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Abstract

The presence and evolution of defects that appear in the manufacturing process play a vital role in the failure mechanisms
of engineering materials. In particular, the collective behavior of dislocation dynamics at the mesoscale leads to avalanche,
strain bursts, intermittent energy spikes, and nonlocal interactions producing anomalous features across different time- and
length-scales, directly affecting plasticity, void and crack nucleation. Discrete Dislocation Dynamics (DDD) simulations are
often used at the meso-level, but the cost and complexity increase dramatically with simulation time. To further understand
how the anomalous features propagate to the continuum, we develop a probabilistic model for dislocation motion constructed
from the position statistics obtained from DDD simulations. We obtain the continuous limit of discrete dislocation dynamics
through a Probability Density Function for the dislocation motion, and propose a nonlocal transport model for the PDF. We
develop a machine-learning framework to learn the parameters of the nonlocal operator with a power-law kernel, connecting
the anomalous nature of DDD to the origin of its corresponding nonlocal operator at the continuum, facilitating the integration
of dislocation dynamics into multi-scale, long-time material failure simulations.
© 2022 Elsevier B.V. All rights reserved.
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1. Introduction

Dislocation dynamics is intrinsically connected to plasticity [1] and material failure, emitted from crack tips [2],
and piling-up leading to fatigue crack initiation [3]. The long-range interaction of dislocation stress-fields leads
to collective motion characterized by avalanches, intermittency, and power-law scaling in energy and velocity
distributions [4—6]. Such observations are characteristic of processes that follow anomalous diffusion, the mean-
squared displacement is nonlinear and described by a power-law, in contrast to standard diffusion in Brownian
motion.
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Numerical simulations have successfully reproduced those characteristics observed experimentally. One of the
most used approach is the use of Discrete Dislocation Dynamics (DDD) models [7]. From a continuum perspective,
early attempts of proposing evolution laws led to overly phenomenological models [8,9]. Stochastic approaches
have been proposed to account for uncertainties during dislocation motion [10,11]. Lately, continuum dislocation
dynamics (CDD) emerged as another alternative for the continuous modeling of dislocation lines [12,13], yet still
focused on explicit modeling of dislocation—dislocation interactions. A meaningful representation of the collective
dynamics of dislocations that highlights the nonlocal, stochastic, and anomalous behavior of dislocation ensembles
in a fluid-limit continuous model is still missing. The use of nonlocal vector calculus for continuous modeling of
dislocation dynamics is a natural, yet novel alternative.

Nonlocal models present an alternative to classic differential models where discontinuities are allowed, and long-
range interactions are naturally present in an integral formulation. These features are attractive in the solution of
problems involving convection—diffusion [14,15], heterogeneous media [16], turbulent flows [17-21], anomalous
materials [22], and subsurface dispersion [23,24]. For more applications, please refer to [25] and references therein.
The peridynamic theory [26] was proposed as a nonlocal alternative to classical continuum mechanics of solids,
with applicability in fracture problems with discontinuities [27,28]. Over the last decade, a formalization of nonlocal
models into a nonlocal vector calculus has been extensively discussed [29,30], along with advances towards the
unification of nonlocal/fractional models [31,32].

With the popularity of Machine Learning (ML) methods, several disciplines have seen increasing applicability
of learning algorithms to enhance the understanding of the physics, to learn parameters of a model, or to construct
robust surrogates based on high-fidelity data. Data-driven approaches for dislocation dynamics have lately acquired
more interest. In [33], authors used two-dimensional DDD simulations to train an algorithm for prediction of stress—
strain curves. A ML approach for prediction of material properties from dislocation pile-ups was presented in [34].
Classification algorithms have also been used in the context of dislocation micro-structures [35,36]. Data-driven
surrogate modeling of dislocation glide for computation of mobility estimates with uncertainty was proposed in [37].

Other ML approaches have also grown in the context of learning the physics in the form of PDEs. We
note the contributions of Physics-Informed Neural Networks (PINNs) [38] which enhances deep neural networks
with physics-based constraints, and PDE discovery approaches through the use of candidate terms and operators
[39—42]. Machine learning of differential equations that govern the evolution of PDFs was also a topic in [39], where
the authors computed probability densities from discrete stochastic processes through Kernel Density Estimation.
The core idea of learning PDF equations through stochastic discrete data was employed in [43], with the goal of
learning non-local closure terms. Learning of closure terms for PDF equations through a data-driven approach was
also investigated in [44].

The problem of learning kernels in integral operators has gained attention over the last years, with major
contributions in the context of homogenization via nonlocal modeling and, more generally, in nonlocal and fractional
diffusion. In one front, nPINNs [45] was introduced as the nonlocal counterpart of the PINNs framework. Here,
nonlocal equations are incorporated as constraints while training a deep neural network, for both forward and inverse
problems with power-law kernel and finite horizon. The extraction of more complex kernels was investigated,
via an operator regression approach, in [46], allowing the possibility of sign-changing kernels by representing
the kernel function through a polynomial expansion. This approach was further used in diverse applications
such as peridynamics [47], constitutive laws [48], coarse-graining of molecular dynamics simulations [49], and
homogenization of subsurface transport through heterogeneous media [24].

In the present work, we use two-dimensional DDD simulations to generate probability distribution functions
from shifted dislocation positions obtained from numerous realizations of the DDD problem. This approach gives
us directly the Lagrangian dynamics of dislocation position. We transform the particle dynamics into a continuum
Probability Density Function (PDF) evolving over time through an Adaptive Kernel Density Estimation method,
generating a time-series of dislocation position PDFs. We propose a nonlocal model defined through a kernel-based
integral operator for the evolution of the PDFs as the fluid-limit of the underlying stochastic process, and develop
a ML framework to parameterize the nonlocal kernel, learning from the PDF snapshots generated from DDD data.

We summarize our main contributions below.

e We obtain the probabilistic particle dynamics directly from DDD simulations. We highlight the effect of
external loading and multiplication in the final probability distribution of dislocation position. Such differences
are not evident in velocity distributions.
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e We propose a general nonlocal equation to model the evolution of dislocation probability distributions in space,
establishing the link between the discrete nature of dislocation dynamics at the mesoscale and the origin of
its corresponding nonlocal operator at the continuum scale.

o We develop a ML framework to solve the inverse problem of recovering the parameters of the nonlocal equation
from high-fidelity data. Specifically, we feed PDFs obtained from DDD simulations into the ML algorithm
and obtain the parameters of the nonlocal power-law kernel, in terms of the fractional order ¢, horizon 4, and
a linear coefficient.

This work establishes, for the first time, a systematic, direct connection between the discrete anomalous dynamics
of dislocations at the mesoscale to their ultimate effect in a continuum sense. With this mindset, we obtain a
fast alternative to simulate dislocation dynamics through the nonlocal surrogate model, while still maintaining
the underlying physics of micro-structural processes. We focus on the collective motion of dislocations as an
indication of microstructural evolution and adopt the position PDFs as its measure. When we discover the governing
equations for the PDFs, we have a more efficient and fast evaluation of microstructure evolution compared to high-
fidelity DDD. This leads to a more efficient connection to macroscale problems such as visco-elasticity [22] and
fracture [50,51].

We also establish an efficient framework for the parameterization of nonlocal kernels, overcoming limitations
of existing methods. Existing learning approaches have the disadvantage of minimization in a high-dimensional
space [46] with gradient-based optimization. The present work overcome these challenges by defining a bi-level
learning algorithm. Given the linearity of our operator, we separate the learning of coefficients from the nonlocal
kernel parameterization. In the first level, trial pairs of kernel parameters are used to obtain the best coefficients
through a Least-Squares algorithm. The minimization occurs at the second level, where we define a minimization
problem for the kernel parameters only, restricting the optimization to two dimensions and using a gradient-free
search method.

This paper is organized as follows: in Section 2, we present the high-fidelity two-dimensional DDD simulation
setting for single crystals under creep for three canonical conditions. In Section 3, we describe the construction
of dislocation PDFs from shifted positions and an Adaptive Kernel Density Estimation method. We introduce the
nonlocal models in Section 4 and propose a nonlocal transport equation for the dislocation PDFs. We present a
learning algorithm for the nonlocal kernel in Section 5. Then, in Section 6, we report on the learning results based
on a manufactured solution for three canonical DDD cases, along with discussions on the results. We present the
conclusions in Section 7.

2. Two-dimensional discrete dislocation dynamics

The simplified setup of a two-dimensional simulation, although lacking the curvature and natural multiplication
mechanisms that a three-dimensional simulation provides, is still a robust and efficient way of observing the
collective interactions of dislocation populations in a controlled manner. It allows the extraction of important
quantities of interest, such as velocity distributions, stress and plastic strain evolution, and has been adopted
in the literature to understand dislocation avalanches and power spectrum time-signals [4,33]. Therefore, here
we adopt a two-dimensional discrete dislocation approach with the goal of learning the main characteristics of
collective dislocation dynamics as a first step to translate such effects into a nonlocal continuum model. Particular
implementation details will be explained in each section where necessary.

We consider a two-dimensional square domain of size L, populated with straight edge dislocations with directions
along the z direction, each of them with a Burgers direction b = +b along x, assuming a single-slip system. We
assume there is no climb mechanism, so dislocations may only move in the x direction.

Immersed in an elastic continuum medium, dislocations create a long-range stress field, such that each dislocation
is affected by the presence of all other dislocations in the crystal through an interaction stress, as well as any external
stress o,,;. Given the distance between dislocations r, the dislocation—dislocation interaction stress, o;(r), is given
by [52]

b x(x* —y?)
2m(1 —v) (x2 4 y2)2’
where x and y represent the distances between the edge dislocations in the x and y directions, respectively, u is
the shear modulus, and v is the Poisson ratio.

ey

oi(r) =
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We simulate a domain in the bulk of the material, and assume it to be sufficiently far from any free surface,
therefore Periodic Boundary Conditions (PBC) are needed. In order to apply the PBC and take into account all the
long-range interactions, we include the forces due to infinite images of the simulation box. The exact form of the
interaction stress is [53]

ub l sin(X) [cosh(Y) — cos(X) — Y sinh(Y)]
2(1-v) L [cosh(Y) — cos(X)]?

where X = Z”T" and Y = ZHT’

Then, under the assumption that dislocation motion is overdamped under the viscous drag regime, the equation
of motion for the ith dislocation along the x direction, from the single-slip and no climb assumption, is

oi(r) =

; (@)

1 dx; N
Md_tl:bi mgoi(rm_ri)"‘aext : A3)

where M is the dislocation mobility. All stress definitions refer to the shear stress component t,,, such that the
combination of o,,; and o; result in the resolved shear stress acting on the dislocation. The resolved shear stress is
the effective driver of motion in the edge dislocation.

We can solve this equation at first using a Forward-Euler scheme. For simplicity, we rescale the units and solve
the problem with length in units of b, stress in units of 69 = 5-f—;, and time in units of 7y = M+r0
The plastic strain resulting from dislocation motion can be computed following Orowan’s relation

N
y:éZbiAxi. )
i=1

Beyond the constitutive relations that govern the dislocation glide velocity due to interactions and external stress,
Eq. (3), two-dimensional discrete dislocation dynamics simulations also need to consider other phenomenological
aspects such as annihilation and multiplication.

Results from linear elasticity become invalid near the dislocation core due to nonlinearity in the stress field.
Therefore, when two dislocations of opposite Burgers vector are within a distance d,, they annihilated each other
and are removed from the simulation.

Dislocation multiplication does not occur naturally in 2D simulations, as compared to 3D-DDD. In order to mimic
the bowing of dislocation curves due to Frank—Read sources, we need to consider a phenomenological model. Here
we follow the procedure in [53], where we distribute N; dislocation sources randomly in the domain. At each
time-step, we check at the sources the resulting shear stress, and compare it to a critical stress 7.. If the stress is
above 7, for more than t,,. time-steps, we generate a pair of dislocations with distance L,,., such that, in scaled
units,

1
Lpye = —. (5)
T,

c

2.1. Representative example: Single crystal under creep

We simulate three examples of single crystals under creep loading, following the setup from [4]. We consider a
domain of size L = 300 b, initial number of dislocations of Ny = 1500, and annihilation with a critical distance
of d, = 2 b. We distribute 20 dislocation sources randomly throughout the domain, with mean critical nucleation
time 7,,. = 10, and critical distance with mean L,,. = 50, both parameters with variance of 10% Le-

We test three representative examples to understand the effect of dislocation sources and external load in the form
and parameterization of the final nonlocal kernel, where the external shear load is expressed using the definition of

rescaled stress units, oy = ﬁ

e Case 1: load of o,,; = 0.0125 o without dislocation multiplication.
e Case 2: load of 0,,; = 0.0125 o with dislocation multiplication.
e Case 3: load of o,,; = 0.0250 o with dislocation multiplication.

Case 1 represents locations inside the mechanical part without the presence of imperfections, impurities, or
microcracks such that dislocations that are present inside the material do not multiply, and hence just glide until

4



E.A. Barros de Moraes, M. D’Elia and M. Zayernouri Computer Methods in Applied Mechanics and Engineering 403 (2023) 115743

300 B A *“‘”ﬂfﬁﬁ m;‘&u r}fﬁwfﬁﬁ" 3001, 4 §‘ ¥l i+ ot *};ﬂt ot
EFR %1 ﬂft%nn o 5 Fyp R T B
2501 & ’:fif"r’”mu‘;;‘%““i”’ ;H,., 250 lfl BT . TﬁtTT g *ik Tf,*i,ﬂ,;:
0T T4, T T, T s
200 f% {T F%;%T fyf Temosd 200 ffr'*? PRt AT f‘vf w o
ik Sl 4 ! i+ T ﬂx 4 T S et Y
K ;
ot s nf‘l‘ * L_ogTE AN by P b
150 #‘{”iﬂ T e *Il'li g v*ﬂn‘ﬂg“l 150 #* T EFTs h’; M TT i At
Ty e T S e R FotEin, HELOT v T T g
i TR s g B e g fiTy s LA, LT T Bor
100{ » Fgd pim A T Tv‘%: 100 T 2R i o4k
Frtfds Iy B N Rt RERr s g T TS
R e A SN FRRTOELTA L My
ﬂwﬁv T 74,,7 FopTarrin F L L *
et e L I M St
4 H E 3 H h ; :
. #y "’ﬁ{nfw NN }'ﬂf mr",?,;ﬂx . AR AP SR {.; r { oL
0 50 100 150 200 250 300 0 50 100 150 200 250 300
(a) Initial configuration. (b) Relaxed configuration.

Fig. 1. Dislocation distribution at the beginning of the simulation (a), and after the relaxation (b) in a metastable structure for Case 1. Red
and blue markers correspond to dislocations with positive and negative Burgers, respectively. (For interpretation of the references to color
in this figure legend, the reader is referred to the web version of this article.)
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Fig. 2. Time-series plots of collective velocity, number of dislocations in the system, and plastic strain during the relaxation steps to show
the system’s stabilization.

occasional annihilation. Therefore, Case 1 is representative of regions with lower internal stresses, less intense
dislocation activity and plastic flow, and no evident rapid failure processes.

Conversely, Cases 2 and 3 contain dislocation multiplication sources in a phenomenological way, representing
regions in a component where we would normally observe higher degradation, under the presence of microcracks,
voids, impurities and rough surfaces. Those characteristics are natural dislocation generators and are typically
associated with failure regions. Therefore, in Cases 2 and 3 we are observing what happens near failure-inducing
locations.

The DDD simulations are executed with an in-house Python code running on Intel Xeon Gold 6148 CPUs with
2.40 GHz. In all cases, we first let the system relax for 10000 time-steps of size At = 1 £y with no external stress.
This procedure leads to intense activity and annihilations until the dislocations reach a meta-stable configuration
with about half the number of original dislocations. Then, we apply o,,, with a time-step of At = 0.01 #, until
final time of T = 30000 for Case 1, and T = 25000 for Cases 2 and 3.

Fig. 1 shows one realization of an initial dislocation conﬁfuratlon and the relaxed metastable configuration for
Case 1. The time-series plots of the collective velocity V = number of dislocations, and plastic strain during
the relaxation steps are shown in Fig. 2.

The collective statistics for the representative realizations discussed in this Section can be seen in Fig. 3. We plot
the collective velocity, number of dislocations, and accumulated plastic strain during the creep load. The collective
velocity signal is intermittent for Cases 2 and 3 with multiplication, where the spikes indicate bursts of activities
during an avalanche. The higher load of Case 3 makes the baseline collective velocity be higher than Case 2, yet the
spikes of Case 3 are not as large, since dislocations will tend to move faster, therefore having less time to interact
close to the critical regime, as we see in Case 2. The higher baseline velocity also affects the accumulated plastic
strain that is larger for Case 3. The number of dislocations is almost stable for Case 1, with Cases 2 and 3 showing
more oscillations. This is due to the rearrangements that occur after a new dislocation pair is introduced, which
eventually leads to more annihilations than Case 1.

Last, we investigate the velocity statistics from the DDD simulations. Fig. 4 shows the PDF of individual
dislocation velocity statistics collected throughout the whole simulation time for the single DDD realization of

5
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Fig. 3. Time-series plots of collective velocity, accumulated plastic strain, and number of dislocations in the system for a single realization
of creep test for all three cases.
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Fig. 4. Probability Density Function of dislocation velocity for Cases 1, 2, and 3 under logarithmic scale. We observe a power-law scaling
of order B = 2.4 for Cases 2 and 3 with multiplication, and a sharper decay for Case 1.

each case discussed in this section. When we compute the empirical probability distribution of individual particle
velocities throughout the simulation, and plot them as a function of the logarithm of velocity, we observe a power-
law decay in the form v o< o ~# with exponent around g = 2.4 for Cases 2 and 3 with multiplication. For Case 1,
we see that the decay is slightly sharper. This observation is in accordance with results from the literature under
the same numerical setup [4].

The velocity PDF has been extensively studied both experimentally and numerically over the past years, and
strongly suggests that the nature of dislocation dynamics has anomalous characteristics. The power-law exponent
of B = 2.4 is directly associated to intermittent velocity signals typical of avalanches and super-diffusive
behavior. Although discrete and continuous dislocation dynamics simulations have been successful in studying
long-time behavior of complex dislocation structures and establishing connections between meso and macro-scale
processes [54,55], our goal in this work is to shed light into the non-classical behavior of dislocations from a
probabilistic perspective. To that extent, we recast the physical problem of collective dislocation dynamics into a
stochastic evolution which is representative of the underlying physics, introducing a new methodology to help with
our understanding of collective dislocation dynamics.

One could look at dislocation dynamics from the perspective of particle dynamics, where the dislocations would
move under a underlying stochastic process. Ideally, we would analyze the statistics and construct a stochastic
process that governs such particle dynamics, as a way of generating infinitely many particle trajectories that lead
to the fluid-limit dynamics of the process. However, in the case of dislocation dynamics, even though the velocity
distributions give us an idea of the type of stochastic behavior due to the heavy tails with power-law decay, the
process cannot be simply described. Some dislocations are stuck, others jiggle around an equilibrium state, and a
few others move intermittently with large velocity in a highly correlated motion.

Therefore, in order to obtain the fluid-limit dynamics, we still need to obtain statistics from a sufficient number
of dislocation particles. The steps we take to this end will be discussed in the next section.

3. Data generation

In this section we describe the methodology to obtain empirical PDFs directly from DDD simulations, without
the construction of a stochastic process, as discussed before. On the one hand, this makes the data generation

6
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process expensive, as it relies on simulation of multiple DDD simulations, instead of cheaper stochastic process
trajectories. On other hand, this approach benefits from directly using high-fidelity dislocation data and is the most
accurate representation of the dynamics we could generate.

3.1. Obtaining data of shifted positions

We start by defining the shifted position X;(¢) of a dislocation i in a single realization of the DDD simulation.
Given the initial position in the absolute frame of reference of the DDD box, x;(0), and the current absolute position
in the simulation frame of reference, x;(t), the shifted position is a measure of the relative displacement of dislocation
i with respect to its initial position:

Xi(t) = x;i(t) —x;(0), for te(0,T] 6)

We obtain a statistically significant collection of data-points X;(t) by considering the DDD simulation as
stochastic. We run n, = 2000 DDD simulations, each with random initial positions of dislocations and multiplication
sources (for Cases 2 and 3). We distribute the execution of realizations among several HPC cores to take advantage
of embarrassingly parallel stochastic simulations. With the number of dislocations after the relaxation between 600
and 700, the compilation of all dislocation shifted positions across the n, realizations gives the trajectories of 10°
Lagrangian particles that move following an underlying stochastic process starting at X;(0) = 0.

We take the Lagrangian particle trajectories obtained directly from DDD and translate them into an evolving
PDF p(x,t), defined as the probability to find a dislocation at a distance x from its initial position from the start
of the DDD simulation. In the end, we want to construct a model for the time-evolution of p(x, t), and we propose
that its evolution is governed by an integral operator that we model as a nonlocal Laplacian.

The operator choice stems directly from physical observations of power-law scaling of dislocation velocity
(e.g. [4]), motivating the introduction of a power-law relationship in the PDE. Moreover, the long-range spatial
correlations in dislocation dynamics motivates the inclusion of nonlocality in the model. One could propose high-
order expansions to model the nonlocal behavior, but then the learning algorithm would become expensive. The
formalism of nonlocal vector calculus [29] allows the simplicity of parameterizing the nonlocality through the
horizon parameter while being flexible to incorporate the desired physical processes through the power-law relation
in the kernel.

In the following, we discuss how to transform the DDD position data into density estimates that will be used as
training data for the ML algorithm.

3.2. Density estimation

Under the proposed nonlocal model for evolution of dislocation position PDF, we are most interested in the
nature of the dynamics of dislocation particles, i.e., how they react when put under creep stress along with an ever-
changing stress landscape due to addition and removal of other dislocations. Given the focus on the dynamics due
to load, multiplication, and annihilation mechanisms in a broader sense, in the limit of infinitely many particles, and
not attempting to model the creation and destruction themselves, we do not include the birth/death in the nonlocal
formulation. Instead, we only describe the nature of the dislocation motion from the continuum perspective, as a
consequence of those mechanisms from the discrete representation at the DDD level.

In this sense, the annihilation and creation of dislocations in DDD induce a level of noise when considering a
continuous PDF representation. In the creep regime, we can minimize the interference of such noise by selecting a
time domain over which the initial burst of dislocation multiplications and motion due to the rapid increase in stress
up to the creep level has reached a steady-state regime. For training and testing of the ML framework, we select the
last 10000 time-steps from the DDD simulations to generate the PDFs, as to minimize the effect of applying the
creep load, and to obtain a data-set with the least changes in the number of particles. In the time-series selected, we
observe only 0.1%, 0.69%, and 0.92% in relative difference between final and initial number of dislocations in the
selected data for Cases 1, 2, and 3, respectively. We can then assume a conservative nonlocal transport model in the
continuum, yet annihilation, multiplication, and external load will directly influence the shape and parameterization
of the nonlocal operator. We highlight the specific range of selected data over the whole time-series generated from
DDD in Fig. 5.



E.A. Barros de Moraes, M. D’Elia and M. Zayernouri Computer Methods in Applied Mechanics and Engineering 403 (2023) 115743

1.38 €8

— Casel
137

—-=-- Case?2
1.36 P —-:= Case 3
A ® Selected Data
1351
Zz 134 } \
S
1331 |
1.32 l
’ |
!
~

131

1.30

v —— ]
0 5000 10000 15000 20000 25000 30000
Time steps

Fig. 5. Time-series of the total number of dislocations across the n, = 2000 realizations of DDD for Cases 1, 2, and 3. We highlight the
selected data for training and testing the ML algorithm.

Before applying the estimator, we select the central 99.99% of the probability mass, therefore discarding the
outermost particles at each time-step. This procedure clearly defines a compact support for the PDF.
We quickly summarize the classical and Adaptive Kernel Density Estimation formulations below.

3.2.1. Kernel Density Estimation (KDE)

KDE are non-parametric estimators that do not require assumptions on the form of the sampling distribution.
Yet, to use KDE, we need to apply a specific kernel k(x — x;; wo) parameterized by a bandwidth wy. At this stage,
we obtain an initial density estimate po(x) from

R 1 n
Pox) = = D kx = x5 wo), @)
i=1
where x is the coordinate over which we wish to evaluate the PDF, and x; are the positions of data points
i=1,2,...,n.
Kernels are normalized to unity, i.e.,

o0
/ k(x; wo)dx =1, (8)
—0Q
and take the form
1 — X
k(x — x;; wo) = —K (x x). )
) wo

Then, the final density estimator is

A 1 - X —X;
Po(x) = n_wo ;K ( ) . (10)

Wo

Let s be the sample standard deviation. In the limit of number of data-points » — oo of normally distributed
data, the Mean Integrated Square Error of pg is minimized when [56]

wo = 1.06sn~1/3. (11)

3.2.2. Adaptive Kernel Density Estimation (AKDE)

Given the large jumps observed in DDD, we can expect the PDFs to have heavy tails, yet with limited data,
while the majority of the mass would fall into the central part. A uniform binning method such as KDE would lead
to the occurrence of noise in the tails, which we need to avoid as those curves feed the ML algorithm. Since higher
density regions need narrower bins than low density tails, we use AKDE to obtain a continuous, smooth function.

We run the AKDE starting from an initial classical KDE estimate po(x) with a fixed bandwidth wq from Eq. (11).
Then, the adaptivity takes place in the variable bandwidth for each data point [56]:

ﬁo(xo)&‘

G (12)

w; = wok; = w0<
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Fig. 6. Evolution of mean and skewness factor of pj(x). The evolution of mean (a) before, and (b) after the symmetrization and
re-normalization. The evolution of skewness factor (c) before, and (d) after symmetrization and re-normalization.

where G is defined as

G = exp (% > I ﬁo(x,-)) ) (13)
i=1

Furthermore, 0 < £ < 1 is a sensitivity parameter that controls how important the shape of the initial guess is
with respect to the second estimation [57]. A theoretical optimal value was found to be & = 0.5 [58]. We finally
obtain the density from AKDE as

R 1 1 X —X;
pl(x>=;Z;l_K( o ) (14)

i=1

We define a domain {2 for the density function by adding a band of zeros beyond the right and left-most points in
the x direction, providing some space between the compact support of the PDF and the nonlocal simulation domain.
We compute the estimates p; at equally spaced points inside §2 defining a fixed grid size of 2 = 0.05. In Case
1, we have 2; = [—15, 15], and m = 601 points. Cases 2 and 3 are defined with (2 = (2 = [—40, 40] leading
to m = 1601 points. Computation of p;(x) for each time-step is also executed in parallel, each core processing a
distinct time-step, for a total of 1000 HPC cores used for each case.

Finally, once the final estimates p;(x) are obtained for all time-steps, in the last operation we enforce symmetry,
as to avoid any inconsistencies in the ML algorithm, as we adopt a symmetric, radial-basis nonlocal kernel in the
definition of our operator. We apply the symmetrization by checking the evolution of mean p and skewness factor
i3 from pi(x), defined as

i = E[pi(n)] = / Bi(x)xdx, (15)

ﬁBZERﬁl(x)—uf] _ e wihwds 16
’ (Vfx = w2prrax)

We initially verify that they are sufficiently close to zero, assuming any non-zero measure of those parameters
are due to lack of sufficient data. Then, we take the left side of p;(x), mirror it to the other side, and re-normalize
the PDF. We verify that after this procedure we guarantee a symmetric PDF that will better fit the radial-basis
nonlocal kernel. Fig. 6 shows the values of (7)) and [i3(f) before and after the symmetrization.

Fig. 7 shows snapshots of the final PDF estimate for all three cases at selected time-steps. We plot the PDFs in
logarithmic scale in the y direction: we can readily see that the PDFs do not decay fast as one would expect from a
Gaussian process. Instead, we have power-law decaying tails, with seemingly heavier ends on Cases 2 and 3 where
multiplication mechanisms activate the collective dynamics more intensively. The heaviness on tails is accompanied
by a larger support of the PDF. As we will see in the following sections, when we feed the PDFs into the learning
algorithm, the kernel of the nonlocal operator will reflect those differences, establishing a meaningful link between
the discrete and continuous dynamics.

Remark 1. The assumption of a symmetric kernel in this study is associated to the choice of periodic boundary
conditions representative of a bulk section of the material. In this context, the assumption of a symmetric kernel
to represent the bulk dynamics is advantageous from the numerical perspective. However, in different physical
conditions such as a DDD volume close to a free surface, multiple slip-planes, or the presence of other physical

9
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Fig. 7. Final shape of dislocation shifted position PDF from AKDE with symmetrization and re-normalization at selected time-steps.

mechanisms that could disrupt the symmetry of bulk motion, the stress landscape and the nature of the probable
dislocation motion will change, and the symmetry assumption will no longer hold. Therefore, in such specific cases
the symmetry assumption on the nonlocal kernel need to be relaxed, yet turning the kernel definition, the learning
of parameters, and the PDE solution numerically more challenging.

4. Nonlocal transport models

For the evolution of the dislocation position PDFs, we propose a parabolic nonlocal transport model defined
through a nonlocal operator characterized by a kernel function, that we aim to determine. We use the data from
DDD simulations to train a machine-learned surrogate model, for which we identify the model parameters.

We let p(x,t) represent the empirical PDF estimate at time ¢ € [0, T], and x denote the position in over the
domain {2 = [—L, L], where L is defined by the taking the maximum support at the last time-step and including
extra zeros, as seen in Fig. 7. We model the evolution of p following the nonlocal parabolic equation

(x,t) = Lp, x €2
{p( p a7
Bzp(x) = g(x), x € {2z,
where £ denotes the nonlocal (linear) Laplacian operator defined as
Lp= / K(ly = xD(p(y) = p(x))dy. (18)
Bs(x)

Bjs(x) represents the ball centered at x of radius &, also called the horizon, defining the compact support of L.
It is relevant to note that for specific choices of kernel functions, £ corresponds to well-known operators such as
the fractional Laplacian [31,32]. In fact, when K(]y — x|) o< |y — x|™%, with « = 1 + 2s, 5 € (0, 1), the operator
L corresponds to the one-dimensional fractional Laplacian. Furthermore, when the same kernel is restricted to the
compact support Bs(x), £ corresponds to the so-called truncated fractional Laplacian. The latter turns out to be the
operator of choice in our framework.

The interaction domain where nonlocal boundary conditions (or volume constraints) are prescribed is defined as:

27 ={y € R\ {2 such that |y — x| < § for some x € {2}. (19)

We prescribe nonlocal homogeneous Dirichlet volume constraints, given (in one dimension) by the nonlocal
interaction operator Bz : [-L — 8, —L) | J(L, L + 8] — R, such that g(x) = 0 at x € {27.

The objective of the proposed ML algorithm is to train the nonlocal model on the basis of the series of PDFs;
specifically, we find the best form and parameters of the kernel K(]y — x|) such that Egs. (17), (18) are satisfied
and the predicted distributions are as close as possible to the high-fidelity dataset.

5. Machine learning of nonlocal kernels for dislocation dynamics

5.1. A bi-level machine learning framework

We start the approximation by assuming that the kernel K(]y — x|) is a radial function compactly supported on
B;s(x), decaying with ath order power-law, multiplied by a P(]y — x|) function defined over [0, 4]
P(ly — x|)

K(ly—x)=D e (20)
ly — x|

10
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where we assume the coefficient D € R, D > 0. The form of the function P is part of the learning problem and
its form strongly depends on the underlying physical system we want to reproduce. In the literature [46,48,49],
the choice of a linear combination of Bernstein polynomials has been particularly successful. However, for the
application considered in this work, the employment of Bernstein polynomials does not increase the surrogate’s
prediction power. For these reasons, we consider the simplified case of P(]y —x|) = 1, for which the resulting
operator corresponds to a truncated fractional Laplacian. Thus, the learning problem consists of finding the
parameters «, 8, and the coefficient D that parameterize the kernel.

We adopt a bi-level learning approach to reduce the dimensions of the minimization problem by exploiting the
linearity of the nonlocal operator. Level 1 consists in obtaining the best coefficient D for a given pair of parameters
o and &, while at Level 2 the algorithm iterates over different values of o and § and minimizes a cost function,
each iteration using the optimal D found in Level 1.

For the numerical solution of the bi-level optimization problem, we rewrite the nonlocal transport model, Eq. (17),
in a semi-discrete manner using a meshless approach, i.e.

Pl )=y K(lx; — xiD(p(x;) — plxi)h, 1)
JjeH
where £ is the distance between the points, and H is the discrete representation of the ball Bs(x) within the horizon
distance of §, defined as the family of points x; in the neighborhood of point x; such that [x; — x;| < 4.
By using the power-law definition of the kernel in (20), with P = 1, we can write the equation as

ﬁ(xi,l)zz

D
—x.rx(p(xj) — p(xi)h. (22)
JEH !

lxj —

5.1.1. Level 1

We adapt the ideas presented in [41] for discovery of PDEs, yet, instead of identification of different PDE terms,
our goal is to use the linear structure of Eq. (22) to obtain the coefficient D given a specific pair of values («, §).

For given values of § and «, we construct vectors U, and U,. U contains the RHS of Eq. (22), where the spatio-
temporal data are reshaped into a single stacked column array. U, is the LHS of Eq. (22) with the time-derivative
computed through a forward Euler method at all space and time points, also transformed into a single column array.
Given n time-steps and m grid points, both U and U, have size nm.

Our problem U, = UD reads:

[ p(xo, 1) ] [ C(xo,10) ]
p(x1, to) C(x1, to)
p(x2, ty) C(x2, tp)
: =D : (23)
l.’(xmfls tn) C(xmflv tn)
L p(xmvtn) _ L C(xmstn) _
with
1
Cont)=S ——(p(x;(t0) — pLr(t)h. 24
(x5 1) ; |x_,-(tk)—x,-(tk)l"‘(p(xj(tk)) p(xi(4)) (24)

Then, for every pair of «, § being considered in the minimization, we use a Least Squares solver to obtain the
best D.

5.1.2. Level 2
We use a minimization algorithm to find & and § that minimize the Mean Logarithmic Absolute Error (MLAE):

1 nm _
€=— > llog(p) — log(pl, (25)

=1
where p; represents the true value of the function at a particular x ant 7, and p; is the solution of the nonlocal
model at x and ¢ starting from the initial conditions at t+ = 0, for the current trial values oy and iy, and its

11
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Algorithm 1 Bi-Level Machine Learning Algorithm with Nelder—-Mead Minimization.

1: Choose the initial guess (g, o).

2: for Each iteration i of NM (Level 2) do

3 Construct the matrix equation Eq. (23) and obtain the coefficient D with trial parameters (¢;, §;) (Level 1).
4: Solve the nonlocal model and obtain the trial solutions p using Eq. (26).

5 Using the true p and trial solutions p, Compute the error using Eq. (25).

6: end for

7: The algorithm gives the optimal parameters (otopi, Sope) and associated Dopy.

corresponding D. We adopt the MLAE with the goal of giving as much significance to the information on the tails
as we give to the central part of the PDF.

For all time-steps, we obtain p at time-step k + 1 and grid-point i, ﬁf“, from ﬁf, using the forward Euler
scheme. Thus, Eq. (22) becomes

P =AY %(ﬁﬁ — pHh. (26)
fon 1% — il

For the solution of the minimization problem we adopt, among several possible choices, the Nelder-Mead Method
(NM), which is a gradient-free, downhill simplex approach that uses a direct search method (based on function
comparison). The overall bi-level algorithm for the identification of kernel parameters based on minimization by
NM is presented in Algorithm 1.

In the solution of the inverse problem, the advantages of high-performance computing become more evident,
since we solve a regression problem and simulate 10000 time-steps of a nonlocal diffusion equation at each
iteration. Therefore, it is paramount that we exploit parallelism in the solution of Algorithm 1. We implement
the learning algorithm in Python; we make use of the NumPy library for the Least Squares regression, and SciPy
for the minimization, using the built-in Nelder—Mead method. We parallelize both Level 1 and 2 using the MPI4Py
library. At Level 1, each processor computes a section of the RHS, as they are independent computations from the
already available training dataset. The LHS is computed once at the beginning of the algorithm, as it is constant
for all iterations. Then, in Level 2, at each time-step of Eq. (26), we parallelize the computation of ﬁl’-‘“. In the
end, the parallel implementation speeds up the costly computation of nonlocal operators, and allows the algorithm
to converge in less than two hours for Case 1, with m = 601 grid points running 200 cores, and in slightly more
than two hours for Cases 2 and 3, with m = 1601 grid points using 400 cores.

6. Results and discussion

6.1. Method of manufactured solution

We assess the learning algorithm and nonlocal modeling proposed via the Method of Manufactured Solutions,
where we produce training data from a known kernel and recover it through the ML algorithm as a necessary
consistency check of the proposed ML framework. Starting from an initial condition, we solve the nonlocal diffusion
equation, Eq. (17), with the kernel parameterized by known e, Strues and Dye, generating the snapshots of p(x, t)
to be provided to the ML algorithm.

We simulate the nonlocal diffusion problem, Eq. (22), in a domain D = [—1, 1] with L = 2, and select
Uye = 1.5, Syue = L/2, and Dyye = 0.1 as our parameters. For comparison, we simulate the nonlocal diffusion
problem with spatial discretization using m = 101 points in space, solving the equation over n = 200 time-steps
in size with A = 0.01. The initial condition for the nonlocal diffusion problem is a Dirac delta function at x = 0
with area equal to 1. Similarly to the DDD dataset, we let the system evolve and only use the last 200 time-steps of
the simulation to collect the training and testing sets, using 80% of time-steps for training, and the rest for testing.

We compare the relative errors of ¢, §, and D by the following expression

— |€i,opt - si,truel (27)
|€i,true| '

Ei
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Table 1
Parameter and algorithm errors for the manufactured solution.
o 8 D Training Testing
9.8le—4 1.02e—2 6.63e—4 9.50e—4 1.06e—4
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(a) Iteration errors. (b) Solution path.

Fig. 8. Iteration errors (training and testing), and the solution path of the ML algorithm when solving the inverse problem of a manufactured
solution with a known kernel.

where &; represents the parameter in consideration, opt corresponds to the optimal value found by the algorithm,
and true denotes the true parameter value.

We adopt a parametric space with bounds of @ = [0, 4], and § = [Ax, L]. Given the true values of oy = 1.5
and 8yue = L/2, we take the initial guess to be ag = 2, §o = L/4. We present the parameter, training and testing
error results in Table 1. We verify that the algorithm successfully identifies the parameters within a maximum of 1%
error for the horizon §, while o and D are within 0.01% error. This example showcases that the decoupling of the
learning in 2 levels leads to the correct kernel. Given the higher number of training points, and the time-dependent
dynamics, it is expected to have a lower testing error, compared to training.

We plot the training and test errors over the number of iterations in Fig. 8. We also illustrate the solution path
from the initial guess to the final parameter estimates of o and 8, explicitly showing the function evaluations driving
the iterations of Nelder—Mead optimization. We further explore the robustness of the algorithm with the DDD-based
dataset.

6.2. DDD-driven results

We now employ the ML framework on the dataset generated by DDD simulations, represented by the PDFs of
shifted dislocation positions obtained at the last 10 000 time-steps, as highlighted in Fig. 5. We expand the robustness
assessment of the framework, and we test other critical aspects such as sensitivity to the initial guess and train/test
ratios.

The AKDE algorithm removes the noise from lack of data-points, especially at the tails, and produces a smooth
curve throughout the domain. The intrinsic noise related to the variable number of particles is embedded in the
PDF estimation, leading to smooth curves throughout the time-range of our data. For these reasons, we expect the
algorithm to perform well with the DDD data.

We start by investigating the solution with different train-test splits. We compare the results of a 80/20 split as
in the manufactured solution with a 60/40 split. We adopt an initial guess of «g = 2, §o = L/2, which resides at
the center of the same parametric range used before, o = [0, 4], and § = [Ax, L]. We run Algorithm 1 for Cases
1, 2, and 3, and collect the optimal values of «, §, D, the computational cost in terms of Nelder—Mead iterations,
the cost function evaluations, and the training and validation cost. We present those results in Table 2.

We highlight the results of o in Table 2 in comparison to the exponent of power-lay scaling in velocity
distributions from Fig. 4. We note that the faster velocity decay in Case 1 with § = 3 is consistent with the
kernel exponent ¢ = 2.99. Similarly, for Cases 2 and 3, the velocity distribution decay was found to be around
B = 2.4, while the kernel exponent from the ML was found to be « = 2.40 for Case 2 and o = 2.54 for Case 3
under the 80/20 split. We will further comment on this connection in the Discussion section.
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Table 2
Machine learning results for two train-test split solutions.
Train/Test split Case 1 Case 2 Case 3
80/20 60/40 80/20 60/40 80/20 60/40
o 2.99 3.00 2.40 2.37 2.54 2.51
8 20.62 18.79 33.7 33.07 34.03 33.72
D 3.64e—4 3.55e—4 7.40e—4 7.66e—4 1.78e—3 1.83e—-3
# Iterations 79 75 46 79 60 85
# Evaluations 154 149 89 157 108 159
Training cost 6.30e—02 5.73e—02 6.39e—02 5.55e—02 6.75e—02 5.57e—02
Testing cost 4.42e—02 6.33e—02 4.95e—02 8.70e—02 4.28e—02 6.21e—02
B — —w
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Fig. 9. Evolution of training and testing MLAE values computed over the NM iterations.

The results obtained with the two train-test splits are equivalent in terms of the kernel parameters and the overall
cost. Indeed, there is no evident difference in choosing one ratio over the other. The main difference comes in the
overall training and testing cost. We observe that in all cases the training cost is larger than the test cost, similarly
to the results obtained with the manufactured solution. This is due to the time-dependent dynamics of the PDF
evolution and the higher availability of training points, as in the manufactured case. However, here we have another
contributing factor. As discussed in Section 3, earlier data-points will be heavily influenced by the initial load
application, while late points will be closer to a steady-state. The test set in the 60/40 split includes more earlier
points, and therefore sees their influence reflected in higher training costs, besides allowing for less training points
to make the model more general. For the remaining results, we choose the 80/20 split as our representative case.

We plot the evolution of training and test MLAE values over the Nelder—-Mead iterations in Fig. 9. We see that
the algorithm quickly gets near the solution as the errors drop sharply near the initial iterations. Then, the errors
remain nearly constant as the minimizer further explores the research space in the proximity of the minimum.

We further explore the capabilities of the proposed ML algorithm and test the performance of the parameter
learning under different initial conditions beyond the central point, and choose four extra points near the corners of
our parametric search space:

1. Guess 1 (original guess at the center): ag = 2, 6o = L/2.
2. Guess 2: 0 —0=1, § = L/4.

3. Guess 3: og = 3, 6o = 3L /4.

4. Guess 4: a9 =3, 6o = L/4.

5. Guess 5: a9 = 1, 6o = 3L /4.

We present the final results in Table 3. In general, an initial guess close to the center of the parametric space
leads to less iterations for Cases 2 and 3. The only different result we obtain is for Case 1, Guess 5, where the
horizon § is computed as the upper-bound L, yet with «, D, and MLAE values sufficiently close to the results
of other initial guess combinations. Based on this observation, the horizon § seems to have a lower bound, above
which the results are less sensitive to increasing horizon. We show the different paths the algorithm takes under the
proposed initial guess combinations in Fig. 10, where we can see the function evaluations made by the algorithm
and the final solutions, illustrating their proximity. We can also distinguish the upper-bound solution of Case 1,
Guess 5 in the same figure.
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Table 3
Machine learning results for different initial guess combinations of « and 8.
Case Guess 1 Guess 2 Guess 3 Guess 4 Guess 5
o 2.99 2.99 2.99 2.99 2.99
8 20.62 20.63 20.63 20.56 30.00
1 D 3.63e—4 3.63e—4 3.63e—4 3.63e—4 3.63e—4
# Iterations 79 122 57 76 30
# Evaluations 154 219 114 152 59
o 2.40 2.40 2.40 2.40 2.40
8 33.70 33.66 33.66 33.68 33.68
2 D 7.40e—4 7.40e—4 7.40e—4 7.40e—4 7.40e—4
# Iterations 46 73 86 67 129
# Evaluations 89 142 163 132 253
o 2.54 2.54 2.54 2.54 2.54
) 34.03 34.02 34.03 34.03 34.01
3 D 1.78e—3 1.78e—3 1.78e—3 1.78e—3 1.78e—3
# Iterations 60 87 120 68 211
# Evaluations 108 169 233 126 408
4 a, a,
x  Function Evaluations x  Function Evaluations
35 - 351 @ Initial Guess 351 @ Initial Guess
10 &S{r%\;«:n*ﬁ; S— 30| % solution a s0] X Solutm‘n . &
25 ’ o 25 X i 25 R . — i
520 ’i & 520 520 :}‘ N
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6 6 6
(a) Case 1. (b) Case 2. (c) Case 3.

Fig. 10. Solution path from different combinations of initial guess.

Fig. 11. Final kernel shapes from optimized parameters obtained through the ML algorithm, scaled by 4.

We choose the results from Guess 1, at the center of the parametric space, to be the representative parameters
for kernel reconstruction and visualization. From the optimal values of the power-law decay exponent «, horizon
8, and coefficient D, we compute the nonlocal kernel following the definition from Eq. (20). We plot the kernel
shapes for Case 1, 2, and 3 in Fig. 11.

Finally, to illustrate the nonlocal model’s potential to simulate the evolution of position PDFs from DDD
simulations, we run the model using Eq. (26) with the optimal parameter values from Guess 1 combination, starting
from the initial time-step of training, until the last time-step of testing, covering the whole range of available data.
We measure the accuracy of the model using the /, relative error at the last time-step, defined as

_lp=rl
Ipll2

where p represents the model solution at the specified time-step, and p is the true PDF obtained from DDD at the
same time measure.

, (28)
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Fig. 12. Simulation of the nonlocal model for the whole time-interval of available data, highlighting the initial PDF, and the final distributions
of the true data and the nonlocal prediction.

We compute the relative [, error and obtain €; = 4.75e—2, €, = 4.22e—2, and €3 = 6.30e—2 for Case 1, Case
2, and Case 3, respectively. Considering that this simulation takes over the 10000 time-steps of available data, the
maximum relative error of 6.3% in the [, sense for Case 3 shows that the model can successfully reproduce the
overall dynamics of the fluid-limit motion of dislocation particles in one dimension. We further illustrate the final
shape of the PDF from the model, and compare it with the true shape at the final time-step in Fig. 12.

We verify that the ML algorithm successfully captured the parameters that best describe the evolution of
dislocation position PDFs according to the proposed nonlocal diffusion model.

6.3. Discussion

Given the broad scope of this work, we divide the main discussion among three dominant facets. We discuss the
overall capabilities of the proposed bi-level ML algorithm, followed by a discussion on the nonlocal model itself,
and how the nonlocal kernel is connected to the particle dynamics observed in DDD.

We start by examining the ML aspects of the data-driven approach. It is evident that the proposed framework for
solving the inverse problem of finding the parameters of a nonlocal Laplace operator is successful in the present
scenario. Starting with the manufactured solution, we see the training error quickly approaching the plateau in Fig. 8.
The decoupling of the nonlocal diffusion coefficient D from other kernel parameters o and § (which is possible
due to the linearity of the operator) facilitates the dimensionality reduction and the implementation of the bi-level
algorithm. This shows one advantage of the proposed algorithm when compared to existing optimization-based
kernel learning methods [46].

The robustness is guaranteed by the data-driven learning of a DDD-based kernel. The bi-dimensional optimization
algorithm converged in as few as O(10?) function evaluations and O(10) Nelder—Mead iterations in most cases. We
also observed the convergence to the same parameters in all but one different combinations of initial guess, which
is an advantage over existing algorithms based on deep-neural networks [45]. Additionally, the proposed framework
easily generalizes to more complex kernel shapes other than a pure power-law decaying shape, by simply adding
the multiplicative factor P and learning its parameters. In fact, when defining the kernel as, e.g., a combination of
basis functions, the algorithm seamlessly accommodates this approximation through inserting additional columns on
the RHS of Eq. (23), and solving for more coefficients at Level 1. In other words, the minimization will always be
two-dimensional, and the inclusion of polynomial basis functions would only affect the Least-Squares problem. In
the end, this is more efficient than minimizing over all parameters, since the bottleneck of the learning problem is in
the computation of the forward nonlocal solution during the optimization. The use of high-performance computing
and parallelization further enhanced the performance of the learning framework, making it scalable and reducing
the computational burden of the forward problem.

The efficiency of the algorithm is reflected in the consistency of results obtained in Cases 1, 2, and 3. It is clear
that the nonlocal model is the appropriate choice for this particular problem, evidenced by the large value of horizon
3, to the order of 400 — 600 times the grid size. The long-range interactions from DDD are therefore represented
as a nonlocal kernel with large horizon. Moreover, multiplication mechanisms correspond to larger values of &,
since the avalanches and the associated collective dynamics, represented by intermittency in velocity signals, lead
to heavy-tail velocity distributions, which translates into heavy tails in the corresponding PDFs. This is in contrast
with Case 1 without multiplication, where we have the PDFs closer to normal distributions than the ones from
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Cases 2 and 3. Therefore, the anomalous behavior in the discrete case leads to nonlocality also in the continuum
case.

The other immediate observation related to the nonlocal model is the meaning of «, which clearly distinguishes
the dynamics of dislocations with and without multiplication. For Case 1 without multiplication, we obtain a value
of « closer of 2.99, while the multiplication mechanisms of Cases 2 and 3 are translated into « = 2.4 and @ = 2.54,
respectively. As anticipated in Section 4, the operator £ obtained with the power-law nonlocal kernel with finite
horizon is equivalent to the truncated fractional Laplacian of fractional order s via the relationship ¢ = 1 + 2s.
Under such view, Case 1 would correspond to a fractional Laplacian with s = 0.99, while Cases 2 and 3 would
take s = 0.7 and s = 0.77, respectively. In this perspective, it is straightforward to see the evolution of dislocation
PDFs as being super-diffusive, with Case 1 being the closest to a classical diffusion process, yet with a pronounced
nonlocality due to rearrangements in the dislocation structure due to annihilations. However, the multiplication
mechanism is the main factor that turns a rather diffusive process into super-diffusive. Moreover, the super-diffusion
is intensified under a lower load, Case 2, where the external stress state allows faster relaxation and stronger
subsequent avalanches compared to Case 3, where the overall higher stress state makes all dislocations move faster,
yielding less relaxation time to a critical, metastable configuration.

The most striking observation related to the kernel discovery is the correspondence between the kernel fractional
parameter o and the scalings of velocity distribution tail from Fig. 4. The empirical scaling observed here and
among other works in the literature matches the values of o found by the data-driven kernel learning algorithm.
This is not surprising, as we can take the velocity distribution to be jump size distributions that define a particular
Lévy measure, essential when transforming a stochastic process into differential equations through the Semigroup
theory [59]. The formal and complete definition of the stochastic process that governs the dislocation trajectories
is out of the scope of this paper, yet we see jump size distributions following Fig. 4 lead to operators defined by
power-law kernels taking the form of Eq. (20).

While the results presented in this paper were specific to the defined DDD simulation box and initial dislocation
density for the purpose of demonstrating the capabilities of the framework. A natural step in future works would be
to perform a formal investigation on the effects of system size and initial dislocation density and its effects on the
kernel parameters. This systematic study could lead to the discovery of potential universal relations in the context
of nonlocal operators that would be independent of the physical simulation setup.

From a wider perspective, the procedure and reasoning developed in this paper do not need to be restricted to
dislocation dynamics. The problem of learning kernels and dynamics from high-fidelity simulations and real-life
data is a relevant research topic of increasing popularity. While the methodology presented in this work highlights
the inference of a nonlocal operator from physical mechanisms, more specifically dislocation dynamics, the same
procedure may be applied to tie the use of other non-standard nonlocal operators to the anomalous physical processes
that they describe.

7. Conclusions

We proposed a data-driven nonlocal model for the simulation of dislocation position probability densities. We
generated dislocation shifted position data in the form of particle trajectories from high-fidelity two-dimensional
DDD simulations under creep with different load levels, with and without multiplication mechanisms. From the
Lagrangian particle trajectories we estimated the evolution of PDFs through and Adaptive Kernel Density Estimation
method. Last, we developed a bi-level ML algorithm to obtain the kernel parameterization for the proposed nonlocal
operator that describes that PDF’s evolution. The developed approach integrates the high-fidelity dynamics of
dislocations at the meso-scale with a continuum probabilistic frame in a fluid-limit sense.

We make the following observations from the integrated framework:

e We recovered the dislocation velocity statistics available in the literature from our two-dimensional DDD
simulations. We identified the same exponent of around 2.4 for the power-law decay velocity distribution
tail when dislocation multiplication is present, and a sharper, close to 3 exponent without the effect of
multiplication mechanisms. The statistics from DDD show similarities among the studied cases.

e The PDF estimation from dislocation trajectories makes evident that the presence of multiplication sources
greatly impacts the probability distributions, increasing the heaviness of the tails and implying greater
nonlocality.
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e Our bi-level algorithm based on a Least-Squares approach for the computation of the optimal nonlocal diffusion
coefficient for every pair of o and § performed well with a manufactured solution, and proved to be robust
for data-driven PDFs, considering different train-test splits and initial guess combinations.

e The large horizon parameter § found among the cases confirms the nonlocal nature of dislocation dynamics,
even from a probabilistic perspective. Furthermore, the nonlocal kernel power-law exponent obtained matches
the tail decay from dislocation velocity distributions computed in DDD simulations. This establishes a well-
defined path between the anomalous behavior observed in particle meso-scale dynamics and the upscaling of
anomalous effects to a continuum, macro-scale frame of reference.

Although we used single-glide mechanisms, we note that shifted particle positions may be obtained in more
general, multi-slip systems. Since the goal of this framework is to obtain the probability densities in the fluid-
limit, the same procedure could be applied to each slip-system in a complex crystal. We further point to the fact
that the bulk dynamics adopted here can also be extended to dislocation motion near free surfaces, crack tips, or
grain boundaries. In such cases, one could expect the PDFs to show non-zero skewness, which could be naturally
accommodated by a different choice of (nonsymmetric) kernel in the nonlocal operator, suitable for skewed, possibly
one-sided distributions.

The nonlocal model of dislocation motion at the meso-scale proposed in this work opens up the opportunity of
fast computations of quantities of interest compared to the high-fidelity simulations. The implications of nonlocal
dislocation models are readily applicable to the study of visco-elasticity and visco-plasticity, where fractional-order
models have been successfully applied to model the power-law relaxation including damage effects [22]. One of
the main connections to be established is the ultimate effect of different regimes of dislocation dynamics on the
evolution of macro-scale free-energy potentials during failure, in phase-field models [50] for instance. Around crack
tips and other dislocation generation objects, such as holes, pores, or other micro-cracks, we expect the macro-scale
behavior to also be anomalous.

Substantially, the methods proposed here can be essential tools to connect other physical processes from a wider
range of applications to the generation of corresponding nonlocal operators. Examples of possible applications
modeled by nonlocal or fractional diffusion include, but are not limited to, fractional models for groundwater and
subsurface transport (see [60,61] and references therein), cancer evolution [62], peridynamics [63], among others, all
of which could benefit from data-driven algorithms for learning the form and parameters of kernels and operators.

Finally, the proposed bi-level optimization approach is an effective way of reducing the computational burden of
optimizing in a high-dimensional parameter space and proves to be robust with both manufactured and simulated
datasets.
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