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Abstract. Module-NTRU lattices, as a generalization of versatile NTRU
lattices, were introduced by Cheon, Kim, Kim and Son (IACR ePrint
2019/1468), and Chuengsatiansup, Prest, Stehlé, Wallet and Xagawa
(ASIACCS ’20). The Module-NTRU lattices possess the benefit of being
more flexible on the underlying ring dimension. They also show how to
efficiently construct trapdoors based on Module-NTRU lattices and apply
them to trapdoor-based signatures and identity-based encryption. In this
paper, we construct Fiat-Shamir signatures based on variant Module-
NTRU lattices. Further generalizing Module-NTRU, we introduce the
inhomogeneous Module-NTRU problem. Under the assumption that a
variation of the search and decisional problems associated with Module-
NTRU and inhomogeneous Module-NTRU are hard, we construct two
signature schemes. The first scheme is obtained from a lossy identification
scheme via the Fiat-Shamir transform that admits tight security in the
quantum random oracle model (QROM), following the framework of Kiltz,
Lyubashevsky and Schaffner (EUROCRYPT ’18). The second scheme
is a BLISS-like (Ducas et al., CRYPTO ’13) signature scheme based
on the search Module-NTRU problem using the bimodal Gaussian for
the rejection sampling. At last, we analyze known attacks and propose
concrete parameters for the lossy signature scheme. In particular, the
signature size is about 4400 bytes, which appears to be the smallest
provably secure signature scheme in the QROM achieving 128-bit security.
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1 Introduction

Lattices have attracted considerable research interest as they can be used to con-
struct efficient cryptographic schemes which are believed to be quantum-resistant.
As evidence, many promising candidates submitted to the NIST post-quantum
standardization process are based on lattices. Fundamental computational prob-
lems in lattice-based cryptography include the Short Integer Solution prob-
lem (SIS) [2,40], the Learning With Errors problem (LWE) [45,46,37,14] and the
NTRU problem [28,26].

* This work was supported in part by NIST award 60NANB18D216 and by the National
Science Foundation under Grant No. 2044855 and 2122229.



Ajtai’s seminal work [2] established the worst-to-average connection for the
lattice-based primitives based on the SIS problem. It serves as a security foun-
dation for many cryptographic primitives such as hash functions and signa-
tures 2,24,33]. The LWE problem, introduced by Regev [45,46], is extensively used
as a security foundation for encryption, signatures and many others [46,24,18,33].
For efficiency, many practical lattice-based cryptosystems are based on assump-
tions on structured lattices such as the Ring-LWE [37,50], Ring-SIS[38,35,42]
and the NTRU problems [27,29]. Introduced by Hoffstein, Pipher and Silver-
man [27,29], the NTRU assumption is stated informally as follows: given a
polynomial & in R, := Z,[x]/(¢(x)), for a cyclotomic polynomial ¢(z) and a
positive integer ¢, where h is the result of dividing one small element by an-
other, find two polynomials f, g € R, with small magnitudes such that h = g/ f
(mod q). Following the pioneer work [27,29], the NTRU assumption has been used
extensively in various cryptographic constructions such as encryption, signature
and many others [26,18,19]. Little is known on the complexity reduction aspects
of the NTRU problem (see also [43,41] for progress on this), yet the NTRU
assumption with standard parameters remains essentially unbroken after decades
of cryptanalysis.

1.1 Previous work

As an important application, SIS/LWE/NTRU problems have been used exten-
sively to obtain post-quantum digital signatures such as [24,33,18,21,13]. There
are two main paradigms for constructing practical lattice-based signature schemes
in the literature. The first is to use trapdoor sampling algorithms and the hash-
and-sign framework, following the work of Gentry, Peikert, and Vaikuntanathan
in [24] (GPV). The second framework, proposed by Lyubashevsky [32,33], utilizes
the Fiat-Shamir [20] with aborts for transforming identification schemes into
signature schemes using variants of SIS/LWE assumptions. We describe related
work for both directions.

Computing a short preimage solution for the SIS and ISIS problems has been
proven to be as hard as solving certain lattice problems in the worst case [2].
However, with a trapdoor for the matrix A one can efficiently derive short
solutions. In the pioneer work of GPV [24], they show how to efficiently construct
a trapdoor for the ISIS problem; more specifically, they give a provable way to
sample short solutions without leaking information about the trapdoor. This leads
to a natural way for constructing signatures using the hash-then-sign paradigm
in the random oracle model (ROM). More efficient trapdoor constructions based
on the SIS and LWE problem have been further proposed in [8,39]. These lattice
trapdoors require that the trapdoor dimension to be about m = ©(nlog q) for
achieving the optimal trapdoor quality. In work [19], the authors instantiate the
GPV framework using the NTRU lattices, which only requires m = 2n. It thus
leads to a more efficient Identity-Based Encryption (IBE) (and signature scheme).
In practice, a power-of-two is usually used for the underlying ring dimension in
NTRU, which leads to inflexibility on the parameter selection for desired security
level. To overcome such inflexibility, the Module-NTRU (MNTRU) problem was



proposed in [16,17] as a generalization of the NTRU problem. The MNTRU takes
the equation F-h = g, where h, g are vectors of polynomials in Rfllfl and F is an
invertible matrix of dimension d — 1 with elements in R,. The elements in F, g are
small for the MNTRU problem to be well-defined. The work [16,17] constructed
trapdoors and proposed instantiations of the hash-then-sign paradigm using the
MNTRU assumption. Concrete instantiations of the hash-then-sign signatures
include the NIST PQC submissions Falcon [44], pgNTRUSign [51], etc.

The signatures discussed above use the trapdoor functions with the hash-
and-sign paradigm. A second paradigm to construct lattice-based signatures is
to use the Fiat-Shamir transform [20]. In [32,33], Lyubashevsky utilizes Fiat-
Shamir for transforming identification schemes into provably secure signature
schemes using variants of SIS/LWE assumptions. In particular, the rejection
sampling in Fiat-Shamir is proposed to ensure the distribution of the signatures
is independent from the private key and hence preventing the leakage of private
keys. An improvement, the so-called BLISS scheme [18], is obtained by using the
bimodal Gaussian distribution in the rejection sampling. This leads to a much
smaller rejection area for signatures. For practical instantiation, BLISS [18] also
devised an eflicient signature scheme using the NTRU assumption. Follow-up
work such as [25,18,9,6] uses a compression technique to further reduce the
signatures size: the common idea is to throw away some bits of the vector to be
hashed. The security proofs in these works remain non-tight due to the use of the
Forking Lemma [10] with the reprogramming of random oracles. Furthermore,
their security is usually studied in the random oracle model.

To construct signature schemes with tight security, Abdalla, Fouque, Lyuba-
shevsky and Tibouchi [1] proposed the lossy identification scheme, and proved
that the signatures obtained from Fiat-Shamir admit a tight security in the ROM
model. A similar approach has been used in the TESLA signature scheme [6,5].
The general idea is to start with a lossy identification scheme which adopts two
security properties, e.g. key indistinguishability and lossiness: it admits a lossy key
generation algorithm that produces a lossy public key which is computationally
indistinguishable to the genuine public keys, yet it is statistically impossible to
win the impersonation game when the public key is lossy. The signature derived
from such an identification scheme [1] was known to be secure only in the ran-
dom oracle model, which does not automatically imply security in the quantum
random oracle model (QROM). Kiltz, Lyubashevsky and Schaffner [30] presented
a generic Fiat-Shamir framework from lossy identification schemes [1] to obtain
tight secure signatures in the QROM. By adaptively re-programming of the
random oracle, the same tight security result in the QROM has been obtained for
the TESLA signature scheme [6,5]. A concrete instantiation of [30] is to adapt and
to modify the Dilithium signature scheme [34], which has tight secure reductions
from Module-SIS (MSIS) and Module-LWE (MLWE). A concrete instantiation of
the techniques in [6,5] is given in the qTESLA signature [13], whose existential
unforgeability under chosen message attack (EUF-CMA) security is reduced from
the underlying decisional Ring-LWE problem.



To our knowledge, the minimum signature size that achieves near 128-bit
security in the QROM model is from [30] with a pair of parameter sets given.
The first set has a signature size of 5690 bytes and public key size 7712 bytes
whose public key prevents a BKZ reduction of block size up to 480. The second
set admits a larger key security (BKZ block size of 600) has signature size 7098
bytes and public key size 9632 bytes.

1.2 Contributions

In this work we present two Fiat-Shamir signature schemes based on some variant
Module-NTRU problems. The first scheme follows the framework of [30], starting
from an identification scheme and applying the Fiat-Shamir transform. The
second scheme is analogous to the BLISS [18] scheme, but built on the variant
Module-NTRU problem, with a fixed ¢ being part of the public key. Thus, they
may be viewed as variants of the signatures from [30] and BLISS [18], instantiated
with the (inhomogeneous) Module-NTRU assumptions.

We first generalize the Module-NTRU problem proposed in [16,17] to the
inhomogeneous MNTRU (iMNTRU) problem and formalize the hardness assump-
tions used. Briefly, the iMNTRU consists of the equation F - h 4+ g = t, where t
comes from a certain distribution. In our signature, essentially the F and g serve
as small secrets, while the h and t are public keys. The first signature scheme
follows the lossy key identification paradigms of [30] using a uniform distribution
for nonce generation. We prove the identification scheme achieves completeness
of normal keys, simulatability of transcripts, lossy keys, sufficient entropy and
computational unique response properties, thus possessing a tight security in the
quantum random oracle model to the inhomogeneous Module-NTRU problem.
Our second construction is a signature scheme based on the variant MNTRU
assumption with a fixed ¢ being part of the public key, and with the bimodal
Gaussian distribution. The construction follows a similar framework as the BLISS
signature [18], but uses the variant MNTRU assumption, which admits extra
flexibility in the choice of parameters for the underlying ring dimension. With
these proposed schemes, we analyze known attacks and their efficacy.

We discuss several related works. In [23], Genise at al. described inhomoge-
neous variants of NTRU problem named MiNTRU. In matrix form, the problem
is defined as A := S7!(G — E) (mod ¢) where G is a gadget matrix of the
form G = (0| I|2I|---|2'°¢9~1T). The secret matrices S and E are sampled
from distributions of small magnitudes and the search MiNTRU problem asks an
adversary to recover S and E from A. In this paper, we introduce a somewhat
different assumption by sampling uniformly a vector of polynomials t € qu’

an invertible matrix of small polynomials F € Rgd_l)x(d_l) and a vector of
small polynomials g € R~ so that h = F~'(t — g). In our second BLISS-like
signature scheme, we also consider the case where t is pre-fixed. A work from
Chen, Genise and Mukherjee [15] introduced the approzimated ISIS trapdoor
and used it to construct signatures using the hash-and-sign framework, which
resulted in reduced sizes on the trapdoor and signature from [39]. For certain



distributions, the approximate ISIS problem is shown to be as hard as the stan-
dard ISIS problem. The approximate ISIS problem of a given matrix A € Zg*™
and a vector y € Zy asks to find a short vector x from Zj" so that Ax =y +z
where z is a small shift. Note the public matrix A is drawn uniformly, while in
our iIMNTRU the public vector h is computed as h = F~!(t — g). Thus, when F
and g consist of sufficiently small polynomials, the distribution (h,t) cannot be
uniform, yet depending on the distribution of t, the marginal distribution of h
might be uniform.

Existing signature schemes built on the Fiat-Shamir paradigms such as
Dilithium [34] and qTESLA [13] are quite efficient and practical. Our scheme
further optimizes the scheme parameters such as the signature size. In particular,
we achieve a 128-bit security with a signature size of 4400 bytes and a public key
size of 10272 bytes for BKZ block size 490. This appears to be smallest provably
secure signature scheme in the QROM achieving 128-bit security. We also have a
signature size of 9264 bytes and a public key size of 18464 bytes for BKZ block
size 669. In addition to parameter optimization, we think it is also beneficial to
investigate a more diverse selection of the underlying hardness assumption. One
notes that the schemes [34] and qTESLA [13] are both built on the Module-LWE
assumptions.

Finally, compared to the BLISS signature [18], the use of the Module-NTRU
enjoys the extra flexibility in the choice of parameters for the underlying ring
dimension, since many applications require the NTRU lattice to be defined on the
power-of-two cyclotomic rings. Thus, sometimes when a higher security level is
needed, the dimension of the NTRU lattice needs to be doubled. Recent progress
on the complexity aspects of the NTRU problem [43] may shed light on the
hardness of the inhomogeneous Module-NTRU problem used in this work.

2 Preliminaries

We present the notation and definitions used to construct our signatures. Let ¢
be an integer, which is usually a prime in this paper. Let Z, be the set of all
integers modulo ¢ in the range (—%, Z] when ¢ is even and [—|Z], [ ] when ¢
is odd. We will refer to it as the balanced representation mod q. We denote R
and R, as the rings Z[z]/(z™ + 1) and Zy[z]/(2™ + 1), respectively. The integer
n is usually a power of 2, where ¢ =1 (mod 2n). In this case, the polynomial
X™+1 splits completely in Z,. Throughout, regular font letters such as v denote
ring elements in R, R, and Z,Z,;. We use bold lower-case letters such as v to
represent vectors of elements from their respective fields. For a vector v, we
denote by vt its transpose, we also denote 0 to be the zero vector. Bold upper
case letters denote matrices. A matrix B = (by,--- ,b,,) is also presented in a
column-wise way. Abusing notation, we sometimes also use lower-case letters to

identify the coeflicients of ring elements in R and R,.

For a polynomial f = Z?;Ol a;x* € Ry, we identify its coefficient embedding
as its vector of coefficients f := (ag,...,a,_1)T. For a vector of polynomials
f = (f1,...,fn) € Ry, we may use ve as a coefficient vector (f1,.. ST A



polynomial f in R, can be associated with an acyclic matrix M. Multiplying f(z)
by g(z) = Z?;()l giz" € R, identifies with the product of My - g. For a vector x,
we use ||x|| to denote its £o-norm and ||x|| = max;(|x;|) to denote its {,-norm.
The ¢o-norm and {,.-norm of polynomial f are defined as the corresponding
norms on the corresponding coefficient vector. Given a vector f consisting of
polynomials f;, the norm notation extends naturally, i.e., ||f]| = max;(||fi|| )-
The inner product of two vectors x and y is denoted by (x,y). For convenience,
we define some notations for rounding.

For an integer ¢ € Z, we denote [c], to be the unique integer in the range
(—27=1,2"1] such that [c], = ¢ (mod 2"). We denote ¢ = |c], - 2" + [c],,, where
lc],. extracts the higher bits of c. In this paper, the inputs ¢ will be in balanced
representation mod ¢. For a polynomial f = Z?:_Ol a;z’ we extend [.], and |.],
to f on its coefficients coordinate-wise. We define B, ,. to be the set of ternary
(or binary) vectors of length n with Hamming weight x. When the length n is
clear in the context, we may write B, for short.

We give background on lattices in Appendix A. We will use the rejection
sampling lemma from [33] to ensure the output signature does not leak information
about the secret key. We review the definition of various distributions and rejection
sampling lemma in Appendix B. We also review the background on identification,
digital signatures and the Fiat-Shamir transform in Appendices C, D and E.

2.1 (Inhomogeneous) Module-NTRU

As a generalization of NTRU, the Module-NTRU (MNTRU) problem was intro-
duced in [16,17], which enables the dimension and parameter flexibility. It was
used to construct trapdoors for lattice signatures and identity-based encryption
(IBE). Intuitively, given a vector h such that the inner product of (1,h) and some
“small” secret vector f is zero, the Module-NTRU problem asks to recover the
secret f or close. In this paper, we will use a natural variant of the Module-NTRU,
which we denote as the inhomogeneous Module-NTRU (iIMNTRU) problem. We
formalize the problem as follows.

Definition 1 (iMNTRU, ¢ p instance). Let n,d > 2 be integers, and q be
a prime. Let B be a positive real number. Denote Ry = Zg[x]/(z™ + 1). An

iIMNTRU, 4,8 instance consists of a vector h € qu and t € Rg’l such that

there exists an invertible matriz F € Réd_l)x(d_l) and a vector g € Rg’l with

F-h+g=1t (mod q) and |F||,|g|ll < B. The (F,g) is called a trapdoor of
the MNTRUy . a,p instance h. An MNTRU, . 4,8 instance corresponds to an
iIMNTRU, .4, tnstance for the case when t = 0.

Definition 2 (iIMNTRUy ».4,p,,p, 7 distribution). Let n, d be positive integers,
and q be a prime. Let D1, Do, T be distributions defined over Rédil)x(d*l), Rg_l
and Rg_l respectively. An iIMNTRUg ».a.p,,D,,7 sampler is a polynomial-time
algorithm that samples matriz F from D1, vector g from Dy, vector t from T and
then computes h in F-h+g =t (mod q). The sampler outputs a tuple (h, F, g, t).



AniMNTRUy 1.4, D,,0,,7 distribution is the induced marginal distribution of (h,t)
from an iIMNTRUq , a,p,,D,,7 sampler. For the distribution to be meaningful, we
usually assume D1, Dy are B-bounded distributions and D1 turns out to be an
distribution defined on invertible elements F. An MNTRUy 1.4, p,,p, distribution
corresponds to the case of an IMNTRUy . 4.D,,D,,7 distribution when the support
of T is always 0.

In the schemes presented in this work, we will make several different choices
for the distribution 7', depending on the design and functionality. The decisional
variant and search variant of the MNTRU are defined as follows:

Definition 3 (Decisional iMNTRU, .4, p,.p,,7,8). Let n,d be positive inte-
gers, and q be a prime. Let D1, Do be B-bounded distributions defined over
R((Zd_l)x(d_l) and qu respectively, and T be a distribution over Rgfl, Let N
be an iIMNTRU,, 1, a.p,.D,,7 distribution. The decisional IMNTRU, ,, a.D,,D,,T,B
problem asks to distinguish between samples from N and from U(Rg_l) x T.
The decisional MNTRUg 4,0, ,D,,B 5 defined similarly when the support of T' is
always 0.

Definition 4 (Search iMNTRU,, ,, 4.0, p,,7,B). Let n,d be positive integers, and

q be a prime. Let Dy, Dy be B-bounded distributions defined over R{(Id_l)x(d_l)
and Rg_l respectively, and T be a distribution over Rfj_l. Let N denote the
iMNTRUg .4,0,,0,,1,8 distribution. Given samples (h,t) from N, the search
iIMNTRUy n.4.D,,D,,7,B Problem is to recover an invertible F and g such that
F-h+g =t (modq) and |F|,|gl| < B. The search MNTRUg ».4.D,,D,,B 1S
defined similarly when the support of T' is always 0. Given an iIMNTRU, , 4 B
instance (h,t), the worst-case search iMNTRU, ,, 4. 5 problem is to recover an
invertible F and g such that F-h+g =1t (mod q) and ||F||,||g|| < B. The worst-
case search MNTRU, ,, 4.5 problem is defined when t is 0. Clearly, the worst-
case search MNTRU, ,, 4. problem reduces to worst-case search iIMNTRU, ., 4 B
problem.

We are not aware of any reduction between MNTRU and the average cases of
inhomogeneous MNTRU assumptions where the t is sampled from a distribution.
However, one can reduce from MNTRU to inhomogeneous MNTRU by assuming
a worst-case oracle on the inhomogeneous MNTRU problem. We will make the
assumption that the average-case inhomogeneous MNTRU assumption is as
hard as the MNTRU assumption. Our signature scheme relies on an additional
assumption that solving a single row of the iMNTRU assumption is as hard as
the IMNTRU assumption. Namely, our signature schemes only use a single row
f of F and hence the vectors g, t are just two polynomials, thus the equation
becomes (h,f) + g =t (mod ¢). The variant search and decisional problems are
defined correspondingly and we require that f is non-zero.

Our first signature scheme reduces from this variant search and decisional
inhomogeneous Module-NTRU assumptions, which we assumed hard to invert
and indistinguishable from uniform respectively. Our second signature scheme is
based on the variant search Module-NTRU assumption, which is assumed hard
to invert as in [16,17].



Remark 1. In the key generation presented in this work, one actually just starts
with a single vector f and pick up an element h in the left kernel of ¢t — g w.r.t. f.
One can pick up h by choosing h; for ¢ < d — 2 first and then computing hy_; in
the end. We note here that the distributions of the public keys for our assumption
and IMNTRU are not the same. We will make the assumption that this variant
assumption is as hard as the iIMNTRU assumption. This variant assumption turns
out to be analogous to “low-density” inhomogeneous Ring-SIS problem [33]. We
leave for future work to study its average-case hardness.

3 Signature based on iMNTRU in the QROM

In this section, we present a lossy identification scheme based on the variant of
inhomogeneous Module-NTRU assumption. Our construction follows the design
and paradigm proposed in [1,5,30] via the Fiat-Shamir transformation and thus
leads to a tightly-secure signature in the quantum random-oracle model. In
this work, the random oracle H takes inputs from R, x M, where M denotes
the message space, and outputs a polynomial in R,. We restrict the output
polynomials to be ternary (or binary) and have x non-zero coefficients, e.g. those
can be identified as vectors from B, .. We refer to [18] for efficient instantiation
of random oracles.

3.1 A lossy identification scheme

As in [1,30], we start by constructing a lossy identification scheme ID, given in
Figure 1. The key generation algorithm starts by choosing parameters d € N as
the rank, n as the ring dimension and a prime g as the modulus. Similar to the key
generation of [16,17], one can sample (h', F, g, t) from an iIMNTRU, , 4.0, D,,U(R,)
distribution, where D and D are two distributions for sampling the secret keys.
Here we sample each f in F from Uj and each g in g from Uj independently.
Note that it is possible to sample them from other “small” distributions such as
discrete Gaussian, but we use uniform distribution here. After we sample g, t and
an invertible F, we compute h’ = {hi}fz_ll in F-h'4+g =1t (mod ¢). Note that
for cryptographically sized parameters the probability that a randomly selected
matrix of polynomials F is invertible is close to one.

As previously mentioned, one can only use a single row (fi,..., f4—1) from F
and let g,t be corresponding polynomials in g, t, respectively. Abusing notation,
we denote fy := g and £ = (f1,..., fa—1, fa), which is the secret key for our
identification scheme. We also denote h = (hy,...,hq—1,1) and set (h,t) as
the public key. With this rewrite, we see that (h,f) = ¢. We use balanced
representation mod ¢ in the following algorithm.

In the first step of the identification, the prover samples a vector of polynomials
y := (Y1, ---,Ya), where each y; is from the distribution U}, and computes the

commitment u := LZ?;; h;y; (mod q)—‘ . The prover then sends u to the verifier.
s

The verifier generates a random challenge ¢ from the distribution B, (here we



Algorithm 1Gen(q, n,d, 8)

1:  Sample f = {fi}’_; and t, where f; Ug and t <> Ug,

d
2: Compute h = (hi,...,hq—1,1) such that thfl =t (mod q)

i=1
3: return pk:= (h,t) and sk :=f
Algorithm P (sk) :

4:  Sample y = {y;}\=} where y; <> U}

d—1
5: Compute u = {Z hiy;  (mod q)—‘
i=1 -

6: returnu
Algorithm Py (sk, u,c) :

7: Compute z := (21,...,24—1) where z; = y; + ¢ f;

d—1
8: Compute w = Z hiyi —c- fa (mod q)
i=1
9: if any ||zl >v—8-kK
or [|[wlll,>2"" =B
or ||w|| > [g/2] — Bk then

10 : return |

11: return z
Algorithm V(pk,u,c,z) :

d—1
12: ifVI<i<d—1|z||, <v—-8 xand Zhizi—t-c (mod q)| = u then
i=1 -

13 : return Accept

14: return Reject

Fig. 1. A lossy identification scheme based on variant of iMNTRU



define it to be the set of ternary vectors of length n with weight ) and sends
¢ to the prover. The number of nonzero coefficients in c is k, thus the infinity
norm of f; - ¢ is bounded by - k. The prover computes z; := y; + ¢ - f; and
returns z if, for all 1 < i < d—1, ||z <v— 5k, and |[Z?;11 hiy; —c - fq
(mod q)],| < 277! — B - k together with [Jw|_ < |g/2] — B - . Otherwise, it
returns L. Verifier accepts (z,u) if, for all 4, we have ||z, < v— 8-+ and

{Z?;ll hiz; —t- ¢ (mod q)—‘ equals u. Otherwise, it rejects. To optimize slightly,
T

it is possible to record Zf;ll h;y; as a state for the prover in Algorithm P; and
re-use in Algorithm Ps.

In this section, we present the lossy identification scheme in Figure 1. We show
the scheme admits properties including na-HVZK, correctness, lossy, min-entropy
and computational unique response (CUR). The proof follows a similar framework
as in [30]. For Lemmas 1 to 5, we state them and sketch the proofs in Appendix F.

We first show that the ID scheme is perfectly na-HVZK. Following the defini-
tion of na-HVZK, we set two algorithms Sim(.) and Trans(.), shown in Figure 2.
We will show that the distribution of outputs of Sim(.) and Trans(.) is identical.
For convenience, we denote B := (3 - k.

Lemma 1. The identification scheme of Figure 1 is perfect na-HVZK.

We now prove that the identification is correct, up to some rejection rate. We
stress that such a bound is not rigorous, as we assumed a specific distribution on
the rounded numbers, yet it is sufficient to use in practice. One can get a more
accurate rejection rate from a simulation.

Lemma 2. Under the variant decisional iMNTRU assumption, the identification
scheme has correctness error

d~1—exp|—Fkn a-1 L —&—1 .
72 g

We now show that the identification scheme is lossy. We first define a lossy key
generation algorithm LossylGen(gq,n, d, ), shown in Figure 3, which samples h;’s
and t from uniform. First, the public keys generated by LossylGen and IGen are
indistinguishable due to the variant decisional iIMNTRU assumption. It remains to
show the scheme admits €)s-lossy soundness; that is, for any quantum adversary,
the probability of impersonating the prover is bounded by es.

Lemma 3. The identification scheme admits €s-lossy soundness for

1 4(~ — B 1 n(d—1) . 27'+1 1)™
e Ly g A= B ROy
Byl q"

This bound essentially says ¢ should be larger than v* asymptotically. This
condition is natural, since otherwise, it is intuitive to see there exist many

solutions z, ¢ for u = LZ?;; hiz; —t- c—‘ .
r

10



Algorithm Trans(sk)

1: Sample y = {y:}/=} where y; Uy
d—1

2: Compute u = \‘Z hiy;  (mod q)

=1

Id

3: Sample ¢ < B,

4: Compute z = {z}{=] where z; = y; + ¢~ f;
d—1

5: Compute w = Z hiyi —c- fa  (mod q)
=1

6: if any [z, >~y — Breturn L
7. if H[w]THOOEQT_l—B
or ||w| > |g/2] — Breturn L

8: return (z,c)

Algorithm Sim(pk)

|U B| n(d—1)
9: With probability 1 — (77_)
U
return L

10:  Sample z = {2}~ where z; <> U} 5
11: Sample ¢ < B,

d—1
12: Compute w' = Zhizi —t-c (mod q)

i=1
i 0f ||[w] || 227" -B

or Hw'“oo > |q/2] — B return L

14: return (z,c)

Fig. 2. Transcript algorithm and simulation algorithm

Algorithm LossylGen(q, n,d, 3)

1: Sample h = (h1,...,hq-1,1) and t, where h; <= Ugr, and t <= Ug,
2: return pk:= (h,t)

Fig. 3. Lossy key generation algorithm LossylGen
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We now prove that the u sent by the prover in Algorithm P; is very likely
to be distinct across every run of the protocol. We first remark that the public
key h’ <> 1Gen (i.e. recall that h = (h’,1)) has a marginal distribution which
is uniform in Rf;_l. This is because h’ is computed in equation F-h' +g =t
(mod ¢) where t is uniform and F is invertible. Note that the joint distribution
(h',t) is not uniform for our choice of parameters, but in Algorithm Py, only h’
is used to produce the commitment.

Lemma 4. The identification scheme has o := n -log E' bits of min-entropy,
where

E =min{ (2y 4 1)1 1 :
mln{( v+ 1), (47 + 1)[@-D(2r+1 4 1)
In the end, we sketch that our scheme satisfies the computational unique
response (CUR) property for the strong unforgeability of the signature scheme
after the Fiat-Shamir transform.

Lemma 5. For any adversary on the identification scheme, the success proba-
bility of producing two valid transcripts (u,c,z) and (u,c,z’), such that z # 7', is
bounded by (4(y — B) 4+ 1)*d=1 . (27t 4 1) . g7,

In the end, we give the signature scheme constructed from the lossy identifica-
tion scheme in Figure 7 of Appendix F. Theorem 3.1 of [30] (also see Appendix E)
concludes that the signature scheme admits a tight security in the QROM. The
concrete parameters for the signature scheme will be given in Section 5.1.

4 A BLISS-like signature based on MNTRU

In this section, we propose a signature scheme based on the variant MNTRU
assumption with a fixed ¢ and the bimodal Gaussian distribution. The construction
follows a similar framework as the BLISS signature [18], but uses the variant
MNTRU assumption, which admits the extra flexibility in the choice of parameters
for the underlying ring dimension.

4.1 Signature scheme

We give the signature scheme in Figure 4 and describe the key generation, signing
and verification procedure here. In Algorithm Gen, used for key generation,
one chooses the following parameters: rank d € N, a prime modulus ¢, an
integer n as the ring dimension, and a positive odd integer 5 < q. We sample
(h',F,g) from the MNTRU, ,, 4., D, distribution, where D; is Ug and Dy is
U CB /2| are distributions of secret keys F and g, respectively. It is sufficient to
take a single row {f,;}f;ll from F and we denote s = (f1,..., fa—1, fa) where
fa:=2g+ 1. Note the coefficients of f; also lie uniformly in [—83, §]. We denote
h = (h1,...,hg—1,—1) and hence (h,s) =0 (mod g). In the scheme, we use the
vector a = (2hy, -+ ,2hq_1, —2) € qu as the public key and vector s € qu as
the private key. It can be checked that we have (a,s) = ¢ (mod 2¢), since

12



d—1
(a,s) = Z?hifi —2f4=0 (mod q),

i=1
(a,s)=¢q-(2g+1)=1 (mod 2).
To sign a message u, the signer chooses a vector y := (y1,...,%4), where

each y; is sampled from the discrete Gaussian Dy ;. The signer then computes
c:= H((a,y) (mod 2q),u) and z := y + (—1)bc - s for a uniform random bit
b € {0,1}. With rejection sampling, the signature (¢, z) is outputted with prob-
ability 1/M exp(— ||c-s||* /(202)) cosh({(z, c - s)/o?), where the constant M is
the repetition rate for each signing. Upon receiving the signature (c,z), the
verification will succeed if ||z|| , < ¢/4, ||lz| < nov/nd, and H((a,z) + q - c
(mod 2q), ) = ¢. For convenience, we did not use compression in the presented
scheme, but mention it should be similar to [18] to compress the signature.

Rejection Sampling. The rejection sampling follows the same as [18]. Consider
z = (-1)® - s ¢+ y. Abusing notation, we denote s - ¢ as the concatenated
coefficient vector as well as a vector of polynomials. The distribution of z is the
bimodal discrete Gaussian distribution %Dzn,d)o-’s_c + %Dznd’o-775_c. To prevent
signatures from leaking the private key, we use rejection sampling that finds a
positive integer M such that for all supports except a negligible fraction:

2

It is thus sufficient to choose M > exp(|s - ¢/|* /(262)). Now we bound [s - ¢||.
The random oracle H outputs a binary vector ¢ with length n and weight « (here
we define B, to be the set of ternary vectors of length n with weight ), and
||s|l., is bounded by 8, so ||s - ¢|| < (k - 8)v/nd. Hence, the number of repetitions
M is approximately exp(x23%nd/(20?)).

1 1
DanJ <M - (2DZ"d,a,s~c + Dan,o-7_S‘C>

Correctness. Let (z,c) be a valid signature for message 1. The rejection sampling
shows that z follows a discrete Gaussian Dzna ,. By [33, Lemma 4.4], we have
|z|| < n-ov/nd, except with probability ~ n"den/ 2(1=7") for some small constant
n > 1. In the security proof, we will also need ||z||,, < ¢/4. This is usually
satisfied whenever ||z| < nov/nd. Finally, check that (a,z) + ¢ -c = (a,y) +
(-1)b-c-{a,s) +q-c (mod 2q).

4.2 Security Proof

We sketch the proof that the signature in Figure 4 is secure under existential
forgery using the Forking Lemma of Bellare-Neven [10] which follows similarly
to [18]. We reduce the security of the signature to the variant MNTRU problem.

We construct two games, Hybrid 1 and Hybrid 2, as in Figure 5, and use
them to simulate the genuine signature scheme. The distributions of outputs in
Hybrid 1 and outputs in Hybrid 2 are the same due to rejection sampling. Thus,
it is sufficient to show the genuine signature is statistically close to Hybrid 1.
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Algorithm Gen(q,n, d, 3)

1: Sample f = {f;}?=} and f4:= 2g + 1 where f; +> U} and g + Ul
-1

2:  Compute h = (hi,...,ha—1,—1) such that » hifi = fu (mod q)
i=1

3: Seta=(2hi, - ,2hq_1,q—2) equ and s = (f1, -+, fa) Equ

4: return pk:=aandsk:=s

Algorithm Sign(sk, u, o) : Algorithm Ver(pk, i, z,c¢) :
5: Sample y := (y1,...,ya) where y; > D 10: if ||z]| < ¢/4 and |z|| < novnd and
6: Compute c = H((a,y) (mod 2q), p) H ((a,z) + gc (mod 2q), 1) = c then
7: Sample a random bit b € {0, 1} 11 : return Accept
8: Compute z = (z1,...,2q4) where 12: return L

zi=yi+ (1) -c- fi
9: return (z,c) with probability

1/ (Mexp (— ”62';2”2> cosh <<Z;725>))

Fig. 4. A BLISS-like signature scheme based on MNTRU

Lemma 6. Let D be an algorithm with the goal to distinguish the outputs of
the genuine signing algorithm in Figure 4 and Hybrid 1 in Figure 5. Let D have
access to two oracles: Oy and Osign. Op is the hash oracle which, given an input
x, outputs H(x). Osign is the oracle which, given an input, returns either the
output of the signing algorithm or the output of Hybrid 1. If D makes at most qy
calls to O and gs calls to Osign, then Adv(D) < qs(qm + q5)27 ™.

We now prove the BLISS-like signature scheme in Figure 4 admits security
against existential forgery under adaptive chosen-message attacks. First, we
observe that if there exists an adversary capable of forging Hybrid 2 with
advantage ¢ in polynomial time, then by the previous lemma, the adversary
is capable of forging the genuine signature of Figure 4 with probability ~ ¢
in polynomial time. Thus, it is sufficient to reduce the variant MNTRU to the
forging problem on Hybrid 2. We sketch it in the following theorem.

Theorem 1. If there exists a polynomial-time algorithm A to forge the signature
of Hybrid 2 with at most qg signing queries to Hybrid 2 and qg hash queries
to the random oracle H, and it succeeds with probability &, then there exists a
polynomial-time algorithm that solves the variant MNTRUg ., 4 p,.p,,B search
problem with advantage ~ 6*/(qs + qrr), where distributions D1 and Do sample
each coordinate-wise polynomial from Dy , and B := 2nov/nd.

We sketch the proof of Lemma 6 and Theorem 1 in Appendix G.
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Hybrid 1: Signi (sk, p, o)

1: Sampley := (y1,...,ya) Where y; <> D
2: Sample ¢ « By

3: Sample a random bit b

4: Computez=y+(-1)".c-s

5: return (z,c) with probability

(o (1) o (2512

Program H({(a,z) + qc¢ (mod 2q),n) =c

Hybrid 2: Signz(o)

1: Sample ¢ + By

2: Sample z = (21,...,24) where z; <> D

3: return (z,c¢) with probability 1/M
Program H({(a,z) + gc¢ (mod 2q),u) =c

Fig. 5. Hybrid games of Figure 4

5 Security analysis and parameters

In this section, we discuss known attacks for the MNTRU assumptions based
on lattice reduction [47,49] for MNTRU lattices. We assume that the variant
iMNTRU problem used in our signatures admits a similar security of the same
dimension. Let A be an MNTRU,, ,, 4, p distribution, and a vector of polynomials
h e Rgfl be a sample from N. The lattice associated to h is defined as

Ap = {(xl,...,xd) € RZ cx1hi+ . o+ xgo1hg-1 24 =0 (mod q)}

It has a basis generated by the columns of

I, 0, ... 0, 0,
0, I, ... 0O, 0,
Bi=| @ 1o

_Mh1 —Mh2 —Mhd71 qIn

The lattice £(B) has rank d x n and determinant ¢". Let (f,g) from RI~' x R,
be a solution of a search MNTRUy ,, 4. g problem. One can verify that (f,g) is a

short vector of Ay by the relation B - vf} = [vgf] . Thus if one can solve the SVP

0
problem in Ay, one can find a solution for the corresponding MNTRU problem.

We review the methodology for estimating the Core-SVP security in Ap-
pendix H and use them to develop the concrete parameters in Table 1.
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5.1 Concrete Instantiation

T II 111 v \Y VI
Ring Dimension n {2048 1024 4096 2048 1283 2003
Module Rank d 2 4 2 3 3 2
Ring Modulus log,(g) [39.93 78.68 53.47 71.37 55.89 38.95
K 32 37 28 32 35 32
r 21 22 34 33 18 20
vy 47668 80205 |79918 91335 |71583 48041
Acceptance Rate 0.237 0.238 0.238 0.238 0.202 0.233
Block-Size b 490 500 839 669 494 492
Public Key pk (bytes) [10272 (10144 |27680 |18464 |9013 9797
Signature Size z (bytes)|4400 6963 9262 9264 5824 4305

Table 1. Concrete parameters for signature in Section 3

We propose the concrete parameters for our signature scheme in Section 3,
with an 128-bit security level achieved by using Theorem 3.1 of [30]. The size of
the public key is n - [log q] 4+ 256 bits when using a 256-bit seed to generate the
randomness. The signature size is n- (d — 1) - [log2(y — 8- k)] + k(log(n) + 1)
bits. For all parameters, the rejection rate is chosen such that the repetition
rate is approximately 4.2-4.3, which is comparable to the rejection rate of the
127 bit security scheme in [30] which has the smallest signature size for schemes
provable in the QROM. The secret key is taken to be ternary in all cases, that
is to say that g = 1 in all columns in the table. Columns I-IV are arranged
with increasing signature size. These four columns are proven secure in Section
3 of this work. Columns I and II have BKZ block sizes close to the bound of
128 bit security while columns IIT and IV have block sizes suitable for higher
security considerations. Note that columns II and IV have very large prime
moduli, making them potentially weak to subfield attacks [3,31]. To heuristically
combat this, one may change (3 to increase the space of valid secret keys at the
cost of signature and public key sizes. Updated choices for g resilient to subfield
attacks are left to future works. The optimal provably secure signature size in [30]
is 5690 bytes and has public key size 7712 bytes. Comparing this to column I in
the table we see that our scheme achieves comparable security and acceptance
rates with a signature 77% the size of theirs at the expense of having public
key 133% the size. This tradeoff makes their scheme have better overall channel
weight if one message is to be signed, but if more than one is to be sent, then
our parameter set in column I has a lower overall channel weight.

Columns V and VI use the NTRU-prime [12] like polynomials with irreducible
polynomials ™ — x — 1 for prime n; thus the underlying rings do not correspond
to power-of-two cyclotomics. The flexibility of choosing n leaves room for im-
provement on provable parameters, as one sees that NTRU-prime constructions
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give the smallest signature size (VI) and smallest public key size (V). We remark
that the security of these two columns is not proven here since our proofs (e.g.
Lemma 3) use the underlying ring structure. We leave them to future works.
For the BLISS-like signature scheme in Section 4, the public key and the
secret key are vectors of polynomials in U 1 and Uj 7d - thus amounting to

n-(d—1) - [logq] bits and n - d - [log20] blts respectlvely The signature is
(z,c), where z € RY with ||z|| . < ¢/4, and ¢ sampled from the set of binary
vectors of length n with Hamming weight x. Thereby, the size of signature
s (n-d-[log(g/4)] + n) bits. The signature in Section 4 utilizes the same
framework as the BLISS signature. We expect it yields more flexibility in selecting
parameters due to the usage of module lattices. It remains an interesting question
to understand whether the BLISS-like signature is secure in the QROM, and
thus we leave the parameter selection for future work.
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A FEuclidean lattices

Let B € Q™*" be a matrix of rank n. The lattice £ generated by B is defined as
L(B) = {Bx | Vx € Z"}, and the matrix B is called a basis of £L(B) (or just £).
We let B* = (b, - ,b) denote the Gram—Schmidt orthogonalization of B. The
determinant of a lattice £(B) is defined as Vol(£(B)) = [[,,, IIb; |-

The ¢3-norm of a shortest non-zero vector in a lattice £ is denoted by A1(£),
which is called the minimum of £. This can be extended successively: For any
lattice £, the i-th minimum \;(£) is the radius of the smallest ball with center
at the origin and containing ¢ linearly independent lattice vectors. With 5(0, r)
denoting a ball at origin of radius r, we have \;(£) = inf{r : dim(span(£ N
B(0,1))) > i}.

Minkowski’s Convex Body Theorem states that A (£) < 2- v, /™ - Vol(£)Y/™,
where v,, is the volume of an n-dimensional Euclidean ball of radius 1. The
average version of the Minkowski’s Theorem is often known as the Gaussian
heuristic: the A\; of a random n-dimensional lattice is asymptotically

GH(L) = v Y™ - Vol(L£)Y/™. (1)

The quality of a full-rank lattice £ of rank k is measured by the root Hermite
factor § so that ||by|| = §¥Vol(£)/*. For i < n, we let 7;(v) denote the orthogonal
projection of v onto the linear subspace (by,--- ,b;_1)*. For i < j < n, we let
By; 5 denote the local block (m;(b;),- -+ ,mi(b;)), and L; ;; denote the lattice

generated by Bj; ;.

B Distribution and Rejection sampling

Let D be a probability distribution. We let Supp(D) = {z : D(z) # 0} denote
its support. For a finite set X, we use Ux to denote the uniform distribution
over X - e.g., Ug, denotes the uniform distribution on Zy[z]/(2" + 1). For a
positive number S, the uniform distribution on [—/, ] is denoted as Ug. For a
distribution D, we write x <= D to denote that x is sampled from D. We denote
D(z) the probability of < D. A polynomial f of degree (n — 1) is identified as
its coefficient vector and f <—= D™ denotes each coordinate of f is sampled from D
independently. The statistical distance between two distributions D; and Do over
a countable support X is A(D1,Ds) = 23 v [D1(x) — D2()|. This definition
is extended in the natural way to continuous distributions. If f : X — R takes
non-negative values, then for all countable Y C X, we define f(Y) =",y f(t).
A function f()) is negligible if it is A1), where A often denotes the security
parameter in our context. A probability density function p(A) is overwhelming
if it is 1 — A=), The distinguishing advantage of an algorithm A between
two distributions Dy and D; is defined as Adv 4(Dy, D1) = |Pryp,[A(z) =
1] = Prysp, [A(z) = 1]|, where the probabilities are taken over the randomness
of the input x and the internal randomness of A. Algorithm A is called an
(e, T)-distinguisher if it runs in time < T and if Adv4(Dy, D) > ¢.
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A distribution D defined on R is B-bounded for some positive real B, if
the probability that x <= D has absolute value greater than B is negligible
w.r.t. the system parameter, which will be clear from the context. In the case
where D is over Z4, we will assume implicitly that B < (¢ — 1)/2. A B-bounded
distribution D is said to be balanced if Pr[D < 0] > 1/2 and Pr[D > 0] > 1/2.
The notion of B-bounded distribution extends coordinate-wise if the support of
D is R™ and R™*". For example, we will consider the case when the polynomials
f are sampled from a B-bounded distribution, thus each coefficient of f sampled
is B-bounded.

For a vector c € R™ and a real s > 0, the Gaussian function p; . with standard
deviation s and center c is defined as ps (x) = exp(—n|/x — c|?/s?),Vx € R".
The Gaussian distribution function is D ¢(x) = ps.c(x)/s™. When ¢ = 0, we omit
the subscript c. The discrete Gaussian distribution over a lattice A C R"™, with
standard deviation s > 0 and center c is defined as: Dy 5 ¢ = ps.c(X)/ps,c(A),Vx €
A. When the center is 0, we may omit the subscript c. When the lattice A = Z,
we may also omit the subscript A.

We use the following rejection sampling lemma from [33] to ensure the output
signature is not leaking information about the secret key.

Lemma 7. Let V' be an arbitrary set, and h : V. — R and [ : Z,, = R be
probability distributions. If g, : Zym — R is a family of probability distributions
indexed by all v € V with the property that

IM € R such that Vv, Pr[Mg,(z) > f(2);z+ f]>1—¢€

. . . . . . 1—
then the distribution of the output of the following algorithm is 3;

able:

€

indistinguish-

1. v+ h,z < gy, return (z,v) with probability min (Mfg(z()z) , 1).

2. v h,z <+ f, return (z,v) with probability %

C Identification and signature schemes

We recall some basic notion on the canonical identification schemes, following [30].
A canonical identification scheme is a three-move protocol between two parties:
a prover P and a verifier V. In the three-move protocol, the prover sends a
commitment W to the verifier, then the verifier selects a random challenge ¢ and
sends it to P. Upon receiving ¢, the prover sends back a response Z to the verifier.
In the end, the verifier makes a deterministic decision about the received Z.

Definition 5 (Canonical identification scheme). A canonical identification
scheme is a tuple of classical ppt algorithms ID := (IGen, P, V).

e The key generation algorithm |Gen takes as input a security parameter \ and
returns the public and secret keys (pk,sk). The public key defines the set of
challenges ChSet, the set of commitments WSet, and the set of responses
ZSet.
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e The prover algorithm P consists of two sub-algorithms: Py takes as input the
secret key sk and returns a commitment W € WSet and a state St; Po takes
as inputs the secret key sk, a commitment W, a challenge ¢, and a state St
and returns a response Z € ZSet U { L}, where L ¢ ZSet is a special symbol
indicating failure.

e The verifier algorithm V takes as inputs the public key pk and the tran-
seript (W, e, Z) and outputs 1 (acceptance) or 0 (rejection,).

If Z =1, then we set (W, ¢, Z) = (L, L, L). The triple (W, ¢, Z) € WSet x ChSet x
ZSet U {(L, L, 1)} generated in this way is called a transcript and denoted as
Trans(sk). Given the public key pk, a transcript is valid if V(pk, W, ¢, Z) = 1.

We say that ID has correctness error § if, for all public and secret keys
generated by IGen all possible transcripts in WSet x ChSet x ZSet with Z #1
are valid, and the probability that a honestly generated transcript is (L, L, 1) is
bounded above by §. If the most likely probability of a random variable W that is
chosen from a discrete distribution D is 27¢, then we write Hoo (W|W <= D) = a.
We say a canonical identification scheme ID has « bits of min-entropy, if

> >1-27
Py Hoo VIV, 51) = Py(sk)) 2 ) 21— 2

Equivalently, except with probability 27% over the choice of keys, the min-entropy
of W will be at least a.

Definition 6 (Lossy identification). A canonical identification scheme is lossy
if there exists a lossy key generation algorithm LossylGen that takes the security
parameter A as input and returns a public key pk,s without any secret key. A lossy
ID scheme satisfied two security properties:

1. Indistinguishability of keys: the public keys generated by |Gen and LossylGen
are indistinguishable. Equivalently, for any quantum adversary A, the follow-
ing distinguishing advantage is negligible

AdifS(A) =] Pr(A(pk,) = 1|pks « LossylGen(\))
— Pr(A(pk) = 1|(pk,sk) < IGen(X))].

2. Statistical lossy soundness: given a lossy public key pk, not even an unbounded
quantum adversary can impersonate the prover. A lossy ID scheme has €s-
lossy soundness if for any quantum adversary the probability to impersonate
the prover is bounded by €.

Definition 7 (No-abort honest-verifier zero-knowledge). A canonical iden-
tification scheme ID is e -perfect no-abort honest-verifier zero-knowledge (€,x-
perfect na-HVZK) if there exists a ppt algorithm Sim which given only the public
key pk, outputs (W,c, Z) such that:

o The statistical distance between (W, ¢, Z) < Sim(pk) and (W, ¢, Z) < Trans(pk)
18 at most €,
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e The distribution of ¢ in (W, ¢, Z) < Sim(pk) conditioned on ¢ #L is uniform
in ChSet.

Finally, an identification scheme has computational unique response (CUR)
property if it is computationally infeasible to produce two different valid re-
sponses Z, Z' for any commitment/challenge pair (W, ¢). In the context of lossy
identification scheme, the computational unique response property is required to
ensure the strong unforgeability of the signature scheme.

D Signatures

Definition 8 (Digital signature). A digital signature scheme SIG consists of
a triple of ppt algorithms (Gen, Sign, Ver).

e The key generation algorithm Gen(X) inputs the security parameter X\ and
returns the public and secret keys (vk,sk). The vk defines the message space
for messages p.

e The signing algorithm Sign(sk, u) returns a signature o.

e The deterministic verification algorithm Ver(vk, u, o) returns 1 for accept or
0 for reject.

A signature scheme admits correctness error § > 0, if for every pair of outputs
(sk, vk) of Gen(\) and any message p in the message space, we have

Pr[Ver(vk, u, Sign(sk, 1)) = 0] < 4,
where the probability is taken over the randomness of algorithms Sign.

Definition 9 (Unforgeability). A signature scheme SIG := (Gen, Sign, Ver) is
said to be unforgeable against one-per-message chosen message attack (UF-CMA; )
in the quantum random oracle model if: for every ppt quantum forger F having
quantum access to the random oracle and classical access to the signing oracle, the
forging probability that, after seeing the public key and Q = poly(n) adaptively cho-

sen distinct messages M; of his choice and their signatures {(M;, Sign(sk, M;)) }i=1,...

the forger F can produce M* ¢ {M;}i=1,... g and o* such that Ver(vk, M*, %) =
1, is negligibly small. The forging probability is taken over the randomness of
Gen, Sign and F, and denoted as Advyc A (F).

One can extend the definition to the case where the forger may obtain more
than one signature for any of @) adaptively chosen messages {M;}. If no quantum
forger F can produce a valid signature for a message M* ¢ {M,;};=1.... o, we say
the signature scheme is unforgeable against chosen message attack (UF-CMA).

In the strong UF-CMA/UF-CMA; setup (denoted sUF-CMA/sUF-CMA;), the
adversary may return a forgery for a message which has already been queried
previously, but with a different signature.
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E Fiat-Shamir transform

One can construct a signature scheme from an identification scheme where the
hardness of the signature inherits from the ID scheme. Let ID := (IGen, P,V)
be a canonical identification scheme. One obtains the signature scheme SIG :=
(G = IGen, Sign, Ver) via the Fiat-Shamir transformation. Such approach uses the
Fiat-Shamir transform as illustrated in Figure 6, which can be used to construct
lattice-based signatures without trapdoor [32,33].

Algorithm Sign(sk, ) Algorithm Ver(pk, o, i)
1: i=0 1: Parse o:= (W, 2)
2: while Z=1 and i < 7, do 2: c=HW||p)
3 i:=1+1 3: return V(pk,W,c, Z) € {0,1}
4 (W, St) + P1(sk)
5 e=HW)
6 Z <+ Pa(sk, W, ¢, St)
7 if Z=1returno =1
8: output o:= (W, Z2)

Fig. 6. Fiat-Shamir signature obtained from an ID = (I1Gen, P, V)

Such transform was known to be secure in the random oracle model in the
classic setting, which does not automatically imply security in the quantum
setup. Kiltz, Lyubashevsky and Schaffner [30] presents a generic framework for
constructing tight reductions in the quantum random-oracle (QROM) model,
which can be constructed from a lossy ID scheme. In particular, if the underlying
identification scheme is lossy and na-HVZK, then the UF-CMA; security of the
scheme is tightly based on the hardness of distinguishing regular and lossy public
keys of the identification scheme. We will use Theorem 3.1 of [30] in this work
and cite it as follows.

Theorem 3.1 of [30]. Consider an identification scheme ID which is lossy, €-
perfect na-HVZK, has « bits of entropy and is es-lossy sound and the signature
scheme SIG obtained by applying the Fiat-Shamir transform to the identification
scheme ID, as in Figure 6. For any quantum adversary A against UF-CMA; (and
sUF-CMA; ) security that issues at most Qu quantum queries to the random
oracle and Qg classical signing queries, there exists a quantum adversary B
against ID (and a quantum adversary C against CUR) such that

Adv i ™A (A) < AdviB(B) +8(Qu +1)* - £1s + T - Qs - e + 27
Adv G MM (A) < AdvF3(B) +8(Qu + 1)* - €1 + T - Qs - £ + 27 4+ Ado R (C)

and Time(B) = Time(C) = Time(A)+1n, - Qu ~ Time(A).
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It can be noted that UF-CMA;-secure signatures can be de-randomized with
a pseudo-random function PRF to obtain a UF-CMA secure signatures with
deterministic signing [11] and such reduction is tight. Thus one can de-randomize
the signature scheme in Figure 6 by using a PRF to obtain a deterministic
signature DSIG. Then for any quantum adversary A against the UF-CMA security
of DSIG that issues at most Qy quantum queries to the random oracle and Qg
classical signing queries, there exists a quantum adversary B against ID and a
quantum adversary D against the PRF such that

AdeE[gMA(A) < Adv:c[’)ss(B) +8(Qm + 1)2 s+ Tm - Qg e + 27T 4 AdVEEF(D)
AdvRicMA(A) < AdVIS*(B) +8(Qu + 1) - e1s 4+ Tim - Qs - 2 + 271 + AdVERL(D) + Adv BR(0)

where the AdVEEF(D) denotes the distinguishing advantage of the adversary D,
w.r.t a perfect random function PR.

F Signature scheme from the lossy identification and
security proofs

The signature is constructed from the identification scheme in Figure 1 by using
the Fiat-Shamir transform. Theorem 3.1 on page 25 states the upper bound
for the security of our signature. We instatiate it with concrete parameters in
Section 5.
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Algorithm Gen(q,n,d, )

1: Sample f = {fi}?zl and ¢, where f; <= Uj and t <= Ug,

d
2: Compute h = (hi,...,hq—1,1) such that Zhifi =t (mod q)

i=1
3: return pk:= (h,t) and sk :=f
Algorithm Sign(sk, u) : Algorithm Ver(pk, u,z,¢) :
4: Sample y = {y;}{=} where y; +> U 1m: ifv1i<i<d-1,||zl,, <y—p -~ and
d—1 d—1
5: Compute c = H ({Z hiy;  (mod q)-‘ , p) H ({Z hizi —t-c (mod q)-‘ , ,u) = c then
i=1 - i=1 -
6: Compute z = {z}{"] where z; = y; + ¢~ f; 12: return Accept
d—1 13: return Reject
7: Compute w = Zhizi —c- fa
i=1
8: if any [zl >v—B K
or [[w]ll, >2""" B &
or [lwll, = 1[g/2] — -~ then
9: return L
10: return (z,c)

Fig. 7. A signature scheme obtained from the lossy identification scheme.

Proofs for signature scheme in Section 3 In this subsection, we show the
ID scheme admits properties such as na-HVZK, correctness, lossy, min-entropy
and CUR. For convenience, we denote B := (3 - k.

Proof of Lemma 1 : We sketch the proof. Our choice of parameters guarantees
that the infinity norm of z; in the output is bounded by v — B. It is clear that each
z; bounded by v — B has an equal probability of being generated. Furthermore,
the probability that some z such that ||z|| < v — B is generated is precisely
(\UA,_B|/\UV|)7L(d_1), as in Line 9 of Figure 2. Finally, we note that Line 12 of
Figure 2 satisfies Z?:_ll hizi —t-c= Zj:_ll hiy; — ¢+ fa (mod g). Thus, the step
in Line 7 of Algorithm Trans is identical to that of Line 13 of Algorithm Sim. O

Proof of Lemma 2 : It can be checked that when the output is not 1, the
verification procedure will always accept. This is due to the conditions in Line 9
and 12 of Figure 1.

Furthermore, Lemma 1 shows Algorithms Trans and Sim output L with the
same probability. Thus, it suffices to focus on Algorithm Sim.
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First, the probability of producing some z, that is to say Line 9 of Algorithm
Sim does not return L, is

2(7 . B) +1 n(d—1) N B n(d—1) N

Second, we heuristically assume the low-bits [w’], are uniform, where w’ =
E‘;:—ll hiz; —t- ¢ (mod ¢) for a uniform z.

Thus, the probability that ||[w'],||. < 2"~ — B is about (—Bn/2"1).

Finally, we will also assume that w’ is uniform mod ¢ and thus the probability
that ||w'||, < |¢/2] — B is about exp (—2Bn/q).

In these estimated inequalities, we assumed ¢ > 2""! > v > B = - k. The
overall acceptance probability is as stated. O

Proof of Lemma 3 : We will sketch the proof, which follows the same framework
of [30].

We now introduce the impersonation game. Consider an unbounded quantum
adversary A who receives the lossy key (h,t) produced from LossylGen. The
adversary A attempts to impersonate with the following steps: outputting wu,
taking ¢ uniformly from B, and then producing z. We will prove that for almost
all lossy keys generated from LossylGen, for any u, there exists at most one
possible ¢ that allows the adversary A to win. Since c is taken uniformly from

B, this implies the adversary wins at a chance of at most | 31 K for almost all

lossy keys.
Now, suppose that for some u, there exist pairs (z,¢) and (2, ¢'), such that
¢ # ¢, in which the adversary A wins. Thus,

d-1 d-1
u:{Zhiz,——t-c“ :\‘Zhizé—t-c"‘ .
i=1 i—1 ,

Using the bounds on z;’s and rounding properties, there exists some w such that

T

hi(zi —z)) +w=t-(c— ). (2)

s
Il
-

We have the bounds ||w| <27, [z — 2| < 2(y— B) and ||c — /||, < 2. To
prove this only happens rarely, we will show the following statement that, over
random choices of (h,t), the equation Zj:_ll hizf +w* =t-c* is satisfied (i.e.
there exist such z* = {z}};, w* and ¢*) with probability bounded by

. (4(’7 _ B) + 1)n(d71) . (2r+1 + 1)n
q" '

2-|C 3)

Here, for convenience, we denote sets Z = {Vi € [1,d — 1], 2] € Ry | ||2]|| <

2y =B)}, W ={w* € R | |w*|, <2"} and C = {c* € R, | ||c*||, < 2}. Note
that one can also restrict C' to contain elements ¢* of at most 2k non-zero entries.
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We consider two cases depending on whether z* = 0 or not. First, suppose
z* = 0. We consider

Pr F(w*,c") € Rgx Cst.w" =t-c7]

t+ Ry

By [36, Lemma 2.2|, the elements ¢* of norm < /q/2 are invertible in R, as we
choose ¢ =5 (mod 8). Thus, the above probability is

Pr [3(w*,c*) € Ry x Cst.w*- (") =t] < Z Pr [t=w"(c")""]

t< Ry t< Ry
w*eW,c*eC
2r+1 1"
q’ﬂ

Second, suppose that z* # 0. For some fixed (z*,w*, ¢*), we assume that z; # 0;
otherwise, take any non-zero z;. We have

d—1 d—1
t-c*—w*—=> . 5 hzf
Pr g hiz; +w*=t-c*| = Pr [h Lo M2
Vi, hi<=Rg,t<= Ry hi1+R,

i=1

< —.

The invertibility of z; is due to the small norm of z; by [36, Lemma 2.2] again.
By the union bound, the probability over all (z* # 0, w*, ¢*) can be bounded by

_ n(d—1) , (or+1 n
z*€Z\{0},w*eW,c*eC
Thus, Equation (2) is satisfied when (h,t¢) is sampled from LossylGen, with
probability bounded by the one given in Equation (3).
Finally, as c¢ is taken uniformly from B, in the impersonation game, the
adversary wins at a chance of at most

1 A(y — B) + 1)1 (27l 4 1)n
|B+2~Cl-((” ) >qn ( "

We note that |C] < |B,|*. O

Proof of Lemma 4 : We will bound the probability that the commitment u is
unique, averaged over a random choice h’ - e.g.,

d—1 d—1
Pr 3 /, hi i = hi ; .
h/<_>U§;1 l y#y \JX_; Y —‘ - \Jz_; !y -‘ ,,.]

If there exist distinct y and y’ such that LZ?:_E hzyz-‘ = {Z?:_f hly;—‘ , then

there exist non-zero elements y* and w* such that Z?:_ll hiy? = w* (mod q),
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where |ly*||,, <2y and [|w*|| < 2". Since y* is nonzero, we may assume that
y7 # 0 w.lo.g. Again, the elements y] of small norm are invertible by [36, Lemma
2.2]. Thus, we have

> .

y*,w*

d—1
* hz
Zhlyz—w = Z Pr hlz—w 21*2 Yi
Ud 1 Nyt h1+>Ug, Yi
(49 + 1Dt 4 1)

q’l’L

Denote § := (4 + 1)@= (271 4 1)7¢~". With probability at least 1 — § over
the choices of public key h’, the min entropy of {21:1 h;y; (mod q)—‘ is at least

(d — 1)nlog(2v + 1). Therefore, the identification has « bits of min-entropy, as
stated in the lemma. g

Proof of Lemma 5 : Suppose an adversary can produce two transcripts (u, ¢, z),
(u,c,2z’) such that z # 2z’ and V(pk,u, c,z) = V(pk, u,c,z’) = 1. We see that there
exist z* # 0 and w* such that Zd 1 hizf = w*, where ||z*| < 2(y — B) and
|w]|,, < 2". One can bound the probablhty, over the choice of h, that there
exists such (z*, w*) using a similar method as in Lemma 3 or Lemma 4. O

G Proofs for BLISS-like signature

Proof of Lemma 6 : The only difference between the genuine signature algorithm
and Hybrid 1 is the necessary programming of the random oracle at ¢ := (a,z) +
gc={(a,y) (mod 2q), without checking whether the value ¢ was previously set
or queried. We bound such probability for any ¢t and a. We have

Pr [{ay) =t = HDW Z%Zyz (@—2)ya=t

Vi, yi<=>D? Vi, yi

< max Pr =w| <27
T wERg ya+D? [yd ] -

The total number of values programmed will be bounded by qg + ¢s. Thus, the
probability that we have any collision with one of the previous calls of Os;g is
bounded by ¢s(qu + ¢s)2~™. This provides an upper bound on the advantage of
the distinguisher algorithm D. O

Proof of Theorem 1 : Let b’ = {h;}%~! be the instance sampled from the the
variant MNTRU ., 4. p,,p, distribution, where D; and D, sample polynomials
from D7 ,. We construct the public key a for the signature in Hybrid 2 such that
a=(2hy, - ,2hg-1,¢q—2) in R‘Qiq. We aim to find a vector x such that (a,x) =0
(mod ¢), which implies the solution (h,x) =0 (mod q).

When the adversary A wants to see the signature on some message, one calls
the signing algorithm from Hybrid 2. When the random oracle is queried during
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signing or random oracle access, one programs the random oracle, maintaining a
list of all queries to keep track of the same query being made. Finally, A produces
a forgery (z,c) on a message [, using at most gg signing queries to Hybrid 2 and
qy hash queries to the random oracle H, and succeeds with probability §. Write
qr = qs + qu as the upper bound on the number of times the random oracle is
called or programmed during A’s attack.

We denote 8 := (7). With probability 1 — 1/8, the forgery relies on having
had ¢ as the result of a query (hash or sign) previously. With probability § — 1/4,
this leads to two possible sources of the forgery: collision from the Hybrid 2
and collision from the random oracle query. We cover these in two cases. First,
suppose ¢ was obtained from a signing oracle query. Then, there exist pairs (z, ;1)
and (2, ¢') such that H((a,z) + q-c,) = H({(a,2') + ¢ - ¢, i), which implies

pw=yp and (a,z) +¢-c=(a,z’) + ¢-c (mod 2q),

due to the collision resistance. This yields E?:_ll hi(zi = 2}) —(za — %)) =0
mod ¢. Note that ||z — z/|| is bounded by 2nov/nd and z # z’. Furthermore,
z # 7' (mod q), since ||z||, and ||2’|| . < ¢/4. Thus, z — 2’ is a non-zero solution
of the variant MNTRUg 1, 4. p,,D,.B-

Second, suppose ¢ was obtained from a hash oracle query, the Forking Lemma
in [10,18] states that, with probability (§ — %)(6_615;1 - %) ~ 62 /qr, there exist
(z,c) and (z',¢") with ¢ # ¢ such that

-1
Z 2hi(z; — 20) — (¢ — 2)(zq — 24) = q(c — ¢') mod 2q.
i1

This yields Zf;ll hi(z; — 2}) — (24 — 23) = 0 mod ¢. The ¢, ¢ are binary and
hence ¢ # ¢’ (mod 2). Given that ||z||  and |z’|| , < ¢/4, we see that z # 2’
(mod ¢) and hence z— 2’ is a nonzero solution of the variant MNTRUy, ,, 4. p,,D,,B-

O

H Lattice reduction estimates

In MNTRU lattices, the secret (f,g) has norm less than the Gaussian heuristic
norm of the shortest non-zero vector in Ay and leads to the so-called unique-SVP
problems (USVP).

We recall the estimate for solving USVP by Gama and Nguyen [22]. Generally,
the work in [22] showed that the shortest vector in the USVP, problem can
be recovered as soon as 7 > 7 - ", where § is the root Hermite factor of the
reduction algorithm, and ~ is the ratio gap of A2/\; in USVP lattices. Here 7 < 1
is an empirical constant determined by experiments: it has been investigated
that 7 lies in between 0.3 and 0.4 when using the BKZ algorithm [4]. Ordinarily,
the second minimum Ag of a USVP lattice is approximated by using the Gaussian
heuristic to predict the norm of the shortest vector in random lattices. The ¢ is
a decreasing function of 5 and therefore we want to maximize 6.
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In the New Hope key exchange paper [7], another alternative method for
estimating the cost for solving USVP is given, and it has been investigated
extensively by Albrecht et al. in work [4]. Instead of looking at the gap of the
USVP directly, it considers the evolution of the Gram-Schmidt coefficients of the
unique shortest vector in the BKZ tours. More precisely, it compares the expected
length of the projected (expected) shortest vector v with the Gram-Schmidt
lengths estimated by the Geometric Series Assumption (GSA) [48].

Geometric Series Assumption (GSA) Let k be a rank of a lattice A. For 1 <i <
k — 1, the norm of the Gram-Schmidt vectors b} in the lattice reduction basis
BKZ satisfy

7| = 07 - [[ b7 | -

The main idea is that partial information of the shortest vector v will be
recovered in the last block, when the orthogonal projection of v to the first d —
Gram-Schmidt vectors is shorter than the expected bj_ ;. ; predicted by the GSA
assumption. Thus the success condition for recovering the secret for MNTRU
problems, can be formulated as follows:

B/ dim(L) - ||[£. ]| < 837" Vol(£)!/ aime).
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