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Abstract—Post-quantum cryptography (PQC) has recently gar-
nered significant attention across various communities. Alongside
the ongoing standardization process for general-purpose PQC
algorithms by the National Institute of Standards and Technol-
ogy (NIST), the research community is actively exploring the
realm of lightweight PQC schemes. Ring-Binary-Learning-with-
Errors (RBLWE)-based encryption scheme (RBLWE-ENC) is a
promising lightweight PQC candidate suitable for Internet-of-
Things (IoT) and edge computing applications. The parameters
of the RBLWE-ENC, however, do not favor deploying typical fast
algorithms like number theoretic transform (NTT). In this paper,
therefore, we propose to design a Toeplitz Matrix-Vector Product
(TMVP) Initiated Novel Accelerator (TINA) for RBLWE-ENC.
We innovatively used TMVP (a subquadratic-complexity fast
algorithm for polynomial multiplication) to derive the significant
arithmetic operation of RBLWE-ENC into a new form for high-
performance operation. This novel formulation culminates in the
development of a comprehensive accelerator known as TINA.
Through implementation and comparative analysis, we demon-
strate the efficiency gains achieved by our proposed accelerator.
To the authors’ best knowledge, this is the first report on the
TMVP strategy initiated RBLWE-ENC accelerator. The findings
of this work is expected to provide valuable references in the
ongoing advancement of lightweight PQC development.

Index Terms—Fast algorithm, hardware accelerator, high-
performance, lightweight post-quantum cryptography, Ring-
Binary-Learning-with-Errors, Toeplitz Matrix-Vector Product

I. INTRODUCTION

Nearly all currently deployed public-key cryptographic al-

gorithms, such as Rivest-Shamir-Adleman (RSA) and Ellip-

tic Curve Cryptography (ECC), are vulnerable to a suffi-

ciently large quantum computers, due to Shor’s algorithm [1].

Therefore, the pursuit of an alternative approach known as

the post-quantum cryptography (PQC) has gained significant

attention across diverse communities. The National Institute

of Standards and Technology (NIST) is currently engaged

in a standardization effort focused on general-purpose PQC

algorithms [2]. At the same time, the research community

is actively seeking lightweight PQC solutions tailored for

specific applications, including Internet-of-Things (IoT) de-

ployments and edge computing servers [3], [4], as underscored

in the recent National Science Foundation (NSF) Secure and

Trustworthy Cyberspace Principal Investigators’ Meeting 2022

(SaTC PI Meeting’22) [5].
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Among the candidates for PQC, lattice-based cryptography

(LBC) stands out, with many LBC schemes built upon the

foundation of the Learning-with-Error (LWE) problem [6].

A commonly used variant of LWE is Binary-LWE (BLWE),

which admits worst-case to average-case hardness to standard

lattice problems [7], and enjoys a more efficient implementa-

tion due to the use of binary errors [8], [9]. Its structured vari-

ant, RBLWE-ENC is based on the average-case hardness of

the RBLWE (Ring-Binary-Learning-with-Errors) problem [9].

Extensive security analyses and evaluations have confirmed its

promise for lightweight applications [10].

Following the recent trend in PQC, more attention has

been made to efficient hardware implementation of RBLWE-

ENC. On the one hand, a cohort of resource-constrained use

cases, exemplified by IoT and edge devices, necessitates a

compact RBLWE-ENC implementation. Conversely, applica-

tions such as IoT servers boast more abundant resources,

encompassing platforms like field-programmable gate arrays

(FPGAs), enabling the deployment of robust high-performance

accelerators. In the former scenario, a possible approach

involves adopting a point-wise processing strategy with a

small area but at the cost of extended latency [11], [12]. On

the other hand, the latter scenario demands an accelerator of

elevated performance while still upholding yet with decent

resource usage. Our paper focuses on the efficient design of the

RBLWE-ENC accelerator for the latter scenario, specifically

targeting a complete accelerator (with a sampler), which has

yet to be done in the literature.

Existing Work. The main arithmetic operation of RBLWE-

ENC is the polynomial multiplication over ring [8]. Accord-

ingly, starting from the introduction of RBLWE-ENC, several

efforts have been used to obtain an efficient implementation

of the polynomial multiplication for RBLWE-ENC, especially

on the hardware platforms. Some of the case example ef-

forts include: The first full-hardware work was reported in

[13]. The subsequent work [4] and [14] introduced optimized

structures. A further improvement was reported in [15]. More

recently, high-performance implementations were presented in

[16], [17]. Other work in the field also include [11]. Strictly

speaking, these existing work are all based on the schoolbook-

based method with a computational-complexity of O(n2).
Very recently, a Karatsuba algorithm initiated accelerator for

RBLWE-ENC was presented in [18], which was the first try in

the field to use a fast algorithm to reduce the computational

complexity to O( 3n
2

4 ). Its corresponding architecture, how-

ever, is still relatively large, and thus there still exists room

for further exploration and breakthrough.
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TABLE I: Notations for This Paper

Notations for RBLWE-ENC

a public parameter (integer polynomial)

r1, r2 binary polynomials (r2: secret key)

e1, e2, e3 binary errors (binary polynomials)

m message

n scheme size

q modulus

f(x) ring polynomial (f(x) = xn + 1)

Notations for deriving the proposed algorithm & accelerator

Z0, Z1 TMVP input matrix-vectors (binary field)

T0, T1, T2 TMVP main matrices (binary field)

V0, V1 TMVP output matrix-vectors (binary field)

G, P binary polynomial

W , D, Q integer polynomial

Challenges. Though the design in [18] is still not that

ideal, using a fast algorithm for RBLWE-ENC seems to be

an inevitable trend. On the other hand, however, there exist

three aspects of challenges related to the accelerator design for

RBLWE-ENC. First of all, the parameter settings of RBLWE-

ENC are generally smaller than the regular Ring-LWE-based

schemes. Hence, it does not favor deploying typical fast

algorithms such as number theoretic transform (NTT) [19].

Secondly, the direct deploying of other fast algorithms like the

Karatsuba algorithm needs significant implementation efforts

on the output processing due to the involved arithmetic factors

such as x or (x2 − x) and hence is hard to be popularized for

general usage. Meanwhile, because of the unequaled coeffi-

cient size in the polynomial multiplication of RBLWE-ENC,

the addition-related pre-computing operations will increase

the small-size coefficient-related processing bit-width, which

might offset the gain from deploying fast algorithm [18].

Lastly, all the existing designs are basically based on the

main arithmetic operation of RBLWE-ENC and have yet to

consider the overall operations, including the sampler (not a

trivial effort).

Motivation and Main Contributions. It is noticed that

Toeplitz Matrix-Vector Product (TMVP) is a relatively new

technique for polynomial multiplication over the binary field

[20], [21], [22], [23]. Recently, TMVP has also been deployed

for polynomial multiplication used in other types of PQC

schemes like [24]. Compared with the Karatsuba algorithm, we

noticed that TMVP-based polynomial multiplication involves

simpler final output processing as it is based on matrix-vector

product-related operations. This work is an extension of [24]

that we propose to design a TMVP Initiated Novel Accelerator

(TINA) for RBLWE-ENC. Major contributions include:

• We have innovatively used TMVP to derive a new

algorithm based on the major arithmetic operation of

RBLWE-ENC for high-performance computation.

• We have mapped the proposed algorithm into an efficient

hardware accelerator (TINA) with the help of several new

algorithm-to-architecture design techniques.

• We have conducted thorough implementation and com-

parison to show that the proposed accelerator has superior

performance over the state-of-the-art designs and is suit-

able for high-performance, lightweight applications.

Note that TMVP-deployed BRLWE-ENC implementation has

yet to be explored in the literature. Besides, the proposed
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Fig. 1: Three phases for RBLWE-ENC.

accelerator has included the sampler and related phases’

operations and thus is more complete than the existing designs.

The rest of the paper is organized as follows. The prelim-

inary knowledge is introduced in Section II. The proposed

algorithm is described in Section III. In Section IV, we present

the proposed TINA. The proposed accelerator is evaluated in

Section V. Section VI gives the conclusion.

II. PRELIMINARY KNOWLEDGE

Notations. There are two groups of notations used in this

paper: one for the operations of RBLWE-ENC and another for

the deriving the proposed algorithm based on TMVP method.

Details of these notations are listed in Table I.

A. RBLWE-ENC
Overview. RBLWE is a structured variant of BLWE [7],

[9], which uses the ring Zq[x]/(x
n + 1) (one element in

the ring is expressed as the polynomial of degree (n − 1)
with integer coefficients modulo q, and the other has merely

binary coefficients). RBLWE-ENC consists of three phases:

key generation, encryption, and decryption [9] (see Fig. 1).

• Key generation. Note that a is a g public parameter

shared by Alice and Bob; r1 and r2 are randomly selected

binary polynomials (r2 is the secret key). After the

operation of p = r1 − a · r2, p is sent to Bob (r1 is

discarded then).

• Encryption. After receiving the public key from Alice,

Bob uses three error (binary) polynomials e1, e2, and

e3 to produce the two polynomials (ciphertext) of c1
and c2. Message m̃ is computed by the operation that

each coefficient of the input message m (n-bit binary

polynomial) is multiplied with q/2 (respectively). c1 and

c2 will be sent back to Alice.

• Decryption. Alice finally uses the secret key r2 to recover

the original message m. Note that there is a threshold de-

coder function involved with the final decryption process,

i.e., it will produce a binary value of ‘1’ if the coefficient

is in the range of (q/4, 3q/4), otherwise it will return ‘0’.

Note that though the authors of [4] have proposed to

use an inverted RBLWE-ENC, where the integer coefficients

of one polynomial are selected from the inverted range of

(−b q
2c, b

q
2c − 1) (facilitate two’s complement representation),

the three phases of Fig. 1 remain almost the same as the

previous. Therefore, in this paper, we still use the major

arithmetic operations in Fig. 1 while adopting this strategy.

Security Level. The BLWE problem admits a worst-case

hardness of the standard lattice problem [7], [25],while the
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RBLWE-ENC is based on the average hardness of the RBLWE

problem [9]. Using a structured variant such as Ring-LWE

and Module-LWE is a common approach in the NIST PQC

standardization process [2]. Concretely, the security level of

RBLWE-ENC has been estimated in [9] and then re-examined

in [10]. Recent research [25] has also confirmed BLWE’s

security hardness, which again indirectly supported RBLWE-

ENC being a promising scheme for lightweight applications.

Parameter Settings. There exist two widely used parameter

sets for the RBLWE-ENC, namely (n, q) = (256, 256) and

(n, q) = (512, 256). In this work, we focus on implementation

for such two parameter sets as they have been used extensively

in the research community to conduct implementation bench-

mark for lightweight applications [4], [18], [12]. In particular,

the parameter set of (n, q) = (512, 256) has been examined

in [10] which has a quantum/classic security of 140/190 bits.

B. TMVP

Definition. Let us define an n× n Teoplitz matrix as T =
[ti,j ]0≤i,j≤n−1, where ti,j = ti−1,j−1 [20], [22]. Define V =
(V0, V1) as an n×1 column vector (V0 and V1 are n

2×1 column

vectors) and T0, T1, and T2 as n
2×

n
2 Toeplitz matrices. Finally,

we have the following expressions [20]

Z =

[

Z0

Z1

]

=

[

T0 T2

T1 T0

] [

V0

V1

]

=

[

T0(V0 + V1) + (T2 + T0)V1

T0(V0 + V1) + (T1 + T0)V0

]

,

(1)

where we can further define four components, i.e., component

matrix point (CMP), component vector point (CVP), point-

wise multiply (PWM), and reconstruction (R): CMP(T ) =
(T2 + T0, T0, T0 + T1), CVP(V ) = (V1, V0 + V1, V0),
P = PWM(CMP(T ),CVP(V )) = (P0, P1, P2), and Z =
R(P ) = (P0 + P1, P1 + P2) (for P0 = (T2 + T0)V1,

P1 = T0(V0 + V1), and P2 = (T1 + T0)V0). Therefore,

the complexity of original matrix-vector product (O(n2)) is

reduced to O(3(n2 )
2) (three sub-matrix-vector products).

The operation of (1) can be iteratively applied to the original

matrix-vector product to achieve subquadratic-complexity. So

far, according to the authors’ best knowledge, there is no

TMVP-based design reported for RBLWE-ENC.

III. TINA: ALGORITHMIC FORMULATION

As seen from Fig. 1, polynomial multiplication is the major

arithmetic operation among all three phases of RBLWE-ENC.

This section thus focuses on the formulation of the proposed

algorithm for the polynomial multiplication of RBLWE-ENC.

Note that this algorithm is extended from [24].

Extension to the Integer Field. Define t′i,j as an integer

as well as v′i. We then have
[

Z ′
0

Z ′
1

]

=

[

T ′
0(V

′
0 + V ′

1) + (T ′
2 − T ′

0)V
′
1

T ′
0(V

′
0 + V ′

1) + (T ′
1 − T ′

0)V
′
0

]

, (2)

where t′i,j is denoted by the two’s complement form. Compar-

ing with (1), one can see that the only difference is that two

subtractions are now used to replace the additions in CMP.

Preparation. The proposed algorithm is derived as follows.

Definition 1. Define: W =
∑n−1

i=0 wix
i, D =

∑n−1
i=0 dix

i,

and G =
∑n−1

i=0 gix
i, where gi is the binary coefficient and di

and wi are coefficients of 8-bit over ring (log2q = 8), and W
is the product polynomial. We have

W =DG mod f(x) =

n−1
∑

i=0

dix
i mod f(x),

=
n−1
∑

i=0

di(Gxi mod f(x)),

(3)

where f(x) = xn + 1.

Definition 2. Define G[0] = Gx0 mod f(x), G[1] =
Gx1 mod f(x), . . ., and G[n−1] = Gxn−1 mod f(x).

Thus, we can have G[0] = g0+g1x+g2x
2+· · ·+gn−1x

n−1,

G[1] = G[0]x mod f(x) = −gn−1 + g0x + · · · + gn−2x
n−1,

..., G[N−1] = G[n−2]x mod f(x) = −g1−g2x−g3x
2−· · ·+

g0x
n−1, for f(x) = xn + 1 and xn ≡ −1.

Thus, the original polynomial multiplication of (3) becomes

W =

n−1
∑

i=0

diG
[i], (4)

which can be transferred into a matrix-vector product of










w0

w1

...

wn−1











=











g0 −gn−1 · · · −g1
g1 g0 · · · −g2
...

...
. . .

...

gn−1 gn−2 · · · g0











×











d0
d1
...

dn−1











.

(5)

Definition 3. Define (5) as [W ] = [G] × [D], where [W ],
[G], and [D] are n×1, n×n, and n×1 matrices, respectively.

Define again the elements in the matrix as [W ]i,1, [G]i,j , and

[D]i,1 (1 ≤ i, j ≤ n), i.e., [G]1,1 = g0, [G]2,1 = g1, etc.

We can thus follow (2) to rewrite (5) as
[

W0

W1

]

=

[

G0 G2

G1 G0

]

×

[

D0

D1

]

, (6)

where [Wi] and [Di] are n
2 × 1 vectors (0 ≤ i ≤ 1), i.e.,

[W0] = [w0 w1 · · · wn/2−1]
T , · · · , [D1] = [dn/2 · · · dn−1]

T ;

[Gj ] are n
2 × n

2 Toeplitz matrices (0 ≤ j ≤ 2), e.g.,

[G0] =











g0 −gn−1 · · · −gn/2+1

g1 g0 · · · −gn/2+2

...
...

. . .
...

gn/2−1 gn/2−2 · · · g0











. (7)

Note that [G2] = −[G1], then we have
[

W0

W1

]

=

[

G0 −G1

G1 G0

]

×

[

D0

D1

]

=

[

G0(D0 +D1) + (G1 +G0)(−D1)
G0(D0 +D1) + (G1 −G0)D0

]

.

(8)

Considerations. The direct hardware implementation of (8)

would consume huge resource usage and thus is considered

impractical. Besides that, similar to the Karatsuaba method

[18], TMVP-based approach also involves the pre-computing

related additions, e.g., (G1 + G0) in (8), which increases the

bit-width to 2-bit (not in favor of iterative deploying).
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Proposed Strategy. Based on the above considerations, we

propose a novel mathematical derivation strategy for the poly-

nomial multiplication of RBLWE-ENC to achieve hardware

implementation-friendly, relatively low-complexity, and high-

performance operation. In detail, we plan to: (i) derive the

three n
2 -size matrix-vector products into accumulation forms

to obtain high-speed computation yet with relatively small

complexity; (ii) determine a suitable computational sequence

to minimize resource usage (implementation-friendly); (iii)

output these accumulation components to produce the final

result with low resource usage. Overall, we plan to have the

following three steps to derive the algorithm.

Step-I. Without loss of generality, we can consider

[G0][D0 + D1] first (the same principle applies to the other

two n
2 × n

2 matrix-vector products as well). One can see that

[D0 +D1] is still an n
2 × 1 matrix-vector such that we have

[G0][D0 +D1] =[G0]:,1[D0 +D1]1,1+

[G0]:,2[D0 +D1]2,1 + · · ·+

[G0]:,n/2[D0 +D1]n/2,1

=

n/2
∑

j=1

[G0]:,j [D0 +D1]j,1,

(9)

which turns the original matrix-vector product into an accu-

mulation format, i.e., n/2 elements of [G0]:,j are respectively

multiplied with the matched [D0 + D1]j,1 and then through

n/2 cycles of accumulations to produce the final output.

Likewise, we can also have

[G1 +G0][−D1] =

n/2
∑

j=1

[G1 +G0]:,j [−D1]j,1,

[G1 −G0][D0] =

n/2
∑

j=1

[G1 −G0]:,j [D0]j,1.

(10)

Therefore, all three n/2-size matrix-vector products of (8)

have become forms of accumulations, where each accumula-

tion unit takes n/2 cycles to produce the output.

Benefits. This type of accumulation brings multiple benefits:

(i) the n/2 elements of one certain column of the main matrix,

e.g., j = 1 for [G0]:,j , are exactly the n/2 elements of the first

column of [G0] (from left), which is easy to be implemented on

hardware platform; (ii) the corresponding value from vector-

matrix (e.g., [D0+D1]j,1) is processed one by one as required

by the accumulation, which can also be easily implemented

with minimized resources (see Section IV); (iii) the values of

the related component after the additions (subtraction equals

addition under two’s complement representation), e.g., [G1 +
G0] & [G1 − G0], still maintain small-size as TMVP is not

iteratively deployed (which potentially reduces area usage).

Step-II. It becomes clear that the accumulated results from

(9) and (10) need to be added to produce the final output of (8).

To maintain a small critical-path implementation, we decided

to process these accumulations separately and then add the

corresponding results together1. In this case, we have

[W0] = [G0(D0 +D1)] + [(G1 +G0)(−D1)],

=

n/2
∑

j=1

[G0]:,j [D0 +D1]j,1 +

n/2
∑

j=1

[G1 +G0]:,j [−D1]j,1,
(11)

and

[W1] = [G0(D0 +D1)] + [(G1 −G0)D0]

=

n/2
∑

j=1

[G0]:,j [D0 +D1]j,1 +

n/2
∑

j=1

[G1 −G0]:,j [D0]j,1.
(12)

Step-III. Lastly, we propose to process operations of (11)

and (12) in parallel. This is because: (a) related elements,

such as [G1 + G0]:,j and [G1 − G0]:,j , can be produced

through operations on elements from one whole column of the

original matrix [G], which reduces potential implementation

cost; (b) the final output actually rests on three different

accumulation units, i.e., additions are still needed after ac-

cumulations, which requires that these accumulations can be

executed simultaneously for both high-performance and low-

complexity implementation.

Finally, for practical implementation, the accumulated re-

sults from three parallel accumulation units are delivered out

in serial such that the actual output elements of [W0] and

[W1] are also collected in serial2. This setup also allows low

resource usage on the output hardware component design.

The Proposed TMVP-based Polynomial Multiplication

Algorithm. The proposed algorithm is thus concluded as:

Algorithm 1: Proposed TMVP-based polynomial mul-

tiplication algorithm for RBLWE-ENC

Input : G and D are integer polynomials. // the

actual bit-width of the coefficients follow

Definition 1;

Output: W = GD mod (xn + 1);

Initialization step

1 make ready the inputs G and D;

2 [Z0] = [Z1] = [Z2] = 0; // [Z0], [Z1], and [Z2] are
n
2 × 1 matrices

Main step

3 for i = 1 to n/2 do

4 for j = 1 to n/2 do

5 [Z0]:,1 = [Z0]:,1 + [G0]:,j [D0 +D1]j,1;

6 [Z1]:,1 = [Z1]:,1 + [G1 +G0]:,j [−D1]j,1;

7 [Z2]:,1 = [Z2]:,1 + [G1 −G0]:,j [D0]j,1;

8 end

9 [W0]i,1 = [Z0]i,1 + [Z1]i,1;

10 [W1]i,1 = [Z0]i,1 + [Z2]i,1;

11 end

Final step

12 obtain all the coefficients of output W ;

which fully fulfills the objectives of the proposed mathematical

derivation design strategy.

1This step is different from that in [24], where related additions are executed
first and then accumulations.

2This part is also different from the algorithm of [24], where the output
values are processed in parallel.
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Fig. 2: The proposed accelerator (TINA) for RBLWE-ENC.

Note: [U0] = [G0], [U1] = [G0 + G1], [U2 = [G1 − G0]]
(applies to Figs. 4, 6, and 7).

Besides that, as seen from Fig. 1, the arithmetic operation in

the major phases of RBLWE-ENC also involves the addition

with other polynomials (one polynomial for decryption and

two polynomials for encryption). Meanwhile, a constant error

also needs to be added according to the suggestion to a

recent report in [17]. The related components (including the

decryption decoder) for these operations are all included in

the actual hardware implementation (the following section).

IV. TINA: PROPOSED HARDWARE ACCELERATOR FOR

RBLWE-ENC

This section focuses on the design process of the proposed

accelerator (TINA). The overall architectural overview of

TINA for RBLWE-ENC is shown in Fig. 2, which is built from

the proposed Algorithm 1 through several novel algorithm-to-

architecture mapping techniques.

Overall Description. The proposed accelerator of Fig.

2 contains four main units, namely the sampler, the pre-

processing unit, the calculation unit (including the input pro-

cessing for D), and the control unit. While the sampler is re-

sponsible for generating required random binary numbers to be

used for the computation involved within certain operational

phases of RBLWE-ENC (i.e., encryption/decryption), the pre-

processing unit is in charge of producing necessary input

signals for the proposed TMVP-based computation (Algorithm

1) within the following unit. The calculation unit focuses on

the execution of the main computation steps of Algorithm 1,

including the accumulation steps (the input preparation for

D is also included) and related output delivery. Finally, the

control unit is designed mainly to produce all needed signals

for the proper operation of TINA. The details of these units

and related hardware design techniques are described below.

Note that we assume both G and D inputs are from outside

of regular 32-bit (could be other regular bits as well).

Sampler. The sampler is an important component for a

complete RBLWE-ENC accelerator, as the binary polynomials

(including the secret key) are generated from the binary sam-

pler. So far, however, there are no available reports about the
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Fig. 3: Internal details of the CSRs in the accelerator (values in

the registers are initial loadings), where CSR-0/1 and CSR-2/3

are used in the pre-processing unit, as shown in Fig. 4.

hardware-implemented RBLWE-ENC structures deploying a

proper binary sampler to execute related complete operations.

The major challenge of designing a sampler component for

RBLWE-ENC accelerator lies in two aspects: (i) the sampler

can generate true random binary numbers while maintaining a

relatively small area usage; (ii) the need for a proper wrapper

to transfer the generated random binary numbers into correct

signals for following steps of computation.

For the first aspect of the challenge, in our proposed

accelerator design, we have deployed an open-accessed true

random number generator (TRNG) as the binary sampler [26].

This sampler is highly optimized as it can generate one 32-bit

binary value per cycle while maintaining small area usage. The

interested readers can refer to the original paper for detailed

internal structure and related source code. Note that a 1-bit

input is needed to activate the TRNG to produce the output.

While for the second aspect of the challenge, we have

designed a novel serial-in parallel-out circular-shift register

(CSR) to transfer the 32-bit output of the TRNG into n number

of regular 1-bit signals. As shown in Fig. 3, there are in total n
number of registers and 32 MUXes. In the loading stage, the

selection of the 32 MUXes are set to the right channel so that

the 32 output bits from the sampler can be serially loaded into

the registers. After that, the selection signals of these MUXes

are switched to the left channel such that the values loaded in

the registers are circularly shifted once per cycle. Note that due

to the processing bit-width (32-bit), the output of Register-0

(Reg0) is connected to the input of Register-32 (Reg32), similar

to the other registers. Finally, the outputs of two registers (two

bits) are connected to the outside, namely Reg0 and Reg 2

n
−1,

to coordinate with the following computation unit to form the

needed signals from [G0] and [G1] according to Algorithm 1.

Pre-processing Unit. This computation unit, as shown in
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Fig. 4: The internal structures of the pre-processing unit and calculation unit.
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1

input[1] +
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…
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output[1]

output[7]

Fig. 5: The internal structures of the sign inverter.

Fig. 4, is another major component for the proposed RBLWE-

ENC accelerator. According to the procedures shown in Lines

5-7 of Algorithm 1, we can consider first the two important

operations involved here: the two corresponding elements from

matrix [G0] and matrix [G1] need to be added together to be

multiplied with one coefficient from [−D1] (Line 6); while

the same elements from matrix [G0] and matrix [G1] are

subtracted (actually can be seen as the addition with another

element with sign inverted) and then multiplied with the

related coefficient from [D0] (Line 7). Based on Step-III of

the Proposed Mathematical Derivation Strategy in Section

III, these two operations should be executed at the same time.

Multi-CSR Processing Technique. To realize the needed

arithmetic operations, we have proposed a multi-CSR pro-

cessing technique. As shown in Fig. 4 (a), we have used

four CSRs, four MUXes, four adders, and two sign inverters

(SIs) to realize the needed operations. The internal structures

of these CSRs are shown in the dotted boxes of Fig. 3 (c),

respectively, where the only difference is the processing bit-

width. As specified in Step-I of Section III (paragraph of

“Benefits”), the first columns (from left) of matrices [G0]
and [G1] are actually the first column of [G], two MUXes

connecting with CSR-0 and CSR-1 can function to: (i) load

with respective initial values; (ii) circular shifting the values

in two CSRs to produce correct elements for each column

of [G] (with the help of SI); (iii) produce needed values from

[G0] and [G1], respectively, based on the switching of MUXes.

In this case, the output of CSR-0, CSR-2, and CSR-3 are

corresponding values from [G0], [G0 + G1], and [G1 − G0],

…

U
i

d

+

+

+

Reg.

M
U

X

Reg.

Reg.

…

Result

Ui,0

Ui,1

Ui,n/2-1

…

Fig. 6: Internal details of the calculation block.

respectively. Note that the values stored in CSR-0 and CSR-1

are in the range of [−1, 1] (because of the existence of SI),

which become [−2, 2] in CSR-2 and CSR-3 due to the involved

addition/subtraction operations (as shown in Fig. 4(a), a bit-

extension cell is needed when the value is transferred from

CSR-0/CSR-1 to CSR-2/CSR-3). Finally, we want to mention

that SI comprises eight inverters followed by the same number

of half-adders (see Fig. 5), following the sign inversion method

for the two’s complement representation.

Overall, the proposed multi-CSR processing technique pro-

duces needed column elements for [G0], [G1 + G0], and

[G1 − G0], respectively (we have used [U0], [U1], and [U2]
in Fig. 2), for the computation executed in the following unit.

Calculation Unit. The calculation unit mainly executes the

accumulation operation of Lines 5-7 of Algorithm 1 (including

the input processing for D) as well as the final output delivery

(Lines 9-10 in Algorithm 1). To fully accomplish the related

operations, we have used another new CSR for D to generate

the needed [D0]j,1, [−D1]j,1, and [D0 +D1]j,1, respectively,

according to Algorithm 1. As shown in Fig. 3(b), the new CSR

receives the 32-bit input and then transfers the whole data into

an 8-bit style. Then, the [D0]j,1 and [D1]j,1 from the CSR-d
are used as the two inputs of an adder to produce the needed

[D0]j,1, [D0 + D1]j,1, and [−D1]j,1, respectively, to be fed

into the calculation unit.

While for the accumulation-related operation, as shown in

Fig. 4 (b), there are in total three calculation blocks involved
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TABLE II: Major Area-Time Complexities for The Proposed RBLWE-ENC Accelerator (TINA) and The Existing Designs

Design AND Adder! Register! MUX! Extra input/output resources Latency1 Complexity CD?∗

[13]2 − 2n1 n n three log2q-bit n-size SRs n O(n2) N

[4]2 n n n n+ 1 three log2q-bit n-size SRs n O(n2) N

[11] n n n n three log2q-bit n-size SRs n O(n2) N

[16] Arch.-I n n n n two log2q-bit n-size SRs n O(n2) N

[17] n n n n three log2q-bit n-size SRs n O(n2) N

[18] u = 1 2(n− 1) 3(n− 1) + 3 9n
2

− 3 3n+ 5 two 2-bit n

2
-size SRs3 n

2
O( 3n

2

4
) N

TINA − 3
2
(n− 1) + 9 3n

2
+ 1 3n

2
+ 6# see Figs. 3 and 4 n

2
O( 3n

2

4
) Y

Note: we follow the existing designs’ reporting styles to list the complexities based on the decryption phase (particularly the timing-complexity). The
latency listed here refers to the major computation cycles based on the decryption phase.
We have also listed specific input/output processing resources (if available). SR: shift-register.
!: The adders, registers, and MUXes listed are all log2q-bit.
∗: CD: complete design (a complete accelerator including sampling for both encryption and decryption operations).
1: This structure needs n log2q-bit subtractors and log2q-bit adders.
2: These two designs belong to the parallel-in parallel-out structures (but related input/output processing resources were not specified). For [13], maybe three
log2q-bit n-size shift-registers (or multiple BRAMs) are needed. For [4], two log2q-bit n-size shift-registers and one log2q-bit n-size output buffer are
needed, based on the re-implementation in [15].
3: This design also needs two 1-bit n

2
-size SRs and one 2-bit n

2
-size SR, which is equivalent to two 2-bit n

2
-size SRs.

#: The MUXes used for multipliers (Fig. 7) are also included and calculated here (equivalent number).
Note that TINA needs two 2-bit n

2
-size SRs and two 3-bit n

2
-size SRs in the pre-processing unit, as well as one CSR-g (1-bit) and one CSR-d (8-bit). All

these SRs are shown in Figs. 2, 3, and 4.
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Fig. 7: Internal details of the multipliers.

within this unit, corresponding with the three n
2 × n

2 matrix-

vector products of Algorithm 1 (Lines 5-7), respectively.

The internal structure of the calculation block is shown in

Fig. 6, which includes n
2 number of point-wise multipliers

processing in parallel followed by the same number of adders,

MUXes, and Registers (Reg.). Note that we have used MUX-

based point-wise multipliers, where the size of the MUX is

determined by the input bit-width, as shown by the example in

Fig. 7. For the first calculation block, we used the MUX-based

point-wise multiplier in Fig. 7(a); for the rest two calculation

blocks, the MUX-based point-wise multipliers are the same

as that in Fig. 7(b). After the intermediate value is calculated,

the second MUX determines whether the result is positive or

negative to produce the final result, as shown in Fig. 7(c).

Besides that, followed by the point-wise multiplier are an

adder, a MUX, and a register, where the adder and register

form the accumulation unit with the help of the MUX. After
n
2 cycles of accumulation, the values stored in the registers can

be serially delivered out again with the help of these MUXes.

Apart from the three calculation blocks, there are still four

adders needed to execute the final addition with the constant

error (Const. err.) as recommended by the recent report [17].

Meanwhile, the final additions with the corresponding coef-

ficients of two polynomials (namely P and Q) are needed

to produce correct encryption/decryption results. Note that an

XOR (decoder) attached with the two most significant bits of

the output value produces the decryption output [13].

Control Unit. A control unit is required to coordinate all

the components/cells in the accelerator of Fig. 2 to function in

a proper manner. The working status of the architecture of Fig.

2 can be split into three stages, namely loading, computing,

and delivery, which can be realized by a finite state machine

(FSM). The loading stage simply refers to the loading of

the sampler output or input coefficients of G & D into the

CSRs; while the computing stage denotes the computation

of the required operations according to mainly Lines 5-7 of

Algorithm 1 to produce the correct output; and the delivery

stage refers to the final output processing (Lines 9-10). Finally,

the control unit generates these signals to determine the

accelerator’s operational phase, e.g., encryption/decryption.

Overall Operation. The proposed accelerator of Fig. 2 re-

quires only n/2 cycles of accumulation to generate the output

result, benefiting from the proposed TMVP-based polynomial

multiplication algorithm as well as related design techniques.

For decryption, as shown in Fig. 2, G and D are 32-bit

inputs. G needs 256/32 = 8 cycles to complete the preloading

stage after stored in CSR-g through the first MUX. At the

same time, D is directly stored in CSR-d, which takes a total

of 256/32 × 8 = 32 cycles. The following n/2 cycles are

the warm-up phase of the pre-processing unit (Fig. 4(a)), and

CSR-g is in the circularly-shifting status (the outputs attached

to registers loading initial g0 and gn/2−1 are delivered out).

Note that at this time, these four MUXs in Fig. 4(a) all

turn on the left input. The next n/2 cycles belong to the

calculation phase, and these four MUXes all turn on the right

input to produce U0, U1, and U2, respectively. Meanwhile,

[D0]j,1, [−D1]j,1, and [D0 +D1]j,1 are produced from CSR-

d. Adding the results of the first calculation block and the

second calculation block generates the intermediate values of

W0 (serial format); while adding the results of the first and
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third calculation blocks produces the intermediate values of

W1 (in serial). These two intermediate values, plus the serial-

fed P , Q, and constant error, produce the final result.

The encryption operation is similar to the decryption op-

eration. However, the overall calculation process needs to be

performed twice to produce ciphertext c1 and c2 (see Fig. 1).

In the first round, G, D, and P are used as inputs, while in

the second round, G, D, P , and Q are used as inputs.

The key generation phase involves the same operation as the

decryption phase in the calculation part but is slightly different

in the data input setup. In the beginning, the MUX in the

sampler unit chooses the data from the sampler as input and

passes it to CSR-g. Note that the binary sampler generates r2
in the preloading stage and outputs r1 in the calculation stage,

which is directly connected to the P port of the calculation

unit (only 1 bit of the data is used each cycle). Also, the input

for D now becomes −a (connecting with Fig. 1).

V. EVALUATION: COMPLEXITY & COMPARISON

This section presents a comprehensive evaluation of the

proposed accelerator, from theoretical complexity to imple-

mentation comparison, to showcase the efficiency of TINA.

Complexity Analysis. As described in Section IV, the

proposed TINA contains a sampler unit, a pre-processing unit,

a calculation unit (including the input processing resources for

D), and a control unit. While the actual number of resource

usage cannot be exactly calculated due to the sophisticated

setup for different phases’ operations, we have listed the major

area-time complexities of TINA in Table II along with the

existing ones.

As seen from Table II, TINA overall has smaller area-

time complexities than the existing ones. Though the rough

estimated resource usage of TINA, such as the number of

adders, is about ≥ 1.5 times than the majority of the existing

ones (except [13] and [18]), the computational latency of TINA

is only half of those ones, which indicates that TINA has a

bigger chance to obtain smaller area-time complexities. In par-

ticular, when comparing with the very recent Karatsuba-based

accelerator [18], TINA actually has better smaller resource

usage (e.g., significantly less number of adders and registers).

Even when the resource usage of input/output is considered,

TINA still has an advantage in area usage (see Table V later).

Most importantly, TINA has a complete hardware setup for

encryption & decryption operations (with sampling), which is

missing in all existing ones.

Implementation. To further evaluate the actual performance

of the proposed TMVP-based RBLWE-ENC accelerator, we

have coded the constructed accelerator of Fig. 2 with VHDL.

The binary sampler is adopted from the open-source code [26].

Finally, we have used the Vivado 2020.2 to synthesize and im-

plement it on the targeted AMD-Xilinx Virtex-7 XC7V2000t

and Kintex-7 XC7K325t devices. Note that we have followed

the existing designs like [4], [11], [18] to select the parameter

sets, i.e., (n, q) = (256, 256) and (n, q) = (512, 256).
Area Complexity. The area usage for the designed accelera-

tor is listed in Table III, where the frequency is set as 200MHz.

One can notice that the pre-processing unit and calculation

unit occupy the majority of resource usage of the accelerator,

TABLE III: Area-Complexity for The Proposed TINA (Virtex-

7). The Clock Frequency Constraint is Set As 200MHz.

Building block LUTs FFs Slices

n = 512

Sampler unit 31 32 5∗

Pre-processing unit 7,458 2,565 3,003∗

Calculation unit 9,038 10,293 4,517∗

Other blocks 119 99 ∗

Whole accelerator 17,158 13,501 5,132

(% of overall FPGA) 1.40 0.55 1.68

Note: no DSPs and BRAMs usage for the proposed accelerator.
∗: The slice number reported by Vivado involves overlapping calculations.

TABLE IV: Time-Complexity for The Proposed Accelerator

(TINA) for Different Security Levels of RBLWE-ENC, Where

The Clock Frequency Constraint is Set to 200MHz.

n
Cycles/Time (µs)

KeyGen Encryption Decryption

256 448/2.24 1,120/5.60 448/2.24

512 896/4.48 1,840/9.20 896/4.48

namely 16,496 LUTs and 12,858 FFs. With the combination

of other components, the whole accelerator occupies 17,187

LUTs and 13,272 FFs (or equivalent 5,132 slices).

Timing Results. The time-complexity of the proposed

hardware accelerator, in terms of the number of cycles and

related computational time, with respect to different security

levels of RBLWE-ENC, are calculated and listed in Table IV,

where the frequency constraint is set as 200MHz. For instance,

for n = 512, the implemented accelerator requires 896, 1,840,

and 896 cycles to execute the key generation, encryption,

and decryption operations, respectively, which is equivalently

4.48µs, 9.20µs, and 4.48µs, respectively.

Comparison With The Existing Implementations. We

have also listed the area-time complexities of the proposed

accelerator along with the existing implementations for com-

parison, including the available Karatsuba-based design of [18]

and other high-speed ones [13], [4], [15], [16], [17]. Note that:

(i) the designs of [14], [11] were implemented for Intel devices

([18] has already shown its efficiency over them); (ii) designs

like [12] belong to the low-speed category with very long

latency cycles. We thus do not include them for comparison.

Comparison Consideration. Due to the fact that the existing

designs were mainly built on the major arithmetic operation of

the decryption phase of RBLWE-ENC, these implementations

hence did not include as many resources as the proposed one

(which has a complete setup for different phases’ operations).

Therefore, a balanced consideration is needed when TINA is

compared with the existing ones.

As shown in Table V, when comparing with the existing

RBLWE-ENC implementations, the proposed accelerator has

significantly outperformed the existing designs of [13], [4], in

aspects of both area-delay product (ADP) and throughput.

When comparing with [15], we want to mention that this

existing design has a simple structure with small input process-

ing resources (which executes the operation of one polynomial

multiplication and one polynomial addition). Hence, a direct

comparison is not feasible in this case. But as indicated

in [16] that its proposed architectures have better area-time
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TABLE V: Comparison of FPGA Implementation Performance (AMD-Xilinx Devices)

Design n Phase∗ Device LUT FF Slice Fmax Latency1 Delay ADP2 Throughput3 CD?

[13] 256 Dec. Spartan-6 6,728 6,813 1,874 101 262 2,594 4,861 0.099 N

[4]$ 256 Dec. Virtex-7 5,153 2,151 1,701 261 257 985 1,675 0.260 N

[15]4 u = 1 256 Dec. Virtex-7 3,600 2,568 1,146 415 256 617 707 0.415 N

[16] Arch.-I 256 Dec. Virtex-7 5,324 6,469 1,781 357 256 717 1,277 0.360 N

[17] 256 Dec. Virtex-7 7.6k 6.2k 2.3k 514 259 504 1,159 0.508 N

[18] u = 1 256 Dec. Virtex-7 12,360 7,163 3,501 395 128 324 1,135 0.790 N

TINA 256 Dec. Virtex-7 10,264 6,737 3,030 339 128 378 1,145 0.678 Y

TINA 256 Enc. Virtex-7 10,264 6,737 3,030 339 256 776 2,289 0.339 Y

[15]4 u = 1 256 Dec. Kintex-7 3,600 2,568 1,134 394 256 650 737 0.394 N

[16] Arch.-I 256 Dec. Kintex-7 5,159 6,467 1,963 347 256 738 1,449 0.340 N

[18] u = 1 256 Dec. Kintex-7 12,360 7,163 3,606 384 128 333 1,202 0.679 N

TINA 256 Dec. Kintex-7 10,225 6,697 3,114 367 128 367 1,142 0.698 Y

TINA 256 Enc. Kintex-7 10,225 6,697 3,114 367 256 733 2,283 0.349 Y

[4]$ 512 Dec. Virtex-7 10,285 4,249 3,289 263 513 1,951 6,417 0.262 N

[15]4 u = 1 512 Dec. Virtex-7 7,184 5,128 2,208 399 512 1,283 2,833 0.399 N

[16] Arch.-I 512 Dec. Virtex-7 11,123 12,851 3,668 357 512 1,434 5,260 0.357 N

[17] 512 Dec. Virtex-7 15k 12.3k 4.6k 470 515 1,096 5,042 0.470 N

[18] u = 1 512 Dec. Virtex-7 24,739 14,407 6,871 392 256 1,306 8,974 0.784 N

TINA 512 Dec. Virtex-7 20,365 13,617 5,994 303 256 845 5,066 0.606 Y

TINA 512 Enc. Virtex-7 20,365 13,617 5,994 303 512 1,690 10,131 0.303 Y

[18] u = 1 512 Dec. Kintex-7 24,736 14,406 6,949 380 256 674 4,684 0.760 N

TINA 512 Dec. Kintex-7 20,334 13,594 6,067 309 256 829 5,028 0.618 Y

TINA 512 Enc. Kintex-7 20,334 13,594 6,067 309 512 1,657 10,055 0.309 Y

CD: complete design, i.e., a complete accelerator (including sampling) for all three phases’ operations.
∗: The existing designs were mostly designed according to the arithmetic operation in the decryption phase. Hence we use this phase to conduct the
calculations. Nevertheless, we have added the encryption phase’s performance for TINA as it can operate in both phases. Dec.: decryption; Enc.: encryption.
$: We used the re-implemented data from [15], which was justified in [15].
1: Latency cycles, denote the major computation time of executing the decryption phase.
2: ADP=#Slice×delay (Dec.) ×103, where Delay=critical-path×latency. Unit for Fmax: MHz. Unit for delay: ns.
3: Throughput = n/Delay.
4: The design of [15] did not involve the input resource usage (except one 1-bit n-size SR). Hence, its comparison with TINA needs more balanced
consideration. The same principle applies to the other existing designs since the proposed accelerator has a more complete structural/operational setup than
the other designs as well as more input processing resources.

complexities than [15], we conclude that TINA actually has

better actual ADP than [15] (as indicated in Table V that TINA

has smaller ADP than [16]). Moreover, TINA also has a more

complete structure and operational setup than [15] and [16].

When compared with [17], the proposed TINA has com-

parable ADP but with a much higher throughput. The design

of [17] has smaller area usage than TINA, but the primary

reason is that [17] had fewer input processing resources and

internal components than the proposed accelerator. Therefore,

the actual area-time complexities of [17] are much larger than

TINA. Finally, we want to mention again that TINA is a

complete accelerator while [17] was designed mainly for the

major arithmetic operation of the decryption phase (no sampler

and related components for all phases’ complete operations).

As seen from Table V, the design of [18] has a very

comparable ADP and throughput with TINA. Again, as we

mentioned above, [18] did not have a more complete structural

and operational setup than TINA, the actual area-time com-

plexities of [18] are much larger than the proposed accelerator.

Besides that, we also want to mention TINA’s other advantages

over [18]: (i) TINA has a smaller area occupation than [18],

so TINA is more suitable for lightweight high-performance

applications; (ii) TINA is based on TMVP, which involves

much easier output setup than [18] and ease of popularization

of the proposed technique (see the comparison of Fig. 2 with

Fig. 5 of [18]); (iii) TINA can operate in all phases of RBLWE-

ENC, which the design of [18] does not possess. Overall, we

conclude that TINA has superior performance than [18].

Discussion. As the major focus of this paper is to de-

velop a novel fast-algorithm-initiated complete accelerator for

RBLWE-ENC, we compare its performance only with the

existing RBLWE-ENC designs. Besides that, as the existing

designs were also using shift registers for input processing

(though not fully), it is also very appropriate that the pro-

posed accelerator is competing with the similar design style

structures in the literature (memory-based design can be our

future option to reduce the input/output processing cost).

Nevertheless, we want to mention that the existing designs

like [4], [18] have demonstrated their structures’ efficiency

over the other types of PQC implementations, including Kyber

and Saber [18]. Following the foundation of this work, we

hope a more comprehensive comparison can be made in the

future when RBLWE-ENC is developed into a more mature,

lightweight PQC scheme.

Future work can also be more focused on: (a) developing

more efficient fast algorithms for non-NTT style polynomial

multiplication in RBLWE-ENC; (b) finding more effective

strategies to implement the PQC scheme when employing fast

algorithms; (c) conducting a series of security-related analyses

on accelerator implementations.

Other Works. We also want to mention other PQC works

in the field [27], [28], [29], [30], [31]. Due to the scheme dif-

ference, we do not explicitly discuss them here. Nevertheless,

these designs are important to the hardware PQC design field.
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VI. CONCLUSION

In this paper, we propose a novel TMVP-based RBLWE-

ENC accelerator. Firstly, we have derived the polynomial

multiplication of the RBLWE-ENC into the proposed TMVP-

based algorithm. Then, we built the proposed accelerator based

on the proposed algorithm along with the help of several

novel design techniques. Finally, a detailed evaluation process,

including complexity analysis and implementation, has shown

that the proposed accelerator has significantly better balanced

area-time complexities than the state-of-the-art solutions. To

the authors’ best knowledge, this is the first report on the

RBLWE-ENC accelerator with complete operational phases.

The research outcome of this work is expected to generate

significant impacts on lightweight PQC development as well

as its further standardization.
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