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Reaction conditions that are generally applicable to a wide variety of substrates are

highly desired, especially in the pharmaceutical and chemical industries' ¢, Although
many approaches are available to evaluate the general applicability of developed
conditions, a universal approach to efficiently discover these conditions during
optimizationsis rare. Here we report the design, implementation and application

of reinforcement learning bandit optimization models’° to identify generally
applicable conditions by efficient condition sampling and evaluation of experimental
feedback. Performance benchmarking on existing datasets statistically showed high
accuracies for identifying general conditions, with up to 31% improvement over
baselines that mimic state-of-the-art optimization approaches. A palladium-catalysed
imidazole C-H arylation reaction, an aniline amide coupling reaction and a phenol
alkylation reaction were investigated experimentally to evaluate use cases and
functionalities of the bandit optimization model in practice. In all three cases, the
reaction conditions that were most generally applicable yet not well studied for the
respective reaction were identified after surveying less than 15% of the expert-designed

reaction space.

Chemists have long sought robust synthetic methods that can be
applied to a wide variety of substrates" *>. However, these methods
are generally developed and optimized with only one or a few model
substrates. These ‘optimized’ conditions are subsequently appliedtoa
substrate scope, usually with higher yielding substrates preferentially
reported. However, optimal reaction conditions for one substrate
are not guaranteed to be applicable to other molecules. Despite the
increased efficiency of reaction optimization enabled by automated
reaction systems'?° and optimization algorithms*°, this phenom-
enonstill substantially hampers the adoption of newly developed meth-
odologies in synthetic chemistry®2, Further optimization for different
target substrates is typically required, and pharmaceutically relevant
molecules with high structural complexity might not be compatible
with the existing conditions at all**. Most work so far has focused on
retroactively evaluating the general applicability of developed meth-
odologies using substrate scope design or additive screening* ",
Nevertheless, post hoc analyses of applicability do not change the
reaction conditions derived from antecedent optimization. De novo
optimization processes that can directly yield generally applicable
conditions are highly sought. Recent advancesin asymmetric catalysis
have started to address this problem, in which chiral catalysts that
enable highly stereoselective transformations for abroad range of sub-
strates were identified through multi-substrate screening' . However,

despiteadvancesin high-throughput experimentation (HTE), exhaus-
tive examination of high-dimensional reaction conditions for asizable
scope of diverse substrates remains analytically difficult and experi-
mentally expensive to carry out.Judicious selection of experiments
is, therefore, imperative to efficiently explore areaction space during
optimization®, A notable recent example from Burke, Aspuru-Guzik
and Grzybowski aimed to find more general sets of conditions for a
Suzuki-Miyaura cross-coupling reaction with aryl halides and aryl
N-methyliminodiaceticacid (MIDA) boronates® using Bayesian optimi-
zation. After the initial benchmarking and downselection of reaction
conditions before optimization, exploration of more than 50% of the
reaction space identified conditions more general than a previously
published standard condition. Thisimportant advance notwithstand-
ing, auniversal reaction optimization model targeting general applica-
bility, especially one with anefficient experiment selection strategy that
can also be easily incorporated into the workflow of bench chemists,
has not yet beenrealized.

Inthis study, we show that reinforcement learning models can effec-
tively guide chemists to the most generally applicable conditions for
agiven substrate scope without previous experimental data on the
reaction system. We designed a discrete optimization framework with
experiment selection strategies that target condition generality, as
quantified by average reactivity (albeit other distribution metrics can
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be used). Through performance benchmarking on four existing reac-
tion datasets, we demonstrate that the implemented reinforcement
learning model and its underlying algorithms reach high accuracies
for identifying optimal general conditions in all cases, while being
adaptable, scalable and data efficient. To further substantiate the opti-
mization framework, we validated the learning model on three unseen
chemical transformations.

Model design and development

The multi-armed bandit problem’ ®is areinforcement learning prob-
lemthat resembles many characteristics of the generality optimization
problem in chemistry. In the classic stochastic formulation, a casino
playeris presented with aseries of slot machines, each with afixed but
different reward distribution that is initially unknown. With a limited
budget, the objective of the player is to maximize overall winnings by
recognizing and playing the slot machine with better payouts. To do
so, the player efficiently allocates the limited resources to balance the
exploration of rarely played machines and the exploitation of current
best options. In areaction optimization campaign, chemists need to
choose from many options for reaction conditions to maximize certain
objectives with limited initial knowledge of how they will performona
wide range of substrates (Fig. 1a). Finite experimental resources must
beefficiently allocated to eachreaction conditionin consideration of
asimilar exploration-exploitation tradeoff: current best conditions
derived from empirical knowledge are usually exploited, whereas new
conditions are explored in hopes of discovering previously unknown
and more effective methods. The similar characteristics of both
problems prompted us to adapt solutions to the multi-armed bandit
problem (often called bandit optimization algorithms) for generality
optimization in chemistry.

The multi-armed bandit problem has been previously studied in
chemistry contexts for autonomous drug design and reaction condi-
tiondiscovery***°, Inthe latter case, an information-directed adaptive
sampling algorithm was designed to sample conditions for a single
reaction to maximize information gains and reaction yields*.. Whereas
conditionarmsare dropped inthis example after they are sampled once
for each reaction, we hypothesized that repeated sampling of distri-
bution of each condition arm over a substrate scope (the underlying
population for each arm) guided by bandit algorithms would enable the
prediction of condition generality across substrates, a main contrast
with the previous work (Fig. 1c). Using reaction yield as an example of
an optimization objective, the same substrate scope is expected to
exhibit different reactivities under different conditions, resulting in
unique reward distributions for each arm (Fig. 1b). The treatment of
condition variables as discrete arms enable flexible interpretation of
conditions. For example, arms can cover one condition dimension (for
example, solvent) or many dimensions (for example, combinations
of catalyst, ligand, base and solvent). Incorporating substrates into a
distribution also means no explicit search space needs to be defined,
and thealgorithm can adjustits estimation of the distribution of each
condition by continuing to sample that condition. This feature enables
both the elimination of ineffective arms and the expansion of substrate
scope on the fly during optimization. The latter is especially important
inapplication, asthe generality of areaction conditionis highly depend-
enton the scopeitis applied to.

We implemented the optimization framework in Python centred
around areaction scope object that can create substrate scopes with
possible conditions, interface with bandit algorithms, propose and
record experimental results, predict yields for unrun reactions and
recommend general conditions (Extended Data Fig. 2). We imple-
mented numerous stochastic bandit algorithms for both binary
rewards (for example, reactivity thresholds) and continuous rewards
(for example, numeric reaction yields). Effective algorithm classes
were identified through extensive benchmarking with synthetic data
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Fig.1|Optimization of the most general conditions with bandit
algorithms. a, Illustration of agenerality optimization problem, in which
multiple conditions are evaluated withasubstrate scope. b, lllustration of
substrate reactivity distributions of each condition. More general conditions
(for example, D) will have more substrates exhibiting higher reactivity and their
distributions will be negatively skewed. The x-axis represents an arbitrary
reactivity metricand the y-axis represents frequency (or count, for a histogram)
of substrates. ¢, Illustration of experimental resource allocations of traditional
screening approach and bandit optimization. Bandit optimization allocates
moreresources for the better conditions during later stages of optimization.

aswell asempirical modifications and hyperparameter selections that
arebeneficial to algorithm performance. The Bayes UCB (Upper Con-
fidence Bound) algorithm* with tuned parameters mostly offered the
best performance, whereas the UCB1-Tuned algorithm* is preferred
in practice because of the absence of tunable parameters and gener-
ally satisfactory performance. Multiple approaches to support batch
proposing and updating were alsoimplemented to allow parallel experi-
mentation in practice (see Supplementary Information for details
on algorithm benchmarking and development). Unlike optimization
frameworks that involve costly fitting of Gaussian processes and neural
networks as surrogate models*, our framework is also lightweight and
computationally efficient with minimal software dependencies. This
advantage not only enhances software performance in a production
environment but also enables us to extensively simulate the learning
model with existing datasets to statistically evaluate its effectiveness.

Performance testing with chemistry reaction datasets

We simulated the optimization model on three previously published
chemistry reaction datasets consisting of a variety of conditions applied
to abroad scope of substrates: a nickel-catalysed borylation dataset
previously investigated by Bristol Myers Squibb (BMS)*, a deoxyfluori-
nation dataset from the Doyle group* and a Buchwald-Hartwig C-N
cross-coupling dataset”, all with the aim of finding the most general
conditions with different reactivity metrics (Fig. 2a). For every dataset,
the most general conditions were first determined through analyses of
reaction yield distributions (Fig. 2c; see Supplementary Information
for detailed yield analyses on all datasets). Optimization runs were
thensimulated by iteratively allowing the bandit algorithms to propose
experiments and providing the algorithms with actual experimen-
tal results. For all three reactions, we used the Bayes UCB algorithm
with beta prior for binary metrics and Gaussian prior for continuous
metrics (see Supplementary Information section 8 for performance
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Fig.2|Testing the bandit optimization framework on three datasets

with different objectives and condition complexities. a, General reaction
schemes of the three datasets tested. Details of the reaction scope canbe
foundinthe Supplementary Information. b, Accuracy of identifying top-n
optimal conditions for all three datasets tested. Accuracy at experimentiis
defined as the relative frequency (across 500 simulations with random starts)
ofthealgorithm correctly selecting actual top conditions as optimal condition,

comparison with other algorithms). After each round, the learning
modelupdated its beliefs for the reaction scope, and this process was
continued until aspecified number of experiments was reached. This
simulation process was repeated many times (for example, 500) and
the top-naccuracy was used as ametric to compare algorithm perfor-
mances. Top-n accuracy was calculated as therelative frequency of the
model correctly identifying the top-n conditions with data collected
up to time point tacross all simulations.

To confirm that meaningful learning took place with the devel-
oped model, we established baselines for comparison of each data-
set. The first is a pure exploration baseline in which the conditions
are randomly selected for evaluation. The other baseline strategy,
explore-then-commit (ETC), tries each condition during the explora-
tion stage and exploits by committing to the best option from explo-
ration. To compare with other algorithms, at any given time point,
the best empirical option from all previous, completed exploration
rounds is identified. After a new round of exploration is complete,
ETCre-evaluates and chooses anew option that appears best with the
inclusion of new data, and its accuracy is also updated accordingly,
yielding a stepwise accuracy baseline. The pure exploration and ETC
baselines exhibit similar accuracies in practice because of the similar
concept of uniform exploration, with ETC being less noisy because of
the more structured exploration by round. These two baseline strate-
gies mimic the state-of-the-art multi-substrate screening approaches,
inwhich different combinations of substrates and conditions are evalu-
ated, and the most general condition is chosen based on the average
performance using all available data. Compared with ETC baselines,

based onallexperimental results up to experimenti. Details on algorithms:
nickel borylation dataset was run with Bayes UCB (beta prior); deoxyfluorination
dataset was run with Bayes UCB (Gaussian prior); and C-N cross-coupling dataset
was runwith Bayes UCB (Gaussian prior). ¢, Top general conditions for each
dataset that were used as objectives during generality optimization. DIPEA,
diisopropylethylamine; THF, tetrahydrofuran; UPLC-MS, ultra-high performance
liquid chromatography-mass spectrometry; DMSO, dimethyl sulfoxide.

the bandit algorithms achieved substantial improvements in accura-
cies for all three datasets (28%, 31% and 8%) within 100 experiments
(Fig.2b). Anaccuracy improvement of 30% indicates that the probabil-
ity of finding general conditions within a relatively low experimental
budget is better when pursuing the bandit strategy compared with
the baselines. For the C-N cross-coupling dataset, the ETC strategy
reached high accuracy (>80%) because each round of exploration
costs at most four experiments. Despite the high baseline accuracy, the
highest-performing bandit algorithm still achieved an 8% improvement
inaccuracy. To evaluate the data efficiency of the bandit algorithms,
we simulated a palladium-catalysed C-N cross-coupling reaction
dataset with more than 3,600 experiments (Extended DataFig. 1a,b)*®.
The best-performing Bayes UCB algorithm achieved more than 90%
accuracy after exploring only 2% of the reaction scope (72 reactions)
(Extended DataFig.1c). We also visualized the experiments selected by
the Bayes UCB algorithm at different time points in a single optimiza-
tion run (Extended Data Fig. 1d) toillustrate the general behaviour of
bandit algorithms (further discussion canbe found in Supplementary
Information section 8.5). Taken together, these results validated that
the bandit algorithms can be successfully translated to chemistry reac-
tion data and are accurate in finding the most general conditions for
various reactions, condition precisions and optimization objectives.

Optimization study 1: C-H arylationreaction

Next, we set out to evaluate the bandit algorithms on unseen data for
distinct chemical transformations. Areaction dataset with many diverse
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Fig.3|Optimization studies of a palladium-catalysed C-H arylation
reaction. a, Generalreaction scheme and HTE results for palladium-catalysed
C-Harylation ofimidazoles with aryl bromides. Average yields across all 64
products for eachligand are shownin white. Structures of all 24 ligands are

expanded with four more imidazoles (E, F, Gand) after 50 experiments and
four more aryl bromides (5,7, 9 and 10) after 100 experiments. d, Average yield
distributions for top-5 (overall) ligands during three phases. e, Average accuracy
ofidentifying each of the five most general ligands as the optimal ligand over

includedin the Supplementary Information. b, Ligand optimization results
using amodel substrate approach. The ligand that gives the highest yield (that
isalso>75%yield) for each of the 64 products is selected as the optimalligand.
Substrate combinations are considered as not optimized if no ligand surpasses
the 75% reactivity threshold. ¢, Substrate scope search space expansion
scheme.Phasel(imidazoles A, B, Cand Dand arylbromides1,2,3 and 4) was

time during different phases (UCB1-Tuned algorithm, 500 random starts).
Overalltop-5accuracy (black, solid), top-5 explore-then-commit baseline
accuracy (black, dashed) and the accuracy of identifying Cy-BippyPhos as
optimal with full scope of dataavailable from the start (red, dotted) are also
shown. KOPiv, potassium pivalate; DMA, dimethylacetamide.

substrate pairings and calibrated reaction yields for all products under
the same environment, that whichis also sufficiently large for model-
ling, would be ideal to evaluate the performance of generality optimi-
zation algorithmsin aregime in which multiple substrate dimensions
simultaneously interact with conditions. Owing to the lack of these
datasetsintheliterature, we decided to collect a palladium-catalysed
imidazole direct C5-arylation dataset that satisfies these require-
ments. This dataset builds on a C-H arylation dataset investigated in

aprevious collaboration between the Doyle group and BMS®, in which
the conditions were extensively surveyed with a single pair of sub-
strates. However, in this case, we expanded the substrate dimensions
of both imidazoles and aryl bromides and specifically studied ligand
effectswith an expanded ligand scope. A total of 64 unique C5-arylated
imidazole products were generated from eight imidazoles and eight
arylbromides, each evaluated with 24 ligands yielding 1,536 total reac-
tions (Fig. 3a).
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We first retrospectively analysed the dataset by mimicking a tradi-
tional model substrate approach, in which the ligands are screened
with amodel substrate (or product) toidentify the highest-performing
ligand as optimal. For each of the 64 productsin the scope, we filtered
out products (40 out of 64) that did not achieve areactionyield above
75% (these reactions can usually be considered as ‘not optimized’ in
practice). For therest of the products, the highest-yielding ligand was
selected (Fig.3b). Twelve out of 24 ligands in the scope can be consid-
ered as ‘optimal’ with different substrate pairings. Most of these ligands,
however, are non-optimal when considering all 64 products. The most
notable example, PPh,, is the optimal ligand for imidazole C with multi-
plearylbromides, butits average yield over all productsis only 32.4%,
compared with 46.2% for CyBippyPhos. Moreover, our previous HTE
study of C-H arylation®, in which imidazole C and aryl bromide 7
were used as model substrates to evaluate 1,984 different reaction
conditionsincluding 14 monophosphineligands, identified CgMe-PPh
as the optimal ligand almost exclusively (19 out of top 20 conditions,
with the only other ligand being PPh;). These analyses highlight that
atraditional screening approach with a model substrate, even after
extensive exploration of the condition space, does not usually produce
asatisfying general condition. By contrast, simulating the bandit model
with this dataset showed an 85% top-5accuracy (Fig. 3e, compared with
the 71% explore-then-commit baseline) and a > 95% top-9 accuracy on
average after 200 experiments (see Supplementary Information for
detailed simulationstudies of this reaction). Non-optimal ligands, such
as PPh,, are almost always excluded from consideration by the model,
thus reducing bias when choosing general conditions.

Akey advantage of the bandit optimization modelis that no search
space needs to be explicitly defined. Reactivity responses from vari-
oussubstrates are treated as feedback from the environment that the
algorithm is learning from. This means that the substrate scope, as
part of a dynamic environment, can arbitrarily change on the fly and
the model canlearnthese changes continuously from the feedback it
receives during optimization. Itis commonin practice to expand the
substrate scope and further evaluate the use of adeveloped method,
which can affect how generally applicable a conditionis and the ability
ofthe optimization model to select these conditions. For this problem
setting, we designed a test scenario in which both the imidazole and
arylbromide scopes available to the algorithm were restricted at first
and expanded during optimization. Four imidazoles (A, B, C and D)
and four aryl bromides (1, 2, 3 and 4) constituted the initial scope,
defined as phasel. After 50 experimentsin phasel, theimidazole scope
was expanded to include four additional imidazoles (E, F, Gand I),
creating 16 new potential productsin phasell. After 50 experimentsin
phasel, the aryl bromide scope was expanded again to include four
more aryl bromides (5, 7, 9 and 10), creating 32 new potential pro-
ductsinphaselll (Fig.3c). Although phasesand Il experience similar
rankings for the top-5ligands, the relative order changes in phase IlI
after the addition of four aryl bromides (Fig. 3d). During optimization
simulations, the individual accuracies over time for each of the top-5
ligands were tracked and compared (Fig. 3e). The model correctlyiden-
tified the initial ligand reactivity rankings in phasesland Il. When the
reactivity ranking was changed in phaselll, the algorithm did not over-
commit and successfully adjusted its beliefin ligand performance by
increasingly sampling Cy-BippyPhos (red) and Et-PhenCarPhos (blue),
the top-2 performing ligands. The previous top ligands, tBPh-CPhos
(orange) andJackiePhos (purple), were downgraded by the algorithm
in phase Ill. We also compared the accuracy of Cy-BippyPhos under
a substrate expansion regime with the accuracy of Cy-BippyPhos
obtained from a separate optimization simulation in which the full
substrate scope is always available for the algorithm to sample from.
Although the initial accuracies understandably differed because
of the different reactivity distributions in phases I and I, the end
accuracies at experiment 200 are similar despite the differences in the
initial sampling pools.

Optimization study 2: amide coupling reaction

Owingtothe prevalence of amide bond structuresin biological systems
and pharmaceutical compounds, amide coupling reactions are the
most commonly used reactions in medicinal and process chemistry®.
Carboxylicacids are often preferred as inexpensive and abundant start-
ing materials. Their chemical stability, while desirable onaccount of the
ease of handling onscale, necessitates activation by coupling reagents,
usually throughinsitu formation of anacid halide or anhydride. Despite
the vast number of activators (>200) developed for amide coupling
reactions®, chemists oftenresort to afew routine reagents on the basis
of their proven reliabilities®. However, the efficacy of these coupling
reagents when applied to specific target substrates is still difficult to
assess a priori, especially for the challenging coupling with weakly
nucleophilicanilines. Aniline deactivation from the aromatic system,
as well as accompanying steric and electronic demands from various
substituents, complicates the selection of productive coupling rea-
gents. Other aspects of reaction conditions, such asbases and solvents,
can also affect reactivity.

Using the late-stage functionalization ofindomethacin,acommonly
prescribed nonsteroidal anti-inflammatory drug (NSAID), as an exam-
ple, we sought to demonstrate the ability of the bandit model toidentify
generally applicable amide coupling conditions when faced with a
diverse scope of aniline substrates and reaction conditions (Fig. 4a). For
the defined reaction scope, we attempted toidentify the most general
activator-base combinations. Not expecting a notable solvent effect
betweenthe three solvents chosen (THF, MeCN and DMF), we prioritized
activators and bases because they often work in tandem and generate
reactive intermediates, which can affect amide coupling reactivity.
Wefirstaimed tofilter out less-effective activators by setting the opti-
mization objective to activators alone. Unlike simulation studies in
whichreal-time feedback wasimmediately provided for each proposed
experiment, experiments proposed inbatch are necessary in practice
to maximize time efficiency, resulting in a delayed feedback setting.
Similar to a kriging believer*>** in a sequential optimization problem,
ourimplementation of batched bandit optimization uses aseparately
trained random forest prediction model with existing data. Both the
optimization model and the prediction model were updated when
experimental feedback became available. After eight rounds of initial
experiments (five experiments per round), activators were ranked by
reactivity based on the beliefs of the model, and the bottom four acti-
vators (PFTU, HOTU, HATU and PyBOP) were eliminated. For the four
remaining activators (DPPCI, BOP-CI, TCFH and TFFH), the optimiza-
tion objective was modified to activator-base combinations. Relevant
data for the four activators retained were recycled and incorporated
as knowledge of the new objective by the optimization model. After 16
additionalrounds of experiments, all activator-base combinations were
againranked by projected reactivity (top nine conditions are shownin
Fig.4b). Overall, about 12% of the reaction scope were experimentally
explored following the suggestions of the model.

To conclusively evaluate the resulting rankings from our model, we
collected experimental results for all remaining reactions not explored
during optimization and analysed true reactivity rankings for activators
and activator-base combinations for comparison. The model correctly
identified and ranked the top three activators during the activator
selection phase. For activator-base combinations, top nine out of
10 combinations were identified, with the top four correctly ranked.
Interestingly, HATU-DIPEA, one of the most commonly applied amide
coupling activator-base combinations®*, was the only condition not
selected intop 10 as HATU was eliminated in the initial rounds. Use of
DPPCI (diphenylphosphinic chloride) with NMM or DIPEA yielded the
most effective general reaction conditions, ranking number one and
two, respectively. Using HATU-DIPEA as a benchmark, the average
yields over three solvents (THF, MeCN and DMF) for DPPCI-NMM and
DPPCI-DIPEA for each aniline substrate were also analysed (Fig. 4d).

Nature | Vol 626 | 29 February 2024 | 1029



Article

a ¢} Me o Me
100
N7 N\ Base (3 equiv.) N7 N\ 75
Activator (1.3 equiv. =
o COOH + H,N—Ar (1-3 equiv) NHAr <
Solvent (0.1 M) o 50 ©
rt,24 h g
10 Anilines, 96 Conditions ' 25
OMe 960 Experiments e
0
HoN CF3 H,N H2N CN
O\\ //O Bases (4) Activators (8)
EN
N .
CN NHMe o~ N-methylimidazole (NMI) HATU
N-methylmorpholine (NMM) PyBOP
n1 n2 n5 2,6-Lutidine HOTU
Diisopropylethylamine (DIPEA)  PFTU
NH, DPPCI
HoN
Me Solvents (3) BOP-CI
= | TFFH
N 2 TCFH
e o, Joo X s
N i-Pr MeO,C e
DMF
né n7 n8 n9
b c MAE RMSE R?
Eliminated activators 12% 16% 0.21
True ranking Algorithm ranking Algorithm ranking True ranking . N
Activators Activators - ----- >  Activators/bases Activators/bases Retained activators 12% 7% 0.26
Full-scope data 8 Rounds 16 Rounds Full-scope data
100 e Reactions explored ° 7’
I 48 DPPCI-NMM N DPPCI-NMM Reactions unexplored, eliminated activators ///
1 i DPPCI i i i
= 28 DPPCI-DIPEA B2H DPPCI-DIPEA Reactions unexplored, retained activators ° //
80 r
3 BOP-C-NMI 3 BOP-CI-NMI
47 TCFH-NMI B4 TCFH-NMI S
I - 60
9 TFFH-NMI 5 DPPCINMI 2
3 £l TCFH >
5 DPPCI-NMI [%67 BOP-CI-NMM s
c
[ -
KW TFFH 7 TCFH-lutidine 7/ TCFH-utidine £ %
____________ g @
fmmmmmm—— . 5 H o
‘U Em PFTU ! 6" BOP-CI-NMM i EEN HATU-DIPEA | X
' L e .
1 1 20
76 | : HoTU ! [0 TCFH-NMM 9" TFFH-NMI
' '
; HATU 01 TCFH-NMM o
' '
' pyBOP 1 Eliminated T
= [ il ___ Y after 8 rounds 100
Predicted yield (%)
d n4 n5 né n7 n8 n9 n10
DPPCI-NMM 451 5.0 21.8 23 68.0 35.3 541 0.9
DPPCI-DIPEA 40.3 43. 32.! 6.2 39.0 1.8 38.4 15.9 715 4.2
HATU-DIPEA 18.0 57.2 32.7 12.2 22.6 3.7 36.0 12.5 38.9 18.5
TCFH-NMI 25. 3 59.0 40 1 10.3 27.5 2.7 21.5 16.2 69.3 3.3
1 1k T 1t T 1 T 1 T 1 T 1 T 1t T 1
50 100 0 50 100 0 50 100 0 50 100 0 50 100 0 50 100 0 50 100 0 50 100 0 50 100 0 50 100

Average vyield (%) over three solvents

Fig.4|Optimizationstudies ofan amide coupling reaction with anilines.
a, The substrate and condition scope for the amide coupling reaction. The
structures of bases and activators are included in Supplementary Information.
b, Algorithm rankings for activators after eight rounds of experiments

(five experiments per round) and algorithm rankings for activator-base
combinations after 16 rounds of experiment (five experiments per round)
using UCB1-Tuned as the selection algorithm. True rankings for activators

and activator-base combinations from all experimental yields collected using

DPPCI-NMMssignificantly outperformed, or at least matched, HATU-
DIPEA for most anilines (except n10), including highly deactivated
anilines (n1) and sterically hindered anilines (n8). When compared with
TCFH-NMI, areagent combination developed by BMS for challenging
amide coupling reaction with non-nucleophilic amines®, DPPCl also
exhibited superior reactivities for selected anilines (for example, n7).
Although not acommonly used amide coupling reagent, the optimiza-
tionresults suggest that DPPCl can be effective for amide coupling with
anilines. Effective amide couplings using DPPCl have been separately
investigated by BMS*%. The desirability of DPPCl-mediated amide cou-
plingin commercial routes, owing toits exceptional thermal stability>’
and improved atom economy compared with the mechanistically simi-
lar but much more commonactivator T3P, has also been demonstrated
on multi-kilo scales®®

Finally, we evaluated the accuracy of the final prediction model from
the last round of optimization with measured ground truth data for
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HTEare shownin grey boxes for comparison. ¢, The performance of random
forest prediction model trained with results from 24 experimental rounds.
Predictedyields for the entire scope, further divided into three groups, were
compared with true experimental yields. MAE, mean absolute error; RMSE,
root meansquare error; and R? coefficient of determination. d, Average
yields over three solvents (THF, MeCN and DMF) for identified conditions of
DPPCI-NMM and DPPCI-DIPEA when applied to all 10 aniline nucleophiles.
HATU-DIPEA and TCFH-NMI were used as baseline comparisons.

the full scope. The random forest model was only trained with 12.5%
of the data from the reaction scope explored during optimization
but exhibits good prediction accuracy for unexplored experiments
involvingboth activatorsretained and eliminated after initial experi-
mental rounds (12% mean absolute error for both, Fig. 4c). The good
accuracy of the prediction model under a low-data regime further
validates the approach of using a supervised machine learning model
to predict experimental results in a delayed feedback setting during
optimization.

Optimization study 3: phenol alkylation reaction

The prevalence of alkyl aryl ethers in natural products and pharma-
ceuticals has prompted developments in mild and general syntheses
ofthese products. Despite advancesin transition-metal catalysed C-O
cross-coupling reactions®, traditional approaches, such as Williamson
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Fig.5|Optimizationstudies of phenol alkylation with mesylates. a, The
substrate and condition scope for the phenol alkylation reaction, with two
external test substrates notincluded in optimization highlighted. b, Summary
of experiments conducted after four rounds of optimization (90 experiments).
For each condition, different substrate combinations were selected to test by
the UCB1-Tuned algorithm, with the yields for each individual reaction shown
withacolourscale. The white numbersrepresent the current average yields of

ether synthesis®®, Mitsunobu etherification® and nucleophilic aromatic
substitution (SNAr), are still widely used because of their simplicity.
However, these reactions usually have limited functional group compat-
ibility. We decided to investigate a base-promoted phenol alkylation
reaction with alkyl mesylates, which also suffers from similar substrate
applicability issues, with the objective of identifying a more general
condition.

Six mesylates and six phenols were selected from commercial data-
bases as substrates with varying structural motifs and complexities. We
randomly left out one phenol (p5) and one mesylate (m1) as external
testing substrates and did not include them in the optimization pro-
cess. As aresult, 25 substrate pairings (five phenols x five mesylates)
were sampled by the algorithm during optimization, and 11 unseen
pairings (those with p5 and m1, including p5-m1) were tested after to
externally validate the generality of the identified conditions. Six bases
(inorganic and organic), two solvents and three temperatures were
selected as the condition scope, totaling 36 overall conditions (Fig. 5a).
Conditions selected by expert medicinaland process chemists at BMS
and their corresponding reactivity data were used as abenchmark for
the decisions of the bandit algorithm and optimization performance.

Using UCB1-Tuned algorithm, we conducted four rounds of optimiza-
tionwithatotal of 90 experiments (36,18,18 and 18 for each round; all

allconditions based onreactionsthat have beenrun. c, Performance comparison
ofthe optimal conditionidentified, BTMG-t-AmOH-60 °C, with two most
commonly used phenol alkylation conditions at BMS (K;PO,-DMF-60 °C and
Cs,CO;-DMF-60 °C) on11unseen substrate pairings. BTMG, 2-tert-butyl-
1,1,3,3-tetramethylguanidine; DBU, 1,8-diazabicyclo[5.4.0]Jundec-7-ene; DMF,
dimethylformamide; ttAmOH, tert-amyl alcohol.

conducted experiments are included in the Supplementary Informa-
tionsection11.3). Thefirst round of experiments is a uniform explora-
tion of all conditions required by UCB-type algorithms. All conditions
were sequentially explored with randomly sampled substrate pairings
(21 out of 25 were sampled at this stage). Subsequent rounds of experi-
ments were chosen by the algorithm evaluating different conditions
and substrate pairings. After 90 experiments, or 10% of the available
reactionscope, the average yields and number of samples for each con-
ditionwere analysed (Fig. 5b and Supplementary Fig.118). Notable base
(BTMG) and temperature (60 °C) effects on reactivity were observed,
withBTMG-t-AmOH-60 °Cidentified as the most generally applicable
condition, achieving an average yield of 30.4% over five substrate pairs
tested. Two conditions most commonly used and most successful in
past HTE datasets at BMS, Cs,CO,-DMF-60 °C and K;PO,~DMF-60 °C
were selected as benchmark conditions for comparison (Supplemen-
tary Information section 11.4). These three conditions were tested on
11 unseen substrate pairings that involve phenol p5 and mesylate m1
(Fig.5c). Compared with the benchmark conditions, the algorithmically
derived condition, BTMG-t-AmOH-60 °C, performed better (or at least
comparably) inall except one substrate pairing (p5-mS5). These results
showed that bandit algorithms are compatible with continuous param-
eter optimization and can be used with batch sizes amenable to HTE.
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Furthermore, validation with unseen substrate pairings showed that
the conditionidentified by the bandit algorithm during optimizationis
more generally applicable for the reaction scope, even when compared
with conditions selected by practicing chemists that performed well
in historical datasets.

Discussion

Our learning model can achieve data-efficient learning at high accu-
racies and has unique functionalities that we substantiated through
the experimental investigations of three chemical transformations.
Despiteits advances, the optimization framework still has limitations
and can be improved in a few areas. Given the typical experimental
budget (100-1,000 experiments) and the efficiency of optimization
(2-10% exploration of the scope needed), our approach is not suit-
able for the evaluation of a scope with thousands of possible condi-
tions. Rather, the condition scope needs to be reduced by expert
chemists to selective conditions that show reactivity initially, so that
more experimental resources can be spent on sampling substrates.
Furthermore, the treatment of reaction conditions as independent
arms in a stochastic multi-armed bandit problem setting means that
thereis no sharing of structuralinformation between arms. Although
effective in all our test cases, this approach can be inefficient when
more than 100 conditions need to be simultaneously evaluated and
significant correlations between conditions are present. Elimination
of less effective conditions, as demonstrated in the amide coupling
example (optimization study 2), can attenuate this problem. Alterna-
tively, suitable descriptors for conditions could be used to transfer
knowledge between similar conditions, but the choice of descriptors
is difficult to determine a priori. Finally, although we showed that the
learning model can successfully adjust to a changing environment
with unseen substrates and correctly identify most general conditions,
addition of any new conditions will require additional sampling for the
model to have an accurate estimation of their performance. Thisissue
was partially addressed by the inclusion of a real-time supervised learn-
ing model, which canbe used to extrapolate to unseen conditions and
predict their effectiveness, butamore direct approach with knowledge
transfer between armsis still desired.
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Methods

Detailed descriptions of bandit optimization algorithms implemented
in this study, benchmark simulation testing of algorithms with syn-
thetic data, optimization model design for chemistry reaction data
and global analysis and simulation of various reaction datasets can be
foundinthe SupplementaryInformation. Dataset designs, procedures
of high-throughput experimentation, authentic product syntheses and
characterizations for the palladium-catalysed imidazole C-H arylation
reaction, amide coupling reaction and phenol alkylation reaction are
alsoincluded in the Supplementary Information.

Data availability

Allreaction datasets evaluated in simulation studies and the two newly
collected reaction datasets (the palladium-catalysed C-H arylation
reaction and the amide coupling reaction) are available at GitHub
(https://github.com/doyle-lab-ucla/bandit-optimization). Raw data
logs from simulation studies with both synthetic data and chemis-
try reaction data are available at Zenodo (https://doi.org/10.5281/
zenodo.8170874).

Code availability

Allsource codes forimplemented optimization algorithms and models,
simulation methods for synthetic data and chemistry reaction dataset

and analysis functions for datalogs and optimization results are availa-
ble at GitHub (https://github.com/doyle-lab-ucla/bandit-optimization).
The current release of the software is also available at Zenodo (https://
doi.org/10.5281/zenodo.8181283).
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Extended DataFig.1| Testing the bandit algorithms onapreviously
published C-N cross-coupling reactiondataset. a, General reaction scheme differentiated by implementationland 2 for simplicity. This plotisreproducedin
ofthe C-Ncross-coupling reaction and reactivity heatmap grouped by base Fig.S83, with the details of the algorithmsincluded in the legend. TS: Thompson
andligand, with average yields for each base/ligand combination shown
inwhite text. Structures for all substrates and conditionsin the scope are
includedinthe Supplementary Information. b, Top three most general base- algorithmatn=12,30, 60, 99.Squares with different colors represent all
ligand conditions for the dataset. ¢, Average accuracies of identifying top-3 reactionsthat have beensuggested and evaluated by the algorithm at the time.
conditions with various algorithms across 500 simulations with random

starts. Exploration refers to the uniformexploration required by some
algorithms, during which each condition is sequentially selected once.
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Differentimplementations of TS and Bayes UCB algorithms were used and

Sampling; UCB: upper confidence bound. d, Real-time optimization progress
forsimulation O (the first simulation) of aBayes UCB (implementation 2)

Thereal-time empirical average for each base/ligand combinationis shownin
white texts.
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