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Abstract. Module-NTRU lattices, as a generalization of versatile NTRU
lattices, were introduced by Cheon, Kim, Kim and Son (IACR ePrint
2019/1468), and Chuengsatiansup, Prest, Stehlé, Wallet and Xagawa
(ASIACCS ’20). The Module-NTRU lattices possess the beneőt of being
more ŕexible on the underlying ring dimension. They also show how to
efficiently construct trapdoors based on Module-NTRU lattices and apply
them to trapdoor-based signatures and identity-based encryption. In this
paper, we construct Fiat-Shamir signatures based on variant Module-
NTRU lattices. Further generalizing Module-NTRU, we introduce the
inhomogeneous Module-NTRU problem. Under the assumption that a
variation of the search and decisional problems associated with Module-
NTRU and inhomogeneous Module-NTRU are hard, we construct two
signature schemes. The őrst scheme is obtained from a lossy identiőcation
scheme via the Fiat-Shamir transform that admits tight security in the
quantum random oracle model (QROM), following the framework of Kiltz,
Lyubashevsky and Schaffner (EUROCRYPT ’18). The second scheme
is a BLISS-like (Ducas et al., CRYPTO ’13) signature scheme based
on the search Module-NTRU problem using the bimodal Gaussian for
the rejection sampling. At last, we analyze known attacks and propose
concrete parameters for the lossy signature scheme. In particular, the
signature size is about 4400 bytes, which appears to be the smallest
provably secure signature scheme in the QROM achieving 128-bit security.
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1 Introduction

Lattices have attracted considerable research interest as they can be used to con-
struct efficient cryptographic schemes which are believed to be quantum-resistant.
As evidence, many promising candidates submitted to the NIST post-quantum
standardization process are based on lattices. Fundamental computational prob-
lems in lattice-based cryptography include the Short Integer Solution prob-
lem (SIS) [2,40], the Learning With Errors problem (LWE) [45,46,37,14] and the
NTRU problem [28,26].

⋆ This work was supported in part by NIST award 60NANB18D216 and by the National
Science Foundation under Grant No. 2044855 and 2122229.



Ajtai’s seminal work [2] established the worst-to-average connection for the
lattice-based primitives based on the SIS problem. It serves as a security foun-
dation for many cryptographic primitives such as hash functions and signa-
tures [2,24,33]. The LWE problem, introduced by Regev [45,46], is extensively used
as a security foundation for encryption, signatures and many others [46,24,18,33].
For efficiency, many practical lattice-based cryptosystems are based on assump-
tions on structured lattices such as the Ring-LWE [37,50], Ring-SIS[38,35,42]
and the NTRU problems [27,29]. Introduced by Hoffstein, Pipher and Silver-
man [27,29], the NTRU assumption is stated informally as follows: given a
polynomial h in Rq := Zq[x]/(ϕ(x)), for a cyclotomic polynomial ϕ(x) and a
positive integer q, where h is the result of dividing one small element by an-
other, őnd two polynomials f, g ∈ Rq with small magnitudes such that h ≡ g/f
(mod q). Following the pioneer work [27,29], the NTRU assumption has been used
extensively in various cryptographic constructions such as encryption, signature
and many others [26,18,19]. Little is known on the complexity reduction aspects
of the NTRU problem (see also [43,41] for progress on this), yet the NTRU
assumption with standard parameters remains essentially unbroken after decades
of cryptanalysis.

1.1 Previous work

As an important application, SIS/LWE/NTRU problems have been used exten-
sively to obtain post-quantum digital signatures such as [24,33,18,21,13]. There
are two main paradigms for constructing practical lattice-based signature schemes
in the literature. The őrst is to use trapdoor sampling algorithms and the hash-
and-sign framework, following the work of Gentry, Peikert, and Vaikuntanathan
in [24] (GPV). The second framework, proposed by Lyubashevsky [32,33], utilizes
the Fiat-Shamir [20] with aborts for transforming identiőcation schemes into
signature schemes using variants of SIS/LWE assumptions. We describe related
work for both directions.

Computing a short preimage solution for the SIS and ISIS problems has been
proven to be as hard as solving certain lattice problems in the worst case [2].
However, with a trapdoor for the matrix A one can efficiently derive short
solutions. In the pioneer work of GPV [24], they show how to efficiently construct
a trapdoor for the ISIS problem; more speciőcally, they give a provable way to
sample short solutions without leaking information about the trapdoor. This leads
to a natural way for constructing signatures using the hash-then-sign paradigm
in the random oracle model (ROM). More efficient trapdoor constructions based
on the SIS and LWE problem have been further proposed in [8,39]. These lattice
trapdoors require that the trapdoor dimension to be about m ≈ Θ(n log q) for
achieving the optimal trapdoor quality. In work [19], the authors instantiate the
GPV framework using the NTRU lattices, which only requires m = 2n. It thus
leads to a more efficient Identity-Based Encryption (IBE) (and signature scheme).
In practice, a power-of-two is usually used for the underlying ring dimension in
NTRU, which leads to inŕexibility on the parameter selection for desired security
level. To overcome such inŕexibility, the Module-NTRU (MNTRU) problem was
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proposed in [16,17] as a generalization of the NTRU problem. The MNTRU takes
the equation F ·h = g, where h,g are vectors of polynomials in Rd−1

q and F is an
invertible matrix of dimension d−1 with elements in Rq. The elements in F,g are
small for the MNTRU problem to be well-deőned. The work [16,17] constructed
trapdoors and proposed instantiations of the hash-then-sign paradigm using the
MNTRU assumption. Concrete instantiations of the hash-then-sign signatures
include the NIST PQC submissions Falcon [44], pqNTRUSign [51], etc.

The signatures discussed above use the trapdoor functions with the hash-
and-sign paradigm. A second paradigm to construct lattice-based signatures is
to use the Fiat-Shamir transform [20]. In [32,33], Lyubashevsky utilizes Fiat-
Shamir for transforming identiőcation schemes into provably secure signature
schemes using variants of SIS/LWE assumptions. In particular, the rejection
sampling in Fiat-Shamir is proposed to ensure the distribution of the signatures
is independent from the private key and hence preventing the leakage of private
keys. An improvement, the so-called BLISS scheme [18], is obtained by using the
bimodal Gaussian distribution in the rejection sampling. This leads to a much
smaller rejection area for signatures. For practical instantiation, BLISS [18] also
devised an efficient signature scheme using the NTRU assumption. Follow-up
work such as [25,18,9,6] uses a compression technique to further reduce the
signatures size: the common idea is to throw away some bits of the vector to be
hashed. The security proofs in these works remain non-tight due to the use of the
Forking Lemma [10] with the reprogramming of random oracles. Furthermore,
their security is usually studied in the random oracle model.

To construct signature schemes with tight security, Abdalla, Fouque, Lyuba-
shevsky and Tibouchi [1] proposed the lossy identiőcation scheme, and proved
that the signatures obtained from Fiat-Shamir admit a tight security in the ROM
model. A similar approach has been used in the TESLA signature scheme [6,5].
The general idea is to start with a lossy identiőcation scheme which adopts two
security properties, e.g. key indistinguishability and lossiness: it admits a lossy key
generation algorithm that produces a lossy public key which is computationally
indistinguishable to the genuine public keys, yet it is statistically impossible to
win the impersonation game when the public key is lossy. The signature derived
from such an identiőcation scheme [1] was known to be secure only in the ran-
dom oracle model, which does not automatically imply security in the quantum
random oracle model (QROM). Kiltz, Lyubashevsky and Schaffner [30] presented
a generic Fiat-Shamir framework from lossy identiőcation schemes [1] to obtain
tight secure signatures in the QROM. By adaptively re-programming of the
random oracle, the same tight security result in the QROM has been obtained for
the TESLA signature scheme [6,5]. A concrete instantiation of [30] is to adapt and
to modify the Dilithium signature scheme [34], which has tight secure reductions
from Module-SIS (MSIS) and Module-LWE (MLWE). A concrete instantiation of
the techniques in [6,5] is given in the qTESLA signature [13], whose existential
unforgeability under chosen message attack (EUF-CMA) security is reduced from
the underlying decisional Ring-LWE problem.

3



To our knowledge, the minimum signature size that achieves near 128-bit
security in the QROM model is from [30] with a pair of parameter sets given.
The őrst set has a signature size of 5690 bytes and public key size 7712 bytes
whose public key prevents a BKZ reduction of block size up to 480. The second
set admits a larger key security (BKZ block size of 600) has signature size 7098
bytes and public key size 9632 bytes.

1.2 Contributions

In this work we present two Fiat-Shamir signature schemes based on some variant
Module-NTRU problems. The őrst scheme follows the framework of [30], starting
from an identiőcation scheme and applying the Fiat-Shamir transform. The
second scheme is analogous to the BLISS [18] scheme, but built on the variant
Module-NTRU problem, with a őxed q being part of the public key. Thus, they
may be viewed as variants of the signatures from [30] and BLISS [18], instantiated
with the (inhomogeneous) Module-NTRU assumptions.

We őrst generalize the Module-NTRU problem proposed in [16,17] to the
inhomogeneous MNTRU (iMNTRU) problem and formalize the hardness assump-
tions used. Brieŕy, the iMNTRU consists of the equation F · h+ g = t, where t

comes from a certain distribution. In our signature, essentially the F and g serve
as small secrets, while the h and t are public keys. The őrst signature scheme
follows the lossy key identiőcation paradigms of [30] using a uniform distribution
for nonce generation. We prove the identiőcation scheme achieves completeness
of normal keys, simulatability of transcripts, lossy keys, sufficient entropy and
computational unique response properties, thus possessing a tight security in the
quantum random oracle model to the inhomogeneous Module-NTRU problem.
Our second construction is a signature scheme based on the variant MNTRU

assumption with a őxed q being part of the public key, and with the bimodal
Gaussian distribution. The construction follows a similar framework as the BLISS
signature [18], but uses the variant MNTRU assumption, which admits extra
ŕexibility in the choice of parameters for the underlying ring dimension. With
these proposed schemes, we analyze known attacks and their efficacy.

We discuss several related works. In [23], Genise at al. described inhomoge-
neous variants of NTRU problem named MiNTRU. In matrix form, the problem
is deőned as A := S−1(G − E) (mod q) where G is a gadget matrix of the
form G = (0 | I | 2I | · · · | 2log q−1I). The secret matrices S and E are sampled
from distributions of small magnitudes and the search MiNTRU problem asks an
adversary to recover S and E from A. In this paper, we introduce a somewhat
different assumption by sampling uniformly a vector of polynomials t ∈ Rd−1

q ,

an invertible matrix of small polynomials F ∈ R
(d−1)×(d−1)
q and a vector of

small polynomials g ∈ Rd−1
q so that h = F−1(t− g). In our second BLISS-like

signature scheme, we also consider the case where t is pre-őxed. A work from
Chen, Genise and Mukherjee [15] introduced the approximated ISIS trapdoor
and used it to construct signatures using the hash-and-sign framework, which
resulted in reduced sizes on the trapdoor and signature from [39]. For certain
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distributions, the approximate ISIS problem is shown to be as hard as the stan-
dard ISIS problem. The approximate ISIS problem of a given matrix A ∈ Zn×m

q

and a vector y ∈ Zn
q asks to őnd a short vector x from Zm

q so that Ax = y + z

where z is a small shift. Note the public matrix A is drawn uniformly, while in
our iMNTRU the public vector h is computed as h = F−1(t− g). Thus, when F

and g consist of sufficiently small polynomials, the distribution (h, t) cannot be
uniform, yet depending on the distribution of t, the marginal distribution of h
might be uniform.

Existing signature schemes built on the Fiat-Shamir paradigms such as
Dilithium [34] and qTESLA [13] are quite efficient and practical. Our scheme
further optimizes the scheme parameters such as the signature size. In particular,
we achieve a 128-bit security with a signature size of 4400 bytes and a public key
size of 10272 bytes for BKZ block size 490. This appears to be smallest provably
secure signature scheme in the QROM achieving 128-bit security. We also have a
signature size of 9264 bytes and a public key size of 18464 bytes for BKZ block
size 669. In addition to parameter optimization, we think it is also beneőcial to
investigate a more diverse selection of the underlying hardness assumption. One
notes that the schemes [34] and qTESLA [13] are both built on the Module-LWE
assumptions.

Finally, compared to the BLISS signature [18], the use of the Module-NTRU
enjoys the extra ŕexibility in the choice of parameters for the underlying ring
dimension, since many applications require the NTRU lattice to be deőned on the
power-of-two cyclotomic rings. Thus, sometimes when a higher security level is
needed, the dimension of the NTRU lattice needs to be doubled. Recent progress
on the complexity aspects of the NTRU problem [43] may shed light on the
hardness of the inhomogeneous Module-NTRU problem used in this work.

2 Preliminaries

We present the notation and deőnitions used to construct our signatures. Let q
be an integer, which is usually a prime in this paper. Let Zq be the set of all
integers modulo q in the range (− q

2 ,
q
2 ] when q is even and [−⌊ q2⌋, ⌊

q
2⌋] when q

is odd. We will refer to it as the balanced representation mod q. We denote R
and Rq as the rings Z[x]/(xn + 1) and Zq[x]/(x

n + 1), respectively. The integer
n is usually a power of 2, where q ≡ 1 (mod 2n). In this case, the polynomial
Xn +1 splits completely in Zq. Throughout, regular font letters such as v denote
ring elements in R, Rq and Z,Zq. We use bold lower-case letters such as v to
represent vectors of elements from their respective őelds. For a vector v, we
denote by vt its transpose, we also denote 0 to be the zero vector. Bold upper
case letters denote matrices. A matrix B = (b1, · · · ,bn) is also presented in a
column-wise way. Abusing notation, we sometimes also use lower-case letters to
identify the coefficients of ring elements in R and Rq.

For a polynomial f =
∑n−1

i=0 aix
i ∈ Rq, we identify its coefficient embedding

as its vector of coefficients f := (a0, . . . , an−1)
T . For a vector of polynomials

f = (f1, . . . , fn) ∈ Rn
q , we may use vf as a coefficient vector (f1, . . . , fn)

T . A
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polynomial f in Rq can be associated with an acyclic matrix Mf . Multiplying f(x)

by g(x) =
∑n−1

i=0 gix
i ∈ Rq identiőes with the product of Mf · g. For a vector x,

we use ∥x∥ to denote its ℓ2-norm and ∥x∥∞ = maxi(|xi|) to denote its ℓ∞-norm.
The ℓ2-norm and ℓ∞-norm of polynomial f are deőned as the corresponding
norms on the corresponding coefficient vector. Given a vector f consisting of
polynomials fi, the norm notation extends naturally, i.e., ∥f∥∞ = maxi(∥fi∥∞).
The inner product of two vectors x and y is denoted by ⟨x,y⟩. For convenience,
we deőne some notations for rounding.

For an integer c ∈ Z, we denote [c]r to be the unique integer in the range
(−2r−1, 2r−1] such that [c]r ≡ c (mod 2r). We denote c = ⌊c⌉r · 2r + [c]r, where
⌊c⌉r extracts the higher bits of c. In this paper, the inputs c will be in balanced

representation mod q. For a polynomial f =
∑n−1

i=0 aix
i we extend [.]r and ⌊.⌉r

to f on its coefficients coordinate-wise. We deőne Bn,κ to be the set of ternary
(or binary) vectors of length n with Hamming weight κ. When the length n is
clear in the context, we may write Bκ for short.

We give background on lattices in Appendix A. We will use the rejection
sampling lemma from [33] to ensure the output signature does not leak information
about the secret key. We review the deőnition of various distributions and rejection
sampling lemma in Appendix B. We also review the background on identiőcation,
digital signatures and the Fiat-Shamir transform in Appendices C, D and E.

2.1 (Inhomogeneous) Module-NTRU

As a generalization of NTRU, the Module-NTRU (MNTRU) problem was intro-
duced in [16,17], which enables the dimension and parameter ŕexibility. It was
used to construct trapdoors for lattice signatures and identity-based encryption
(IBE). Intuitively, given a vector h such that the inner product of (1,h) and some
łsmallž secret vector f is zero, the Module-NTRU problem asks to recover the
secret f or close. In this paper, we will use a natural variant of the Module-NTRU,
which we denote as the inhomogeneous Module-NTRU (iMNTRU) problem. We
formalize the problem as follows.

Deőnition 1 (iMNTRUq,n,d,B instance). Let n, d ≥ 2 be integers, and q be
a prime. Let B be a positive real number. Denote Rq = Zq[x]/(x

n + 1). An
iMNTRUq,n,d,B instance consists of a vector h ∈ Rd−1

q and t ∈ Rd−1
q such that

there exists an invertible matrix F ∈ R
(d−1)×(d−1)
q and a vector g ∈ Rd−1

q with
F · h + g = t (mod q) and ∥F∥, ∥g∥ ≤ B. The (F,g) is called a trapdoor of
the MNTRUq,n,d,B instance h. An MNTRUq,n,d,B instance corresponds to an
iMNTRUq,n,d,B instance for the case when t = 0.

Deőnition 2 (iMNTRUq,n,d,D1,D2,T distribution). Let n, d be positive integers,

and q be a prime. Let D1, D2, T be distributions deőned over R
(d−1)×(d−1)
q , Rd−1

q

and Rd−1
q respectively. An iMNTRUq,n,d,D1,D2,T sampler is a polynomial-time

algorithm that samples matrix F from D1, vector g from D2, vector t from T and
then computes h in F ·h+g = t (mod q). The sampler outputs a tuple (h,F,g, t).
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An iMNTRUq,n,d,D1,D2,T distribution is the induced marginal distribution of (h, t)
from an iMNTRUq,n,d,D1,D2,T sampler. For the distribution to be meaningful, we
usually assume D1, D2 are B-bounded distributions and D1 turns out to be an
distribution deőned on invertible elements F. An MNTRUq,n,d,D1,D2

distribution
corresponds to the case of an iMNTRUq,n,d,D1,D2,T distribution when the support
of T is always 0.

In the schemes presented in this work, we will make several different choices
for the distribution T , depending on the design and functionality. The decisional
variant and search variant of the MNTRU are deőned as follows:

Deőnition 3 (Decisional iMNTRUq,n,d,D1,D2,T,B). Let n, d be positive inte-
gers, and q be a prime. Let D1, D2 be B-bounded distributions deőned over

R
(d−1)×(d−1)
q and Rd−1

q respectively, and T be a distribution over Rd−1
q . Let N

be an iMNTRUq,n,d,D1,D2,T distribution. The decisional iMNTRUq,n,d,D1,D2,T,B

problem asks to distinguish between samples from N and from U(Rd−1
q ) × T .

The decisional MNTRUq,n,d,D1,D2,B is deőned similarly when the support of T is
always 0.

Deőnition 4 (Search iMNTRUq,n,d,D1,D2,T,B). Let n, d be positive integers, and

q be a prime. Let D1, D2 be B-bounded distributions deőned over R
(d−1)×(d−1)
q

and Rd−1
q respectively, and T be a distribution over Rd−1

q . Let N denote the
iMNTRUq,n,d,D1,D2,T,B distribution. Given samples (h, t) from N , the search
iMNTRUq,n,d,D1,D2,T,B problem is to recover an invertible F and g such that
F · h + g = t (mod q) and ∥F∥, ∥g∥ ≤ B. The search MNTRUq,n,d,D1,D2,B is
deőned similarly when the support of T is always 0. Given an iMNTRUq,n,d,B

instance (h, t), the worst-case search iMNTRUq,n,d,B problem is to recover an
invertible F and g such that F ·h+g = t (mod q) and ∥F∥, ∥g∥ ≤ B. The worst-
case search MNTRUq,n,d,B problem is deőned when t is 0. Clearly, the worst-
case search MNTRUq,n,d,B problem reduces to worst-case search iMNTRUq,n,d,B

problem.

We are not aware of any reduction between MNTRU and the average cases of
inhomogeneous MNTRU assumptions where the t is sampled from a distribution.
However, one can reduce from MNTRU to inhomogeneous MNTRU by assuming
a worst-case oracle on the inhomogeneous MNTRU problem. We will make the
assumption that the average-case inhomogeneous MNTRU assumption is as
hard as the MNTRU assumption. Our signature scheme relies on an additional
assumption that solving a single row of the iMNTRU assumption is as hard as
the iMNTRU assumption. Namely, our signature schemes only use a single row
f of F and hence the vectors g, t are just two polynomials, thus the equation
becomes ⟨h, f⟩+ g = t (mod q). The variant search and decisional problems are
deőned correspondingly and we require that f is non-zero.

Our őrst signature scheme reduces from this variant search and decisional
inhomogeneous Module-NTRU assumptions, which we assumed hard to invert
and indistinguishable from uniform respectively. Our second signature scheme is
based on the variant search Module-NTRU assumption, which is assumed hard
to invert as in [16,17].
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Remark 1. In the key generation presented in this work, one actually just starts
with a single vector f and pick up an element h in the left kernel of t− g w.r.t. f .
One can pick up h by choosing hi for i ≤ d− 2 őrst and then computing hd−1 in
the end. We note here that the distributions of the public keys for our assumption
and iMNTRU are not the same. We will make the assumption that this variant
assumption is as hard as the iMNTRU assumption. This variant assumption turns
out to be analogous to łlow-densityž inhomogeneous Ring-SIS problem [33]. We
leave for future work to study its average-case hardness.

3 Signature based on iMNTRU in the QROM

In this section, we present a lossy identiőcation scheme based on the variant of
inhomogeneous Module-NTRU assumption. Our construction follows the design
and paradigm proposed in [1,5,30] via the Fiat-Shamir transformation and thus
leads to a tightly-secure signature in the quantum random-oracle model. In
this work, the random oracle H takes inputs from Rq ×M, where M denotes
the message space, and outputs a polynomial in Rq. We restrict the output
polynomials to be ternary (or binary) and have κ non-zero coefficients, e.g. those
can be identiőed as vectors from Bn,κ. We refer to [18] for efficient instantiation
of random oracles.

3.1 A lossy identiőcation scheme

As in [1,30], we start by constructing a lossy identiőcation scheme ID, given in
Figure 1. The key generation algorithm starts by choosing parameters d ∈ N as
the rank, n as the ring dimension and a prime q as the modulus. Similar to the key
generation of [16,17], one can sample (h′,F,g, t) from an iMNTRUq,n,d,D1,D2,U(Rq)

distribution, where D1 and D2 are two distributions for sampling the secret keys.
Here we sample each f in F from Un

β and each g in g from Un
β independently.

Note that it is possible to sample them from other łsmallž distributions such as
discrete Gaussian, but we use uniform distribution here. After we sample g, t and
an invertible F, we compute h′ = {hi}d−1i=1 in F · h′ + g = t (mod q). Note that
for cryptographically sized parameters the probability that a randomly selected
matrix of polynomials F is invertible is close to one.

As previously mentioned, one can only use a single row (f1, . . . , fd−1) from F

and let g, t be corresponding polynomials in g, t, respectively. Abusing notation,
we denote fd := g and f = (f1, . . . , fd−1, fd), which is the secret key for our
identiőcation scheme. We also denote h = (h1, . . . , hd−1, 1) and set (h, t) as
the public key. With this rewrite, we see that ⟨h, f⟩ = t. We use balanced
representation mod q in the following algorithm.

In the őrst step of the identiőcation, the prover samples a vector of polynomials
y := (y1, . . . , yd), where each yi is from the distribution Un

γ , and computes the

commitment u :=
⌊

∑d−1
i=1 hiyi (mod q)

⌉

r
. The prover then sends u to the veriőer.

The veriőer generates a random challenge c from the distribution Bκ (here we
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Algorithm IGen(q, n, d, β)

1 : Sample f = {fi}di=1 and t, where fi ←↩ Un
β and t←↩ URq

2 : Compute h = (h1, . . . , hd−1, 1) such that
d
∑

i=1

hifi ≡ t (mod q)

3 : return pk := (h, t) and sk := f

Algorithm P1(sk) :

4 : Sample y = {yi}d−1
i=1 where yi ←↩ Un

γ

5 : Compute u =

⌊

d−1
∑

i=1

hiyi (mod q)

⌉

r

6 : return u

Algorithm P2(sk, u, c) :

7 : Compute z := (z1, . . . , zd−1) where zi = yi + c · fi

8 : Compute w =

d−1
∑

i=1

hiyi − c · fd (mod q)

9 : if any ∥zi∥∞ > γ − β · κ
or ∥[w]r∥∞ ≥ 2r−1 − β · κ
or ∥w∥∞ ≥ ⌊q/2⌋ − β · κ then

10 : return ⊥
11 : return z

Algorithm V(pk, u, c, z) :

12 : if ∀1 ≤ i ≤ d− 1, ∥zi∥∞ ≤ γ − β · κ and

⌊

d−1
∑

i=1

hizi − t · c (mod q)

⌉

r

= u then

13 : return Accept

14 : return Reject

Fig. 1. A lossy identiőcation scheme based on variant of iMNTRU
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deőne it to be the set of ternary vectors of length n with weight κ) and sends
c to the prover. The number of nonzero coefficients in c is κ, thus the inőnity
norm of fi · c is bounded by β · κ. The prover computes zi := yi + c · fi and
returns z if, for all 1 ≤ i ≤ d − 1, ∥zi∥∞ ≤ γ − β · κ, and |[∑d−1

i=1 hiyi − c · fd
(mod q)]r| < 2r−1 − β · κ together with ∥w∥∞ < ⌊q/2⌋ − β · κ. Otherwise, it
returns ⊥. Veriőer accepts (z, u) if, for all i, we have ∥zi∥∞ ≤ γ − β · κ and
⌊

∑d−1
i=1 hizi − t · c (mod q)

⌉

r
equals u. Otherwise, it rejects. To optimize slightly,

it is possible to record
∑d−1

i=1 hiyi as a state for the prover in Algorithm P1 and
re-use in Algorithm P2.

In this section, we present the lossy identiőcation scheme in Figure 1. We show
the scheme admits properties including na-HVZK, correctness, lossy, min-entropy
and computational unique response (CUR). The proof follows a similar framework
as in [30]. For Lemmas 1 to 5, we state them and sketch the proofs in Appendix F.

We őrst show that the ID scheme is perfectly na-HVZK. Following the deőni-
tion of na-HVZK, we set two algorithms Sim(.) and Trans(.), shown in Figure 2.
We will show that the distribution of outputs of Sim(.) and Trans(.) is identical.
For convenience, we denote B := β · κ.

Lemma 1. The identiőcation scheme of Figure 1 is perfect na-HVZK.

We now prove that the identiőcation is correct, up to some rejection rate. We
stress that such a bound is not rigorous, as we assumed a speciőc distribution on
the rounded numbers, yet it is sufficient to use in practice. One can get a more
accurate rejection rate from a simulation.

Lemma 2. Under the variant decisional iMNTRU assumption, the identiőcation
scheme has correctness error

δ ≈ 1− exp

(

−βκn
(

d− 1

γ
+

1

2r−1
+

1

q

))

.

We now show that the identiőcation scheme is lossy. We őrst deőne a lossy key
generation algorithm LossyIGen(q, n, d, β), shown in Figure 3, which samples hi’s
and t from uniform. First, the public keys generated by LossyIGen and IGen are
indistinguishable due to the variant decisional iMNTRU assumption. It remains to
show the scheme admits εls-lossy soundness; that is, for any quantum adversary,
the probability of impersonating the prover is bounded by εls.

Lemma 3. The identiőcation scheme admits ϵls-lossy soundness for

ϵls ≤
1

|Bκ|
+ 2 · |Bκ|2 ·

(4(γ −B) + 1)n(d−1) · (2r+1 + 1)n

qn
.

This bound essentially says q should be larger than γd asymptotically. This
condition is natural, since otherwise, it is intuitive to see there exist many

solutions z, c for u =
⌊

∑d−1
i=1 hizi − t · c

⌉

r
.
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Algorithm Trans(sk)

1 : Sample y = {yi}d−1
i=1 where yi ←↩ Un

γ

2 : Compute u =

⌊

d−1
∑

i=1

hiyi (mod q)

⌉

r

3 : Sample c←↩ Bκ

4 : Compute z = {zi}d−1
i=1 where zi = yi + c · fi

5 : Compute w =

d−1
∑

i=1

hiyi − c · fd (mod q)

6 : if any ∥zi∥∞ > γ −B return ⊥
7 : if

∥

∥[w]r
∥

∥

∞
≥ 2r−1 −B

or ∥w∥∞ ≥ ⌊q/2⌋ −B return ⊥
8 : return (z, c)

Algorithm Sim(pk)

9 : With probability 1−
(

|Uγ−B |
|Uγ |

)n(d−1)

return ⊥
10 : Sample z = {zi}d−1

i=1 where zi ←↩ Un
γ−B

11 : Sample c←↩ Bκ

12 : Compute w′ =

d−1
∑

i=1

hizi − t · c (mod q)

13 : if
∥

∥

[

w′]

r

∥

∥

∞
≥ 2r−1 −B

or
∥

∥w′
∥

∥

∞
≥ ⌊q/2⌋ −B return ⊥

14 : return (z, c)

Fig. 2. Transcript algorithm and simulation algorithm

Algorithm LossyIGen(q, n, d, β)

1 : Sample h = (h1, . . . , hd−1, 1) and t, where hi ←↩ URq and t←↩ URq

2 : return pk := (h, t)

Fig. 3. Lossy key generation algorithm LossyIGen
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We now prove that the u sent by the prover in Algorithm P1 is very likely
to be distinct across every run of the protocol. We őrst remark that the public
key h′ ←↩ IGen (i.e. recall that h = (h′, 1)) has a marginal distribution which
is uniform in Rd−1

q . This is because h′ is computed in equation F · h′ + g = t

(mod q) where t is uniform and F is invertible. Note that the joint distribution
(h′, t) is not uniform for our choice of parameters, but in Algorithm P1, only h′

is used to produce the commitment.

Lemma 4. The identiőcation scheme has α := n · logE bits of min-entropy,
where

E = min

{

(2γ + 1)d−1,
q

(4γ + 1)(d−1)(2r+1 + 1)

}

.

In the end, we sketch that our scheme satisőes the computational unique
response (CUR) property for the strong unforgeability of the signature scheme
after the Fiat-Shamir transform.

Lemma 5. For any adversary on the identiőcation scheme, the success proba-
bility of producing two valid transcripts (u, c, z) and (u, c, z′), such that z ̸= z′, is
bounded by (4(γ −B) + 1)n(d−1) · (2r+1 + 1)n · q−n.

In the end, we give the signature scheme constructed from the lossy identiőca-
tion scheme in Figure 7 of Appendix F. Theorem 3.1 of [30] (also see Appendix E)
concludes that the signature scheme admits a tight security in the QROM. The
concrete parameters for the signature scheme will be given in Section 5.1.

4 A BLISS-like signature based on MNTRU

In this section, we propose a signature scheme based on the variant MNTRU

assumption with a őxed t and the bimodal Gaussian distribution. The construction
follows a similar framework as the BLISS signature [18], but uses the variant
MNTRU assumption, which admits the extra ŕexibility in the choice of parameters
for the underlying ring dimension.

4.1 Signature scheme

We give the signature scheme in Figure 4 and describe the key generation, signing
and veriőcation procedure here. In Algorithm Gen, used for key generation,
one chooses the following parameters: rank d ∈ N, a prime modulus q, an
integer n as the ring dimension, and a positive odd integer β < q. We sample
(h′,F,g) from the MNTRUq,n,d,D1,D2

distribution, where D1 is Un
β and D2 is

Un
⌊β/2⌋ are distributions of secret keys F and g, respectively. It is sufficient to

take a single row {fi}d−1i=1 from F and we denote s = (f1, . . . , fd−1, fd) where
fd := 2g + 1. Note the coefficients of fd also lie uniformly in [−β, β]. We denote
h = (h1, . . . , hd−1,−1) and hence ⟨h, s⟩ = 0 (mod q). In the scheme, we use the
vector a = (2h1, · · · , 2hd−1, q − 2) ∈ Rd

2q as the public key and vector s ∈ Rd
2q as

the private key. It can be checked that we have ⟨a, s⟩ ≡ q (mod 2q), since

12



⟨a, s⟩ ≡
d−1
∑

i=1

2hifi − 2fd ≡ 0 (mod q),

⟨a, s⟩ ≡ q · (2g + 1) ≡ 1 (mod 2).

To sign a message µ, the signer chooses a vector y := (y1, . . . , yd), where
each yi is sampled from the discrete Gaussian Dn

Z,σ. The signer then computes

c := H(⟨a,y⟩ (mod 2q), µ) and z := y + (−1)bc · s for a uniform random bit
b ∈ {0, 1}. With rejection sampling, the signature (c, z) is outputted with prob-

ability 1/M exp(−∥c · s∥2 /(2σ2)) cosh(⟨z, c · s⟩/σ2), where the constant M is
the repetition rate for each signing. Upon receiving the signature (c, z), the
veriőcation will succeed if ∥z∥∞ < q/4, ∥z∥ ≤ ησ

√
nd, and H(⟨a, z⟩ + q · c

(mod 2q), µ) = c. For convenience, we did not use compression in the presented
scheme, but mention it should be similar to [18] to compress the signature.

Rejection Sampling. The rejection sampling follows the same as [18]. Consider
z = (−1)b · s · c + y. Abusing notation, we denote s · c as the concatenated
coefficient vector as well as a vector of polynomials. The distribution of z is the
bimodal discrete Gaussian distribution 1

2DZnd,σ,s·c +
1
2DZnd,σ,−s·c. To prevent

signatures from leaking the private key, we use rejection sampling that őnds a
positive integer M such that for all supports except a negligible fraction:

DZnd,σ ≤M ·
(

1

2
DZnd,σ,s·c +

1

2
DZnd,σ,−s·c

)

It is thus sufficient to choose M ≥ exp(∥s · c∥2 /(2σ2)). Now we bound ∥s · c∥.
The random oracle H outputs a binary vector c with length n and weight κ (here
we deőne Bκ to be the set of ternary vectors of length n with weight κ), and
∥s∥∞ is bounded by β, so ∥s · c∥ ≤ (κ · β)

√
nd. Hence, the number of repetitions

M is approximately exp(κ2β2nd/(2σ2)).

Correctness. Let (z, c) be a valid signature for message µ. The rejection sampling
shows that z follows a discrete Gaussian DZnd,σ. By [33, Lemma 4.4], we have

∥z∥ ≤ η ·σ
√
nd, except with probability ≈ ηndend/2(1−η

2) for some small constant
η > 1. In the security proof, we will also need ∥z∥∞ < q/4. This is usually

satisőed whenever ∥z∥ ≤ ησ
√
nd. Finally, check that ⟨a, z⟩ + q · c = ⟨a,y⟩ +

(−1)b · c · ⟨a, s⟩+ q · c (mod 2q).

4.2 Security Proof

We sketch the proof that the signature in Figure 4 is secure under existential
forgery using the Forking Lemma of Bellare-Neven [10] which follows similarly
to [18]. We reduce the security of the signature to the variant MNTRU problem.

We construct two games, Hybrid 1 and Hybrid 2, as in Figure 5, and use
them to simulate the genuine signature scheme. The distributions of outputs in
Hybrid 1 and outputs in Hybrid 2 are the same due to rejection sampling. Thus,
it is sufficient to show the genuine signature is statistically close to Hybrid 1.
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Algorithm Gen(q, n, d, β)

1 : Sample f = {fi}d−1
i=1 and fd := 2g + 1 where fi ←↩ Un

β and g ←↩ Un
⌊β/2⌋

2 : Compute h = (h1, . . . , hd−1,−1) such that
d−1
∑

i=1

hifi ≡ fd (mod q)

3 : Set a = (2h1, · · · , 2hd−1, q − 2) ∈ Rd
2q and s = (f1, · · · , fd) ∈ Rd

2q

4 : return pk := a and sk := s

Algorithm Sign(sk, µ, σ) :

5 : Sample y := (y1, . . . , yd) where yi ←↩ Dn
σ

6 : Compute c = H(⟨a,y⟩ (mod 2q), µ)

7 : Sample a random bit b ∈ {0, 1}
8 : Compute z = (z1, . . . , zd) where

zi = yi + (−1)b · c · fi
9 : return (z, c) with probability

1/

(

M exp

(

−∥c · s∥
2

2σ2

)

cosh

(

⟨z, c · s⟩
σ2

))

Algorithm Ver(pk, µ, z, c) :

10 : if ∥z∥∞ < q/4 and ∥z∥ < ησ
√
nd and

H (⟨a, z⟩+ q c (mod 2q), µ) = c then

11 : return Accept

12 : return ⊥

Fig. 4. A BLISS-like signature scheme based on MNTRU

Lemma 6. Let D be an algorithm with the goal to distinguish the outputs of
the genuine signing algorithm in Figure 4 and Hybrid 1 in Figure 5. Let D have
access to two oracles: OH and OSign. OH is the hash oracle which, given an input
x, outputs H(x). OSign is the oracle which, given an input, returns either the
output of the signing algorithm or the output of Hybrid 1. If D makes at most qH
calls to OH and qS calls to OSign, then Adv(D) ≤ qS(qH + qS)2

−n.

We now prove the BLISS-like signature scheme in Figure 4 admits security
against existential forgery under adaptive chosen-message attacks. First, we
observe that if there exists an adversary capable of forging Hybrid 2 with
advantage δ in polynomial time, then by the previous lemma, the adversary
is capable of forging the genuine signature of Figure 4 with probability ≈ δ
in polynomial time. Thus, it is sufficient to reduce the variant MNTRU to the
forging problem on Hybrid 2. We sketch it in the following theorem.

Theorem 1. If there exists a polynomial-time algorithm A to forge the signature
of Hybrid 2 with at most qS signing queries to Hybrid 2 and qH hash queries
to the random oracle H, and it succeeds with probability δ, then there exists a
polynomial-time algorithm that solves the variant MNTRUq,n,d,D1,D2,B search
problem with advantage ≈ δ2/(qS + qH), where distributions D1 and D2 sample
each coordinate-wise polynomial from Dn

Z,σ and B := 2ησ
√
nd.

We sketch the proof of Lemma 6 and Theorem 1 in Appendix G.
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Hybrid 1: Sign1(sk, µ, σ)

1 : Sample y := (y1, . . . , yd) where yi ←↩ Dn
σ

2 : Sample c←↩ Bκ

3 : Sample a random bit b

4 : Compute z = y + (−1)b · c · s
5 : return (z, c) with probability

1/

(

M exp

(

−∥c · s∥
2

2σ2

)

cosh

(

⟨z, c · s⟩
σ2

))

Program H(⟨a, z⟩+ q c (mod 2q), µ) = c

Hybrid 2: Sign2(σ)

1 : Sample c←↩ Bκ

2 : Sample z = (z1, . . . , zd) where zi ←↩ Dn
σ

3 : return (z, c) with probability 1/M

Program H(⟨a, z⟩+ q c (mod 2q), µ) = c

Fig. 5. Hybrid games of Figure 4

5 Security analysis and parameters

In this section, we discuss known attacks for the MNTRU assumptions based
on lattice reduction [47,49] for MNTRU lattices. We assume that the variant
iMNTRU problem used in our signatures admits a similar security of the same
dimension. Let N be an MNTRUq,n,d,B distribution, and a vector of polynomials
h ∈ Rd−1

q be a sample from N . The lattice associated to h is deőned as

Λh :=
{

(x1, . . . , xd) ∈ Rd
q : x1h1 + . . .+ xd−1hd−1 + xd = 0 (mod q)

}

.

It has a basis generated by the columns of

B :=















In 0n . . . 0n 0n
0n In . . . 0n 0n
...

...
. . .

...
...

0n 0n · · · In 0n
−Mh1

−Mh2
. . . −Mhd−1

qIn















The lattice L(B) has rank d× n and determinant qn. Let (f , g) from Rd−1
q ×Rq

be a solution of a search MNTRUq,n,d,B problem. One can verify that (f , g) is a

short vector of Λh by the relation B ·
[

vf
0

]

=

[

vf
g

]

. Thus if one can solve the SVP

problem in Λh, one can őnd a solution for the corresponding MNTRU problem.
We review the methodology for estimating the Core-SVP security in Ap-

pendix H and use them to develop the concrete parameters in Table 1.
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5.1 Concrete Instantiation

I II III IV V VI

Ring Dimension n 2048 1024 4096 2048 1283 2003
Module Rank d 2 4 2 3 3 2

Ring Modulus log2(q) 39.93 78.68 53.47 71.37 55.89 38.95
κ 32 37 28 32 35 32
r 21 22 34 33 18 20
γ 47668 80205 79918 91335 71583 48041

Acceptance Rate 0.237 0.238 0.238 0.238 0.202 0.233
Block-Size b 490 500 839 669 494 492

Public Key pk (bytes) 10272 10144 27680 18464 9013 9797
Signature Size z (bytes) 4400 6963 9262 9264 5824 4305

Table 1. Concrete parameters for signature in Section 3

We propose the concrete parameters for our signature scheme in Section 3,
with an 128-bit security level achieved by using Theorem 3.1 of [30]. The size of
the public key is n · ⌈log q⌉+ 256 bits when using a 256-bit seed to generate the
randomness. The signature size is n · (d− 1) · ⌈log 2(γ − β · κ)⌉+ κ(log(n) + 1)
bits. For all parameters, the rejection rate is chosen such that the repetition
rate is approximately 4.2ś4.3, which is comparable to the rejection rate of the
127 bit security scheme in [30] which has the smallest signature size for schemes
provable in the QROM. The secret key is taken to be ternary in all cases, that
is to say that β = 1 in all columns in the table. Columns I-IV are arranged
with increasing signature size. These four columns are proven secure in Section
3 of this work. Columns I and II have BKZ block sizes close to the bound of
128 bit security while columns III and IV have block sizes suitable for higher
security considerations. Note that columns II and IV have very large prime
moduli, making them potentially weak to subőeld attacks [3,31]. To heuristically
combat this, one may change β to increase the space of valid secret keys at the
cost of signature and public key sizes. Updated choices for β resilient to subőeld
attacks are left to future works. The optimal provably secure signature size in [30]
is 5690 bytes and has public key size 7712 bytes. Comparing this to column I in
the table we see that our scheme achieves comparable security and acceptance
rates with a signature 77% the size of theirs at the expense of having public
key 133% the size. This tradeoff makes their scheme have better overall channel
weight if one message is to be signed, but if more than one is to be sent, then
our parameter set in column I has a lower overall channel weight.

Columns V and VI use the NTRU-prime [12] like polynomials with irreducible
polynomials xn − x− 1 for prime n; thus the underlying rings do not correspond
to power-of-two cyclotomics. The ŕexibility of choosing n leaves room for im-
provement on provable parameters, as one sees that NTRU-prime constructions
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give the smallest signature size (VI) and smallest public key size (V). We remark
that the security of these two columns is not proven here since our proofs (e.g.
Lemma 3) use the underlying ring structure. We leave them to future works.

For the BLISS-like signature scheme in Section 4, the public key and the
secret key are vectors of polynomials in Ud−1

Rq
and Und

β , thus amounting to

n · (d − 1) · ⌈log q⌉ bits and n · d · ⌈log 2β⌉ bits, respectively. The signature is
(z, c), where z ∈ Rd

q with ∥z∥∞ < q/4, and c sampled from the set of binary
vectors of length n with Hamming weight κ. Thereby, the size of signature
is (n · d · ⌈log (q/4)⌉ + n) bits. The signature in Section 4 utilizes the same
framework as the BLISS signature. We expect it yields more ŕexibility in selecting
parameters due to the usage of module lattices. It remains an interesting question
to understand whether the BLISS-like signature is secure in the QROM, and
thus we leave the parameter selection for future work.
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A Euclidean lattices

Let B ∈ Qm×n be a matrix of rank n. The lattice L generated by B is deőned as
L(B) = {Bx | ∀x ∈ Zn}, and the matrix B is called a basis of L(B) (or just L).
We let B∗ = (b∗1, · · · ,b∗n) denote the GramśSchmidt orthogonalization of B. The
determinant of a lattice L(B) is deőned as Vol(L(B)) =

∏

i≤n ∥b∗i ∥.
The ℓ2-norm of a shortest non-zero vector in a lattice L is denoted by λ1(L),

which is called the minimum of L. This can be extended successively: For any
lattice L, the i-th minimum λi(L) is the radius of the smallest ball with center
at the origin and containing i linearly independent lattice vectors. With B(0, r)
denoting a ball at origin of radius r, we have λi(L) = inf{r : dim(span(L ∩
B(0, r))) ≥ i}.

Minkowski’s Convex Body Theorem states that λ1(L) ≤ 2 · v−1/nn ·Vol(L)1/n,
where vn is the volume of an n-dimensional Euclidean ball of radius 1. The
average version of the Minkowski’s Theorem is often known as the Gaussian
heuristic: the λ1 of a random n-dimensional lattice is asymptotically

GH(L) = v−1/nn ·Vol(L)1/n. (1)

The quality of a full-rank lattice L of rank k is measured by the root Hermite
factor δ so that ∥b1∥ = δkVol(L)1/k. For i ≤ n, we let πi(v) denote the orthogonal
projection of v onto the linear subspace (b1, · · · ,bi−1)

⊥. For i < j ≤ n, we let
B[i,j] denote the local block (πi(bi), · · · , πi(bj)), and L[i,j] denote the lattice
generated by B[i,j].

B Distribution and Rejection sampling

Let D be a probability distribution. We let Supp(D) = {x : D(x) ̸= 0} denote
its support. For a őnite set X, we use UX to denote the uniform distribution
over X - e.g., URq

denotes the uniform distribution on Zq[x]/(x
n + 1). For a

positive number β, the uniform distribution on [−β, β] is denoted as Uβ . For a
distribution D, we write x←↩ D to denote that x is sampled from D. We denote
D(x) the probability of x← D. A polynomial f of degree (n− 1) is identiőed as
its coefficient vector and f ←↩ Dn denotes each coordinate of f is sampled from D
independently. The statistical distance between two distributions D1 and D2 over
a countable support X is ∆(D1, D2) =

1
2

∑

x∈X |D1(x)−D2(x)|. This deőnition
is extended in the natural way to continuous distributions. If f : X → R takes
non-negative values, then for all countable Y ⊆ X, we deőne f(Y ) =

∑

t∈Y f(t).

A function f(λ) is negligible if it is λ−ω(1), where λ often denotes the security
parameter in our context. A probability density function p(λ) is overwhelming
if it is 1 − λ−ω(1). The distinguishing advantage of an algorithm A between
two distributions D0 and D1 is deőned as AdvA(D0, D1) = |Prx←↩D0

[A(x) =
1]− Prx←↩D1

[A(x) = 1]|, where the probabilities are taken over the randomness
of the input x and the internal randomness of A. Algorithm A is called an
(ε, T )-distinguisher if it runs in time ≤ T and if AdvA(D0, D1) ≥ ε.
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A distribution D deőned on R is B-bounded for some positive real B, if
the probability that x ←↩ D has absolute value greater than B is negligible
w.r.t. the system parameter, which will be clear from the context. In the case
where D is over Zq, we will assume implicitly that B ≤ (q − 1)/2. A B-bounded
distribution D is said to be balanced if Pr[D ≤ 0] ≥ 1/2 and Pr[D ≥ 0] ≥ 1/2.
The notion of B-bounded distribution extends coordinate-wise if the support of
D is Rn and Rn×n. For example, we will consider the case when the polynomials
f are sampled from a B-bounded distribution, thus each coefficient of f sampled
is B-bounded.

For a vector c ∈ Rn and a real s > 0, the Gaussian function ρs,c with standard
deviation s and center c is deőned as ρs,c(x) = exp(−π∥x − c∥2/s2), ∀x ∈ Rn.
The Gaussian distribution function is Ds,c(x) = ρs,c(x)/s

n. When c = 0, we omit
the subscript c. The discrete Gaussian distribution over a lattice Λ ⊆ Rn, with
standard deviation s > 0 and center c is deőned as: DΛ,s,c = ρs,c(x)/ρs,c(Λ), ∀x ∈
Λ. When the center is 0, we may omit the subscript c. When the lattice Λ = Z,
we may also omit the subscript Λ.

We use the following rejection sampling lemma from [33] to ensure the output
signature is not leaking information about the secret key.

Lemma 7. Let V be an arbitrary set, and h : V → R and f : Zm → R be
probability distributions. If gv : Zm → R is a family of probability distributions
indexed by all v ∈ V with the property that

∃M ∈ R such that ∀v,Pr [Mgv(z) ≥ f(z); z ← f ] ≥ 1− ϵ

then the distribution of the output of the following algorithm is 1−ϵ
M indistinguish-

able:

1. v ← h, z ← gv, return (z, v) with probability min
(

f(z)
Mgv(z)

, 1
)

.

2. v ← h, z ← f, return (z, v) with probability 1
M .

C Identiőcation and signature schemes

We recall some basic notion on the canonical identiőcation schemes, following [30].
A canonical identiőcation scheme is a three-move protocol between two parties:
a prover P and a veriőer V. In the three-move protocol, the prover sends a
commitment W to the veriőer, then the veriőer selects a random challenge c and
sends it to P. Upon receiving c, the prover sends back a response Z to the veriőer.
In the end, the veriőer makes a deterministic decision about the received Z.

Deőnition 5 (Canonical identiőcation scheme). A canonical identiőcation
scheme is a tuple of classical ppt algorithms ID := (IGen,P,V).

• The key generation algorithm IGen takes as input a security parameter λ and
returns the public and secret keys (pk, sk). The public key deőnes the set of
challenges ChSet, the set of commitments WSet, and the set of responses
ZSet.
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• The prover algorithm P consists of two sub-algorithms: P1 takes as input the
secret key sk and returns a commitment W ∈WSet and a state St; P2 takes
as inputs the secret key sk, a commitment W , a challenge c, and a state St
and returns a response Z ∈ ZSet ∪ {⊥}, where ⊥/∈ ZSet is a special symbol
indicating failure.
• The veriőer algorithm V takes as inputs the public key pk and the tran-

script (W, c, Z) and outputs 1 (acceptance) or 0 (rejection).

If Z =⊥, then we set (W, c, Z) = (⊥,⊥,⊥). The triple (W, c, Z) ∈WSet×ChSet×
ZSet ∪ {(⊥,⊥,⊥)} generated in this way is called a transcript and denoted as
Trans(sk). Given the public key pk, a transcript is valid if V (pk,W, c, Z) = 1.

We say that ID has correctness error δ if, for all public and secret keys
generated by IGen all possible transcripts in WSet × ChSet × ZSet with Z ≠⊥
are valid, and the probability that a honestly generated transcript is (⊥,⊥,⊥) is
bounded above by δ. If the most likely probability of a random variable W that is
chosen from a discrete distribution D is 2−α, then we write H∞(W |W ←↩ D) = α.
We say a canonical identiőcation scheme ID has α bits of min-entropy, if

Pr
(pk,sk)←IGen(λ)

(H∞(W |(W,St)← P1(sk)) ≥ α) ≥ 1− 2−α.

Equivalently, except with probability 2−α over the choice of keys, the min-entropy
of W will be at least α.

Deőnition 6 (Lossy identiőcation). A canonical identiőcation scheme is lossy
if there exists a lossy key generation algorithm LossyIGen that takes the security
parameter λ as input and returns a public key pkls without any secret key. A lossy
ID scheme satisőed two security properties:

1. Indistinguishability of keys: the public keys generated by IGen and LossyIGen

are indistinguishable. Equivalently, for any quantum adversary A, the follow-
ing distinguishing advantage is negligible

AdvlossID (A) :=|Pr(A(pkls) = 1|pkls ← LossyIGen(λ))

− Pr(A(pk) = 1|(pk, sk)← IGen(λ))|.

2. Statistical lossy soundness: given a lossy public key pk, not even an unbounded
quantum adversary can impersonate the prover. A lossy ID scheme has ϵls-
lossy soundness if for any quantum adversary the probability to impersonate
the prover is bounded by ϵls.

Deőnition 7 (No-abort honest-veriőer zero-knowledge). A canonical iden-
tiőcation scheme ID is εzk-perfect no-abort honest-veriőer zero-knowledge (εzk-
perfect na-HVZK) if there exists a ppt algorithm Sim which given only the public
key pk, outputs (W, c, Z) such that:

• The statistical distance between (W, c, Z)← Sim(pk) and (W, c, Z)← Trans(pk)
is at most εzk;
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• The distribution of c in (W, c, Z)← Sim(pk) conditioned on c ̸=⊥ is uniform
in ChSet.

Finally, an identiőcation scheme has computational unique response (CUR)
property if it is computationally infeasible to produce two different valid re-
sponses Z,Z ′ for any commitment/challenge pair (W, c). In the context of lossy
identiőcation scheme, the computational unique response property is required to
ensure the strong unforgeability of the signature scheme.

D Signatures

Deőnition 8 (Digital signature). A digital signature scheme SIG consists of
a triple of ppt algorithms (Gen, Sign,Ver).

• The key generation algorithm Gen(λ) inputs the security parameter λ and
returns the public and secret keys (vk, sk). The vk deőnes the message space
for messages µ.

• The signing algorithm Sign(sk, µ) returns a signature σ.

• The deterministic veriőcation algorithm Ver(vk, µ, σ) returns 1 for accept or
0 for reject.

A signature scheme admits correctness error δ ≥ 0, if for every pair of outputs
(sk, vk) of Gen(λ) and any message µ in the message space, we have

Pr[Ver(vk, µ, Sign(sk, µ)) = 0] ≤ δ,

where the probability is taken over the randomness of algorithms Sign.

Deőnition 9 (Unforgeability). A signature scheme SIG := (Gen, Sign,Ver) is
said to be unforgeable against one-per-message chosen message attack (UF-CMA1)
in the quantum random oracle model if: for every ppt quantum forger F having
quantum access to the random oracle and classical access to the signing oracle, the
forging probability that, after seeing the public key and Q = poly(n) adaptively cho-
sen distinct messages Mi of his choice and their signatures {(Mi, Sign(sk,Mi))}i=1,··· ,Q,
the forger F can produce M∗ /∈ {Mi}i=1,··· ,Q and σ∗ such that Ver(vk,M∗, σ∗) =
1, is negligibly small. The forging probability is taken over the randomness of
Gen, Sign and F , and denoted as AdvUF-CMA1

SIG (F).

One can extend the deőnition to the case where the forger may obtain more
than one signature for any of Q adaptively chosen messages {Mi}. If no quantum
forger F can produce a valid signature for a message M∗ /∈ {Mi}i=1,··· ,Q, we say
the signature scheme is unforgeable against chosen message attack (UF-CMA).

In the strong UF-CMA/UF-CMA1 setup (denoted sUF-CMA/sUF-CMA1), the
adversary may return a forgery for a message which has already been queried
previously, but with a different signature.
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E Fiat-Shamir transform

One can construct a signature scheme from an identiőcation scheme where the
hardness of the signature inherits from the ID scheme. Let ID := (IGen,P,V)
be a canonical identiőcation scheme. One obtains the signature scheme SIG :=
(G = IGen, Sign,Ver) via the Fiat-Shamir transformation. Such approach uses the
Fiat-Shamir transform as illustrated in Figure 6, which can be used to construct
lattice-based signatures without trapdoor [32,33].

Algorithm Sign(sk, µ)

1 : i = 0

2 : while Z = ⊥ and i ≤ τm do

3 : i := i+ 1

4 : (W,St)← P1(sk)

5 : c = H(W ||µ)
6 : Z ← P2(sk,W, c, St)

7 : if Z = ⊥ return σ = ⊥
8 : output σ := (W,Z)

Algorithm Ver(pk, σ, µ)

1 : Parse σ := (W,Z)

2 : c = H(W ||µ)
3 : return V(pk,W, c, Z) ∈ {0, 1}

Fig. 6. Fiat-Shamir signature obtained from an ID = (IGen,P,V)

Such transform was known to be secure in the random oracle model in the
classic setting, which does not automatically imply security in the quantum
setup. Kiltz, Lyubashevsky and Schaffner [30] presents a generic framework for
constructing tight reductions in the quantum random-oracle (QROM) model,
which can be constructed from a lossy ID scheme. In particular, if the underlying
identiőcation scheme is lossy and na-HVZK, then the UF-CMA1 security of the
scheme is tightly based on the hardness of distinguishing regular and lossy public
keys of the identiőcation scheme. We will use Theorem 3.1 of [30] in this work
and cite it as follows.

Theorem 3.1 of [30]. Consider an identiőcation scheme ID which is lossy, εzk-
perfect na-HVZK, has α bits of entropy and is εls-lossy sound and the signature
scheme SIG obtained by applying the Fiat-Shamir transform to the identiőcation
scheme ID, as in Figure 6. For any quantum adversary A against UF-CMA1 (and
sUF-CMA1) security that issues at most QH quantum queries to the random
oracle and QS classical signing queries, there exists a quantum adversary B
against ID (and a quantum adversary C against CUR) such that

Adv UF-CMA1

SIG (A) ≤ Adv loss
ID (B) + 8(QH + 1)2 · εls + τm ·QS · εzk + 2−α+1

Adv SUF-CMA1

SIG (A) ≤ Adv loss
ID (B) + 8(QH + 1)2 · εls + τm ·QS · εzk + 2−α+1 + Adv CUR

ID (C)

and Time(B) = Time(C) = Time(A)+τm ·QH ≈ T ime(A).
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It can be noted that UF-CMA1-secure signatures can be de-randomized with
a pseudo-random function PRF to obtain a UF-CMA secure signatures with
deterministic signing [11] and such reduction is tight. Thus one can de-randomize
the signature scheme in Figure 6 by using a PRF to obtain a deterministic
signature DSIG. Then for any quantum adversary A against the UF-CMA security
of DSIG that issues at most QH quantum queries to the random oracle and QS

classical signing queries, there exists a quantum adversary B against ID and a
quantum adversary D against the PRF such that

AdvUF-CMA
DSIG (A) ≤ Advloss

ID (B) + 8(QH + 1)2 · εls + τm ·QS · εzk + 2−α+1 + AdvPR
PRF(D)

AdvSUF-CMA
DSIG (A) ≤ Advloss

ID (B) + 8(QH + 1)2 · εls + τm ·QS · εzk + 2−α+1 + AdvPR
PRF(D) + Adv CUR

ID (C)

where the AdvPR
PRF(D) denotes the distinguishing advantage of the adversary D,

w.r.t a perfect random function PR.

F Signature scheme from the lossy identiőcation and

security proofs

The signature is constructed from the identiőcation scheme in Figure 1 by using
the Fiat-Shamir transform. Theorem 3.1 on page 25 states the upper bound
for the security of our signature. We instatiate it with concrete parameters in
Section 5.
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Algorithm Gen(q, n, d, β)

1 : Sample f = {fi}di=1 and t, where fi ←↩ Un
β and t←↩ URq

2 : Compute h = (h1, . . . , hd−1, 1) such that
d
∑

i=1

hifi ≡ t (mod q)

3 : return pk := (h, t) and sk := f

Algorithm Sign(sk, µ) :

4 : Sample y = {yi}d−1
i=1 where yi ←↩ Un

γ

5 : Compute c = H

(⌊

d−1
∑

i=1

hiyi (mod q)

⌉

r

, µ

)

6 : Compute z = {zi}d−1
i=1 where zi = yi + c · fi

7 : Compute w =

d−1
∑

i=1

hizi − c · fd

8 : if any ∥zi∥∞ > γ − β · κ
or ∥[w]r∥∞ ≥ 2r−1 − β · κ
or ∥w∥∞ ≥ ⌊q/2⌋ − β · κ then

9 : return ⊥
10 : return (z, c)

Algorithm Ver(pk, µ, z, c) :

11 : if ∀ 1 ≤ i ≤ d− 1, ∥zi∥∞ < γ − β · κ and

H

(⌊

d−1
∑

i=1

hizi − t · c (mod q)

⌉

r

, µ

)

= c then

12 : return Accept

13 : return Reject

Fig. 7. A signature scheme obtained from the lossy identiőcation scheme.

Proofs for signature scheme in Section 3 In this subsection, we show the
ID scheme admits properties such as na-HVZK, correctness, lossy, min-entropy
and CUR. For convenience, we denote B := β · κ.

Proof of Lemma 1 : We sketch the proof. Our choice of parameters guarantees
that the inőnity norm of zi in the output is bounded by γ−B. It is clear that each
zi bounded by γ −B has an equal probability of being generated. Furthermore,
the probability that some z such that ∥z∥∞ ≤ γ − B is generated is precisely

(|Uγ−B |/|Uγ |)n(d−1), as in Line 9 of Figure 2. Finally, we note that Line 12 of

Figure 2 satisőes
∑d−1

i=1 hizi − t · c = ∑d−1
i=1 hiyi − c · fd (mod q). Thus, the step

in Line 7 of Algorithm Trans is identical to that of Line 13 of Algorithm Sim. □

Proof of Lemma 2 : It can be checked that when the output is not ⊥, the
veriőcation procedure will always accept. This is due to the conditions in Line 9
and 12 of Figure 1.

Furthermore, Lemma 1 shows Algorithms Trans and Sim output ⊥ with the
same probability. Thus, it suffices to focus on Algorithm Sim.
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First, the probability of producing some z, that is to say Line 9 of Algorithm
Sim does not return ⊥, is

(

2(γ −B) + 1

2γ + 1

)n(d−1)

≈
(

1− B

γ

)n(d−1)

≈ exp (−Bn(d− 1)/γ) .

Second, we heuristically assume the low-bits [w′]r are uniform, where w′ =
∑d−1

i=1 hizi − t · c (mod q) for a uniform z.
Thus, the probability that ∥[w′]r∥∞ < 2r−1 −B is about

(

−Bn/2r−1
)

.
Finally, we will also assume that w′ is uniform mod q and thus the probability

that ∥w′∥∞ < ⌊q/2⌋ −B is about exp (−2Bn/q).
In these estimated inequalities, we assumed q ≫ 2r−1 ≫ γ ≫ B = β · κ. The

overall acceptance probability is as stated. □

Proof of Lemma 3 : We will sketch the proof, which follows the same framework
of [30].

We now introduce the impersonation game. Consider an unbounded quantum
adversary A who receives the lossy key (h, t) produced from LossyIGen. The
adversary A attempts to impersonate with the following steps: outputting u,
taking c uniformly from Bκ, and then producing z. We will prove that for almost
all lossy keys generated from LossyIGen, for any u, there exists at most one
possible c that allows the adversary A to win. Since c is taken uniformly from
Bκ, this implies the adversary wins at a chance of at most 1

|Bκ|
, for almost all

lossy keys.
Now, suppose that for some u, there exist pairs (z, c) and (z′, c′), such that

c ̸= c′, in which the adversary A wins. Thus,

u =

⌊

d−1
∑

i=1

hizi − t · c
⌉

r

=

⌊

d−1
∑

i=1

hiz
′
i − t · c′

⌉

r

.

Using the bounds on zi’s and rounding properties, there exists some w such that

d−1
∑

i=1

hi(zi − z′i) + w = t · (c− c′). (2)

We have the bounds ∥w∥∞ ≤ 2r, ∥zi − z′i∥∞ ≤ 2(γ −B) and ∥c− c′∥∞ ≤ 2. To
prove this only happens rarely, we will show the following statement that, over
random choices of (h, t), the equation

∑d−1
i=1 hiz

∗
i + w∗ = t · c∗ is satisőed (i.e.

there exist such z∗ = {z∗i }i, w∗ and c∗) with probability bounded by

2 · |C| · (4(γ −B) + 1)n(d−1) · (2r+1 + 1)n

qn
. (3)

Here, for convenience, we denote sets Z = {∀i ∈ [1, d − 1], z∗i ∈ Rq | ∥z∗i ∥∞ ≤
2(γ −B)}, W = {w∗ ∈ Rq | ∥w∗∥∞ ≤ 2r} and C = {c∗ ∈ Rq | ∥c∗∥∞ ≤ 2}. Note
that one can also restrict C to contain elements c∗ of at most 2κ non-zero entries.
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We consider two cases depending on whether z∗ = 0 or not. First, suppose
z∗ = 0. We consider

Pr
t←↩Rq

[∃ (w∗, c∗) ∈ Rq × C s.t. w∗ = t · c∗]

By [36, Lemma 2.2], the elements c∗ of norm <
√

q/2 are invertible in Rq as we
choose q ≡ 5 (mod 8). Thus, the above probability is

Pr
t←↩Rq

[

∃ (w∗, c∗) ∈ Rq × C s.t. w∗ · (c∗)−1 = t
]

≤
∑

w∗∈W,c∗∈C

Pr
t←↩Rq

[

t = w∗ · (c∗)−1
]

≤ |C| · (2
r+1 + 1)n

qn

Second, suppose that z∗ ≠ 0. For some őxed (z∗, w∗, c∗), we assume that z1 ̸= 0;
otherwise, take any non-zero zi. We have

Pr
∀i, hi←↩Rq,t←↩Rq

[

d−1
∑

i=1

hiz
∗
i + w∗ = t · c∗

]

= Pr
h1←↩Rq

[

h1 =
t · c∗ − w∗ −∑d−1

i=2 hiz
∗
i

z1

]

≤ 1

qn
.

The invertibility of z1 is due to the small norm of z1 by [36, Lemma 2.2] again.
By the union bound, the probability over all (z∗ ≠ 0, w∗, c∗) can be bounded by

∑

z∗∈Z\{0},w∗∈W,c∗∈C

1

qn
≤ |C| · (4(γ −B) + 1)n(d−1) · (2r+1 + 1)n

qn
.

Thus, Equation (2) is satisőed when (h, t) is sampled from LossyIGen, with
probability bounded by the one given in Equation (3).

Finally, as c is taken uniformly from Bκ in the impersonation game, the
adversary wins at a chance of at most

1

|Bκ|
+ 2 · |C| · (4(γ −B) + 1)n(d−1) · (2r+1 + 1)n

qn
.

We note that |C| ≤ |Bκ|2. □

Proof of Lemma 4 : We will bound the probability that the commitment u is
unique, averaged over a random choice h′ - e.g.,

Pr
h′←↩Ud−1

Rq

[

∃y ̸= y′,

⌊

d−1
∑

i=1

hiyi

⌉

r

=

⌊

d−1
∑

i=1

hiy
′
i

⌉

r

]

.

If there exist distinct y and y′ such that
⌊

∑d−1
i=1 hiyi

⌉

r
=

⌊

∑d−1
i=1 hiy

′
i

⌉

r
, then

there exist non-zero elements y∗ and w∗ such that
∑d−1

i=1 hiy
∗
i = w∗ (mod q),

29



where ∥y∗∥∞ ≤ 2γ and ∥w∗∥∞ ≤ 2r. Since y∗ is nonzero, we may assume that
y∗1 ≠ 0 w.l.o.g. Again, the elements y∗1 of small norm are invertible by [36, Lemma
2.2]. Thus, we have

∑

y∗,w∗

Pr
h′←↩Ud−1

Rq

[

d−1
∑

i=1

hiy
∗
i = w∗

]

=
∑

y∗,w∗

Pr
h1←↩URq

[

h1 =
w∗ −∑d−1

i=2 hiy
∗
i

y∗1

]

≤ (4γ + 1)n(d−1)(2r+1 + 1)n

qn

Denote δ := (4γ + 1)n(d−1)(2r+1 + 1)nq−n. With probability at least 1− δ over

the choices of public key h′, the min entropy of
⌊

∑d−1
i=1 hiyi (mod q)

⌉

r
is at least

(d− 1)n log(2γ + 1). Therefore, the identiőcation has α bits of min-entropy, as
stated in the lemma. □

Proof of Lemma 5 : Suppose an adversary can produce two transcripts (u, c, z),
(u, c, z′) such that z ̸= z′ and V(pk, u, c, z) = V(pk, u, c, z′) = 1. We see that there

exist z∗ ̸= 0 and w∗ such that
∑d−1

i=1 hiz
∗
i = w∗, where ∥z∗∥∞ ≤ 2(γ − B) and

∥w∗∥∞ ≤ 2r. One can bound the probability, over the choice of h, that there
exists such (z∗, w∗) using a similar method as in Lemma 3 or Lemma 4. □

G Proofs for BLISS-like signature

Proof of Lemma 6 : The only difference between the genuine signature algorithm
and Hybrid 1 is the necessary programming of the random oracle at t := ⟨a, z⟩+
q c = ⟨a,y⟩ (mod 2q), without checking whether the value t was previously set
or queried. We bound such probability for any t and a. We have

Pr
∀i, yi←↩Dn

σ

[⟨a,y⟩ = t] = Pr
∀i, yi←↩Dn

σ

[

d−1
∑

i=1

2hiyi + (q − 2) yd = t

]

≤ max
w∈Rq

Pr
yd←↩Dn

σ

[yd = w] ≤ 2−n.

The total number of values programmed will be bounded by qH + qS . Thus, the
probability that we have any collision with one of the previous calls of OSign is
bounded by qS(qH + qS)2

−n. This provides an upper bound on the advantage of
the distinguisher algorithm D. □

Proof of Theorem 1 : Let h′ = {hi}d−1i=1 be the instance sampled from the the
variant MNTRUq,n,d,D1,D2

distribution, where D1 and D2 sample polynomials
from Dn

Z,σ. We construct the public key a for the signature in Hybrid 2 such that

a = (2h1, · · · , 2hd−1, q−2) in Rd
2q. We aim to őnd a vector x such that ⟨a,x⟩ = 0

(mod q), which implies the solution ⟨h,x⟩ = 0 (mod q).
When the adversary A wants to see the signature on some message, one calls

the signing algorithm from Hybrid 2. When the random oracle is queried during
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signing or random oracle access, one programs the random oracle, maintaining a
list of all queries to keep track of the same query being made. Finally, A produces
a forgery (z, c) on a message µ, using at most qS signing queries to Hybrid 2 and
qH hash queries to the random oracle H, and succeeds with probability δ. Write
qT = qS + qH as the upper bound on the number of times the random oracle is
called or programmed during A’s attack.

We denote β :=
(

n
κ

)

. With probability 1− 1/β, the forgery relies on having
had c as the result of a query (hash or sign) previously. With probability δ− 1/β,
this leads to two possible sources of the forgery: collision from the Hybrid 2
and collision from the random oracle query. We cover these in two cases. First,
suppose c was obtained from a signing oracle query. Then, there exist pairs (z, µ)
and (z′, µ′) such that H(⟨a, z⟩+ q · c, µ) = H(⟨a, z′⟩+ q · c, µ′), which implies

µ = µ′ and ⟨a, z⟩+ q · c = ⟨a, z′⟩+ q · c (mod 2q),

due to the collision resistance. This yields
∑d−1

i=1 hi(zi − z′i) − (zd − z′d) ≡ 0

mod q. Note that ∥z− z′∥ is bounded by 2ησ
√
nd and z ̸= z′. Furthermore,

z ̸≡ z′ (mod q), since ∥z∥∞ and ∥z′∥∞ ≤ q/4. Thus, z− z′ is a non-zero solution
of the variant MNTRUq,n,d,D1,D2,B .

Second, suppose c was obtained from a hash oracle query, the Forking Lemma

in [10,18] states that, with probability (δ − 1
β )(

δ−β−1

qT
− 1

β ) ≈ δ2/qT , there exist

(z, c) and (z′, c′) with c ̸= c′ such that

d−1
∑

i=1

2hi(zi − z′i)− (q − 2)(zd − z′d) ≡ q(c− c′) mod 2q.

This yields
∑d−1

i=1 hi(zi − z′i) − (zd − z′d) ≡ 0 mod q. The c, c′ are binary and
hence c ̸= c′ (mod 2). Given that ∥z∥∞ and ∥z′∥∞ ≤ q/4, we see that z ̸≡ z′

(mod q) and hence z−z′ is a nonzero solution of the variant MNTRUq,n,d,D1,D2,B .
□

H Lattice reduction estimates

In MNTRU lattices, the secret (f , g) has norm less than the Gaussian heuristic
norm of the shortest non-zero vector in Λh and leads to the so-called unique-SVP
problems (uSVP).

We recall the estimate for solving uSVP by Gama and Nguyen [22]. Generally,
the work in [22] showed that the shortest vector in the uSVPγ problem can
be recovered as soon as γ ≥ τ · δm, where δ is the root Hermite factor of the
reduction algorithm, and γ is the ratio gap of λ2/λ1 in uSVP lattices. Here τ < 1
is an empirical constant determined by experiments: it has been investigated
that τ lies in between 0.3 and 0.4 when using the BKZ algorithm [4]. Ordinarily,
the second minimum λ2 of a uSVP lattice is approximated by using the Gaussian
heuristic to predict the norm of the shortest vector in random lattices. The δ is
a decreasing function of β and therefore we want to maximize δ.
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In the New Hope key exchange paper [7], another alternative method for
estimating the cost for solving uSVP is given, and it has been investigated
extensively by Albrecht et al. in work [4]. Instead of looking at the gap of the
uSVP directly, it considers the evolution of the Gram-Schmidt coefficients of the
unique shortest vector in the BKZ tours. More precisely, it compares the expected
length of the projected (expected) shortest vector v with the Gram-Schmidt
lengths estimated by the Geometric Series Assumption (GSA) [48].

Geometric Series Assumption (GSA) Let k be a rank of a lattice Λ. For 1 ≤ i ≤
k − 1, the norm of the Gram-Schmidt vectors b∗i in the lattice reduction basis
BKZβ satisfy

∥b∗i ∥ = δ2β ·
∥

∥b∗i+1

∥

∥ .

The main idea is that partial information of the shortest vector v will be
recovered in the last block, when the orthogonal projection of v to the őrst d− β
Gram-Schmidt vectors is shorter than the expected b∗d−β+1 predicted by the GSA
assumption. Thus the success condition for recovering the secret for MNTRU

problems, can be formulated as follows:

√

β/dim(L) ·
∥

∥

[

f , g
]
∥

∥ ≤ δ
2β−dim(L)−1
β ·Vol(L)1/ dim(L).

32


	Fiat-Shamir Signatures based on Module-NTRU

