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Abstract
Collective interaction of emitter arrays has lately attracted significant attention due to its role in
controlling directionality of radiation, spontaneous emission and coherence. We focus on light
interactions with engineered arrays of solid-state emitters in photonic resonators. We theoretically
study light interaction with an array of emitters or optical centers embedded inside a microring
resonator and discuss its application in the context of solid-state photonic systems. We discuss how
such arrays can be experimentally realized and how the inhomogeneous broadening of mesoscopic
atomic arrays can be leveraged to study broadband collective excitations in the array.

1. Introduction

Coherent interaction of light with an ensemble of atoms is actively pursued for implementation of quantum
optical platforms to generate, store and process quantum optical information. The strength of interaction
between light and atoms is key to efficient and deterministic control of quantum information. As an
example, distribution of quantum optical entanglement can be done more efficiently, in principle, when
photonic qubits interact strongly with single atoms [1] compared to weak interaction with many atoms [2].
A conventional approach to increasing the light-atom interaction is to use low-loss and small-mode-volume
optical resonators built around the atoms or optical centers [3].

In solids, an ensemble of atoms exhibits inhomogeneous broadening due to defects in the host material.
High-bandwidth interaction has been achieved in small doped crystals with this property [4]. Using optical
resonators to reach the strong-coupling regime, in this case, limits the interaction bandwidth due to the
resonator linewidth. Therefore, exploring interaction mechanisms that enable strong light-atom coupling
over a wide range of frequencies is desirable to advance quantum photonic technology and achieve
broadband control of quantum optical information.

It has been proposed that an array of 2D or 3D identical atoms (or emitters) forming a periodic structure
in space can coherently interact with light [5, 6] as an atomic mirror or they can superradiantly emit photons
in certain directions. In 1D, laser-cooled atoms placed near a waveguide have also been shown to reach the
strong coupling regime [7]. In these scenarios, atoms are considered to be identical (e.g. laser cooled atoms)
and that imposes limitations on system’s bandwidth (MHz) and its practical realization, which is due to the
complex experimental setup required for laser trapping atoms. In this paper, we consider a mesoscopic 1D
array of solid-state atoms coherently and collectively interacting with light over a wide range of frequencies.
We discuss how such arrays can be implemented in solid-state photonics with large atom numbers and
arbitrary geometries. Primarily, we present the theory to analyze the emission properties of such arrays and
discuss its applications.

2. Physical system and experimental realization

The rare-earth ions in bulk crystals have been used to demonstrate broadband quantum light storage and
these systems have the potential to reach coherence time on the order of hours [8]. Rare earth ions randomly
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Figure 1. (a) An standing-wave pump was used to create (via the holeburning process) an effective array in a randomly Er-doped
Y2SiO5 (YSO) crystal [13]. The effective array could then create an atomic Bragg grating reflecting the probe light after the
holeburning process was completed.(b) An array of Er ions was precisely implanted into a SiN microring resonator. Enhanced
light collection (reduced loss) was observed at a wavelength commensurate with the lattice [14]. (c) An array of Tm ions
implanted into a lithium niobate microring resonator can exhibit long-range coupling with superradiance signatures [13].

doped in a miniaturized optical resonator have also been used to show strong light-atom interactions over
the resonator linewidth [9, 10].

Recently, our group has investigated interactions of photons with 1D arrays of rare-earth ions in
solid-state crystals and photonic structures. In one experiment (see figure 1(a)), we used a randomly doped
Er crystal to engineer an effective array inside the crystal [11]. We created the array by means of
spatio-temporal hole burning to tailor an atomic profile with a periodic spatial distribution in one
dimension. We showed that this effective array can behave like an atomic mirror coherently reflecting light
(Eref) in the same direction as the input light (Einput).

In another experiment, we used precision ion implantation to deterministically create a periodic array of
isotopically-pure Er ions inside a SiN microring resonator (see figure 1(b)). Microring resonators have been
proposed as a scalable platform for light-atom interactions in solid-state systems [12]. We showed that in this
platform, coherent interference between the scattered light inside the microring can be manifested as the
reduced propagation loss at wavelengths commensurate with the array. Due to the amorphous structure of
the SiN host, the inhomogeneous broadening and the decoherence rate of Er ions were large in this platform
preventing us from observing of quantum interference or strong interactions.

To reach the quantum regime of light interaction with an ensemble of rare-earth ions, we also carried out
experiments with an array of isotopically pure Tm3+ ions implanted inside a lithium niobate (LN)
microresonator (see figure 1(c)). The crystalline structure of LN shows lower inhomogeneous broadening
and decoherence for Tm3+ ions compared to Er3+ ions in SiN. Also, the large branching ratio of Tm3+

compared to Er3+ at the measured transition makes it easier to observe the collective decay effects. We were
able to observe superradiance emission of photons from Tm3+ ions in LN resonators. The superradiance is
the evidence of strong coupling of an array of solid-state optical centers with light. We note that the
microresonator used in this study had large linewidth, and as the result a strong coupling could not be
obtained by using the resonator alone. The geometry of ions enables interference between the light scattered
by the ions, leading to directional and nonlinear emission. The emission between individual ions and its
interference can be modeled as an effective coupling field between the ions that leads to long-range ion-ion
coupling. The large inhomogeneous broadening of implanted ions and the relatively large cavity linewidth
enables observation of collective light-atom coupling over a wide range of frequencies.

Typical microring resonators fabricated for photonic devices in LN have radii on the order of tens to
hundreds of micrometers. These rings have a wide transmission window such that the intracavity fields can
interface with Thulium or Erbium ions respectively. For our application, we fabricate rings with radius
R≈ 100 µm as shown in figure 2. The width of these waveguides is chosen to be sufficiently small to isolate
the fundamental TE mode. The surface roughness of the ring dominates the scattering loss, modeled by a
decay rate κ. Current state-of-the-art fabrication can produce rings with decay rates on the order of
megahertz [15]. The ring is coupled to the rest of the optical elements via a bus waveguide, carrying driving
fields E1 and E2.

Into this microring, we have previously implanted Tm3+ ions in bands approximately 36 nanometers in
width. The 3H6 to 3H4 transition of these ions corresponds to the desired 795 nanometer light, with a
branching ratio close to unity for isotopically pure Thulium ions [16]. As a result, these ions can be
considered as two-level systems coupled to our optical resonator modes. We then capture the decay to
non-cavity modes by these ions as another decay rate Γ0.

When emitters such as rare-earth ions are incorporated into solid-state nanostructures, they experience
an inhomogeneous broadening of the transition frequencies on the order of gigahertz [16]. Understanding
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Figure 2. Schematic representation of the physical system under study. Atoms or optical centers are confined in segments much
smaller than the optical wavelength around a microring resonator. The segments contain atoms of different frequencies and form
an array around the resonator.

the role of inhomogeneous broadening in cooperative coupling is of great practical importance and, to the
best of our knowledge, it has not been studied in details. In this paper, we provide a theoretical model for
studying light-atom interaction in solid-state media with inhomogeneous broadening. We discuss the
influence of this broadening on collective behaviors in 1D microring structures as defined above. We show
that the interplay between atomic and cavity broadening enables broadband cooperative effects.

3. Theory for collective coupling in a ring resonator

Recently, there has been a great degree of interest in the effects of geometry on atomic ensembles coupled to a
photonic medium. Atoms placed near a waveguide can induce an effective cavity mode, resulting in collective
behaviors for atoms distributed in a lattice [17, 18]. Such systems have been used to engineer cooperatively
enhanced atom-atom interactions [19] and coherent storage of photons in a lattice [20]. We consider an
array of emitters inside a microring resonator coupled to counter-propagating modes. In the ring geometry
considered, â1 and â2 denote the clockwise- and counterclockwise-propagating cavity modes, respectively.
The atoms of uniform transition frequency ωa are distributed within the waveguide and confined in
segments of width much less than the wavelength (λ), located at angles θn. The bare light-atom coupling
strength is given by g0 = d

√
ω/2!ε0A for dipole matrix element d, cross-section A, and driving field

frequency ω. It is assumed to be identical for all atoms. In general, the cavity linewidth is assumed to be much
greater than the linewidth of an atom. Thus, we model the intracavity field as a broadband field equation
with mode frequency ω0(k) in analogy to [21]. Initially, we will consider the case of a system of unbroadened
atoms. The Hamiltonian of the system is given in terms of the Fourier components of the intracavity field as

Ĥ=

ˆ ∞

0
dkω0(k){â†1(k, t)â1(k, t)+ a†2(k, t)a2(k, t)}+

ωa

2

N∑

n=1

σ̂
(n)
z (t)

+ g0

N∑

n=1

σ̂
(n)
eg

ˆ ∞

0
dk{â1(k, t)eikRθn + â2(k, t)e

−ikRθn}+ g0

N∑

n=1

σ̂
(n)
ge

ˆ ∞

0
dk{â†1(k, t)e

−ikRθn + â†2(k, t)e
ikRθn}

+

ˆ ∞

0
dk(E(in)1 (k)â1(k, t)+ E(in)∗1 (k)â†1(k, t))+

ˆ ∞

0
dk(E(in)2 (k)â2(k, t)+ E(in)∗2 (k)â†2(k, t)). (1)

Here σ̂(i)
z and σ̂(i)

ge are the operators for the atomic population and coherence of ith segment, respectively.

E(in)j (k) denotes a classical driving field acting on the cavity mode k in direction j, and we assume that the
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intracavity field has a linear mode dispersion ω0(k) =±vpk for uniform phase velocity vp. We consider
dissipation due to cavity decay at a rate κ and atomic decay to non-cavity modes at a rate Γ0,

D(ρ̂) =
Γ0

2

N∑

n=1

(2σ̂(n)
ge ρ̂σ̂(n)

eg − {σ̂(n)
ee , ρ̂})

+
κ

2

ˆ ∞

0
dk(2â1(k, t)ρ̂â

†
1(k, t)− {â1(k, t)†â1(k, t), ρ̂})

+
κ

2

ˆ ∞

0
dk(2â2(k, t)ρ̂â

†
2(k, t)− {â2(k, t)†â2(k, t), ρ̂}).

(2)

In its current form, equation (2) results in equations of motion of the atomic degrees of freedom
containing field terms like

d

dt
σ̂(n)
ge (t) = (−Γ0 + iωa)σ̂

(n)
ge + i g0σ̂

(n)
z

ˆ ∞

0
dk
(
â1(k, t)e

i kRθn + â2(k, t)e
−i kRθn

)
. (3)

The field-atom coupling in equation (3) contains the full expansion of the field terms. To eliminate these
degrees of freedom, we define a field density operator Â(sc)(θ, t) as

Â(sc)(θ, t) = Â1(θ, t)+ Â2(θ, t) =
1√
2π

ˆ ∞

0
â1(k, t)e

i kRθdk+
1√
2π

ˆ ∞

0
â2(k, t)e

−i kRθdk. (4)

To determine the equations for the field mode operators, we integrate the equations of motion of each
operator with respect to time. The clockwise and counterclockwise field mode operators â1(k, t) and â2(k, t)
have their dynamics given by

d

dt
â1(k, t) =

(
− κ

2
− iω0(k)

)
â1(k, t)− i g0

N∑

m=1

σ̂(m)
ge (t)e−i kRθm − iE(in)1 (k) (5)

d

dt
â2(k, t) =

(
− κ

2
− iω0(k)

)
â2(k, t)− i g0

N∑

m=1

σ̂(m)
ge (t)ei kRθm − iE(in)2 (k). (6)

The solutions to equations (5) and (6) are then given by

â1(k, t) = e(−
κ
2 −iω0(k))tâ1(k,0)− i g0

N∑

m=1

e−i kRθm

ˆ t

0
σ̂(m)
ge (t ′)e(−

κ
2 −iω0(k))(t−t ′)dt ′ +

iE(in)1 (k)

−κ
2 − iω0(k)

(7)

â2(k, t) = e(−
κ
2 −iω0(k))tâ2(k,0)− i g0

N∑

m=1

ei kRθm
ˆ t

0
σ̂(m)
ge (t ′)e(−

κ
2 −iω0(k))(t−t ′)dt ′ +

iE(in)2 (k)

−κ
2 − iω0(k)

. (8)

To simplify, we define Â(in)
1 (θ)≡

´∞
0 ei kRθ â1(k,0)dk and E1(θ) =

i√
2π

´∞
0

E(in)(k)eikRθ

−κ
2 −i vpk

dk. Performing the

inverse Fourier transforms on equations (7) and (8) yields

Â1(θ, t) = e−
κ
2 tÂ(in)

1

(
θ−

vp
R
t
)
− i g0

√
2π

vp

N∑

m=1

ˆ t

0
dt ′σ̂(m)

ge (t ′)e−
κ
2 (t−t ′)δ

(
t ′ +

R

vp
(θ− θm)− t

)
+E1(θ).

(9)

Resolving the time-integral component of equation (9), we find a pair of step-functions due to the
cyclical nature of the ring resonator.

Â1(θ, t) = e−
κ
2 tÂ(in)

1

(
θ−

vp
R
t
)
+E1(θ)−

i
√
2πg0
vp

N∑

m=1

(
Θ(θ− θm)e

−κ
2

R
vp
(θ−θm)σ̂(m)

ge

(
t− R

vp
(θ− θm)

)

+Θ(θm − θ)e
−κ

2
R
vp
(2π−(θm−θ))

σ̂(m)
ge

(
t− R

vp
(2π − (θm − θ))

))
.

(10)

The counter-clockwise component Â2 follows identically, with θ− θm replaced by θm − θ and

Â(in)
1

(
θ− vp

R t
)
replaced by Â(in)

2 (θ+ vp
R t) in equation (10) due to the opposite direction of propagation. The
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term A(in)
1,2 describes the delayed initial cavity fields at a position θ, and the term E1,2(θ) describes the

time-independent effect of the classical driving field at a position θ. The field equation can then be viewed as
two parts; an input term which describes the behavior of the input fields in the cavity, and a scattered field
from each of the atoms. We also observe that the average time a photon spends in the cavity is given by
2πRq/vp = 1/κ. Applying the Markov approximation for the atomic degrees of freedom and adding the
counterclockwise field component, we find

Â(sc)(θ, t) = e−
κ
2 t
(
Â(in)
1

(
θ−

vp
R
t
)
+ Â(in)

2

(
θ+

vp
R
t
))

+(E1(θ)+E2(θ))

− i
√
2πqg0
vp

N∑

m=1

N (ωa)
(
e
(−κ

2 +iωm) R
vp
|θ−θm| + e

(−κ
2 +iωm) R

vp
(2π−|θ−θm|)

)
σ̂(m)
ge (t). (11)

Here, we have definedN (ω)≡ 1
q

∑q−1
p=0 e

(−κ
2 +iω) R

vp
(2π p)

, interpreted as the cavity effect for a mode of

frequency ω. The N (ω) term contains both real and imaginary parts; this accounts for both the destructive
and constructive interference from the photon traveling in the microring cavity, as well as the buildup of
phase for photons off-resonance with the cavity. q represents the average number of revolutions a photon
makes before decaying out of the cavity. Making a transformation to includeN (ω) allows us to limit θ to the
range [0,2π). The scattered field includes two terms as each atom scatters a field in both the clockwise and
counterclockwise directions. To further simplify the equations, we will write the per-atom scattered field
amplitude as

Ωnm = N (ωa)
(
e
(−κ

2 +iωa) R
vp
|θn−θm| + e

(−κ
2 +iωa) R

vp
(2π−|θn−θm|)

)
. (12)

This term encapsulates the effect of the phase between atoms at positions θn and θm on the coupling via a
mode of frequency ωa. In the case where the resonator decay for a single revolution is negligible and the
atomic frequency is sufficiently close to a cavity resonance, we can write

Ωnm ≈ N (ωa)
(
e
iωa

R
vp
|θn−θm| + e

−iωa
R
vp
|θn−θm|

)
= 2N (ωa)cos

(
ωa

R

vp
(θn − θm)

)
. (13)

When viewing the interatomic coupling, it is useful to express our coupling strength in terms of the

cavity-enhanced cooperativity η = g20
κRΓ0

. Grouping both the clockwise and counterclockwise initial fields

into a single term A(in)(θ, t), we can write the equations of motion for the atomic population as

d

dt
σ̂(n)
z =

(
−Γ0 − 2ηΓ0%(N (ωa))

)
(σ̂(n)

z + 1)

−
√
2πi g0(σ̂

(n)
eg (e−

κ
2 tÂ(in)(θn, t)+E (θn))− (e−

κ
2 tÂ(in)†(θn, t)+E ∗(θn))σ̂

(n)
ge )

− 2ηΓ0

∑

m&=n

(
Ω∗

nmσ̂
(n)
eg σ̂(m)

ge +Ω∗
nmσ̂

(m)
eg σ̂(n)

ge

)
. (14)

In equation (14), the first line denotes the free-space evolution of the atomic population due to
cavity-amplified decay to free space and repumping. The amplification term depends strongly on the atomic
frequency; as the atoms are detuned away from the cavity resonance, the real part ofN (ω) decays quickly in
amplitude. The term in the second line is the result of initial population of the resonator at t= 0. Note that
the terms Â(in) are explicitly time-dependent as the initial wave packet is not necessarily resonant with the
cavity, and does not produce a standing wave. For a long-time steady state approximation, one can drop
these terms as they decay exponentially. The final term describes an effective coupling between atoms
mediated by the cavity field. The equations for the atomic coherence follow a similar form,

d

dt
σ̂(n)
ge (t) =

(
− Γ0

2
− ηΓ0N (ωa)+ iωa

)
σ̂(n)
ge (t)+

√
2πi g0(e

−κ
2 tÂ(in)(θn, t)+E (θn))σ̂

(n)
z (t)

+ ηΓ0σ̂
(n)
z

∑

m&=n

Ωnmσ̂
(m)
ge (t). (15)

The last term in equation (15) indicates an effect on the inter-atomic coherences that depends on the
inversion of each atomic dipole. Note that this term vanishes for two atoms in the ground state. The second
term functions like a source term for the inter-atomic coherences, and indicates that the long-time evolution
of the system will experience a nonzero steady-state interatomic coherence as the steady-state population
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increases. Each atom in this ensemble experiences a cavity-induced enhancement to its emission rate given
by 2ηΓ0%(N (ω)), as well as a frequency shift ηΓ0&(N (ω)).

To better understand the role of the various terms in this equation, consider the case of all N atoms at the
cavity-resonant frequency ω0. This corresponds to k0R= ω0

R
vp
being an integer. Assuming that the atoms are

placed such that each atom is located at an antinode of the field, then the phase component of the couplings
are universally one. Assuming that the evolution time of the system is long relative to κ, then the constants
simplify to

N (ω0) =
1

q

e
−κ

2 (2π(q+1)) R
vp − 1

e
−κ

2 (2π)
R
vp − 1

≈ 1 (16)

Ωnm,0 =N (ω0)
(
e
−κ

2
R
vp
|θn−θm| + e

−κ
2

R
vp
(2π−|θn−θm|)

)
≈ 2. (17)

In the resulting equations, we assume that the classical driving field is symmetric for all atoms; i.e. E (θi)
is identical for all θi. Under these assumptions, all atoms behave identically regardless of position θi in the

steady state. Thus, one has the symmetric expectation value relations 〈σ̂(n)
z 〉= 〈σ̂(1)

z 〉, 〈σ̂(n)
ge 〉= 〈σ̂(1)

ge 〉. Under
these conditions and considering 〈σ̂(1)

z 〉=−1, the steady-state single-atom and atom-atom coherence can be
written respectively as

〈σ̂(1)
ge 〉SS =

√
2πi g0E

−Γ0
2 − ηΓ0(2N− 1)+ iω0

& 〈σ̂(1)
eg σ̂(2)

ge 〉SS =
2π g20|E |2

(
Γ0
2 + ηΓ0(2N− 1)

)2
+ω2

0

. (18)

Note that the atomic decay rate, Γ0, is modified by a factor of 1+ 4Nη due to the collective coupling
enhancing the directional scattering into the cavity mode. The emission rate of the system then scales linearly
with the number of participating atoms in a fully-cooperative array. This collectively enhanced emission is
mediated by the intracavity field, and is maximized when the atoms are all located at antinodes. When this
collective decay rate exceeds the original decay rate Γ0, the system becomes ‘superradiant’ [22]. Under these
conditions, the field scattered by the surrounding ensemble of atoms induces directional scattering.

3.1. Correlation in emission from atomic arrays
To better understand the effect of the atomic geometry on the emissions from the ring resonator, we consider
the correlations between field components. The second order-correlation function, g(2)(τ) can be used to
quantify the degree of directionality of emission from an array of emitters. We can write g(2)(τ) for
correlation between modes i and j observed at a position r0 in terms of the field operators as

g(2)ij (t,τ) =
〈Â†

i (r0, t)Â
†
j (r0, t+ τ)Âj(r0, t+ τ)Âi(r0, t)〉

〈Â†
i (r0, t)Âi(r0, t)〉〈Â†

j (r0, t+ τ)Âj(r0, t+ τ)〉
. (19)

Let t denote the time at which the system reaches steady-state evolution. We consider exclusively the
scattered field, ignoring the cavity driving field. Using the same time-evolution of the field modes as
described above, we arrive at a spin-operator representation of equation (19),

g(2)ij (τ) =

∑
m,m ′,p ′,p α∗

m,iα
∗
m ′,jαp ′,jαp,i 〈σ(m)

eg (0)σ(m ′)
eg (τ)σ(p ′)

ge (τ)σ(p)
ge (0)〉

(∑
m,pα

∗
m,iαp,i〈σ(m)

eg (0)σ(p)
ge (0)〉

)(∑
m ′,p ′ α∗

m ′,jαp ′,j〈σ(m ′)
eg (τ)σ(p ′)

ge (τ)〉
) (20)

where αm,i denotes the coupling between an atomm and a field mode i. For the case of our ring resonator,
this αm,i contains both the coupling strength g and a position-dependent effect ei kaR(θ−θi). For τ = 0, in the
case of complete atomic inversion these expectation values have well-known forms:

〈σ(m)
eg (0)σ(m ′)

eg (0)σ(p ′)
ge (0)σ(p)

ge (0)〉= (δmpδm ′p ′ + δmp ′δm ′p)(1− δmm ′) (21)

〈σ(m)
eg (0)σ(p)

ge (0)〉= δmp. (22)

For N unbroadened atoms at the resonant frequency of the cavity in a ring resonator with placements
given by θ1, . . . ,θN, we find the following results for emissions into co- and counter-propagating modes the
same frequency:

g(2)11 (0) =
1

N2

(
2N(N− 1)

)
(23)
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g(2)12 (0) =
1

N2

(
4

N∑

m=1

∑

m ′>m

cos2(kaR(θm ′ − θm))
)
. (24)

For any N > 1, the upper and lower bounds for g(2)(0) are given by

(N− 2)

N
! g(2)12 (0)!

(2N− 2)

N
. (25)

The maximum value of equation (24) is achieved when the interatomic spacing is λ/2, as then
R(θm ′ − θm) = nλ/2= nπ/ka. In the special case of two atoms in a ring resonator, the g(2) function can be

simplified as g(2)12 (0) = cos2(kaR(θm − θm ′)). This case was recently studied experimentally for two defect
centers in a SiC microdisk [6], and it was demonstrated that this system can allow for selection of only the
copropagating modes by angular spacing of π/2. Note that the limits derived for the N-atom case implies
that this effect is unique to the 2-atom regime. In the two-atom case, the atomic phase or position can be
engineered such that perfect constructive or destructive interference between interactivity radiation fields
can be observed. As the number of atoms increases, the atoms can no longer be positioned such that the
interference between all atoms is completely destructive and one sees reduced emissions in the
counterpropagating modes. The influence of geometry on the emergence of superradiant behavior has been
previously evaluated in free space in [23, 24]. In the case of a resonator, the directionality of these bursts is
replaced by a preference for a particular direction of propagation within the waveguide.

3.2. Effect of inhomogeneous broadening in atomic arrays
In the prior section, we developed a theory for handling atoms of any frequency coupled to a ring resonator.
We now consider an ensemble of atoms with frequency distribution, e.g. inhomogeneous broadening in
solids. We consider atoms at the desired frequency ωa resonant with the optical mode, and the other atoms
can be considered via an effective coupling between the modes of the field β.M(∆) denotes the number of
broadened atoms within each band at a detuning from the atomic resonance∆. We denote the number of
unbroadened atoms then asM0, and we assume that the density of atoms follows a Gaussian distribution
(
√
2πσ)−1 exp(−∆2/2σ2) with standard deviation σ. These atoms have a detuning-dependent interaction

with the field;

Ĥ/!=

ˆ ∞

0
dk
{
ω0(k)(â

†
1(k, t)â1(k, t)+ â†2(k, t)â2(k, t))−β(k)â†1(k, t)â2(k, t)−β(k)∗â†2(k, t)â1(k, t)

}

+
ω0

2

M0∑

m=1

σ̂(m)
z + g0

M0∑

m=1

σ(m)
eg

ˆ ∞

0
dk
(
â1(k, t)e

i kRθm + â2(k, t)e
−i kRθm

)

+ g0

M0∑

m=1

σ(m)
ge

ˆ ∞

0
dk
(
â†1(k, t)e

−i kRθm + â†2(k, t)e
i kRθm)

+

ˆ ∞

0
dk(E(in)1 (k)â1(k, t)+ E(in)∗1 (k)â†1(k, t))

+

ˆ ∞

0
dk(E(in)2 (k)â2(k, t)+ E(in)∗2 (k)â†2(k, t)). (26)

Here, allM0 of the atoms have resonant frequency ωa and the broadened atoms contribute to the term β.
We consider a distribution of atoms consisting of B total bands inside the host material. Each band consists
of an atomic ensemble localized in the host via, for example, focused ion implantation, and spacing between
the bands can be controlled to form certain geometries of the entire ensemble. The simple geometry
considered here is a periodic array of bands in 1D and along the field’s propagation direction. The coefficient
β can be determined by the power emitted into the counter-propagating mode normalized to the total power
in a single field mode. We follow the same procedure for calculating this as [25]. Assuming atoms are
contained within a 1D waveguide, there existM inhomogeneously broadened atoms at ith band’s position
{θi} which are responsible for this scattering.

To construct the coefficient, we can write |β| in terms of the emitted power,

|β(ω)|= ω

2

ˆ ∞

−∞

P(0)4π (ω,ω
′)

Pin(ω,ω ′)

PcM(ω,ω ′)

P(0)4π (ω,ω
′)
dω ′ (27)

7
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Figure 3. Coupling between modes with an incident field detuned from cavity resonance by∆ω. Simulation parameters
{N,ωa,vp,R,Γ,g0,σ}= {4× 106,378THz,3× 108 ms−1,50 µm,1KHz,10KHz,0.42GHz}. The detuning is normalized to the
standard deviation of the inhomogeneous broadening distribution, and the coupling strength is normalized by the cavity decay
rate and number of implanted segments or bands.

where P(0)4π is the power scattered by a single atom into free space in the absence of a cavity, Pin is the
incoming power from the counter-propagating mode, and PcM is the power scattered into the cavity mode by
M atoms at a single frequency. These ratios can be found via similar method as [26], that in the rotating wave
approximation yield

|β(ω)|= ω

2

ˆ ∞

−∞

(
|H(∆)|2M(∆)2η2La(∆)

(1+M(∆)H(∆)ηLa(∆))2 +( 2δκ +M(∆)H(∆)ηLd(∆))2

)
d∆ (28)

where∆= ω−ωa is the detuning between the incident field and the broadened atoms, δ = ω−ωc

is the detuning between the incident field and the cavity resonance, La(∆) = Γ2/(Γ2 + 4∆2) is
defined as the absorptive lineshape, and Ld(∆) =−2Γ∆/(Γ2 + 4∆2) as the dissipative lineshape.
H(∆) =

∑B
n=1 cos

2(ω R
vp
θn) denotes the response of an atomic dipole within the cavity for each band due to

the field detuned from their resonance by∆. An example of the resulting mode-mode coupling, β
(normalized to B, the number of atomic bands, and κ, the cavity decay rate) as a function of the incident
field frequency is shown in figure 3. The coupling takes the form of a Voigt profile, brought about by the
Lorentzian absorption of individual atoms and the Gaussian distribution of frequencies.

To decouple field’s equations, we define the standing-wave operators

âSW,1 =
1√
2
(â1 + eiφâ2)

âSW,2 =
1√
2
(â1 − eiφâ2)

(29)

where β(ω) = |β(ω)|eiφ(ω). For the following derivation, we will employ the linear dispersion to write β in
terms of the wavevector k. The evolution of the new field is then given by the two uncoupled equations

d

dt
âSW,1(k, t) =

(
−κ

2
− iω0(k)− i|β(k)|

)
âSW,1(k, t)− i

g0√
2

M0∑

m=1

(
e−i kRθm + ei(kRθm+φ(k))

)
σ̂(m)
ge (t)

− i√
2

(
E(in)1 (k)+ eiφ(k)E(in)2 (k)

)
(30)

8



J. Phys. Photonics 5 (2023) 024003 T Kling and M Hosseini

d

dt
âSW,2(k, t) =

(
−κ

2
− iω0(k)+ i|β(k)|

)
âSW,2(k, t)− i

g0√
2

M0∑

m=1

(
e−i kRθm − ei(kRθm+φ(k))

)
σ̂(m)
ge (t)

− i√
2

(
E(in)1 (k)− eiφ(k)E(in)2 (k)

)
. (31)

Note that the subscripts no longer correspond to the direction of propagation for the fields, as both
modes are hybridized by β. Instead, âSW,1(k, t) corresponds to a field mode with positively-shifted frequency,
while âSW,2(k, t) corresponds to a mode with negatively-shifted frequency. We can similarly write the
equations of motion for the atoms,

d

dt
σ̂(n)
z = (−Γ0)(σ̂

(n)
z + 1)− i

g0√
2
σ̂(n)
eg

ˆ ∞

0
dk
(
(âSW,1 + âSW,2)e

i kRθn +(âSW,1 − âSW,2)e
−iφ(k)−i kRθn

)

+ i
g0√
2
σ̂(n)
ge

ˆ ∞

0
dk
(
(â†SW,1 + â†SW,2)e

−i kRθn +(â†SW,1 − â†SW,2)e
iφ(k)+i kRθn

)
(32)

d

dt
σ̂(n)
ge = (−Γ0 + iω0)σ̂

(n)
ge + i

g0√
2
σ̂(n)
z

ˆ ∞

0
dk
(
(âSW,1 + âSW,2)e

i kRθn +(âSW,1 − âSW,2)e
−iφ−i kRθn

)
. (33)

Systems of this form for constant β have been studied at length in [25], for the case of scattering from the
walls of a ring resonator. However, the scattering here is frequency-dependent as the detuning of the atoms
influences both the scattering rate and the imprinted phase. We write the field density operators for this
system in a similar fashion to the explicit case,

A1(θ, t)≡
1√
2π

ˆ ∞

0
âSW,1(k, t)e

ikRθdk+
1√
2π

ˆ ∞

0
âSW,2(k, t)e

ikRθdk (34)

A2(θ, t)≡
1√
2π

ˆ ∞

0
âSW,1(k, t)e

−ikRθ−iφ(k)dk− 1√
2π

ˆ ∞

0
âSW,2(k, t)e

−ikRθ−iφ(k)dk. (35)

We then integrate these fields in a way very similar to equation (5) through (10). However, the discussion
is complicated somewhat by the inclusion of the frequency-dependent |β(ω)| term. Writing the solutions for
equation (30) explicitly,

âSW,1(k, t) = e(−
κ
2 −iω0(κ)−i|β(k)|)tâSW,1(k,0)+

i√
2

(E(in)1 (k)+ eiφ(k)E(in)2 (k))

−κ
2 − iω0(k)− i|β(k)|

− i
g0√
2

N∑

m=1

ˆ t

0
dt ′σ̂(m)

ge (t ′)e(−
κ
2 −iω0(k)−i|β(k)|)(t−t ′)

(
e−ikRθm + eiφ(k)+ikRθm

)
.

(36)

Note that the solution for âSW,2 follows identically save for a sign flip of |β(k)| and eiφ(k). Using these
explicit forms in equation (34), we find

Â1(θ, t) = e−
κ
2 tA(in)

1 (θ, t)+E
(in)
1 (θ)

− i
g0

2
√
π

N∑

m=1

ˆ t

0
dt ′σ̂(m)

ge (t ′)e−
κ
2 (t−t ′)

(ˆ ∞

0
e(−ivpk−i|β(k)|)(t−t ′)−ikRθm+ikRθdk

)

− i
g0

2
√
π

N∑

m=1

ˆ t

0
dt ′σ̂(m)

ge (t ′)e−
κ
2 (t−t ′)

(ˆ ∞

0
e(−ivpk+i|β(k)|)(t−t ′)−ikRθm+ikRθdk

)
(37)

where E
(in)
1 encapsulates the effect of the driving fields on the clockwise field density. We note that this

term includes contributions from both the clockwise and counterclockwise driving fields when |β(k)| is
nonzero. Additionally, we have applied the rotating-wave approximation to drop the fast oscillating
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2 k terms. Generally, we can writte this equation in terms of the two input fields and a scattered field
component Ŝβ(θ, t)

Â1(θ, t) = e−
κ
2 tA(in)

1 (θ, t)+E
(in)
1 (θ)+ Ŝβ(θ, t). (38)

We wish to simplify the terms in equation (37) in the same was as equation (10); to proceed, we employ
Parseval’s Theorem

ˆ ∞

−∞
f̃ ∗(k)g̃(k)dk= 2π

ˆ ∞

−∞
f ∗(x)g(x)dx (39)

with f̃(k) = e± i|β(k)|(t−t ′) and g̃(k) =Θ(k)eik(R(θ−θ ′)−vp(t−t ′)). Notably, the transform of g̃(k) is now a delta
function, as desired.

f(x) =

ˆ ∞

−∞
e±i|β(k)|(t−t ′)+ikxdk g(x) =

1

vp
δ

(
R

vp
(θ− θ ′)− (t− t ′)+

x

vp

)
. (40)

We subsequently reorder the integrals in equation (37), finding that the scattered fields can be written as

Ŝβ(θ, t) =−i

√
πg0
vp

N∑

m=1

[ˆ ∞

−∞
dx

(ˆ t

0
dt ′δ

(
t ′ −

(
t− R

vp
(θ− θm)−

x

vp

))

×
(
e−

κ
2 (t−t ′)σ̂(m)

ge (t ′)

ˆ ∞

−∞
dke−i|β(k)|(t−t ′)−ikx

))

+

ˆ ∞

−∞
dx

(ˆ t

0
dt ′δ

(
t ′ −

(
t− R

vp
(θ− θm)−

x

vp

))

×
(
e−

κ
2 (t−t ′)σ̂(m)

ge (t ′)

ˆ ∞

−∞
dkei|β(k)|(t−t ′)−ikx

))]
. (41)

Integrating equation (41) with respect to time places limits on the value of x,−R(θ− θm)< x< vpt
−R(θ− θm), as x values outside these bounds cannot have a nonzero value for the delta function.

Ŝβ(θ, t) =−i

√
πg0
vp

N∑

m=1

[ˆ vpt−R(θ−θm)

−R(θ−θm)
dx
(
e
−κ

2 (
R
vp
(θ−θm)+ x

vp
)
σ̂(m)
ge

(
t− R

vp
(θ− θm)−

x

vp

)

×
ˆ ∞

−∞
dke

−i|β(ω)|( R
vp
(θ−θm)+ x

vp
)−ikx

)

+

ˆ vpt−R(θ−θm)

−R(θ−θm)
dx
(
e
−κ

2

(
R
vp
(θ−θm)+ x

vp

)

σ̂(m)
ge

(
t− R

vp
(θ− θm)−

x

vp

)

×
ˆ ∞

−∞
dke

i|β(ω)|( R
vp
(θ−θm)+ x

vp
)−ikx

)]
. (42)

Applying the Markov approximation to the atomic operators in equation (42), we can also reorder the
equation to integrate the dummy variable x,

Ŝβ(θ, t) =−i

√
πg0
vp

N∑

m=1

[
σ̂(m)
ge (t)e

(−κ
2 +iωa) R

vp
(θ−θm)

×
(ˆ ∞

−∞
dke

−i|β(k)| R
vp
(θ−θm)

ˆ vpt−R(θ−θm)

−R(θ−θm)
dxe

(−κ
2 +iωa−i vpk−i|β(k)|) x

vp

)

+ σ̂(m)
ge (t)e

(−κ
2 +iωa) R

vp
(θ−θm)

(ˆ ∞

−∞
dke

i|β(k)| R
vp
(θ−θm)

×
ˆ vpt−R(θ−θm)

−R(θ−θm)
dxe

(−κ
2 +iωa−i vpk+i|β(k)|) x

vp

)]
. (43)
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Integrating and simplifying equation (43), we arrive at our final field equations

Â1(θ, t) = e−
κ
2 tA(in)

1 (θ, t)+E
(in)
1 (θ)

− i g0

√
π

vp

M0∑

m=1

[
σ̂(m)
ge (t)

ˆ ∞

−∞
dω
(
Ñ (ω)e

iω R
vp
(θ−θm))

×
(
e(−

κ
2 +i(ωa−ω−|β(ω)|))t − 1

−κ
2 + i(ωa −ω− |β(ω)|) +

e(−
κ
2 +i(ωa−ω+|β(ω)|))t − 1

−κ
2 + i(ωa −ω+ |β(ω)|)

)]
. (44)

Â2(θ, t) = e−
κ
2 tA(in)

2 (θ, t)+E
(in)
2 (θ)

− i g0

√
π

vp

M0∑

m=1

[
σ̂(m)
ge (t)

ˆ ∞

−∞
dω
(
Ñ (ω)e

−iω R
vp
(θ−θm))

×
(
e(−

κ
2 +i(ωa−ω−|β(ω)|))t − 1

−κ
2 + i(ωa −ω− |β(ω)|) +

e(−
κ
2 +i(ωa−ω+|β(ω)|))t − 1

−κ
2 + i(ωa −ω+ |β(ω)|)

)]
. (45)

We have defined a phase factor Ñ (ω) =
∑q−1

p=0 e
iω 2π pR

vp . In the limit as β goes to zero, we recover the
original field equation by employing Fourier transform identities. Therefore, the effect of the
inhomogeneous broadening can be understood by investigating the behavior and impacts of the integral
parameter in these field equations. The effect is separable into a spatial component, independent of β or t,
and a temporal component which depends on |β|. This effect also only depends on the detuning between the
resonant atomic frequency and the broadening-induced resonance shift,∆β = (ωa − |β(ω)|)−ω. This effect
is purely real in the case that the atoms are on-resonance with the shifted cavity frequency, and is
proportional to the cavity decay for a time t.

Note that the phase shift due to the inhomogeneous broadening φ(ω) does not appear in either of these
terms. This is due to the rotating wave approximation; the term φ(ω) only appears in terms on the order of
2k or−2k. If we assume φ(ω) is slowly oscillating relative to these terms, then it averages to zero.

One can subsequently write the field equations in terms of an effective spin-exchange rate and decay rate
into the cavity, similarly to the formulation used in [27, 28]. We consider the long-time solution, where t is
sufficiently large that the decaying exponentials can be ignored. In this scenario,

J nm1 (ω) =−g20
(ωa −ω− |β(ω)|)

κ2/4+(ωa −ω− |β(ω)|)2

(
q−1∑

p=1

exp

(
iω

R

vp
(2π p+ θn − θm

)
)

(46)

Γnm
1 (ω) = g20

κ

κ2/4+(ωa −ω− |β(ω)|)2

(
q−1∑

p=1

exp

(
iω

R

vp
(2π p+ θn − θm

)
)

(47)

where Jnm1 is the spin-exchange rate in the long-time limit for atoms n andmmediated by one of the standing
waves, and Γnm

1 is the corresponding decay rate. The integrand terms of equations (44) and (45) can be
reinterpreted under these observations as the Fourier components of the total coupling between atoms n and
m,

g(ω,θn,θm) =
Jnm1 (ω)+ Jnm2 (ω)

2
+ i

Γnm
1 (ω)+Γnm

2 (ω)

4
. (48)

These Fourier components of the coupling are shown in figure 4 for a variety of interatomic spacings and
cavity decay rates. The values are normalized to the maximum resonant coupling for unbroadened atoms in
a cavity as seen in equation (10), ηΓ0. The effect of broadening-induced mode-mode coupling, β, is more
pronounced for high-Q resonators where cavity decay rate is small compared to the width of the
inhomogeneous broadening. For moderate optical Q factors, the atom-atom coupling can be observed in
presence of broadening. In this regime, a change in lattice spacing, R∆θ, can be seen as shift in atom-atom
resonance. The results indicate that in the regime where single-atom cooperativity is small, the array can
exhibit atom-atom enhanced coupling over a relatively wide range of frequencies.

Note that when the detuning between the probe field and the cavity resonance becomes zero, the
coupling becomes purely imaginary. In this scenario, the inhomogeneous scattering does not contribute to
spin-exchange interactions and instead simply suppresses the magnitude of the dissipative coupling.
However, as∆ is shifted away from zero, |β| contributes to suppressing this change in one of the Lorentzian

11



J. Phys. Photonics 5 (2023) 024003 T Kling and M Hosseini

Figure 4. Coupling strength between atoms as a function of the field frequency ω, normalized to the unbroadened resonant
cavity-enhanced atom-atom coupling. The blue lines represent the coupling at varying probe frequency for a system with no
scattering due to inhomogeneous broadening, while the red and yellow lines denote the scattering-suppressed coupling at varying
segment spacing. Simulation parameters {ωa,vp,R,Γ,g0,σ}= {378THz,3× 108ms−1,50 µm,1KHz,10KHz, 0.42GHz}. The
spacing between the atoms∆θ being varied results in a shift in the optimal coupling frequency, and∆θ0 = λ/R denotes the
natural spatial period of the system. β ′ indicates the effect of inhomogeneous broadening considered for the simulation.

Figure 5. (a) Enhancement coupling coefficient as a function of number of implanted ions with inhomogeneous broadening. The
system shows an initially linear improvement in coupling strength, before the suppression due to inhomogeneous broadening
overcomes the linear amplification from an increasing atom number. Simulation parameters {ωa,vp,R,Γ0,g0,σ}=
{378THz,3× 108ms−1,50 µm,1KHz,10KHz,0.42GHz}. The spacing between segments is taken to be λ/2,such that the
collective behavior is maximized. (b) Enhancement to the collective coupling versus frequency for the ensemble. The system
displays broadband enhancements to coupling due to the inhomogeneously broadened atoms. Each system is plotted with the
optimal number of implanted ions, derived from plot (a). Simulation parameters {vp,R,Γ0,g0,σ}= {3× 108ms−1,
50µm,1KHz,10KHz,0.42GHz}. The detuning is taken relative to the unbroadened atomic frequency, ωa = 378THz.

and enhances it in the other. In total, this coupling experiences a suppression of the amplitude of the Fourier
components as a result of the inhomogeneous broadening.

Under these conditions, the suppression of the coupling strength depends on the number of atoms and
broadening of the system. As a result, the scaling behavior of the coupling strength is not fully commensurate
with increasing the number of atoms; instead, there exists some optimal number of atoms beyond which the
loss in coupling strength due to scattering from broadened atoms exceeds the improvement in coupling due
to additional resonant atoms. Figure 5(a) shows the enhancement in effective collective coupling for a variety
of decay rates. |β(ω)| depends strongly on the cavity decay rate κ, with lower decay rates having much
greater collective reflections. The inhomogeneously broadened atoms in these conditions can be interpreted
as weakly-reflecting mirrors placed at the same location as the atoms modeled by the spin operators. As a

12



J. Phys. Photonics 5 (2023) 024003 T Kling and M Hosseini

result, a geometry designed to optimize the atom-atom coupling will also maximize the backscattering from
these weak mirrors.

We observe in figure 5(a) that the optimal coupling strength improves as κ increases. From
equation (18), it is known that the decay rate of the system depends linearly on the effective coupling
strength. This suggests that the superradiant character of the ensemble increases as the cavity confinement
becomes worse, so long as a sufficient number of atoms are implanted. This superradiant effect can be
interpreted as the initial linear improvement in effective coupling; the length of this linear region depends on
the choice of cavity decay rate. However, while larger κ allows for the system to remain in this linear-scaling
regime for larger numbers of atoms, it also reduces the magnitude of the coupling for equivalent numbers of
atoms. In the limiting case of no cavity confinement, the system will see a linear improvement in coupling as
expected for superradiant ensembles, but the magnitude of the coupling will be much smaller due to the lack
of a cavity enhancement. We note that the current formulation of these terms does not factor in the
dipole-induced dephasing for large ensembles; this results in a competing effect which will additionally
suppress the collective behavior for high-density ensembles.

Figure 5(b) shows the coupling enhancement for atoms of varying frequency. Here the atomic frequency
ωa is allowed to vary, accounting for different subsets of the inhomogeneously broadened distribution. The
system experiences enhanced coupling for detunings far outside the resonant atomic linewidth, which is
increasingly broadband for greater cavity linewidths. Thus, these enhancements also correspond to a degree
of broadband, long-range superradiance.

4. Discussion and applications

Superradiance for a localized ensemble of emitters in solids has been observed [29, 30]. When cooperative
emission can occur, the inhomogeneous broadening in solids typically results in co-existence of sub- and
super-radiance radiations [31]. When atoms with large inhomogeneous broadening form an ordered array,
resonant excitation of the array enables the selection of a subclass of atoms with narrow resonant frequency
distribution.

As discussed in the first section, an arbitrary large array of rare-earth ions can be created inside a
solid-state photonic cavity. Although the single-atom coupling rate, g0, for most rare-earth ions is weak, by
creating an array of ion segments where each segment contains a localized ensemble of n ions at the excitation
frequency, the effective light-to-atomic-segment coupling rate can increase to g

√
n due to the collective

coupling effect. This is the case when off-resonant coupling is ignored. In a ring resonator geometry,
long-range coupling between ions can be achieved due to the effective spin-spin coupling mediated by the
cavity field. The rare-earth ions such as Er or Tm have excited state linewidth in the range of Γ0 = 1− 100
kHz. Assuming an inhomogeneous broadening of∆ωin = 10 GHz, a photonic cavity with linewidth of
κ= 1 GHz can accommodate on the order of million excitation modes. At each excitation mode, a small
fraction (∼10−5) of atoms resonantly interact with the cavity mode. Assuming an implantation fluence of
1016ions cm−2, approximately 106 atoms can be implanted in each band or segment. For a resonator of
circumference about 5 mm, a total of about 104 bands or segments can be created inside a resonator with
λ/2nref spacing, where nref is the effective refractive index (considering λ= 800 nm). Considering these
parameters, the optimum atom number for atom-atom coupling, as shown in figure 5, is within reach.

One application of cooperative emission in rare-earth solids can be in implementing superradiant lasers.
Conventional lasers have limitations towards narrow emission spectra linewidth. Recently, superradiant
lasing has been observed in cold alkaline earth atoms based on narrow linewidth of dipole-forbidden optical
transitions [32]. Lasing linewidth on the order of kHz has been achieved [32]. It was shown that in this
regime, sensitivity of laser frequency to fluctuations of the cavity length can be reduced by an order of
magnitude [32]. As these experiments were carried out using laser-cooled atoms, the continuous repumping
requirement to achieve continuous lasing causes heating of atoms due to the free-space scattering. In this
scenario, the heating and atomic motion eventually suppresses lasing.

To implement on-chip lasers, rare-earth solids are being considered for this purpose. In a recent
experiment, a microdisk resonator was fabricated on ytterbium-doped lithium niobate [33] on insulators,
which has achieved lasing with conversion efficiency of 1.36%. In many cases, the lasing efficiency of
rare-earth materials is limited by low atomic density and nonlinear effects at higher optical pump powers.
The cooperative effects as described in this paper may help develop narrow-band (at the cooperative
resonant frequency) and efficient on-chip lasers.

Another application of the cooperative effects discussed in this paper can be in implementing efficient
quantum memories. As an example, erbium-doped crystals are being investigated as a memory platform for
telecommunication photons compatible with the existing infrastructure. One limitation of Erbium and some
other rare-earth ions is inefficient atomic spin preparation caused by the low branching ratio and their long
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excited state lifetime. Optical cavities are being explored to mitigate this issue by inducing Purcell-enhanced
emission and speeding up the preparation process [34]. The use of cavities, however, also reduces optical
bandwidth for otherwise broadband rare-earth quantum memories. A low-bandwidth quantum memory
can limit the efficiency or rate of communication. The enhanced cooperative emission of atomic arrays can
provide alternative physics to better prepare atomic memories while using the entire bandwidth available by
atoms. Moreover, the array engineering can in principle help with the fidelity of the memory as it can
suppress the free-space scattering and therefore noise [35].

More specifically, let us consider the atomic frequency comb memory [36] that is being extensively used
to realize broadband rare-earth solid-state quantum memories [4, 37–39].The key to storage is the creation
of equally spaced atomic absorption lines (i.e. atomic frequency comb) within the inhomogeneously
broadened atomic transition. This is typically achieved by burning equally spaced spectral holes in a specific
atomic transition, which then decays to an auxillary atomic state creating a comb-like structure of spectral
antiholes. If the decay rate from the excited state is comparable to population decay rate between the
ground-state levels, as is the case for Er-dopped crystals above 1 K temperature, efficient preparation of the
atomic frequency comb can not be achieved. In the case of Er crystals, this constraint can be lifted using
few-Tesla-large magnetic field and milli-Kelvin temperatures [40, 41]. For an array of atoms placed inside a
resonator with linewidth much larger than the desired memory bandwidth and smaller than the
inhomogeneous broadening width, the superadiance may be achieved for all comb lines enhancing the
preparation efficiency.

In conclusion, we have provided a theory of light-atom interaction for an array of inhomogeneously
broadened atoms inside optical resonators. We have discussed the regimes where cooperative and long-range
atom-atom interactions can lead to enhanced light-atom coupling. We have proposed some applications of
on-chip cooperative effects in both classical and quantum photonics.
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