇠Tr
�
mT [⇠ �m+

X

i

wi(m
ai⇠mbi �mci⇠mdi) +O(⇠2)]

���
⇠=⇠0

= r⇠Tr
�
mT [⇠ +

X

i

wi(m
ai⇠mbi �mci⇠mdi)]

���
⇠=⇠0

= r⇠Tr
�
m[⇠ +

X

i

wi(m
ai⇠mbi �mci⇠mdi)]

���
⇠=⇠0

= r⇠Tr
�
m⇠ +

X

i

wi(m
ai+bi+1⇠ �mci+di+1⇠)

���
⇠=⇠0

= r⇠Tr(m⇠)
��
⇠=⇠0

= m = w. (39)

D.2. Triangular Cases

Without loss of generality, we assume ⌘ is lower-triangular, in which case m is also lower-triangular due to update (12).
Similarly, we denote A0 = A(cur) and A1 = A(new), where A1 = A0Expm(�D�m(⌘0)) = A0Expm(�D�m), and
where D = 1p

2
Tril(1)+(12�

1p
2
1)I is chosen so that the metric is orthonormal at ⌘0, and Tril(1) denotes a lower-triangular

matrix of ones.

Recall that ⌧ = A0Expm(D� ⌘)ExpmT (D� ⌘)AT

0 = A1Expm(D� ⇠)ExpmT (D� ⇠)AT

1 . Thus, we have

Expm(D� ⌘)ExpmT (D� ⌘) = Expm(�D�m)Expm(D� ⇠)ExpmT (D� ⇠)ExpmT (�D�m). (40)

Since ⌘, m and ⇠ are lower-triangular, Expm(D � ⌘), Expm(�D �m), and Expm(D � ⇠) are also lower-triangular.
Moreover, all the eigenvalues of Expm(D� ⌘), Expm(�D�m), and Expm(D� ⇠) are positive.

Note that we make use of the uniqueness of the Cholesky decomposition since Expm(D� ⌘) can be viewed as a Cholesky
factor. Thus, Expm(D� ⌘) = Expm(�D�m)Expm(D� ⇠).

By the Baker–Campbell–Hausdorff formula, we have

Expm�1
�
Expm(M)Expm(N)

�
= M+N+ 1

2 hM,Ni+O(hM, hM,Nii) +O(N2), (41)

where hM,Ni = MN�NM is the Lie bracket. Thus, we have

⌘ =
�
D� ⇠ �D�m+ 1

2 h�D�m,D� ⇠i)
�
↵D+O(hm, hm, ⇠ii+O(⇠2), (42)

where ↵ denotes elementwise division.

We get rid of the higher-order term O(⇠2) by evaluating ⇠ = ⇠0 = 0.

Recall that m = w. The vector-Jacobian product can be simplified as

wTJ(⇠0) = mT
⇥@⌘
@⇠

��
⇠=⇠0

⇤

= r⇠Tr(m
T⌘)

��
⇠=⇠0

= r⇠Tr(m
T (D� ⇠ �D�m+ 1

2 h�D�m,D� ⇠i ↵D) +O(hm, hm, ⇠ii))
��
⇠=⇠0

= r⇠Tr((m↵D)T (D� ⇠ �D�m+ 1
2 h�D�m,D� ⇠i+O(hm, hm, ⇠ii)))

��
⇠=⇠0

= m|{z}
O(�)

+ 1
2D�

⌦
(�D�m)T ,m↵D

↵
| {z }

O(�2)

+O
�⌦
m,
⌦
m,mT

↵↵�
| {z }

O(�3)

. (43)

18

Simplifying Momentum-based Positive-definite Submanifold Optimization with Applications to DL

E. Simplification of the Metric Calculation at ⌘0

Consider ⌧ = �⌧ (cur)(⌘) = AAT 2 Sk⇥k

++ , where A = A(cur)Expm(D� ⌘) .

For notation simplicity, we let A0 = A(cur) and ⌧ 0 = ⌧ (cur) = A0A
T

0 . Let ⌘̃ denote the vector representation of the
learnable part of ⌘. By definition of the affine-invariant metric, we have

F(⌘0) = �2EN (0,⌧)

⇥
r2

⌘̃
logN (0, ⌧)

⇤��
⌘=⌘0

= EN (x|0,⌧)

⇥
r2

⌘̃

�
Tr[xxTA�T

0 ExpmT (�D� ⌘)Expm(�D� ⌘)A�1
0] + 2 log det Expm(D� ⌘)

 ⇤��
⌘=⌘0

= r2
⌘̃

�
Tr[EN (x|0,⌧0)

⇥
xxT

⇤
A�T

0 ExpmT (�D� ⌘)Expm(�D� ⌘)A�1
0] + 2 log det Expm(D� ⌘)

 ��
⌘=⌘0

= r2
⌘̃

�
Tr[[A0A

T

0]A
�T

0 ExpmT (�D� ⌘)Expm(�D� ⌘)A�1
0] + 2 log det Expm(D� ⌘)

 ��
⌘=⌘0

= r2
⌘̃

�
Tr[ExpmT (�D� ⌘)Expm(�D� ⌘)] + 2 log det Expm(D� ⌘)

 ��
⌘=⌘0

= r2
⌘̃

�
Tr[ExpmT (�D� ⌘)Expm(�D� ⌘)] + 2Tr[D� ⌘]

 ��
⌘=⌘0

(ignore linear terms for a 2nd order derivative)

= r2
⌘̃

�
Tr[ExpmT (�D� ⌘)Expm(�D� ⌘)]

 ��
⌘=⌘0

. (44)

Note that we express Expm(�D� ⌘) as Expm(�D� ⌘) = I�D� ⌘ + 1
2 (D� ⌘)

2 +O(⌘3). Since we evaluate the
metric at ⌘0 = 0, we can get rid of the higher-order term O(⌘3), which leads to the following simplification,

r⌘ijTr[Expm
T (�D� ⌘)Expm(�D� ⌘)]

= 2Tr[Expm(�D� ⌘)[r⌘ijExpm
T (�D� ⌘)]]

= 2Dijr⌘ij

�
Tr[Expm(�D� ⌘)[�Eij +

1
2Eij(D� ⌘) + 1

2 (D� ⌘)Eij +O(⌘2)]T]

. (45)

Thus, we have

r⌘Tr[Expm
T (�D� ⌘)Expm(�D� ⌘)]

= D� [�2Expm(�D� ⌘) + Expm(�D� ⌘)(D� ⌘)T + (D� ⌘)TExpm(�D� ⌘)] +O(⌘2). (46)

To show F(⌘0) = I, we show that F(⌘0)v = v for any v. Let V be the matrix representation of v, which has the same
structure as ⌘, such as being symmetric or being lower-triangular. Then,

F(⌘0)v

= r2
⌘̃

�
Tr[ExpmT (�D� ⌘)Expm(�D� ⌘)]

 ��
⌘=⌘0

v

= r⌘̃

�
vTr⌘̃Tr[ExpmT (�D� ⌘)Expm(�D� ⌘)]

 ��
⌘=⌘0

, (note: ⌘̃,v are vectors)

= r⌘̃Tr
�
VTr⌘Tr[Expm

T (�D� ⌘)Expm(�D� ⌘)]
 ��

⌘=⌘0
(note: ⌘,V are matrices)

= r⌘̃Tr
�
VT (D� [�2Expm(�D� ⌘) + Expm(�D� ⌘)(D� ⌘)T + (D� ⌘)TExpm(�D� ⌘)] +O(⌘2))

 ��
⌘=⌘0

.

We can get rid of the higher-order term O(⌘2) by evaluating at ⌘ = ⌘0 = 0 and noting that

Tr(AT (D�B)) =
X

(A� (D�B)) = Tr((D�A)TB). (47)

Also note that

r⌘ijTr
�
(D�V)T [�2Expm(�D� ⌘) + Expm(�D� ⌘)(D� ⌘)T + (D� ⌘)TExpm(�D� ⌘)]

 ��
⌘=⌘0

= Tr
�
(D�V)T 2Dij [Eij +ET

ij
]
 ��

⌘=⌘0
. (48)

Thus, we have

r⌘Tr
�
(D�V)T [�2Expm(�D� ⌘) + Expm(�D� ⌘)(D� ⌘)T + (D� ⌘)TExpm(�D� ⌘)]

 ��
⌘=⌘0

= 2D� (D�V + (D�V)T). (49)

19

Simplifying Momentum-based Positive-definite Submanifold Optimization with Applications to DL

E.1. Symmetric Cases

When ⌘ is symmetric, V is also symmetric so

F(⌘0)v

= r⌘̃Tr
�
VT (D� [�2Expm(�D� ⌘) + Expm(�D� ⌘)(D� ⌘)T + (D� ⌘)TExpm(�D� ⌘)] +O(⌘2))

 ��
⌘=⌘0

= vech(2D� (D�V +D�V)) = 4vech(D2 �V). (50)

When D = 1
21, we have 4vech(D2 �V) = vech(V) = v, where 1 is a matrix of ones. Thus, F(⌘0) = I .

E.2. Triangular Cases

Without loss of generality, we assume that ⌘ is lower-triangular, in which case V is lower-triangular, and thus

F(⌘0)v

= r⌘̃Tr
�
VT (D� [�2Expm(�D� ⌘) + Expm(�D� ⌘)(D� ⌘)T + (D� ⌘)TExpm(�D� ⌘)] +O(⌘2))

 ��
⌘=⌘0

= tril(2D� (D�V +D�VT) (VT is upper-triangular. Thus tril(VT) = Diag(VT) = Diag(V))

= tril(2D2 � (V +Diag(V))), (51)

where tril(·) represents a vector representation of the learnable part of a lower-triangular matrix and Tril(·) denotes a
lower-triangular matrix.

When D = 1p
2
Tril(1)+(12�

1p
2
)I, we have tril(2D2�(V+Diag(V))) = tril(V) = v, where Tril(1) is a lower-triangular

matrix of ones. Thus, F(⌘0) = I.

F. An Accurate Approximation of the Euclidean Transport Map
We consider the first-order approximation of the Euclidean transport

m(⌘1) = T⌘0!⌘1(m
(⌘0)) = !(1) ⇡ !(0)|{z}

m(⌘0)

+!̇(0), (52)

where we have to evaluate the Christoffel symbols as discussed below.

By the transport ODE in Eq. (33), we can compute !̇(0) via

!̇c(0)�
X

a,b

�a

cb
(r(0))!a(0)ṙ

b(0) = 0, (53)

where r(0) = ⌘0 is the current point and ṙ(0) is the Riemannian gradient so that ⌘1 = RExp(⌘0, ṙ(0)). In our case, as
shown in Eq. (12), we have that ṙ(0) = �F�1(⌘0)m(⌘0) = m(⌘0) and !(0) = m(⌘0).

Note that the metric and Christoffel symbols are evaluated at ⌘0 = 0. The computation can be simplified due to the
orthonormal metric as F�1(⌘0) = I and

�a

cb
(⌘0) =

X

d

F
ad(⌘0)�d, cb(⌘0) =

X

d

�
ad 1

2 [@cFbd(⌘0) + @bFcd(⌘0)� @dFcb(⌘0)], (54)

where F
ad(⌘0) = �

ad. Thus, we have the following simplification,

!̇c(0) = � 1
2

X

b,d

[@cFbd(⌘0) + @bFcd(⌘0)� @dFcb(⌘0)](m
(⌘0))d(m(⌘0))b

= � 1
2

X

b,d

@cFbd(⌘0)(m
(⌘0))d(m(⌘0))b. (55)

For notation simplicity, we let m = m(⌘0) and A0 = A(cur).

20

Simplifying Momentum-based Positive-definite Submanifold Optimization with Applications to DL

For normal coordinate A = A0Expm(D� ⌘), we can obtain the following result. The calculation is similar to the metric
calculation in Appx. E.

!̇(0) = D�
⇣D

D�m, (D�m)T
E⌘

| {z }
O(�2)

, (56)

where hN,Mi := NM�MN is the Lie bracket, the � is the stepsize used in Eq. (12).

When ⌘ is symmetric, we know that m is symmetric. Thus, we have !̇(0) = 0.

G. Structured NGD as a Special Case

G.1. Normal Coordinate for Structured NGD

We can obtain coordinate (18) from coordinate (17).

In Eq. (17), the normal coordinate is defined as A = A0Expm

✓ 1
2⌘L

1p
2
⌘µ

0 0

�◆
, where we use A0 to denote A(cur).

Note that

Expm

✓ 1
2⌘L

1p
2
⌘µ

0 0

�◆
=


Expm(12⌘L)

1p
2
⌘µ +O(⌘L⌘µ)

0 1

�
. (57)

The main point is that O(⌘L⌘µ) vanishes in the metric computation since we evaluate the metric at ⌘0 = {⌘L,⌘µ} = 0.
Thus, we can ignore O(⌘L⌘µ), and recover Eq. (18):

A = A0


Expm(12⌘L)

1p
2
⌘µ

0 1

�
=


L0 µ0

0 1

� 
Expm(12⌘L)

1p
2
⌘µ

0 1

�
=


L0Expm(12⌘L) µ0 +

1p
2
L0⌘µ

0 1

�
. (58)

To show that O(⌘L⌘µ) vanishes in the metric computation, we have to show that all the cross terms between ⌘L and ⌘µ of
the metric vanish. Using Eq. (44),

EN (0,⌧)

⇥
r⌘Ljk

r⌘µi
logN (0, ⌧)

⇤��
⌘=⌘0

= r⌘Ljk
r⌘µi

⇢
Tr


ExpmT

✓
�
 1
2⌘L

1p
2
⌘µ

0 0

�◆
Expm

✓
�
 1
2⌘L

1p
2
⌘µ

0 0

�◆�� ��
⌘=⌘0

. (59)

21

Simplifying Momentum-based Positive-definite Submanifold Optimization with Applications to DL

We can drop higher order terms since we evaluate at ⌘0 = {⌘L,⌘µ} = 0. We get

r⌘Ljk
r⌘µi

⇢
Tr


ExpmT

✓
�
 1
2⌘L

1p
2
⌘µ

0 0

�◆
Expm

✓
�
 1
2⌘L

1p
2
⌘µ

0 0

�◆��

=2r⌘Ljk

⇢
Tr

⇢
r⌘µi

ExpmT

✓
�
 1
2⌘L

1p
2
⌘µ

0 0

�◆�
Expm

✓
�
 1
2⌘L

1p
2
⌘µ

0 0

�◆��

=2r⌘Ljk
Tr

"✓
�

0 1p

2
ei

0 0

�
+ 1

2


0 1p

2
ei

0 0

� 1
2⌘L

1p
2
⌘µ

0 0

�
+ 1

2

 1
2⌘L

1p
2
⌘µ

0 0

�
0 1p

2
ei

0 0

�◆T

Expm

✓
�
 1
2⌘L

1p
2
⌘µ

0 0

�◆#

=2r⌘Ljk
Tr

"✓
�

0 1p

2
ei

0 0

�
+ 1

2

 1
2⌘L

1p
2
⌘µ

0 0

�
0 1p

2
ei

0 0

�◆T

Expm

✓
�
 1
2⌘L

1p
2
⌘µ

0 0

�◆#

= 2Tr

"
0 1p

2
ei

0 0

�T  1
2Ejk 0
0 0

�
+ 1

2

✓
1
2Ejk 0
0 0

�
0 1p

2
ei

0 0

�◆T
#
= 0, (60)

and therefore
EN (0,⌧)

⇥
r⌘Ljk

r⌘µi
logN (0, ⌧)

⇤��
⌘=⌘0

= 0. (61)

G.2. Gaussian Identities in Structured NGD

Recall that the manifold is defined as

M =

⇢
⌧ =


V µ
µT 1

�
2 R(d+1)⇥(d+1) | ⌧ � 0

�
.

To use Gaussian gradient identities, we first change the notation from µ to m to avoid confusion:

M =

⇢
⌧ =


V m
mT 1

�
2 R(d+1)⇥(d+1) | ⌧ � 0

�
.

In Sec. 3.3.1, we can compute the Euclidean gradient

g(⌘0) = {LTg1L,
p
2LT (g1m+ g2)}, (62)

where g(⌧ (cur)) =


g1 g2

gT
2 0

�
is a (symmetric) Euclidean gradient w.r.t. ⌧ 2M.

By the chain rule, we have

@`

@mi

= Tr

 ✓
@`

@⌧

◆T

| {z }
gT (⌧)

@⌧

@mi

!
= Tr

✓
g1 g2

gT
2 0

� 
0 ei
eT
i

1

�◆
= 2gT

2 ei, (63)

so gm = @`

@m
= 2g2. Similarly, we have gV = @`

@V
= g1.

Note that in Gaussian cases, we have µ = m and ⌃ = V �mmT , and thus we have

rµi` = Tr

 ✓
@`

@m

◆T
@m

@µi

!
+Tr

 ✓
@`

@V

◆T
@V

@µi

!
= gT

m
ei +Tr

�
gT

V
(eim

T +meT
i
)
�
, (64)

r⌃jk` = Tr

 ✓
@`

@m

◆T
@m

@⌃jk

!
+Tr

 ✓
@`

@V

◆T
@V

@⌃jk

!
= 0 + Tr

�
gT

V
Ejk

�
, (65)

which implies that

gµ = gm + (gV + gT

V
)m = gm + 2gV m = 2g2 + 2g1µ,

g⌃ = gV = g1. (66)

Thus, g1 and g2 can be reexpressed using Gaussian gradients gµ and g⌃ as g1 = g⌃ and g2 = 1
2 (gµ � 2g⌃ µ).

22

Simplifying Momentum-based Positive-definite Submanifold Optimization with Applications to DL

H. SPD Manifolds
H.1. Generalized Normal Coordinates

We first show that the local coordinate ⌧ = �⌧ (cur)(⌘) = AAT is a generalized normal coordinate defined at the reference
point ⌧ (cur) = A(cur)�A(cur)�T , where ⌘ 2 Rk⇥k is symmetric, and A = A(cur)Expm(12⌘).

It is easy to verify that Assumption 1 holds since �⌧ (cur)(⌘0) = ⌧
(cur) at ⌘0 = 0.

As shown in Appx. E.1, the metric is orthonormal at ⌘0 = 0, so Assumption 2 holds.

Recall that the standard normal coordinate is ⌧ = ⌧ (cur)(⌘) =
�
⌧ (cur)

�1/2
Expm(⌘)

�
⌧ (cur)

�1/2, where Assumption 3 holds.
Our generalized normal coordinate is defined as ⌧ = ⌧ (cur)(⌘) = A(cur)Expm(⌘)

�
A(cur)�T , where ⌘ is symmetric. The

only difference between these two coordinates is a multiplicative constant. Differentiability and smoothness remain the
same. The injectivity for symmetric ⌘ is due to the uniqueness of the symmetric square root of a matrix. Thus, Assumption
3 holds in our coordinate. This statement can be extended to the case where ⌘ is a triangular matrix due to the uniqueness of
the Cholesky decomposition.

The space of symmetric matrices ⌘ 2 Rk⇥k is an abstract vector space since scalar products and matrix additions of
symmetric matrices are also symmetric. As a result, Assumption 4 holds.

H.2. Euclidean Gradients in Normal Coordinates

As mentioned in Sec. 3.2, there are many generalized normal coordinates such as

• �⌧ (cur)(⌘) = AAT , where ⌘ is symmetric and A := A(cur)Expm(12⌘) ,

• �⌧ (cur)(⌘) = B�TB�1, where ⌘ is symmetric and B := B(cur)Expm(� 1
2⌘),

• �⌧ (cur)(⌘) = CTC, where ⌘ is symmetric and C := Expm(12⌘)C
(cur).

We show how to compute the Euclidean gradient g(⌘0) needed in Eq. (12), where we assume that the Euclidean gradient
r⌧ ` = g(⌧) w.r.t. ⌧ is given. Let us consider ⌧ = �⌧ (cur)(⌘) = AAT . By the chain rule, we have

r⌘ij ` = Tr
�
gT (⌧)r⌘ij⌧

���
⌘=⌘0

= Tr
�
gT (⌧)A(cur)Eij(A

(cur))T), (67)

so

g(⌘0) = (A(cur))Tg(⌧)A(cur)
. (68)

Similarly, when ⌧ = B�TB�1, we have

r⌘ij ` = Tr
�
gT (⌧)r⌘ij⌧

���
⌘=⌘0

= Tr
�
gT (⌧)(B(cur))�TEij(B

(cur))�1), (69)

which gives

g(⌘0) = (B(cur))�1g(⌧)(B(cur))�T
. (70)

H.3. Simplification of Our Update

Consider the normal coordinate �⌧ (cur)(⌘) = AAT , where ⌘ is symmetric and A := A(cur)Expm(12⌘).

We can compute the Euclidean gradient as g(⌘0) = (A(cur))Tg(⌧)A(cur).

Using the approximation in Eq. (13), we have

w(⌘1) m(⌘0). (71)

23

Simplifying Momentum-based Positive-definite Submanifold Optimization with Applications to DL

Since ⌘ is symmetric, we can further show that the accurate approximation also gives the same update since the second
dominant term vanishes as shown in Eq. (56).

By Eq. (39), the vector-Jacobian product needed in Eq. (14) can be expressed as

w(⇠0) = J(⇠0)w
(⌘1) = w(⌘1). (72)

Thus, we have w(⇠0) = m(⌘0). As a consequence, our update (defined in Eq. (12)) can be simplified as below, where we can
drop all the superscripts and let w = m,

Momentum :m ↵m+ �

=g(⌘0)z }| {
(A(cur))Tg(⌧)A(cur)

,

GD :⌘1 �m,

⌧ (new) �⌧ (cur)(⌘1) = A(cur)Expm(⌘1)
�
A(cur)�T () A(new) A(cur)Expm(12⌘1). (73)

Using Eq. (70), we can also obtain the following update if the normal coordinate �⌧ (cur)(⌘) = B�TB�1 is used, where ⌘ is
symmetric and B := B(cur)Expm(� 1

2⌘),

Momentum :m ↵m+ �

=g(⌘0)z }| {
(B(cur))�1g(⌧)(B(cur))�T

,

GD :⌘1 �m,

⌧ (new) �⌧ (cur)(⌘1) =
�
B(cur)��T

Expm(�⌘1)
�
B(cur)��1 () B(new) B(cur)Expm(� 1

2⌘1). (74)

I. SPD Kronecker-product Submanifolds
We consider the SPD submanifold

M=
n
⌧ =AAT 2 S(pd)⇥(pd)

++ | A :=K⌦C,K2Rp⇥p
,C2Rd⇥d

o
,

where U = KKT � 0, W = CCT � 0, and both K and C are dense and non-singular.

I.1. Blockwise Normal Coordinates

As mentioned in Sec. 4, we consider a block-diagonal approximation of the affine-invariant metric. For block K, we consider
the coordinate

A =
�
K(cur)Expm(

1

2
p
d
⌘K)

�
⌦C(cur)

, (75)

where ⌘K 2 Rp⇥p is symmetric and A(cur) = K(cur) ⌦C(cur).

We will show that the block-diagonal approximated metric is orthonormal at ⌘K = 0 under coordinate ⌘K .

For notation simplicity, we let K0 = K(cur), C0 = C(cur), and ⌧ 0 = ⌧ (cur). Let ⌘̃K denote the learnable part of ⌘K .

By the Kronecker-product, we have vecT (X)(U ⌦W)vec(X) = vecT (X)vec(WXUT) = Tr(XTWXUT), where
x := vec(X) and X 2 Rd⇥p.

By definition, the metric F w.r.t. block K in coordinate ⌘K is

FK(0)=�2EN (0,⌧)

⇥
r2

⌘̃K
logN (0, ⌧)

⇤��
⌘K=0

=EN (x|0,⌧)

⇥
r2

⌘̃K

�
Tr[xT

✓�
K�T

0 Expm(� 1p
d
⌘K)K�1

0

�
⌦
�
C�T

0 C�1
0

�◆
x]
⇤��

⌘K=0
(drop linear terms in the log-det term)

=EN (x|0,⌧)

⇥
r2

⌘̃K

�
Tr[XT

�
C�T

0 C�1
0

�
X
�
K�T

0 Expm(� 1p
d
⌘K)K�1

0

�
]
 ⇤��

⌘K=0
(note: xT (U⌦W)x = Tr(XTWXUT))

=dEN (x|0,⌧)

⇥
r2

⌘̃K

�
Tr[Expm(� 1p

d
⌘K)

]
⇤��

⌘K=0
(note: EN (x|0,⌧0)[X

T
�
C�T

0 C�1
0

�
X] = dK0K

T

0). (76)

24

Simplifying Momentum-based Positive-definite Submanifold Optimization with Applications to DL

It is easy to show that FK(0) = I w.r.t. block K in coordinate ⌘K , which means Assumption 2 holds.

Since block C is frozen, we can prove as in Appx. H.1 that all assumptions are satisfied for the coordinate ⌘K .

Similarly, for block C, we can consider the coordinate

A = K(cur) ⌦
�
C(cur)Expm(

1

2
p
p
⌘C)

�
, (77)

where ⌘C 2 Rd⇥d is symmetric and A(cur) = K(cur) ⌦C(cur), and show that it defines a normal coordinate.

I.2. (Euclidean) Gradient Computation for Deep Learning

We consider ⌧ = ⌃ = (KKT)⌦ (CCT).

As suggested by Lin et al. (2021b), the Euclidean gradient w.r.t. ⌧ is computed as g⌃ := 1
2 (r

2
µ
`(µ)�⌃�1).

In KFAC (Martens & Grosse, 2015), the Hessian is approximated asr2
µ
`(µ) ⇡ µAA ⌦µGG, where matrices µAA 2 Rp⇥p

and µGG 2 Rd⇥d are two dense symmetric positive semi-definite matrices and are computed as suggested by the authors.

To handle the singularity of µAA and µGG, Martens & Grosse (2015) introduce a damping term � when it comes to inverting
µAA and µGG such as µ�1

AA
⇡ (µAA + �Ip)�1 and µ�1

GG
⇡ (µGG + �Id)�1.

In our update, we use the KFAC approach to approximate the Hessian. We add a damping term by including it in g⌃ as

g⌃ ⇡ 1
2 (µAA ⌦ µGG| {z }

⇡r2
µ`(µ)

+�Ipd �⌃�1), (78)

where Ipd = Ip ⌦ Id and ⌃�1 = (K�TK�1)⌦ (C�TC�1).

The Euclidean gradient g(⌘K0
) w.r.t. ⌘E can be computed as

@`

@⌘Kij

= Tr
�� @`

@⌧

�T @⌧

@⌘Kij

�
= Tr

�
[g⌃]

T
@⌧

@⌘Kij

�
. (79)

There are three terms in the Euclidean gradient w.r.t. ⌧ = ⌃:

g⌃ ⇡ 1
2 (µAA ⌦ µGG + �Ip ⌦ Id � (K�TK�1)⌦ (C�TC�1). (80)

Thus, the Euclidean gradient w.r.t. ⌘ can be decomposed into three parts. For notation simplicity, we let K0 = K(cur),
C0 = C(cur), and ⌧ 0 = ⌧ (cur).

The first part of @`

@⌘Kij
can be computed via

1
2Tr
�
[µAA ⌦ µGG]

T
@⌧

@⌘Kij

�
=

1

2
p
d
Tr
⇥
(µT

AA
K0EijK

T

0)⌦ (µT

GG
C0C

T

0)
⇤

=
1

2
p
d
Tr(µT

GG
C0C

T

0)Tr(µ
T

AA
K0EijK

T

0). (81)

We obtain the expression for the first part of @`

@⌘K
as 1

2
p
d
Tr(CT

0 µGGC0)K
T

0 µAAK0.

Similarly, we can obtain the second and third parts, which gives altogether the Euclidean gradient g(⌘K) via

g(⌘K0
) =

1

2
p
d
[Tr(CT

0 µGGC0)K
T

0 µAAK0 + �Tr(CT

0 C0)K
T

0 K0 � dIp]. (82)

Likewise, the Euclidean gradient g(⌘C) is

g(⌘C0
) =

1

2
p
p
[Tr(KT

0 µAAK0)C
T

0 µGGC0 + �Tr(KT

0 K0)C
T

0 C0 � pId]. (83)

25

Simplifying Momentum-based Positive-definite Submanifold Optimization with Applications to DL

I.3. Derivation of the Update

We consider the update for block ⌘K . By the approximation in Eq. (13), we have

w(⌘K1) m(⌘K0), (84)

for block ⌘K . Since ⌘K is symmetric, we can further show that the accurate approximation also gives the same update since
the second dominant term vanishes as shown in Eq. (56).

Since ⌘K is symmetric (see Eq. (39)), the vector-Jacobian product needed in Eq. (14) can be expressed as

w(⇠K0) = J(⇠K0
)w(⌘K1) = w(⌘K1). (85)

Thus, we have w(⇠K0) = m(⌘K0) for ⌘K .

As a consequence (similar to Appx. H.3), our update (defined in Eq. (12)) for block ⌘K can be expressed as below, where
we drop all superscripts and let w = m,

Momentum :mK ↵mK + �g(⌘K0
),

GD :⌘K1
 �mK ,

K K(cur)Expm(
1

2
p
d
⌘K1

). (86)

Since we initialize mK to 0, we can merge factor 1
2
p
d

into mK as shown below.

Momentum :mK ↵mK +
�

2
p
d
g(⌘K0

),

GD :⌘K1
 �mK ,

K K(cur)Expm(⌘K1
). (87)

Note that the affine-invariant metric is defined as twice of the Fisher-Rao metric.

To recover structured NGD, we have to set our stepsize � to twice the stepsize of structured NGD. Letting � = 2�2, we can
reexpress the above update for block ⌘K as

mK ↵mK +
�2p
d
g(⌘K0

),

K K(cur)Expm(�mK). (88)

A similar update for the block ⌘C can also be obtained.

J. Implementation for the Baseline Methods
We consider the following manifold optimization problem on a SPD full manifold:

min
⌧2Sk⇥k

++

`(⌧) (89)

Recall that a Riemannian gradient w.r.t. ⌧ is ĝ(⌧) := ⌧ (r⌧ `) ⌧ = �r⌧�1`.

The Riemannian gradient descent (RGD) is

⌧ (new) RExp(⌧ (cur)
,��ĝ(⌧ (cur))). (90)

26

Simplifying Momentum-based Positive-definite Submanifold Optimization with Applications to DL

The update of Alimisis et al. (2020) is shown below, where we initialize z by 0:

⌫(cur) ↵z(cur) + �ĝ(⌧ (cur))

⌧ (new) RExp(⌧ (cur)
,�⌫(cur))

z(new) T̂⌧ (cur)!⌧ (new)(⌫(cur)) (91)

The update of Alimisis et al. (2021) is shown below, where we initialize y by ⌧ :

z(new) RExp(⌧ (cur)
,��ĝ(⌧ (cur)))

y(new) RExp(y(cur)
,� �

1� ↵
T̂⌧ (cur)!y(cur)(ĝ(⌧ (cur))))

⌧ (new) RExp(y(new)
,↵RExp�1(y(new)

, z(new))) (92)

The update of Ahn & Sra (2020) is shown below, where we initialize z by ⌧ :

y(new) RExp(⌧ (cur)
,��ĝ(⌧ (cur)))

z(new) RExp(⌧ (cur)
,

↵

1� ↵
RExp�1(⌧ (cur)

, z(cur))� 2�ĝ(⌧ (cur)))

⌧ (new) RExp(y(new)
,↵RExp�1(y(new)

, z(new))) (93)

We properly select momentum weights and stepsizes in Ahn & Sra (2020) and Alimisis et al. (2020; 2021) so that these
updates are equivalent in Euclidean cases.

Recall that our update with momentum in the GNC ⌧ = CTC (see Sec. 3.2) is

m(new) ↵m(cur) + �

=C(cur)(r⌧ `(⌧
(cur)))

⇣
C(cur)

⌘T

z }| {
(C(cur))�T ĝ(⌧ (cur))(C(cur))�1

⌘1 0�m(new)

C(new) Expm(12⌘1)C
(cur)

⌧ (new)
�
C(new)�T C(new) (94)

where C is a dense non-singular matrix, we initialize m by 0, and we use the quadratic truncation of the matrix exponential
as Expm(N) ⇡ I+N+ 1

2N
2. Thus,

Expm(N)C ⇡ 1
2 (I+ (I+N)(I+N))C. (95)

Note that when N is a symmetric matrix, we have I+N+ 1
2N

2 = 1
2

�
I+ (I+N)(I+N)T

�
� 0. Since ⌘1 is a symmetric

matrix, we know that the updated ⌧ is SPD even when we use the truncation. The statement about the truncation also holds
when N is a triangular matrix arising from a new GNC using a Cholesky factor C.

We can recover the update of Lin et al. (2021a) on a SPD manifold by setting ↵ = 0 in Eq. (94).

For a Gaussian submanifold ⌧ =


⌃+ µµT µ

µT 1

�
considered in Sec. 3.3.1, the update of Lin et al. (2021a) on this

submanifold is shown below, where we can use the Gaussian gradient identities in Eq. (66) and ⌃ = UTU:

µ µ� �

2
⌃ (rµ`)

U Expm

✓
��

2
U (r⌃`)U

T

◆
U (96)

where we use a new GNC and the quadratic truncation for the matrix exponential.

27

